Commit c30707be authored by Rebecca Schultz Zavin's avatar Rebecca Schultz Zavin Committed by Greg Kroah-Hartman

gpu: ion: Add ION Memory Manager

Signed-off-by: default avatarRebecca Schultz Zavin <rebecca@android.com>
[jstultz: Squished in Colin Cross' move to staging change,
also disables ION from the build, as it won't compile till
the end of the patchset]
Signed-off-by: default avatarJohn Stultz <john.stultz@linaro.org>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 530376bf
......@@ -100,6 +100,8 @@ config SW_SYNC_USER
*WARNING* improper use of this can result in deadlocking kernel
drivers from userspace.
source "drivers/staging/android/ion/Kconfig"
endif # if ANDROID
endmenu
ccflags-y += -I$(src) # needed for trace events
# ION doesn't build just yet, so disable it from the build
#obj-y += ion/
obj-$(CONFIG_ANDROID_BINDER_IPC) += binder.o
obj-$(CONFIG_ASHMEM) += ashmem.o
obj-$(CONFIG_ANDROID_LOGGER) += logger.o
......
menuconfig ION
tristate "Ion Memory Manager"
select GENERIC_ALLOCATOR
help
Chose this option to enable the ION Memory Manager.
config ION_TEGRA
tristate "Ion for Tegra"
depends on ARCH_TEGRA && ION
help
Choose this option if you wish to use ion on an nVidia Tegra.
obj-$(CONFIG_ION) += ion.o ion_heap.o ion_system_heap.o ion_carveout_heap.o
obj-$(CONFIG_ION_TEGRA) += tegra/
/*
* drivers/staging/android/ion/ion.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include "ion.h"
#include "ion_priv.h"
#define DEBUG
/**
* struct ion_device - the metadata of the ion device node
* @dev: the actual misc device
* @buffers: an rb tree of all the existing buffers
* @lock: lock protecting the buffers & heaps trees
* @heaps: list of all the heaps in the system
* @user_clients: list of all the clients created from userspace
*/
struct ion_device {
struct miscdevice dev;
struct rb_root buffers;
struct mutex lock;
struct rb_root heaps;
long (*custom_ioctl) (struct ion_client *client, unsigned int cmd,
unsigned long arg);
struct rb_root user_clients;
struct rb_root kernel_clients;
struct dentry *debug_root;
};
/**
* struct ion_client - a process/hw block local address space
* @ref: for reference counting the client
* @node: node in the tree of all clients
* @dev: backpointer to ion device
* @handles: an rb tree of all the handles in this client
* @lock: lock protecting the tree of handles
* @heap_mask: mask of all supported heaps
* @name: used for debugging
* @task: used for debugging
*
* A client represents a list of buffers this client may access.
* The mutex stored here is used to protect both handles tree
* as well as the handles themselves, and should be held while modifying either.
*/
struct ion_client {
struct kref ref;
struct rb_node node;
struct ion_device *dev;
struct rb_root handles;
struct mutex lock;
unsigned int heap_mask;
const char *name;
struct task_struct *task;
pid_t pid;
struct dentry *debug_root;
};
/**
* ion_handle - a client local reference to a buffer
* @ref: reference count
* @client: back pointer to the client the buffer resides in
* @buffer: pointer to the buffer
* @node: node in the client's handle rbtree
* @kmap_cnt: count of times this client has mapped to kernel
* @dmap_cnt: count of times this client has mapped for dma
* @usermap_cnt: count of times this client has mapped for userspace
*
* Modifications to node, map_cnt or mapping should be protected by the
* lock in the client. Other fields are never changed after initialization.
*/
struct ion_handle {
struct kref ref;
struct ion_client *client;
struct ion_buffer *buffer;
struct rb_node node;
unsigned int kmap_cnt;
unsigned int dmap_cnt;
unsigned int usermap_cnt;
};
/* this function should only be called while dev->lock is held */
static void ion_buffer_add(struct ion_device *dev,
struct ion_buffer *buffer)
{
struct rb_node **p = &dev->buffers.rb_node;
struct rb_node *parent = NULL;
struct ion_buffer *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_buffer, node);
if (buffer < entry) {
p = &(*p)->rb_left;
} else if (buffer > entry) {
p = &(*p)->rb_right;
} else {
pr_err("%s: buffer already found.", __func__);
BUG();
}
}
rb_link_node(&buffer->node, parent, p);
rb_insert_color(&buffer->node, &dev->buffers);
}
/* this function should only be called while dev->lock is held */
static struct ion_buffer *ion_buffer_create(struct ion_heap *heap,
struct ion_device *dev,
unsigned long len,
unsigned long align,
unsigned long flags)
{
struct ion_buffer *buffer;
int ret;
buffer = kzalloc(sizeof(struct ion_buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
buffer->heap = heap;
kref_init(&buffer->ref);
ret = heap->ops->allocate(heap, buffer, len, align, flags);
if (ret) {
kfree(buffer);
return ERR_PTR(ret);
}
buffer->dev = dev;
buffer->size = len;
mutex_init(&buffer->lock);
ion_buffer_add(dev, buffer);
return buffer;
}
static void ion_buffer_destroy(struct kref *kref)
{
struct ion_buffer *buffer = container_of(kref, struct ion_buffer, ref);
struct ion_device *dev = buffer->dev;
buffer->heap->ops->free(buffer);
mutex_lock(&dev->lock);
rb_erase(&buffer->node, &dev->buffers);
mutex_unlock(&dev->lock);
kfree(buffer);
}
static void ion_buffer_get(struct ion_buffer *buffer)
{
kref_get(&buffer->ref);
}
static int ion_buffer_put(struct ion_buffer *buffer)
{
return kref_put(&buffer->ref, ion_buffer_destroy);
}
static struct ion_handle *ion_handle_create(struct ion_client *client,
struct ion_buffer *buffer)
{
struct ion_handle *handle;
handle = kzalloc(sizeof(struct ion_handle), GFP_KERNEL);
if (!handle)
return ERR_PTR(-ENOMEM);
kref_init(&handle->ref);
RB_CLEAR_NODE(&handle->node);
handle->client = client;
ion_buffer_get(buffer);
handle->buffer = buffer;
return handle;
}
static void ion_handle_destroy(struct kref *kref)
{
struct ion_handle *handle = container_of(kref, struct ion_handle, ref);
/* XXX Can a handle be destroyed while it's map count is non-zero?:
if (handle->map_cnt) unmap
*/
ion_buffer_put(handle->buffer);
mutex_lock(&handle->client->lock);
if (!RB_EMPTY_NODE(&handle->node))
rb_erase(&handle->node, &handle->client->handles);
mutex_unlock(&handle->client->lock);
kfree(handle);
}
struct ion_buffer *ion_handle_buffer(struct ion_handle *handle)
{
return handle->buffer;
}
static void ion_handle_get(struct ion_handle *handle)
{
kref_get(&handle->ref);
}
static int ion_handle_put(struct ion_handle *handle)
{
return kref_put(&handle->ref, ion_handle_destroy);
}
static struct ion_handle *ion_handle_lookup(struct ion_client *client,
struct ion_buffer *buffer)
{
struct rb_node *n;
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
if (handle->buffer == buffer)
return handle;
}
return NULL;
}
static bool ion_handle_validate(struct ion_client *client, struct ion_handle *handle)
{
struct rb_node *n = client->handles.rb_node;
while (n) {
struct ion_handle *handle_node = rb_entry(n, struct ion_handle,
node);
if (handle < handle_node)
n = n->rb_left;
else if (handle > handle_node)
n = n->rb_right;
else
return true;
}
return false;
}
static void ion_handle_add(struct ion_client *client, struct ion_handle *handle)
{
struct rb_node **p = &client->handles.rb_node;
struct rb_node *parent = NULL;
struct ion_handle *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_handle, node);
if (handle < entry)
p = &(*p)->rb_left;
else if (handle > entry)
p = &(*p)->rb_right;
else
WARN(1, "%s: buffer already found.", __func__);
}
rb_link_node(&handle->node, parent, p);
rb_insert_color(&handle->node, &client->handles);
}
struct ion_handle *ion_alloc(struct ion_client *client, size_t len,
size_t align, unsigned int flags)
{
struct rb_node *n;
struct ion_handle *handle;
struct ion_device *dev = client->dev;
struct ion_buffer *buffer = NULL;
/*
* traverse the list of heaps available in this system in priority
* order. If the heap type is supported by the client, and matches the
* request of the caller allocate from it. Repeat until allocate has
* succeeded or all heaps have been tried
*/
mutex_lock(&dev->lock);
for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) {
struct ion_heap *heap = rb_entry(n, struct ion_heap, node);
/* if the client doesn't support this heap type */
if (!((1 << heap->type) & client->heap_mask))
continue;
/* if the caller didn't specify this heap type */
if (!((1 << heap->id) & flags))
continue;
buffer = ion_buffer_create(heap, dev, len, align, flags);
if (!IS_ERR_OR_NULL(buffer))
break;
}
mutex_unlock(&dev->lock);
if (IS_ERR_OR_NULL(buffer))
return ERR_PTR(PTR_ERR(buffer));
handle = ion_handle_create(client, buffer);
if (IS_ERR_OR_NULL(handle))
goto end;
/*
* ion_buffer_create will create a buffer with a ref_cnt of 1,
* and ion_handle_create will take a second reference, drop one here
*/
ion_buffer_put(buffer);
mutex_lock(&client->lock);
ion_handle_add(client, handle);
mutex_unlock(&client->lock);
return handle;
end:
ion_buffer_put(buffer);
return handle;
}
void ion_free(struct ion_client *client, struct ion_handle *handle)
{
bool valid_handle;
BUG_ON(client != handle->client);
mutex_lock(&client->lock);
valid_handle = ion_handle_validate(client, handle);
mutex_unlock(&client->lock);
if (!valid_handle) {
WARN("%s: invalid handle passed to free.\n", __func__);
return;
}
ion_handle_put(handle);
}
static void ion_client_get(struct ion_client *client);
static int ion_client_put(struct ion_client *client);
static bool _ion_map(int *buffer_cnt, int *handle_cnt)
{
bool map;
BUG_ON(*handle_cnt != 0 && *buffer_cnt == 0);
if (*buffer_cnt)
map = false;
else
map = true;
if (*handle_cnt == 0)
(*buffer_cnt)++;
(*handle_cnt)++;
return map;
}
static bool _ion_unmap(int *buffer_cnt, int *handle_cnt)
{
BUG_ON(*handle_cnt == 0);
(*handle_cnt)--;
if (*handle_cnt != 0)
return false;
BUG_ON(*buffer_cnt == 0);
(*buffer_cnt)--;
if (*buffer_cnt == 0)
return true;
return false;
}
int ion_phys(struct ion_client *client, struct ion_handle *handle,
ion_phys_addr_t *addr, size_t *len)
{
struct ion_buffer *buffer;
int ret;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
if (!buffer->heap->ops->phys) {
pr_err("%s: ion_phys is not implemented by this heap.\n",
__func__);
mutex_unlock(&client->lock);
return -ENODEV;
}
mutex_unlock(&client->lock);
ret = buffer->heap->ops->phys(buffer->heap, buffer, addr, len);
return ret;
}
void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
void *vaddr;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to map_kernel.\n",
__func__);
mutex_unlock(&client->lock);
return ERR_PTR(-EINVAL);
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (!handle->buffer->heap->ops->map_kernel) {
pr_err("%s: map_kernel is not implemented by this heap.\n",
__func__);
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return ERR_PTR(-ENODEV);
}
if (_ion_map(&buffer->kmap_cnt, &handle->kmap_cnt)) {
vaddr = buffer->heap->ops->map_kernel(buffer->heap, buffer);
if (IS_ERR_OR_NULL(vaddr))
_ion_unmap(&buffer->kmap_cnt, &handle->kmap_cnt);
buffer->vaddr = vaddr;
} else {
vaddr = buffer->vaddr;
}
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return vaddr;
}
struct scatterlist *ion_map_dma(struct ion_client *client,
struct ion_handle *handle)
{
struct ion_buffer *buffer;
struct scatterlist *sglist;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to map_dma.\n",
__func__);
mutex_unlock(&client->lock);
return ERR_PTR(-EINVAL);
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (!handle->buffer->heap->ops->map_dma) {
pr_err("%s: map_kernel is not implemented by this heap.\n",
__func__);
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return ERR_PTR(-ENODEV);
}
if (_ion_map(&buffer->dmap_cnt, &handle->dmap_cnt)) {
sglist = buffer->heap->ops->map_dma(buffer->heap, buffer);
if (IS_ERR_OR_NULL(sglist))
_ion_unmap(&buffer->dmap_cnt, &handle->dmap_cnt);
buffer->sglist = sglist;
} else {
sglist = buffer->sglist;
}
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return sglist;
}
void ion_unmap_kernel(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
mutex_lock(&client->lock);
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (_ion_unmap(&buffer->kmap_cnt, &handle->kmap_cnt)) {
buffer->heap->ops->unmap_kernel(buffer->heap, buffer);
buffer->vaddr = NULL;
}
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
}
void ion_unmap_dma(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
mutex_lock(&client->lock);
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (_ion_unmap(&buffer->dmap_cnt, &handle->dmap_cnt)) {
buffer->heap->ops->unmap_dma(buffer->heap, buffer);
buffer->sglist = NULL;
}
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
}
struct ion_buffer *ion_share(struct ion_client *client,
struct ion_handle *handle)
{
bool valid_handle;
mutex_lock(&client->lock);
valid_handle = ion_handle_validate(client, handle);
mutex_unlock(&client->lock);
if (!valid_handle) {
WARN("%s: invalid handle passed to share.\n", __func__);
return ERR_PTR(-EINVAL);
}
/* do not take an extra reference here, the burden is on the caller
* to make sure the buffer doesn't go away while it's passing it
* to another client -- ion_free should not be called on this handle
* until the buffer has been imported into the other client
*/
return handle->buffer;
}
struct ion_handle *ion_import(struct ion_client *client,
struct ion_buffer *buffer)
{
struct ion_handle *handle = NULL;
mutex_lock(&client->lock);
/* if a handle exists for this buffer just take a reference to it */
handle = ion_handle_lookup(client, buffer);
if (!IS_ERR_OR_NULL(handle)) {
ion_handle_get(handle);
goto end;
}
handle = ion_handle_create(client, buffer);
if (IS_ERR_OR_NULL(handle))
goto end;
ion_handle_add(client, handle);
end:
mutex_unlock(&client->lock);
return handle;
}
static const struct file_operations ion_share_fops;
struct ion_handle *ion_import_fd(struct ion_client *client, int fd)
{
struct file *file = fget(fd);
struct ion_handle *handle;
if (!file) {
pr_err("%s: imported fd not found in file table.\n", __func__);
return ERR_PTR(-EINVAL);
}
if (file->f_op != &ion_share_fops) {
pr_err("%s: imported file is not a shared ion file.\n",
__func__);
handle = ERR_PTR(-EINVAL);
goto end;
}
handle = ion_import(client, file->private_data);
end:
fput(file);
return handle;
}
static int ion_debug_client_show(struct seq_file *s, void *unused)
{
struct ion_client *client = s->private;
struct rb_node *n;
size_t sizes[ION_NUM_HEAPS] = {0};
const char *names[ION_NUM_HEAPS] = {0};
int i;
mutex_lock(&client->lock);
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
enum ion_heap_type type = handle->buffer->heap->type;
if (!names[type])
names[type] = handle->buffer->heap->name;
sizes[type] += handle->buffer->size;
}
mutex_unlock(&client->lock);
seq_printf(s, "%16.16s: %16.16s\n", "heap_name", "size_in_bytes");
for (i = 0; i < ION_NUM_HEAPS; i++) {
if (!names[i])
continue;
seq_printf(s, "%16.16s: %16u %d\n", names[i], sizes[i],
atomic_read(&client->ref.refcount));
}
return 0;
}
static int ion_debug_client_open(struct inode *inode, struct file *file)
{
return single_open(file, ion_debug_client_show, inode->i_private);
}
static const struct file_operations debug_client_fops = {
.open = ion_debug_client_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct ion_client *ion_client_lookup(struct ion_device *dev,
struct task_struct *task)
{
struct rb_node *n = dev->user_clients.rb_node;
struct ion_client *client;
mutex_lock(&dev->lock);
while (n) {
client = rb_entry(n, struct ion_client, node);
if (task == client->task) {
ion_client_get(client);
mutex_unlock(&dev->lock);
return client;
} else if (task < client->task) {
n = n->rb_left;
} else if (task > client->task) {
n = n->rb_right;
}
}
mutex_unlock(&dev->lock);
return NULL;
}
struct ion_client *ion_client_create(struct ion_device *dev,
unsigned int heap_mask,
const char *name)
{
struct ion_client *client;
struct task_struct *task;
struct rb_node **p;
struct rb_node *parent = NULL;
struct ion_client *entry;
char debug_name[64];
pid_t pid;
get_task_struct(current->group_leader);
task_lock(current->group_leader);
pid = task_pid_nr(current->group_leader);
/* don't bother to store task struct for kernel threads,
they can't be killed anyway */
if (current->group_leader->flags & PF_KTHREAD) {
put_task_struct(current->group_leader);
task = NULL;
} else {
task = current->group_leader;
}
task_unlock(current->group_leader);
/* if this isn't a kernel thread, see if a client already
exists */
if (task) {
client = ion_client_lookup(dev, task);
if (!IS_ERR_OR_NULL(client)) {
put_task_struct(current->group_leader);
return client;
}
}
client = kzalloc(sizeof(struct ion_client), GFP_KERNEL);
if (!client) {
put_task_struct(current->group_leader);
return ERR_PTR(-ENOMEM);
}
client->dev = dev;
client->handles = RB_ROOT;
mutex_init(&client->lock);
client->name = name;
client->heap_mask = heap_mask;
client->task = task;
client->pid = pid;
kref_init(&client->ref);
mutex_lock(&dev->lock);
if (task) {
p = &dev->user_clients.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_client, node);
if (task < entry->task)
p = &(*p)->rb_left;
else if (task > entry->task)
p = &(*p)->rb_right;
}
rb_link_node(&client->node, parent, p);
rb_insert_color(&client->node, &dev->user_clients);
} else {
p = &dev->kernel_clients.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_client, node);
if (client < entry)
p = &(*p)->rb_left;
else if (client > entry)
p = &(*p)->rb_right;
}
rb_link_node(&client->node, parent, p);
rb_insert_color(&client->node, &dev->kernel_clients);
}
snprintf(debug_name, 64, "%u", client->pid);
client->debug_root = debugfs_create_file(debug_name, 0664,
dev->debug_root, client,
&debug_client_fops);
mutex_unlock(&dev->lock);
return client;
}
static void _ion_client_destroy(struct kref *kref)
{
struct ion_client *client = container_of(kref, struct ion_client, ref);
struct ion_device *dev = client->dev;
struct rb_node *n;
pr_debug("%s: %d\n", __func__, __LINE__);
while ((n = rb_first(&client->handles))) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
ion_handle_destroy(&handle->ref);
}
mutex_lock(&dev->lock);
if (client->task) {
rb_erase(&client->node, &dev->user_clients);
put_task_struct(client->task);
} else {
rb_erase(&client->node, &dev->kernel_clients);
}
debugfs_remove_recursive(client->debug_root);
mutex_unlock(&dev->lock);
kfree(client);
}
static void ion_client_get(struct ion_client *client)
{
kref_get(&client->ref);
}
static int ion_client_put(struct ion_client *client)
{
return kref_put(&client->ref, _ion_client_destroy);
}
void ion_client_destroy(struct ion_client *client)
{
ion_client_put(client);
}
static int ion_share_release(struct inode *inode, struct file* file)
{
struct ion_buffer *buffer = file->private_data;
pr_debug("%s: %d\n", __func__, __LINE__);
/* drop the reference to the buffer -- this prevents the
buffer from going away because the client holding it exited
while it was being passed */
ion_buffer_put(buffer);
return 0;
}
static void ion_vma_open(struct vm_area_struct *vma)
{
struct ion_buffer *buffer = vma->vm_file->private_data;
struct ion_handle *handle = vma->vm_private_data;
struct ion_client *client;
pr_debug("%s: %d\n", __func__, __LINE__);
/* check that the client still exists and take a reference so
it can't go away until this vma is closed */
client = ion_client_lookup(buffer->dev, current->group_leader);
if (IS_ERR_OR_NULL(client)) {
vma->vm_private_data = NULL;
return;
}
pr_debug("%s: %d client_cnt %d handle_cnt %d alloc_cnt %d\n",
__func__, __LINE__,
atomic_read(&client->ref.refcount),
atomic_read(&handle->ref.refcount),
atomic_read(&buffer->ref.refcount));
}
static void ion_vma_close(struct vm_area_struct *vma)
{
struct ion_handle *handle = vma->vm_private_data;
struct ion_buffer *buffer = vma->vm_file->private_data;
struct ion_client *client;
pr_debug("%s: %d\n", __func__, __LINE__);
/* this indicates the client is gone, nothing to do here */
if (!handle)
return;
client = handle->client;
pr_debug("%s: %d client_cnt %d handle_cnt %d alloc_cnt %d\n",
__func__, __LINE__,
atomic_read(&client->ref.refcount),
atomic_read(&handle->ref.refcount),
atomic_read(&buffer->ref.refcount));
ion_handle_put(handle);
ion_client_put(client);
pr_debug("%s: %d client_cnt %d handle_cnt %d alloc_cnt %d\n",
__func__, __LINE__,
atomic_read(&client->ref.refcount),
atomic_read(&handle->ref.refcount),
atomic_read(&buffer->ref.refcount));
}
static struct vm_operations_struct ion_vm_ops = {
.open = ion_vma_open,
.close = ion_vma_close,
};
static int ion_share_mmap(struct file *file, struct vm_area_struct *vma)
{
struct ion_buffer *buffer = file->private_data;
unsigned long size = vma->vm_end - vma->vm_start;
struct ion_client *client;
struct ion_handle *handle;
int ret;
pr_debug("%s: %d\n", __func__, __LINE__);
/* make sure the client still exists, it's possible for the client to
have gone away but the map/share fd still to be around, take
a reference to it so it can't go away while this mapping exists */
client = ion_client_lookup(buffer->dev, current->group_leader);
if (IS_ERR_OR_NULL(client)) {
pr_err("%s: trying to mmap an ion handle in a process with no "
"ion client\n", __func__);
return -EINVAL;
}
if ((size > buffer->size) || (size + (vma->vm_pgoff << PAGE_SHIFT) >
buffer->size)) {
pr_err("%s: trying to map larger area than handle has available"
"\n", __func__);
ret = -EINVAL;
goto err;
}
/* find the handle and take a reference to it */
handle = ion_import(client, buffer);
if (IS_ERR_OR_NULL(handle)) {
ret = -EINVAL;
goto err;
}
if (!handle->buffer->heap->ops->map_user) {
pr_err("%s: this heap does not define a method for mapping "
"to userspace\n", __func__);
ret = -EINVAL;
goto err1;
}
mutex_lock(&buffer->lock);
/* now map it to userspace */
ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma);
mutex_unlock(&buffer->lock);
if (ret) {
pr_err("%s: failure mapping buffer to userspace\n",
__func__);
goto err1;
}
vma->vm_ops = &ion_vm_ops;
/* move the handle into the vm_private_data so we can access it from
vma_open/close */
vma->vm_private_data = handle;
pr_debug("%s: %d client_cnt %d handle_cnt %d alloc_cnt %d\n",
__func__, __LINE__,
atomic_read(&client->ref.refcount),
atomic_read(&handle->ref.refcount),
atomic_read(&buffer->ref.refcount));
return 0;
err1:
/* drop the reference to the handle */
ion_handle_put(handle);
err:
/* drop the reference to the client */
ion_client_put(client);
return ret;
}
static const struct file_operations ion_share_fops = {
.owner = THIS_MODULE,
.release = ion_share_release,
.mmap = ion_share_mmap,
};
static int ion_ioctl_share(struct file *parent, struct ion_client *client,
struct ion_handle *handle)
{
int fd = get_unused_fd();
struct file *file;
if (fd < 0)
return -ENFILE;
file = anon_inode_getfile("ion_share_fd", &ion_share_fops,
handle->buffer, O_RDWR);
if (IS_ERR_OR_NULL(file))
goto err;
ion_buffer_get(handle->buffer);
fd_install(fd, file);
return fd;
err:
put_unused_fd(fd);
return -ENFILE;
}
static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct ion_client *client = filp->private_data;
switch (cmd) {
case ION_IOC_ALLOC:
{
struct ion_allocation_data data;
if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
return -EFAULT;
data.handle = ion_alloc(client, data.len, data.align,
data.flags);
if (copy_to_user((void __user *)arg, &data, sizeof(data)))
return -EFAULT;
break;
}
case ION_IOC_FREE:
{
struct ion_handle_data data;
bool valid;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_handle_data)))
return -EFAULT;
mutex_lock(&client->lock);
valid = ion_handle_validate(client, data.handle);
mutex_unlock(&client->lock);
if (!valid)
return -EINVAL;
ion_free(client, data.handle);
break;
}
case ION_IOC_MAP:
case ION_IOC_SHARE:
{
struct ion_fd_data data;
if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
return -EFAULT;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, data.handle)) {
pr_err("%s: invalid handle passed to share ioctl.\n",
__func__);
mutex_unlock(&client->lock);
return -EINVAL;
}
data.fd = ion_ioctl_share(filp, client, data.handle);
mutex_unlock(&client->lock);
if (copy_to_user((void __user *)arg, &data, sizeof(data)))
return -EFAULT;
break;
}
case ION_IOC_IMPORT:
{
struct ion_fd_data data;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_fd_data)))
return -EFAULT;
data.handle = ion_import_fd(client, data.fd);
if (IS_ERR(data.handle))
data.handle = NULL;
if (copy_to_user((void __user *)arg, &data,
sizeof(struct ion_fd_data)))
return -EFAULT;
break;
}
case ION_IOC_CUSTOM:
{
struct ion_device *dev = client->dev;
struct ion_custom_data data;
if (!dev->custom_ioctl)
return -ENOTTY;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_custom_data)))
return -EFAULT;
return dev->custom_ioctl(client, data.cmd, data.arg);
}
default:
return -ENOTTY;
}
return 0;
}
static int ion_release(struct inode *inode, struct file *file)
{
struct ion_client *client = file->private_data;
pr_debug("%s: %d\n", __func__, __LINE__);
ion_client_put(client);
return 0;
}
static int ion_open(struct inode *inode, struct file *file)
{
struct miscdevice *miscdev = file->private_data;
struct ion_device *dev = container_of(miscdev, struct ion_device, dev);
struct ion_client *client;
pr_debug("%s: %d\n", __func__, __LINE__);
client = ion_client_create(dev, -1, "user");
if (IS_ERR_OR_NULL(client))
return PTR_ERR(client);
file->private_data = client;
return 0;
}
static const struct file_operations ion_fops = {
.owner = THIS_MODULE,
.open = ion_open,
.release = ion_release,
.unlocked_ioctl = ion_ioctl,
};
static size_t ion_debug_heap_total(struct ion_client *client,
enum ion_heap_type type)
{
size_t size = 0;
struct rb_node *n;
mutex_lock(&client->lock);
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n,
struct ion_handle,
node);
if (handle->buffer->heap->type == type)
size += handle->buffer->size;
}
mutex_unlock(&client->lock);
return size;
}
static int ion_debug_heap_show(struct seq_file *s, void *unused)
{
struct ion_heap *heap = s->private;
struct ion_device *dev = heap->dev;
struct rb_node *n;
seq_printf(s, "%16.s %16.s %16.s\n", "client", "pid", "size");
for (n = rb_first(&dev->user_clients); n; n = rb_next(n)) {
struct ion_client *client = rb_entry(n, struct ion_client,
node);
char task_comm[TASK_COMM_LEN];
size_t size = ion_debug_heap_total(client, heap->type);
if (!size)
continue;
get_task_comm(task_comm, client->task);
seq_printf(s, "%16.s %16u %16u\n", task_comm, client->pid,
size);
}
for (n = rb_first(&dev->kernel_clients); n; n = rb_next(n)) {
struct ion_client *client = rb_entry(n, struct ion_client,
node);
size_t size = ion_debug_heap_total(client, heap->type);
if (!size)
continue;
seq_printf(s, "%16.s %16u %16u\n", client->name, client->pid,
size);
}
return 0;
}
static int ion_debug_heap_open(struct inode *inode, struct file *file)
{
return single_open(file, ion_debug_heap_show, inode->i_private);
}
static const struct file_operations debug_heap_fops = {
.open = ion_debug_heap_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap)
{
struct rb_node **p = &dev->heaps.rb_node;
struct rb_node *parent = NULL;
struct ion_heap *entry;
heap->dev = dev;
mutex_lock(&dev->lock);
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_heap, node);
if (heap->id < entry->id) {
p = &(*p)->rb_left;
} else if (heap->id > entry->id ) {
p = &(*p)->rb_right;
} else {
pr_err("%s: can not insert multiple heaps with "
"id %d\n", __func__, heap->id);
goto end;
}
}
rb_link_node(&heap->node, parent, p);
rb_insert_color(&heap->node, &dev->heaps);
debugfs_create_file(heap->name, 0664, dev->debug_root, heap,
&debug_heap_fops);
end:
mutex_unlock(&dev->lock);
}
struct ion_device *ion_device_create(long (*custom_ioctl)
(struct ion_client *client,
unsigned int cmd,
unsigned long arg))
{
struct ion_device *idev;
int ret;
idev = kzalloc(sizeof(struct ion_device), GFP_KERNEL);
if (!idev)
return ERR_PTR(-ENOMEM);
idev->dev.minor = MISC_DYNAMIC_MINOR;
idev->dev.name = "ion";
idev->dev.fops = &ion_fops;
idev->dev.parent = NULL;
ret = misc_register(&idev->dev);
if (ret) {
pr_err("ion: failed to register misc device.\n");
return ERR_PTR(ret);
}
idev->debug_root = debugfs_create_dir("ion", NULL);
if (IS_ERR_OR_NULL(idev->debug_root))
pr_err("ion: failed to create debug files.\n");
idev->custom_ioctl = custom_ioctl;
idev->buffers = RB_ROOT;
mutex_init(&idev->lock);
idev->heaps = RB_ROOT;
idev->user_clients = RB_ROOT;
idev->kernel_clients = RB_ROOT;
return idev;
}
void ion_device_destroy(struct ion_device *dev)
{
misc_deregister(&dev->dev);
/* XXX need to free the heaps and clients ? */
kfree(dev);
}
/*
* drivers/staging/android/ion/ion.h
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _LINUX_ION_H
#define _LINUX_ION_H
#include <linux/types.h>
struct ion_handle;
/**
* enum ion_heap_types - list of all possible types of heaps
* @ION_HEAP_TYPE_SYSTEM: memory allocated via vmalloc
* @ION_HEAP_TYPE_SYSTEM_CONTIG: memory allocated via kmalloc
* @ION_HEAP_TYPE_CARVEOUT: memory allocated from a prereserved
* carveout heap, allocations are physically
* contiguous
* @ION_HEAP_END: helper for iterating over heaps
*/
enum ion_heap_type {
ION_HEAP_TYPE_SYSTEM,
ION_HEAP_TYPE_SYSTEM_CONTIG,
ION_HEAP_TYPE_CARVEOUT,
ION_HEAP_TYPE_CUSTOM, /* must be last so device specific heaps always
are at the end of this enum */
ION_NUM_HEAPS,
};
#define ION_HEAP_SYSTEM_MASK (1 << ION_HEAP_TYPE_SYSTEM)
#define ION_HEAP_SYSTEM_CONTIG_MASK (1 << ION_HEAP_TYPE_SYSTEM_CONTIG)
#define ION_HEAP_CARVEOUT_MASK (1 << ION_HEAP_TYPE_CARVEOUT)
#ifdef __KERNEL__
struct ion_device;
struct ion_heap;
struct ion_mapper;
struct ion_client;
struct ion_buffer;
/* This should be removed some day when phys_addr_t's are fully
plumbed in the kernel, and all instances of ion_phys_addr_t should
be converted to phys_addr_t. For the time being many kernel interfaces
do not accept phys_addr_t's that would have to */
#define ion_phys_addr_t unsigned long
/**
* struct ion_platform_heap - defines a heap in the given platform
* @type: type of the heap from ion_heap_type enum
* @id: unique identifier for heap. When allocating (lower numbers
* will be allocated from first)
* @name: used for debug purposes
* @base: base address of heap in physical memory if applicable
* @size: size of the heap in bytes if applicable
*
* Provided by the board file.
*/
struct ion_platform_heap {
enum ion_heap_type type;
unsigned int id;
const char *name;
ion_phys_addr_t base;
size_t size;
};
/**
* struct ion_platform_data - array of platform heaps passed from board file
* @nr: number of structures in the array
* @heaps: array of platform_heap structions
*
* Provided by the board file in the form of platform data to a platform device.
*/
struct ion_platform_data {
int nr;
struct ion_platform_heap heaps[];
};
/**
* ion_client_create() - allocate a client and returns it
* @dev: the global ion device
* @heap_mask: mask of heaps this client can allocate from
* @name: used for debugging
*/
struct ion_client *ion_client_create(struct ion_device *dev,
unsigned int heap_mask, const char *name);
/**
* ion_client_destroy() - free's a client and all it's handles
* @client: the client
*
* Free the provided client and all it's resources including
* any handles it is holding.
*/
void ion_client_destroy(struct ion_client *client);
/**
* ion_alloc - allocate ion memory
* @client: the client
* @len: size of the allocation
* @align: requested allocation alignment, lots of hardware blocks have
* alignment requirements of some kind
* @flags: mask of heaps to allocate from, if multiple bits are set
* heaps will be tried in order from lowest to highest order bit
*
* Allocate memory in one of the heaps provided in heap mask and return
* an opaque handle to it.
*/
struct ion_handle *ion_alloc(struct ion_client *client, size_t len,
size_t align, unsigned int flags);
/**
* ion_free - free a handle
* @client: the client
* @handle: the handle to free
*
* Free the provided handle.
*/
void ion_free(struct ion_client *client, struct ion_handle *handle);
/**
* ion_phys - returns the physical address and len of a handle
* @client: the client
* @handle: the handle
* @addr: a pointer to put the address in
* @len: a pointer to put the length in
*
* This function queries the heap for a particular handle to get the
* handle's physical address. It't output is only correct if
* a heap returns physically contiguous memory -- in other cases
* this api should not be implemented -- ion_map_dma should be used
* instead. Returns -EINVAL if the handle is invalid. This has
* no implications on the reference counting of the handle --
* the returned value may not be valid if the caller is not
* holding a reference.
*/
int ion_phys(struct ion_client *client, struct ion_handle *handle,
ion_phys_addr_t *addr, size_t *len);
/**
* ion_map_kernel - create mapping for the given handle
* @client: the client
* @handle: handle to map
*
* Map the given handle into the kernel and return a kernel address that
* can be used to access this address.
*/
void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle);
/**
* ion_unmap_kernel() - destroy a kernel mapping for a handle
* @client: the client
* @handle: handle to unmap
*/
void ion_unmap_kernel(struct ion_client *client, struct ion_handle *handle);
/**
* ion_map_dma - create a dma mapping for a given handle
* @client: the client
* @handle: handle to map
*
* Return an sglist describing the given handle
*/
struct scatterlist *ion_map_dma(struct ion_client *client,
struct ion_handle *handle);
/**
* ion_unmap_dma() - destroy a dma mapping for a handle
* @client: the client
* @handle: handle to unmap
*/
void ion_unmap_dma(struct ion_client *client, struct ion_handle *handle);
/**
* ion_share() - given a handle, obtain a buffer to pass to other clients
* @client: the client
* @handle: the handle to share
*
* Given a handle, return a buffer, which exists in a global name
* space, and can be passed to other clients. Should be passed into ion_import
* to obtain a new handle for this buffer.
*
* NOTE: This function does do not an extra reference. The burden is on the
* caller to make sure the buffer doesn't go away while it's being passed to
* another client. That is, ion_free should not be called on this handle until
* the buffer has been imported into the other client.
*/
struct ion_buffer *ion_share(struct ion_client *client,
struct ion_handle *handle);
/**
* ion_import() - given an buffer in another client, import it
* @client: this blocks client
* @buffer: the buffer to import (as obtained from ion_share)
*
* Given a buffer, add it to the client and return the handle to use to refer
* to it further. This is called to share a handle from one kernel client to
* another.
*/
struct ion_handle *ion_import(struct ion_client *client,
struct ion_buffer *buffer);
/**
* ion_import_fd() - given an fd obtained via ION_IOC_SHARE ioctl, import it
* @client: this blocks client
* @fd: the fd
*
* A helper function for drivers that will be recieving ion buffers shared
* with them from userspace. These buffers are represented by a file
* descriptor obtained as the return from the ION_IOC_SHARE ioctl.
* This function coverts that fd into the underlying buffer, and returns
* the handle to use to refer to it further.
*/
struct ion_handle *ion_import_fd(struct ion_client *client, int fd);
#endif /* __KERNEL__ */
/**
* DOC: Ion Userspace API
*
* create a client by opening /dev/ion
* most operations handled via following ioctls
*
*/
/**
* struct ion_allocation_data - metadata passed from userspace for allocations
* @len: size of the allocation
* @align: required alignment of the allocation
* @flags: flags passed to heap
* @handle: pointer that will be populated with a cookie to use to refer
* to this allocation
*
* Provided by userspace as an argument to the ioctl
*/
struct ion_allocation_data {
size_t len;
size_t align;
unsigned int flags;
struct ion_handle *handle;
};
/**
* struct ion_fd_data - metadata passed to/from userspace for a handle/fd pair
* @handle: a handle
* @fd: a file descriptor representing that handle
*
* For ION_IOC_SHARE or ION_IOC_MAP userspace populates the handle field with
* the handle returned from ion alloc, and the kernel returns the file
* descriptor to share or map in the fd field. For ION_IOC_IMPORT, userspace
* provides the file descriptor and the kernel returns the handle.
*/
struct ion_fd_data {
struct ion_handle *handle;
int fd;
};
/**
* struct ion_handle_data - a handle passed to/from the kernel
* @handle: a handle
*/
struct ion_handle_data {
struct ion_handle *handle;
};
/**
* struct ion_custom_data - metadata passed to/from userspace for a custom ioctl
* @cmd: the custom ioctl function to call
* @arg: additional data to pass to the custom ioctl, typically a user
* pointer to a predefined structure
*
* This works just like the regular cmd and arg fields of an ioctl.
*/
struct ion_custom_data {
unsigned int cmd;
unsigned long arg;
};
#define ION_IOC_MAGIC 'I'
/**
* DOC: ION_IOC_ALLOC - allocate memory
*
* Takes an ion_allocation_data struct and returns it with the handle field
* populated with the opaque handle for the allocation.
*/
#define ION_IOC_ALLOC _IOWR(ION_IOC_MAGIC, 0, \
struct ion_allocation_data)
/**
* DOC: ION_IOC_FREE - free memory
*
* Takes an ion_handle_data struct and frees the handle.
*/
#define ION_IOC_FREE _IOWR(ION_IOC_MAGIC, 1, struct ion_handle_data)
/**
* DOC: ION_IOC_MAP - get a file descriptor to mmap
*
* Takes an ion_fd_data struct with the handle field populated with a valid
* opaque handle. Returns the struct with the fd field set to a file
* descriptor open in the current address space. This file descriptor
* can then be used as an argument to mmap.
*/
#define ION_IOC_MAP _IOWR(ION_IOC_MAGIC, 2, struct ion_fd_data)
/**
* DOC: ION_IOC_SHARE - creates a file descriptor to use to share an allocation
*
* Takes an ion_fd_data struct with the handle field populated with a valid
* opaque handle. Returns the struct with the fd field set to a file
* descriptor open in the current address space. This file descriptor
* can then be passed to another process. The corresponding opaque handle can
* be retrieved via ION_IOC_IMPORT.
*/
#define ION_IOC_SHARE _IOWR(ION_IOC_MAGIC, 4, struct ion_fd_data)
/**
* DOC: ION_IOC_IMPORT - imports a shared file descriptor
*
* Takes an ion_fd_data struct with the fd field populated with a valid file
* descriptor obtained from ION_IOC_SHARE and returns the struct with the handle
* filed set to the corresponding opaque handle.
*/
#define ION_IOC_IMPORT _IOWR(ION_IOC_MAGIC, 5, int)
/**
* DOC: ION_IOC_CUSTOM - call architecture specific ion ioctl
*
* Takes the argument of the architecture specific ioctl to call and
* passes appropriate userdata for that ioctl
*/
#define ION_IOC_CUSTOM _IOWR(ION_IOC_MAGIC, 6, struct ion_custom_data)
#endif /* _LINUX_ION_H */
/*
* drivers/staging/android/ion/ion_carveout_heap.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/genalloc.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "ion.h"
#include "ion_priv.h"
#include <asm/mach/map.h>
struct ion_carveout_heap {
struct ion_heap heap;
struct gen_pool *pool;
ion_phys_addr_t base;
};
ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap,
unsigned long size,
unsigned long align)
{
struct ion_carveout_heap *carveout_heap =
container_of(heap, struct ion_carveout_heap, heap);
unsigned long offset = gen_pool_alloc(carveout_heap->pool, size);
if (!offset)
return ION_CARVEOUT_ALLOCATE_FAIL;
return offset;
}
void ion_carveout_free(struct ion_heap *heap, ion_phys_addr_t addr,
unsigned long size)
{
struct ion_carveout_heap *carveout_heap =
container_of(heap, struct ion_carveout_heap, heap);
if (addr == ION_CARVEOUT_ALLOCATE_FAIL)
return;
gen_pool_free(carveout_heap->pool, addr, size);
}
static int ion_carveout_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
*addr = buffer->priv_phys;
*len = buffer->size;
return 0;
}
static int ion_carveout_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
buffer->priv_phys = ion_carveout_allocate(heap, size, align);
return buffer->priv_phys == ION_CARVEOUT_ALLOCATE_FAIL ? -ENOMEM : 0;
}
static void ion_carveout_heap_free(struct ion_buffer *buffer)
{
struct ion_heap *heap = buffer->heap;
ion_carveout_free(heap, buffer->priv_phys, buffer->size);
buffer->priv_phys = ION_CARVEOUT_ALLOCATE_FAIL;
}
struct scatterlist *ion_carveout_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return ERR_PTR(-EINVAL);
}
void ion_carveout_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return;
}
void *ion_carveout_heap_map_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return __arch_ioremap(buffer->priv_phys, buffer->size,
MT_MEMORY_NONCACHED);
}
void ion_carveout_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
__arch_iounmap(buffer->vaddr);
buffer->vaddr = NULL;
return;
}
int ion_carveout_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
return remap_pfn_range(vma, vma->vm_start,
__phys_to_pfn(buffer->priv_phys) + vma->vm_pgoff,
buffer->size,
pgprot_noncached(vma->vm_page_prot));
}
static struct ion_heap_ops carveout_heap_ops = {
.allocate = ion_carveout_heap_allocate,
.free = ion_carveout_heap_free,
.phys = ion_carveout_heap_phys,
.map_user = ion_carveout_heap_map_user,
.map_kernel = ion_carveout_heap_map_kernel,
.unmap_kernel = ion_carveout_heap_unmap_kernel,
};
struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *heap_data)
{
struct ion_carveout_heap *carveout_heap;
carveout_heap = kzalloc(sizeof(struct ion_carveout_heap), GFP_KERNEL);
if (!carveout_heap)
return ERR_PTR(-ENOMEM);
carveout_heap->pool = gen_pool_create(12, -1);
if (!carveout_heap->pool) {
kfree(carveout_heap);
return ERR_PTR(-ENOMEM);
}
carveout_heap->base = heap_data->base;
gen_pool_add(carveout_heap->pool, carveout_heap->base, heap_data->size,
-1);
carveout_heap->heap.ops = &carveout_heap_ops;
carveout_heap->heap.type = ION_HEAP_TYPE_CARVEOUT;
return &carveout_heap->heap;
}
void ion_carveout_heap_destroy(struct ion_heap *heap)
{
struct ion_carveout_heap *carveout_heap =
container_of(heap, struct ion_carveout_heap, heap);
gen_pool_destroy(carveout_heap->pool);
kfree(carveout_heap);
carveout_heap = NULL;
}
/*
* drivers/staging/android/ion/ion_heap.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include "ion.h"
#include "ion_priv.h"
struct ion_heap *ion_heap_create(struct ion_platform_heap *heap_data)
{
struct ion_heap *heap = NULL;
switch (heap_data->type) {
case ION_HEAP_TYPE_SYSTEM_CONTIG:
heap = ion_system_contig_heap_create(heap_data);
break;
case ION_HEAP_TYPE_SYSTEM:
heap = ion_system_heap_create(heap_data);
break;
case ION_HEAP_TYPE_CARVEOUT:
heap = ion_carveout_heap_create(heap_data);
break;
default:
pr_err("%s: Invalid heap type %d\n", __func__,
heap_data->type);
return ERR_PTR(-EINVAL);
}
if (IS_ERR_OR_NULL(heap)) {
pr_err("%s: error creating heap %s type %d base %lu size %u\n",
__func__, heap_data->name, heap_data->type,
heap_data->base, heap_data->size);
return ERR_PTR(-EINVAL);
}
heap->name = heap_data->name;
heap->id = heap_data->id;
return heap;
}
void ion_heap_destroy(struct ion_heap *heap)
{
if (!heap)
return;
switch (heap->type) {
case ION_HEAP_TYPE_SYSTEM_CONTIG:
ion_system_contig_heap_destroy(heap);
break;
case ION_HEAP_TYPE_SYSTEM:
ion_system_heap_destroy(heap);
break;
case ION_HEAP_TYPE_CARVEOUT:
ion_carveout_heap_destroy(heap);
break;
default:
pr_err("%s: Invalid heap type %d\n", __func__,
heap->type);
}
}
/*
* drivers/staging/android/ion/ion_priv.h
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ION_PRIV_H
#define _ION_PRIV_H
#include <linux/kref.h>
#include <linux/mm_types.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include "ion.h"
struct ion_mapping;
struct ion_dma_mapping {
struct kref ref;
struct scatterlist *sglist;
};
struct ion_kernel_mapping {
struct kref ref;
void *vaddr;
};
struct ion_buffer *ion_handle_buffer(struct ion_handle *handle);
/**
* struct ion_buffer - metadata for a particular buffer
* @ref: refernce count
* @node: node in the ion_device buffers tree
* @dev: back pointer to the ion_device
* @heap: back pointer to the heap the buffer came from
* @flags: buffer specific flags
* @size: size of the buffer
* @priv_virt: private data to the buffer representable as
* a void *
* @priv_phys: private data to the buffer representable as
* an ion_phys_addr_t (and someday a phys_addr_t)
* @lock: protects the buffers cnt fields
* @kmap_cnt: number of times the buffer is mapped to the kernel
* @vaddr: the kenrel mapping if kmap_cnt is not zero
* @dmap_cnt: number of times the buffer is mapped for dma
* @sglist: the scatterlist for the buffer is dmap_cnt is not zero
*/
struct ion_buffer {
struct kref ref;
struct rb_node node;
struct ion_device *dev;
struct ion_heap *heap;
unsigned long flags;
size_t size;
union {
void *priv_virt;
ion_phys_addr_t priv_phys;
};
struct mutex lock;
int kmap_cnt;
void *vaddr;
int dmap_cnt;
struct scatterlist *sglist;
};
/**
* struct ion_heap_ops - ops to operate on a given heap
* @allocate: allocate memory
* @free: free memory
* @phys get physical address of a buffer (only define on
* physically contiguous heaps)
* @map_dma map the memory for dma to a scatterlist
* @unmap_dma unmap the memory for dma
* @map_kernel map memory to the kernel
* @unmap_kernel unmap memory to the kernel
* @map_user map memory to userspace
*/
struct ion_heap_ops {
int (*allocate) (struct ion_heap *heap,
struct ion_buffer *buffer, unsigned long len,
unsigned long align, unsigned long flags);
void (*free) (struct ion_buffer *buffer);
int (*phys) (struct ion_heap *heap, struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len);
struct scatterlist *(*map_dma) (struct ion_heap *heap,
struct ion_buffer *buffer);
void (*unmap_dma) (struct ion_heap *heap, struct ion_buffer *buffer);
void * (*map_kernel) (struct ion_heap *heap, struct ion_buffer *buffer);
void (*unmap_kernel) (struct ion_heap *heap, struct ion_buffer *buffer);
int (*map_user) (struct ion_heap *mapper, struct ion_buffer *buffer,
struct vm_area_struct *vma);
};
/**
* struct ion_heap - represents a heap in the system
* @node: rb node to put the heap on the device's tree of heaps
* @dev: back pointer to the ion_device
* @type: type of heap
* @ops: ops struct as above
* @id: id of heap, also indicates priority of this heap when
* allocating. These are specified by platform data and
* MUST be unique
* @name: used for debugging
*
* Represents a pool of memory from which buffers can be made. In some
* systems the only heap is regular system memory allocated via vmalloc.
* On others, some blocks might require large physically contiguous buffers
* that are allocated from a specially reserved heap.
*/
struct ion_heap {
struct rb_node node;
struct ion_device *dev;
enum ion_heap_type type;
struct ion_heap_ops *ops;
int id;
const char *name;
};
/**
* ion_device_create - allocates and returns an ion device
* @custom_ioctl: arch specific ioctl function if applicable
*
* returns a valid device or -PTR_ERR
*/
struct ion_device *ion_device_create(long (*custom_ioctl)
(struct ion_client *client,
unsigned int cmd,
unsigned long arg));
/**
* ion_device_destroy - free and device and it's resource
* @dev: the device
*/
void ion_device_destroy(struct ion_device *dev);
/**
* ion_device_add_heap - adds a heap to the ion device
* @dev: the device
* @heap: the heap to add
*/
void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap);
/**
* functions for creating and destroying the built in ion heaps.
* architectures can add their own custom architecture specific
* heaps as appropriate.
*/
struct ion_heap *ion_heap_create(struct ion_platform_heap *);
void ion_heap_destroy(struct ion_heap *);
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *);
void ion_system_heap_destroy(struct ion_heap *);
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *);
void ion_system_contig_heap_destroy(struct ion_heap *);
struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *);
void ion_carveout_heap_destroy(struct ion_heap *);
/**
* kernel api to allocate/free from carveout -- used when carveout is
* used to back an architecture specific custom heap
*/
ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap, unsigned long size,
unsigned long align);
void ion_carveout_free(struct ion_heap *heap, ion_phys_addr_t addr,
unsigned long size);
/**
* The carveout heap returns physical addresses, since 0 may be a valid
* physical address, this is used to indicate allocation failed
*/
#define ION_CARVEOUT_ALLOCATE_FAIL -1
#endif /* _ION_PRIV_H */
/*
* drivers/staging/android/ion/ion_system_heap.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "ion.h"
#include "ion_priv.h"
static int ion_system_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
buffer->priv_virt = vmalloc_user(size);
if (!buffer->priv_virt)
return -ENOMEM;
return 0;
}
void ion_system_heap_free(struct ion_buffer *buffer)
{
vfree(buffer->priv_virt);
}
struct scatterlist *ion_system_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct scatterlist *sglist;
struct page *page;
int i;
int npages = PAGE_ALIGN(buffer->size) / PAGE_SIZE;
void *vaddr = buffer->priv_virt;
sglist = vmalloc(npages * sizeof(struct scatterlist));
if (!sglist)
return ERR_PTR(-ENOMEM);
memset(sglist, 0, npages * sizeof(struct scatterlist));
sg_init_table(sglist, npages);
for (i = 0; i < npages; i++) {
page = vmalloc_to_page(vaddr);
if (!page)
goto end;
sg_set_page(&sglist[i], page, PAGE_SIZE, 0);
vaddr += PAGE_SIZE;
}
/* XXX do cache maintenance for dma? */
return sglist;
end:
vfree(sglist);
return NULL;
}
void ion_system_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
/* XXX undo cache maintenance for dma? */
if (buffer->sglist)
vfree(buffer->sglist);
}
void *ion_system_heap_map_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
}
int ion_system_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
return remap_vmalloc_range(vma, buffer->priv_virt, vma->vm_pgoff);
}
static struct ion_heap_ops vmalloc_ops = {
.allocate = ion_system_heap_allocate,
.free = ion_system_heap_free,
.map_dma = ion_system_heap_map_dma,
.unmap_dma = ion_system_heap_unmap_dma,
.map_kernel = ion_system_heap_map_kernel,
.unmap_kernel = ion_system_heap_unmap_kernel,
.map_user = ion_system_heap_map_user,
};
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *unused)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &vmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM;
return heap;
}
void ion_system_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}
static int ion_system_contig_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long len,
unsigned long align,
unsigned long flags)
{
buffer->priv_virt = kzalloc(len, GFP_KERNEL);
if (!buffer->priv_virt)
return -ENOMEM;
return 0;
}
void ion_system_contig_heap_free(struct ion_buffer *buffer)
{
kfree(buffer->priv_virt);
}
static int ion_system_contig_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
*addr = virt_to_phys(buffer->priv_virt);
*len = buffer->size;
return 0;
}
struct scatterlist *ion_system_contig_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct scatterlist *sglist;
sglist = vmalloc(sizeof(struct scatterlist));
if (!sglist)
return ERR_PTR(-ENOMEM);
sg_init_table(sglist, 1);
sg_set_page(sglist, virt_to_page(buffer->priv_virt), buffer->size, 0);
return sglist;
}
int ion_system_contig_heap_map_user(struct ion_heap *heap,
struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
unsigned long pfn = __phys_to_pfn(virt_to_phys(buffer->priv_virt));
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
static struct ion_heap_ops kmalloc_ops = {
.allocate = ion_system_contig_heap_allocate,
.free = ion_system_contig_heap_free,
.phys = ion_system_contig_heap_phys,
.map_dma = ion_system_contig_heap_map_dma,
.unmap_dma = ion_system_heap_unmap_dma,
.map_kernel = ion_system_heap_map_kernel,
.unmap_kernel = ion_system_heap_unmap_kernel,
.map_user = ion_system_contig_heap_map_user,
};
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *unused)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &kmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG;
return heap;
}
void ion_system_contig_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}
/*
* drivers/staging/android/ion/ion_system_mapper.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "ion.h"
#include "ion_priv.h"
/*
* This mapper is valid for any heap that allocates memory that already has
* a kernel mapping, this includes vmalloc'd memory, kmalloc'd memory,
* pages obtained via io_remap, etc.
*/
static void *ion_kernel_mapper_map(struct ion_mapper *mapper,
struct ion_buffer *buffer,
struct ion_mapping **mapping)
{
if (!((1 << buffer->heap->type) & mapper->heap_mask)) {
pr_err("%s: attempting to map an unsupported heap\n", __func__);
return ERR_PTR(-EINVAL);
}
/* XXX REVISIT ME!!! */
*((unsigned long *)mapping) = (unsigned long)buffer->priv;
return buffer->priv;
}
static void ion_kernel_mapper_unmap(struct ion_mapper *mapper,
struct ion_buffer *buffer,
struct ion_mapping *mapping)
{
if (!((1 << buffer->heap->type) & mapper->heap_mask))
pr_err("%s: attempting to unmap an unsupported heap\n",
__func__);
}
static void *ion_kernel_mapper_map_kernel(struct ion_mapper *mapper,
struct ion_buffer *buffer,
struct ion_mapping *mapping)
{
if (!((1 << buffer->heap->type) & mapper->heap_mask)) {
pr_err("%s: attempting to unmap an unsupported heap\n",
__func__);
return ERR_PTR(-EINVAL);
}
return buffer->priv;
}
static int ion_kernel_mapper_map_user(struct ion_mapper *mapper,
struct ion_buffer *buffer,
struct vm_area_struct *vma,
struct ion_mapping *mapping)
{
int ret;
switch (buffer->heap->type) {
case ION_HEAP_KMALLOC:
{
unsigned long pfn = __phys_to_pfn(virt_to_phys(buffer->priv));
ret = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
break;
}
case ION_HEAP_VMALLOC:
ret = remap_vmalloc_range(vma, buffer->priv, vma->vm_pgoff);
break;
default:
pr_err("%s: attempting to map unsupported heap to userspace\n",
__func__);
return -EINVAL;
}
return ret;
}
static struct ion_mapper_ops ops = {
.map = ion_kernel_mapper_map,
.map_kernel = ion_kernel_mapper_map_kernel,
.map_user = ion_kernel_mapper_map_user,
.unmap = ion_kernel_mapper_unmap,
};
struct ion_mapper *ion_system_mapper_create(void)
{
struct ion_mapper *mapper;
mapper = kzalloc(sizeof(struct ion_mapper), GFP_KERNEL);
if (!mapper)
return ERR_PTR(-ENOMEM);
mapper->type = ION_SYSTEM_MAPPER;
mapper->ops = &ops;
mapper->heap_mask = (1 << ION_HEAP_VMALLOC) | (1 << ION_HEAP_KMALLOC);
return mapper;
}
void ion_system_mapper_destroy(struct ion_mapper *mapper)
{
kfree(mapper);
}
/*
* drivers/gpu/tegra/tegra_ion.c
*
* Copyright (C) 2011 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "../ion.h"
#include "../ion_priv.h"
struct ion_device *idev;
struct ion_mapper *tegra_user_mapper;
int num_heaps;
struct ion_heap **heaps;
int tegra_ion_probe(struct platform_device *pdev)
{
struct ion_platform_data *pdata = pdev->dev.platform_data;
int err;
int i;
num_heaps = pdata->nr;
heaps = kzalloc(sizeof(struct ion_heap *) * pdata->nr, GFP_KERNEL);
idev = ion_device_create(NULL);
if (IS_ERR_OR_NULL(idev)) {
kfree(heaps);
return PTR_ERR(idev);
}
/* create the heaps as specified in the board file */
for (i = 0; i < num_heaps; i++) {
struct ion_platform_heap *heap_data = &pdata->heaps[i];
heaps[i] = ion_heap_create(heap_data);
if (IS_ERR_OR_NULL(heaps[i])) {
err = PTR_ERR(heaps[i]);
goto err;
}
ion_device_add_heap(idev, heaps[i]);
}
platform_set_drvdata(pdev, idev);
return 0;
err:
for (i = 0; i < num_heaps; i++) {
if (heaps[i])
ion_heap_destroy(heaps[i]);
}
kfree(heaps);
return err;
}
int tegra_ion_remove(struct platform_device *pdev)
{
struct ion_device *idev = platform_get_drvdata(pdev);
int i;
ion_device_destroy(idev);
for (i = 0; i < num_heaps; i++)
ion_heap_destroy(heaps[i]);
kfree(heaps);
return 0;
}
static struct platform_driver ion_driver = {
.probe = tegra_ion_probe,
.remove = tegra_ion_remove,
.driver = { .name = "ion-tegra" }
};
static int __init ion_init(void)
{
return platform_driver_register(&ion_driver);
}
static void __exit ion_exit(void)
{
platform_driver_unregister(&ion_driver);
}
module_init(ion_init);
module_exit(ion_exit);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment