Commit c5c009e2 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'slab-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - A few non-trivial SLUB code cleanups, most notably a refactoring of
   deactivate_slab().

 - A bunch of trivial changes, such as removal of unused parameters,
   making stuff static, and employing helper functions.

* tag 'slab-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  mm: slub: Delete useless parameter of alloc_slab_page()
  mm: slab: Delete unused SLAB_DEACTIVATED flag
  mm/slub: remove forced_order parameter in calculate_sizes
  mm/slub: refactor deactivate_slab()
  mm/slub: limit number of node partial slabs only in cache creation
  mm/slub: use helper macro __ATTR_XX_MODE for SLAB_ATTR(_RO)
  mm/slab_common: use helper function is_power_of_2()
  mm/slob: make kmem_cache_boot static
parents 1bc19105 94fa31e9
......@@ -117,9 +117,6 @@
#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
/* Slab deactivation flag */
#define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U)
/*
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
*
......
......@@ -807,7 +807,7 @@ void __init setup_kmalloc_cache_index_table(void)
unsigned int i;
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
!is_power_of_2(KMALLOC_MIN_SIZE));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
unsigned int elem = size_index_elem(i);
......
......@@ -714,7 +714,7 @@ int __kmem_cache_shrink(struct kmem_cache *d)
return 0;
}
struct kmem_cache kmem_cache_boot = {
static struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
......
......@@ -1788,8 +1788,8 @@ static void *setup_object(struct kmem_cache *s, struct slab *slab,
/*
* Slab allocation and freeing
*/
static inline struct slab *alloc_slab_page(struct kmem_cache *s,
gfp_t flags, int node, struct kmem_cache_order_objects oo)
static inline struct slab *alloc_slab_page(gfp_t flags, int node,
struct kmem_cache_order_objects oo)
{
struct folio *folio;
struct slab *slab;
......@@ -1941,7 +1941,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
slab = alloc_slab_page(s, alloc_gfp, node, oo);
slab = alloc_slab_page(alloc_gfp, node, oo);
if (unlikely(!slab)) {
oo = s->min;
alloc_gfp = flags;
......@@ -1949,7 +1949,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
slab = alloc_slab_page(s, alloc_gfp, node, oo);
slab = alloc_slab_page(alloc_gfp, node, oo);
if (unlikely(!slab))
goto out;
stat(s, ORDER_FALLBACK);
......@@ -2348,10 +2348,10 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
struct kmem_cache_node *n = get_node(s, slab_nid(slab));
int lock = 0, free_delta = 0;
enum slab_modes l = M_NONE, m = M_NONE;
int free_delta = 0;
enum slab_modes mode = M_NONE;
void *nextfree, *freelist_iter, *freelist_tail;
int tail = DEACTIVATE_TO_HEAD;
unsigned long flags = 0;
......@@ -2393,14 +2393,10 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
* Ensure that the slab is unfrozen while the list presence
* reflects the actual number of objects during unfreeze.
*
* We setup the list membership and then perform a cmpxchg
* with the count. If there is a mismatch then the slab
* is not unfrozen but the slab is on the wrong list.
*
* Then we restart the process which may have to remove
* the slab from the list that we just put it on again
* because the number of objects in the slab may have
* changed.
* We first perform cmpxchg holding lock and insert to list
* when it succeed. If there is mismatch then the slab is not
* unfrozen and number of objects in the slab may have changed.
* Then release lock and retry cmpxchg again.
*/
redo:
......@@ -2419,61 +2415,52 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
new.frozen = 0;
if (!new.inuse && n->nr_partial >= s->min_partial)
m = M_FREE;
else if (new.freelist) {
m = M_PARTIAL;
if (!lock) {
lock = 1;
if (!new.inuse && n->nr_partial >= s->min_partial) {
mode = M_FREE;
} else if (new.freelist) {
mode = M_PARTIAL;
/*
* Taking the spinlock removes the possibility that
* acquire_slab() will see a slab that is frozen
*/
spin_lock_irqsave(&n->list_lock, flags);
}
} else {
m = M_FULL;
if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
lock = 1;
} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
mode = M_FULL;
/*
* This also ensures that the scanning of full
* slabs from diagnostic functions will not see
* any frozen slabs.
*/
spin_lock_irqsave(&n->list_lock, flags);
} else {
mode = M_FULL_NOLIST;
}
}
if (l != m) {
if (l == M_PARTIAL)
remove_partial(n, slab);
else if (l == M_FULL)
remove_full(s, n, slab);
if (m == M_PARTIAL)
add_partial(n, slab, tail);
else if (m == M_FULL)
add_full(s, n, slab);
}
l = m;
if (!cmpxchg_double_slab(s, slab,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"))
"unfreezing slab")) {
if (mode == M_PARTIAL || mode == M_FULL)
spin_unlock_irqrestore(&n->list_lock, flags);
goto redo;
}
if (lock)
spin_unlock_irqrestore(&n->list_lock, flags);
if (m == M_PARTIAL)
if (mode == M_PARTIAL) {
add_partial(n, slab, tail);
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, tail);
else if (m == M_FULL)
stat(s, DEACTIVATE_FULL);
else if (m == M_FREE) {
} else if (mode == M_FREE) {
stat(s, DEACTIVATE_EMPTY);
discard_slab(s, slab);
stat(s, FREE_SLAB);
} else if (mode == M_FULL) {
add_full(s, n, slab);
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, DEACTIVATE_FULL);
} else if (mode == M_FULL_NOLIST) {
stat(s, DEACTIVATE_FULL);
}
}
......@@ -4014,15 +4001,6 @@ static int init_kmem_cache_nodes(struct kmem_cache *s)
return 1;
}
static void set_min_partial(struct kmem_cache *s, unsigned long min)
{
if (min < MIN_PARTIAL)
min = MIN_PARTIAL;
else if (min > MAX_PARTIAL)
min = MAX_PARTIAL;
s->min_partial = min;
}
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
......@@ -4060,7 +4038,7 @@ static void set_cpu_partial(struct kmem_cache *s)
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
static int calculate_sizes(struct kmem_cache *s, int forced_order)
static int calculate_sizes(struct kmem_cache *s)
{
slab_flags_t flags = s->flags;
unsigned int size = s->object_size;
......@@ -4164,9 +4142,6 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
size = ALIGN(size, s->align);
s->size = size;
s->reciprocal_size = reciprocal_value(size);
if (forced_order >= 0)
order = forced_order;
else
order = calculate_order(size);
if ((int)order < 0)
......@@ -4203,7 +4178,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
s->random = get_random_long();
#endif
if (!calculate_sizes(s, -1))
if (!calculate_sizes(s))
goto error;
if (disable_higher_order_debug) {
/*
......@@ -4213,7 +4188,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(s, -1))
if (!calculate_sizes(s))
goto error;
}
}
......@@ -4229,7 +4204,8 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
* The larger the object size is, the more slabs we want on the partial
* list to avoid pounding the page allocator excessively.
*/
set_min_partial(s, ilog2(s->size) / 2);
s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
set_cpu_partial(s);
......@@ -5358,12 +5334,10 @@ struct slab_attribute {
};
#define SLAB_ATTR_RO(_name) \
static struct slab_attribute _name##_attr = \
__ATTR(_name, 0400, _name##_show, NULL)
static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
#define SLAB_ATTR(_name) \
static struct slab_attribute _name##_attr = \
__ATTR(_name, 0600, _name##_show, _name##_store)
static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
......@@ -5410,7 +5384,7 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
if (err)
return err;
set_min_partial(s, min);
s->min_partial = min;
return length;
}
SLAB_ATTR(min_partial);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment