Commit c98d90fd authored by H Hartley Sweeten's avatar H Hartley Sweeten Committed by Greg Kroah-Hartman

staging: comedi: rtd520 complete the refactor to remove all forward declarations

Complete the refactor of the rtd520 driver to remove all the
forward declarations.
Signed-off-by: default avatarH Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Cc: Mori Hess <fmhess@users.sourceforge.net>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 262ea0d4
......@@ -702,1616 +702,1586 @@ struct rtdPrivate {
#define RtdDma1Status(dev) \
readb(devpriv->lcfg+LCFG_DMACSR1)
static int rtd_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_cmd *cmd);
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
/*
* static int rtd_ai_poll(struct comedi_device *dev,
* struct comedi_subdevice *s);
*/
static int rtd_ns_to_timer(unsigned int *ns, int roundMode);
static irqreturn_t rtd_interrupt(int irq, void *d);
static int rtd520_probe_fifo_depth(struct comedi_device *dev);
Given a desired period and the clock period (both in ns),
return the proper counter value (divider-1).
Sets the original period to be the true value.
Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec, /* desired period (in ns) */
int round_mode, int base)
{ /* clock period (in ns) */
int divider;
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/* Note: we don't check for max, because different timers
have different ranges */
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
/*
* Attach is called by the Comedi core to configure the driver
* for a particular board. If you specified a board_name array
* in the driver structure, dev->board_ptr contains that
* address.
*/
static int rtd_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{ /* board name and options flags */
struct comedi_subdevice *s;
struct pci_dev *pcidev;
int ret;
resource_size_t physLas0; /* configuration */
resource_size_t physLas1; /* data area */
resource_size_t physLcfg; /* PLX9080 */
#ifdef USE_DMA
int index;
#endif
Given a desired period (in ns),
return the proper counter value (divider-1) for the internal clock.
Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
printk(KERN_INFO "comedi%d: rtd520 attaching.\n", dev->minor);
/*
Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
unsigned int comediChan, int chanIndex)
{ /* index in channel list */
unsigned int chan, range, aref;
unsigned short r = 0;
#if defined(CONFIG_COMEDI_DEBUG) && defined(USE_DMA)
/* You can set this a load time: modprobe comedi comedi_debug=1 */
if (0 == comedi_debug) /* force DMA debug printks */
comedi_debug = 1;
#endif
chan = CR_CHAN(comediChan);
range = CR_RANGE(comediChan);
aref = CR_AREF(comediChan);
/*
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(struct rtdPrivate)) < 0)
return -ENOMEM;
r |= chan & 0xf;
/*
* Probe the device to determine what device in the series it is.
*/
for (pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, NULL);
pcidev != NULL;
pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, pcidev)) {
int i;
/* Note: we also setup the channel list bipolar flag array */
if (range < thisboard->range10Start) { /* first batch are +-5 */
r |= 0x000; /* +-5 range */
r |= (range & 0x7) << 4; /* gain */
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else if (range < thisboard->rangeUniStart) { /* second batch are +-10 */
r |= 0x100; /* +-10 range */
/* gain */
r |= ((range - thisboard->range10Start) & 0x7) << 4;
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else { /* last batch is +10 */
r |= 0x200; /* +10 range */
/* gain */
r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
}
if (it->options[0] || it->options[1]) {
if (pcidev->bus->number != it->options[0]
|| PCI_SLOT(pcidev->devfn) != it->options[1]) {
continue;
}
}
for (i = 0; i < ARRAY_SIZE(rtd520Boards); ++i) {
if (pcidev->device == rtd520Boards[i].device_id) {
dev->board_ptr = &rtd520Boards[i];
break;
}
switch (aref) {
case AREF_GROUND: /* on-board ground */
break;
case AREF_COMMON:
r |= 0x80; /* ref external analog common */
break;
case AREF_DIFF:
r |= 0x400; /* differential inputs */
break;
case AREF_OTHER: /* ??? */
break;
}
/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
chan, range, aref, r); */
return r;
}
/*
Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
unsigned int n_chan, unsigned int *list)
{
if (n_chan > 1) { /* setup channel gain table */
int ii;
RtdClearCGT(dev);
RtdEnableCGT(dev, 1); /* enable table */
for (ii = 0; ii < n_chan; ii++) {
RtdWriteCGTable(dev, rtdConvertChanGain(dev, list[ii],
ii));
}
if (dev->board_ptr)
break; /* found one */
} else { /* just use the channel gain latch */
RtdEnableCGT(dev, 0); /* disable table, enable latch */
RtdWriteCGLatch(dev, rtdConvertChanGain(dev, list[0], 0));
}
if (!pcidev) {
if (it->options[0] && it->options[1]) {
printk(KERN_INFO "No RTD card at bus=%d slot=%d.\n",
it->options[0], it->options[1]);
} else {
printk(KERN_INFO "No RTD card found.\n");
}
/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned i;
static const unsigned limit = 0x2000;
unsigned fifo_size = 0;
RtdAdcClearFifo(dev);
rtd_load_channelgain_list(dev, 1, &chanspec);
RtdAdcConversionSource(dev, 0); /* software */
/* convert samples */
for (i = 0; i < limit; ++i) {
unsigned fifo_status;
/* trigger conversion */
RtdAdcStart(dev);
udelay(1);
fifo_status = RtdFifoStatus(dev);
if ((fifo_status & FS_ADC_HEMPTY) == 0) {
fifo_size = 2 * i;
break;
}
}
if (i == limit) {
printk(KERN_INFO "\ncomedi: %s: failed to probe fifo size.\n",
DRV_NAME);
return -EIO;
}
devpriv->pci_dev = pcidev;
dev->board_name = thisboard->name;
ret = comedi_pci_enable(pcidev, DRV_NAME);
if (ret < 0) {
printk(KERN_INFO "Failed to enable PCI device and request regions.\n");
return ret;
RtdAdcClearFifo(dev);
if (fifo_size != 0x400 && fifo_size != 0x2000) {
printk
(KERN_INFO "\ncomedi: %s: unexpected fifo size of %i, expected 1024 or 8192.\n",
DRV_NAME, fifo_size);
return -EIO;
}
devpriv->got_regions = 1;
/*
* Initialize base addresses
*/
/* Get the physical address from PCI config */
physLas0 = pci_resource_start(devpriv->pci_dev, LAS0_PCIINDEX);
physLas1 = pci_resource_start(devpriv->pci_dev, LAS1_PCIINDEX);
physLcfg = pci_resource_start(devpriv->pci_dev, LCFG_PCIINDEX);
/* Now have the kernel map this into memory */
/* ASSUME page aligned */
devpriv->las0 = ioremap_nocache(physLas0, LAS0_PCISIZE);
devpriv->las1 = ioremap_nocache(physLas1, LAS1_PCISIZE);
devpriv->lcfg = ioremap_nocache(physLcfg, LCFG_PCISIZE);
return fifo_size;
}
if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg)
return -ENOMEM;
/*
"instructions" read/write data in "one-shot" or "software-triggered"
mode (simplest case).
This doesn't use interrupts.
Note, we don't do any settling delays. Use a instruction list to
select, delay, then read.
*/
static int rtd_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int n, ii;
int stat;
DPRINTK("%s: LAS0=%llx, LAS1=%llx, CFG=%llx.\n", dev->board_name,
(unsigned long long)physLas0, (unsigned long long)physLas1,
(unsigned long long)physLcfg);
{ /* The RTD driver does this */
unsigned char pci_latency;
u16 revision;
/*uint32_t epld_version; */
/* clear any old fifo data */
RtdAdcClearFifo(dev);
pci_read_config_word(devpriv->pci_dev, PCI_REVISION_ID,
&revision);
DPRINTK("%s: PCI revision %d.\n", dev->board_name, revision);
/* write channel to multiplexer and clear channel gain table */
rtd_load_channelgain_list(dev, 1, &insn->chanspec);
pci_read_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency < 32) {
printk(KERN_INFO "%s: PCI latency changed from %d to %d\n",
dev->board_name, pci_latency, 32);
pci_write_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, 32);
} else {
DPRINTK("rtd520: PCI latency = %d\n", pci_latency);
}
/* set conversion source */
RtdAdcConversionSource(dev, 0); /* software */
/*
* Undocumented EPLD version (doesn't match RTD driver results)
*/
/*DPRINTK ("rtd520: Reading epld from %p\n",
devpriv->las0+0);
epld_version = readl (devpriv->las0+0);
if ((epld_version & 0xF0) >> 4 == 0x0F) {
DPRINTK("rtd520: pre-v8 EPLD. (%x)\n", epld_version);
} else {
DPRINTK("rtd520: EPLD version %x.\n", epld_version >> 4);
} */
/* convert n samples */
for (n = 0; n < insn->n; n++) {
s16 d;
/* trigger conversion */
RtdAdcStart(dev);
for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
break;
WAIT_QUIETLY;
}
if (ii >= RTD_ADC_TIMEOUT) {
DPRINTK
("rtd520: Error: ADC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
}
/* read data */
d = RtdAdcFifoGet(dev); /* get 2s comp value */
/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
/* convert to comedi unsigned data */
data[n] = d + 2048;
else
data[n] = d;
}
/* Show board configuration */
printk(KERN_INFO "%s:", dev->board_name);
/* return the number of samples read/written */
return n;
}
/*
* Allocate the subdevice structures. alloc_subdevice() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_subdevices(dev, 4) < 0)
return -ENOMEM;
/*
Get what we know is there.... Fast!
This uses 1/2 the bus cycles of read_dregs (below).
The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
int count)
{
int ii;
s = dev->subdevices + 0;
dev->read_subdev = s;
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags =
SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF | SDF_CMD_READ;
s->n_chan = thisboard->aiChans;
s->maxdata = (1 << thisboard->aiBits) - 1;
if (thisboard->aiMaxGain <= 32)
s->range_table = &rtd_ai_7520_range;
else
s->range_table = &rtd_ai_4520_range;
for (ii = 0; ii < count; ii++) {
short sample;
s16 d;
s->len_chanlist = RTD_MAX_CHANLIST; /* devpriv->fifoLen */
s->insn_read = rtd_ai_rinsn;
s->do_cmd = rtd_ai_cmd;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
/* s->poll = rtd_ai_poll; *//* not ready yet */
if (0 == devpriv->aiCount) { /* done */
d = RtdAdcFifoGet(dev); /* Read N and discard */
continue;
}
#if 0
if (0 == (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY)) { /* DEBUG */
DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
count);
break;
}
#endif
d = RtdAdcFifoGet(dev); /* get 2s comp value */
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = (1 << thisboard->aiBits) - 1;
s->range_table = &rtd_ao_range;
s->insn_write = rtd_ao_winsn;
s->insn_read = rtd_ao_rinsn;
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
/* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
s = dev->subdevices + 2;
/* digital i/o subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
/* we only support port 0 right now. Ignoring port 1 and user IO */
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
if (!comedi_buf_put(s->async, sample))
return -1;
/* timer/counter subdevices (not currently supported) */
s = dev->subdevices + 3;
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 3;
s->maxdata = 0xffff;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
/* initialize board, per RTD spec */
/* also, initialize shadow registers */
RtdResetBoard(dev);
udelay(100); /* needed? */
RtdPlxInterruptWrite(dev, 0);
RtdInterruptMask(dev, 0); /* and sets shadow */
RtdInterruptClearMask(dev, ~0); /* and sets shadow */
RtdInterruptClear(dev); /* clears bits set by mask */
RtdInterruptOverrunClear(dev);
RtdClearCGT(dev);
RtdAdcClearFifo(dev);
RtdDacClearFifo(dev, 0);
RtdDacClearFifo(dev, 1);
/* clear digital IO fifo */
RtdDioStatusWrite(dev, 0); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 0, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 1, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 2, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 3, 0); /* safe state, set shadow */
/* TODO: set user out source ??? */
/*
unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
while (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
short sample;
s16 d = RtdAdcFifoGet(dev); /* get 2s comp value */
/* check if our interrupt is available and get it */
ret = request_irq(devpriv->pci_dev->irq, rtd_interrupt,
IRQF_SHARED, DRV_NAME, dev);
if (0 == devpriv->aiCount) { /* done */
continue; /* read rest */
}
if (ret < 0) {
printk("Could not get interrupt! (%u)\n",
devpriv->pci_dev->irq);
return ret;
}
dev->irq = devpriv->pci_dev->irq;
printk(KERN_INFO "( irq=%u )", dev->irq);
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
/* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
ret = rtd520_probe_fifo_depth(dev);
if (ret < 0)
return ret;
if (!comedi_buf_put(s->async, sample))
return -1;
devpriv->fifoLen = ret;
printk("( fifoLen=%d )", devpriv->fifoLen);
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
#ifdef USE_DMA
if (dev->irq > 0) {
printk("( DMA buff=%d )\n", DMA_CHAIN_COUNT);
/*
* The PLX9080 has 2 DMA controllers, but there could be
* 4 sources: ADC, digital, DAC1, and DAC2. Since only the
* ADC supports cmd mode right now, this isn't an issue (yet)
*/
devpriv->dma0Offset = 0;
/*
Terminate a DMA transfer and wait for everything to quiet down
*/
void abort_dma(struct comedi_device *dev, unsigned int channel)
{ /* DMA channel 0, 1 */
unsigned long dma_cs_addr; /* the control/status register */
uint8_t status;
unsigned int ii;
/* unsigned long flags; */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Buff[index] =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
&devpriv->
dma0BuffPhysAddr[index]);
if (devpriv->dma0Buff[index] == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/*DPRINTK ("buff[%d] @ %p virtual, %x PCI\n",
index,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]); */
}
dma_cs_addr = (unsigned long)devpriv->lcfg
+ ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
/*
* setup DMA descriptor ring (use cpu_to_le32 for byte
* ordering?)
*/
devpriv->dma0Chain =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT,
&devpriv->dma0ChainPhysAddr);
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Chain[index].pci_start_addr =
devpriv->dma0BuffPhysAddr[index];
devpriv->dma0Chain[index].local_start_addr =
DMALADDR_ADC;
devpriv->dma0Chain[index].transfer_size =
sizeof(u16) * devpriv->fifoLen / 2;
devpriv->dma0Chain[index].next =
(devpriv->dma0ChainPhysAddr + ((index +
1) %
(DMA_CHAIN_COUNT))
* sizeof(devpriv->dma0Chain[0]))
| DMA_TRANSFER_BITS;
/*DPRINTK ("ring[%d] @%lx PCI: %x, local: %x, N: 0x%x, next: %x\n",
index,
((long)devpriv->dma0ChainPhysAddr
+ (index * sizeof(devpriv->dma0Chain[0]))),
devpriv->dma0Chain[index].pci_start_addr,
devpriv->dma0Chain[index].local_start_addr,
devpriv->dma0Chain[index].transfer_size,
devpriv->dma0Chain[index].next); */
}
/* spinlock for plx dma control/status reg */
/* spin_lock_irqsave( &dev->spinlock, flags ); */
if (devpriv->dma0Chain == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/* abort dma transfer if necessary */
status = readb(dma_cs_addr);
if ((status & PLX_DMA_EN_BIT) == 0) { /* not enabled (Error?) */
DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
channel, status);
goto abortDmaExit;
}
RtdDma0Mode(dev, DMA_MODE_BITS);
/* set DMA trigger source */
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL);
} else {
printk(KERN_INFO "( no IRQ->no DMA )");
/* wait to make sure done bit is zero (needed?) */
for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) {
WAIT_QUIETLY;
status = readb(dma_cs_addr);
}
if (status & PLX_DMA_DONE_BIT) {
printk("rtd520: Timeout waiting for dma %i done clear\n",
channel);
goto abortDmaExit;
}
#endif /* USE_DMA */
if (dev->irq) { /* enable plx9080 interrupts */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
/* disable channel (required) */
writeb(0, dma_cs_addr);
udelay(1); /* needed?? */
/* set abort bit for channel */
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);
/* wait for dma done bit to be set */
status = readb(dma_cs_addr);
for (ii = 0;
(status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT; ii++) {
status = readb(dma_cs_addr);
WAIT_QUIETLY;
}
if ((status & PLX_DMA_DONE_BIT) == 0) {
printk("rtd520: Timeout waiting for dma %i done set\n",
channel);
}
printk("\ncomedi%d: rtd520 driver attached.\n", dev->minor);
abortDmaExit:
/* spin_unlock_irqrestore( &dev->spinlock, flags ); */
}
return 1;
/*
Process what is in the DMA transfer buffer and pass to comedi
Note: this is not re-entrant
*/
static int ai_process_dma(struct comedi_device *dev, struct comedi_subdevice *s)
{
int ii, n;
s16 *dp;
#if 0
/* hit an error, clean up memory and return ret */
/* rtd_attach_die_error: */
#ifdef USE_DMA
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) { /* free buffer memory */
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
if (devpriv->aiCount == 0) /* transfer already complete */
return 0;
dp = devpriv->dma0Buff[devpriv->dma0Offset];
for (ii = 0; ii < devpriv->fifoLen / 2;) { /* convert samples */
short sample;
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = (*dp >> 3) + 2048; /* convert to comedi unsigned data */
else
sample = *dp >> 3; /* low 3 bits are marker lines */
*dp++ = sample; /* put processed value back */
if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
s->async->cur_chan = 0;
++ii; /* number ready to transfer */
if (devpriv->aiCount > 0) { /* < 0, means read forever */
if (--devpriv->aiCount == 0) { /* done */
/*DPRINTK ("rtd520: Final %d samples\n", ii); */
break;
}
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc)
* DMA_CHAIN_COUNT,
devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
/* subdevices and priv are freed by the core */
if (dev->irq) {
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
free_irq(dev->irq, dev);
/* now pass the whole array to the comedi buffer */
dp = devpriv->dma0Buff[devpriv->dma0Offset];
n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
if (n < (ii * sizeof(s16))) { /* any residual is an error */
DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
ii - (n / sizeof(s16)));
s->async->events |= COMEDI_CB_ERROR;
return -1;
}
comedi_buf_memcpy_to(s->async, 0, dp, n);
comedi_buf_write_free(s->async, n);
/* release all regions that were allocated */
if (devpriv->las0)
iounmap(devpriv->las0);
/*
* always at least 1 scan -- 1/2 FIFO is larger than our max scan list
*/
s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
if (devpriv->las1)
iounmap(devpriv->las1);
if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) { /* next buffer */
devpriv->dma0Offset = 0;
}
return 0;
}
#endif /* USE_DMA */
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
/*
Handle all rtd520 interrupts.
Runs atomically and is never re-entered.
This is a "slow handler"; other interrupts may be active.
The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
void *d)
{ /* our data *//* cpu context (ignored) */
struct comedi_device *dev = d; /* must be called "dev" for devpriv */
u16 status;
u16 fifoStatus;
struct comedi_subdevice *s = dev->subdevices + 0; /* analog in subdevice */
if (devpriv->pci_dev)
pci_dev_put(devpriv->pci_dev);
if (!dev->attached)
return IRQ_NONE;
return ret;
#endif
}
devpriv->intCount++; /* DEBUG statistics */
static void rtd_detach(struct comedi_device *dev)
{
fifoStatus = RtdFifoStatus(dev);
/* check for FIFO full, this automatically halts the ADC! */
if (!(fifoStatus & FS_ADC_NOT_FULL)) { /* 0 -> full */
DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto abortTransfer;
}
#ifdef USE_DMA
int index;
#endif
if (devpriv->flags & DMA0_ACTIVE) { /* Check DMA */
u32 istatus = RtdPlxInterruptRead(dev);
if (devpriv) {
/* Shut down any board ops by resetting it */
#ifdef USE_DMA
if (devpriv->lcfg) {
RtdDma0Control(dev, 0); /* disable DMA */
RtdDma1Control(dev, 0); /* disable DMA */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
#endif /* USE_DMA */
if (devpriv->las0) {
RtdResetBoard(dev);
RtdInterruptMask(dev, 0);
RtdInterruptClearMask(dev, ~0);
RtdInterruptClear(dev); /* clears bits set by mask */
}
#ifdef USE_DMA
/* release DMA */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) {
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->
dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
if (istatus & ICS_DMA0_A) {
if (ai_process_dma(dev, s) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n",
devpriv->aiCount);
RtdDma0Control(dev,
(devpriv->dma0Control &
~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
goto abortTransfer;
}
/*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n",
devpriv->aiCount, istatus); */
RtdDma0Control(dev,
(devpriv->
dma0Control & ~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (DMA).\n");
goto transferDone;
}
comedi_event(dev, s);
} else {
/*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT, devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
}
/* Fall through and check for other interrupt sources */
#endif /* USE_DMA */
if (dev->irq) {
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E |
ICS_DMA1_E));
free_irq(dev->irq, dev);
}
if (devpriv->las0)
iounmap(devpriv->las0);
if (devpriv->las1)
iounmap(devpriv->las1);
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
if (devpriv->pci_dev) {
if (devpriv->got_regions)
comedi_pci_disable(devpriv->pci_dev);
pci_dev_put(devpriv->pci_dev);
status = RtdInterruptStatus(dev);
/* if interrupt was not caused by our board, or handled above */
if (0 == status)
return IRQ_HANDLED;
if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
/* since the priority interrupt controller may have queued a sample
counter interrupt, even though we have already finished,
we must handle the possibility that there is no data here */
if (!(fifoStatus & FS_ADC_HEMPTY)) { /* 0 -> 1/2 full */
/*DPRINTK("rtd520: Sample int, reading 1/2FIFO. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777); */
if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto transferDone;
}
comedi_event(dev, s);
} else if (devpriv->transCount > 0) { /* read often */
/*DPRINTK("rtd520: Sample int, reading %d fifo_status 0x%x\n",
devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
if (fifoStatus & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
if (ai_read_n(dev, s, devpriv->transCount) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (N) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK
("rtd520: Samples Done (N). fifo_status was 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
goto transferDone;
}
comedi_event(dev, s);
}
} else { /* wait for 1/2 FIFO (old) */
DPRINTK
("rtd520: Sample int. Wait for 1/2. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
}
} else {
DPRINTK("rtd520: unknown interrupt source!\n");
}
}
/*
Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
unsigned int comediChan, int chanIndex)
{ /* index in channel list */
unsigned int chan, range, aref;
unsigned short r = 0;
if (0xffff & RtdInterruptOverrunStatus(dev)) { /* interrupt overrun */
DPRINTK
("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n",
devpriv->aiCount, 0xffff & RtdInterruptOverrunStatus(dev));
goto abortTransfer;
}
chan = CR_CHAN(comediChan);
range = CR_RANGE(comediChan);
aref = CR_AREF(comediChan);
/* clear the interrupt */
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
return IRQ_HANDLED;
r |= chan & 0xf;
abortTransfer:
RtdAdcClearFifo(dev); /* clears full flag */
s->async->events |= COMEDI_CB_ERROR;
devpriv->aiCount = 0; /* stop and don't transfer any more */
/* fall into transferDone */
/* Note: we also setup the channel list bipolar flag array */
if (range < thisboard->range10Start) { /* first batch are +-5 */
r |= 0x000; /* +-5 range */
r |= (range & 0x7) << 4; /* gain */
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else if (range < thisboard->rangeUniStart) { /* second batch are +-10 */
r |= 0x100; /* +-10 range */
/* gain */
r |= ((range - thisboard->range10Start) & 0x7) << 4;
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else { /* last batch is +10 */
r |= 0x200; /* +10 range */
/* gain */
r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
transferDone:
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0); /* mask out SAMPLE */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/* if Using DMA, then we should have read everything by now */
if (devpriv->aiCount > 0) {
DPRINTK("rtd520: Lost DMA data! %ld remain\n",
devpriv->aiCount);
}
}
#endif /* USE_DMA */
switch (aref) {
case AREF_GROUND: /* on-board ground */
break;
if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
fifoStatus = RtdFifoStatus(dev);
DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777); /* should read all 0s */
ai_read_dregs(dev, s); /* read anything left in FIFO */
}
case AREF_COMMON:
r |= 0x80; /* ref external analog common */
break;
s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
comedi_event(dev, s);
case AREF_DIFF:
r |= 0x400; /* differential inputs */
break;
/* clear the interrupt */
status = RtdInterruptStatus(dev);
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
case AREF_OTHER: /* ??? */
break;
}
/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
chan, range, aref, r); */
return r;
fifoStatus = RtdFifoStatus(dev); /* DEBUG */
DPRINTK
("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return IRQ_HANDLED;
}
#if 0
/*
Setup the channel-gain table from a comedi list
return the number of samples available
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
unsigned int n_chan, unsigned int *list)
static int rtd_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s)
{
if (n_chan > 1) { /* setup channel gain table */
int ii;
RtdClearCGT(dev);
RtdEnableCGT(dev, 1); /* enable table */
for (ii = 0; ii < n_chan; ii++) {
RtdWriteCGTable(dev, rtdConvertChanGain(dev, list[ii],
ii));
}
} else { /* just use the channel gain latch */
RtdEnableCGT(dev, 0); /* disable table, enable latch */
RtdWriteCGLatch(dev, rtdConvertChanGain(dev, list[0], 0));
}
/* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
/* Not sure what to do if DMA is active */
return s->async->buf_write_count - s->async->buf_read_count;
}
#endif
/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
/*
cmdtest tests a particular command to see if it is valid.
Using the cmdtest ioctl, a user can create a valid cmd
and then have it executed by the cmd ioctl (asyncronously).
cmdtest returns 1,2,3,4 or 0, depending on which tests
the command passes.
*/
static int rtd_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned i;
static const unsigned limit = 0x2000;
unsigned fifo_size = 0;
int err = 0;
int tmp;
RtdAdcClearFifo(dev);
rtd_load_channelgain_list(dev, 1, &chanspec);
RtdAdcConversionSource(dev, 0); /* software */
/* convert samples */
for (i = 0; i < limit; ++i) {
unsigned fifo_status;
/* trigger conversion */
RtdAdcStart(dev);
udelay(1);
fifo_status = RtdFifoStatus(dev);
if ((fifo_status & FS_ADC_HEMPTY) == 0) {
fifo_size = 2 * i;
break;
}
}
if (i == limit) {
printk(KERN_INFO "\ncomedi: %s: failed to probe fifo size.\n",
DRV_NAME);
return -EIO;
}
RtdAdcClearFifo(dev);
if (fifo_size != 0x400 && fifo_size != 0x2000) {
printk
(KERN_INFO "\ncomedi: %s: unexpected fifo size of %i, expected 1024 or 8192.\n",
DRV_NAME, fifo_size);
return -EIO;
}
return fifo_size;
}
/* step 1: make sure trigger sources are trivially valid */
/*
"instructions" read/write data in "one-shot" or "software-triggered"
mode (simplest case).
This doesn't use interrupts.
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
Note, we don't do any settling delays. Use a instruction list to
select, delay, then read.
*/
static int rtd_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int n, ii;
int stat;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
/* clear any old fifo data */
RtdAdcClearFifo(dev);
/* write channel to multiplexer and clear channel gain table */
rtd_load_channelgain_list(dev, 1, &insn->chanspec);
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
/* set conversion source */
RtdAdcConversionSource(dev, 0); /* software */
/* convert n samples */
for (n = 0; n < insn->n; n++) {
s16 d;
/* trigger conversion */
RtdAdcStart(dev);
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
break;
WAIT_QUIETLY;
}
if (ii >= RTD_ADC_TIMEOUT) {
DPRINTK
("rtd520: Error: ADC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
}
/* read data */
d = RtdAdcFifoGet(dev); /* get 2s comp value */
/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
/* convert to comedi unsigned data */
data[n] = d + 2048;
else
data[n] = d;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique
and mutually compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT) {
err++;
}
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
err++;
/* return the number of samples read/written */
return n;
}
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
/*
Get what we know is there.... Fast!
This uses 1/2 the bus cycles of read_dregs (below).
if (err)
return 2;
The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
int count)
{
int ii;
/* step 3: make sure arguments are trivially compatible */
for (ii = 0; ii < count; ii++) {
short sample;
s16 d;
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (0 == devpriv->aiCount) { /* done */
d = RtdAdcFifoGet(dev); /* Read N and discard */
continue;
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Note: these are time periods, not actual rates */
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->scan_begin_arg < RTD_MAX_SPEED_1) {
cmd->scan_begin_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED_1) {
cmd->scan_begin_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->scan_begin_arg < RTD_MAX_SPEED) {
cmd->scan_begin_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED) {
cmd->scan_begin_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
}
#if 0
if (0 == (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY)) { /* DEBUG */
DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
count);
break;
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
if (cmd->scan_begin_arg > 9) {
cmd->scan_begin_arg = 9;
err++;
}
}
if (cmd->convert_src == TRIG_TIMER) {
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->convert_arg < RTD_MAX_SPEED_1) {
cmd->convert_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED_1) {
cmd->convert_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->convert_arg < RTD_MAX_SPEED) {
cmd->convert_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED) {
cmd->convert_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
}
} else {
/* external trigger */
/* see above */
if (cmd->convert_arg > 9) {
cmd->convert_arg = 9;
err++;
}
}
#if 0
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
#endif
d = RtdAdcFifoGet(dev); /* get 2s comp value */
if (cmd->stop_src == TRIG_COUNT) {
/* TODO check for rounding error due to counter wrap */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
/* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
if (!comedi_buf_put(s->async, sample))
return -1;
if (err)
return 3;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
/* step 4: fix up any arguments */
if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
cmd->chanlist_len = RTD_MAX_CHANLIST;
err++;
}
return 0;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
rtd_ns_to_timer(&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg)
err++;
/*
unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
while (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
short sample;
s16 d = RtdAdcFifoGet(dev); /* get 2s comp value */
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
rtd_ns_to_timer(&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg)
err++;
if (0 == devpriv->aiCount) { /* done */
continue; /* read rest */
if (cmd->scan_begin_src == TRIG_TIMER
&& (cmd->scan_begin_arg
< (cmd->convert_arg * cmd->scan_end_arg))) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
}
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
/* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
if (!comedi_buf_put(s->async, sample))
return -1;
if (err)
return 4;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
#ifdef USE_DMA
/*
Terminate a DMA transfer and wait for everything to quiet down
Execute a analog in command with many possible triggering options.
The data get stored in the async structure of the subdevice.
This is usually done by an interrupt handler.
Userland gets to the data using read calls.
*/
void abort_dma(struct comedi_device *dev, unsigned int channel)
{ /* DMA channel 0, 1 */
unsigned long dma_cs_addr; /* the control/status register */
uint8_t status;
unsigned int ii;
/* unsigned long flags; */
dma_cs_addr = (unsigned long)devpriv->lcfg
+ ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
/* spinlock for plx dma control/status reg */
/* spin_lock_irqsave( &dev->spinlock, flags ); */
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct comedi_cmd *cmd = &s->async->cmd;
int timer;
/* abort dma transfer if necessary */
status = readb(dma_cs_addr);
if ((status & PLX_DMA_EN_BIT) == 0) { /* not enabled (Error?) */
DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
channel, status);
goto abortDmaExit;
/* stop anything currently running */
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* make sure PACER is stopped */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0);
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* cancel anything running */
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
if (RtdPlxInterruptRead(dev) & ICS_DMA0_A) { /*clear pending int */
RtdDma0Control(dev, PLX_CLEAR_DMA_INTR_BIT);
}
}
RtdDma0Reset(dev); /* reset onboard state */
#endif /* USE_DMA */
RtdAdcClearFifo(dev); /* clear any old data */
RtdInterruptOverrunClear(dev);
devpriv->intCount = 0;
/* wait to make sure done bit is zero (needed?) */
for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) {
WAIT_QUIETLY;
status = readb(dma_cs_addr);
}
if (status & PLX_DMA_DONE_BIT) {
printk("rtd520: Timeout waiting for dma %i done clear\n",
channel);
goto abortDmaExit;
if (!dev->irq) { /* we need interrupts for this */
DPRINTK("rtd520: ERROR! No interrupt available!\n");
return -ENXIO;
}
/* disable channel (required) */
writeb(0, dma_cs_addr);
udelay(1); /* needed?? */
/* set abort bit for channel */
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);
/* start configuration */
/* load channel list and reset CGT */
rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
/* wait for dma done bit to be set */
status = readb(dma_cs_addr);
for (ii = 0;
(status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT; ii++) {
status = readb(dma_cs_addr);
WAIT_QUIETLY;
/* setup the common case and override if needed */
if (cmd->chanlist_len > 1) {
/*DPRINTK ("rtd520: Multi channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdBurstStartSource(dev, 1); /* PACER triggers burst */
RtdAdcConversionSource(dev, 2); /* BURST triggers ADC */
} else { /* single channel */
/*DPRINTK ("rtd520: single channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdAdcConversionSource(dev, 1); /* PACER triggers ADC */
}
if ((status & PLX_DMA_DONE_BIT) == 0) {
printk("rtd520: Timeout waiting for dma %i done set\n",
channel);
RtdAboutCounter(dev, devpriv->fifoLen / 2 - 1); /* 1/2 FIFO */
if (TRIG_TIMER == cmd->scan_begin_src) {
/* scan_begin_arg is in nanoseconds */
/* find out how many samples to wait before transferring */
if (cmd->flags & TRIG_WAKE_EOS) {
/* this may generate un-sustainable interrupt rates */
/* the application is responsible for doing the right thing */
devpriv->transCount = cmd->chanlist_len;
devpriv->flags |= SEND_EOS;
} else {
/* arrange to transfer data periodically */
devpriv->transCount
=
(TRANS_TARGET_PERIOD * cmd->chanlist_len) /
cmd->scan_begin_arg;
if (devpriv->transCount < cmd->chanlist_len) {
/* transfer after each scan (and avoid 0) */
devpriv->transCount = cmd->chanlist_len;
} else { /* make a multiple of scan length */
devpriv->transCount =
(devpriv->transCount +
cmd->chanlist_len - 1)
/ cmd->chanlist_len;
devpriv->transCount *= cmd->chanlist_len;
}
devpriv->flags |= SEND_EOS;
}
if (devpriv->transCount >= (devpriv->fifoLen / 2)) {
/* out of counter range, use 1/2 fifo instead */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
} else {
/* interrupt for each transfer */
RtdAboutCounter(dev, devpriv->transCount - 1);
}
DPRINTK
("rtd520: scanLen=%d transferCount=%d fifoLen=%d\n scanTime(ns)=%d flags=0x%x\n",
cmd->chanlist_len, devpriv->transCount, devpriv->fifoLen,
cmd->scan_begin_arg, devpriv->flags);
} else { /* unknown timing, just use 1/2 FIFO */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
}
RtdPacerClockSource(dev, 1); /* use INTERNAL 8Mhz clock source */
RtdAboutStopEnable(dev, 1); /* just interrupt, dont stop */
abortDmaExit:
/* spin_unlock_irqrestore( &dev->spinlock, flags ); */
}
/* BUG??? these look like enumerated values, but they are bit fields */
/*
Process what is in the DMA transfer buffer and pass to comedi
Note: this is not re-entrant
*/
static int ai_process_dma(struct comedi_device *dev, struct comedi_subdevice *s)
{
int ii, n;
s16 *dp;
/* First, setup when to stop */
switch (cmd->stop_src) {
case TRIG_COUNT: /* stop after N scans */
devpriv->aiCount = cmd->stop_arg * cmd->chanlist_len;
if ((devpriv->transCount > 0)
&& (devpriv->transCount > devpriv->aiCount)) {
devpriv->transCount = devpriv->aiCount;
}
break;
if (devpriv->aiCount == 0) /* transfer already complete */
return 0;
case TRIG_NONE: /* stop when cancel is called */
devpriv->aiCount = -1; /* read forever */
break;
dp = devpriv->dma0Buff[devpriv->dma0Offset];
for (ii = 0; ii < devpriv->fifoLen / 2;) { /* convert samples */
short sample;
default:
DPRINTK("rtd520: Warning! ignoring stop_src mode %d\n",
cmd->stop_src);
}
/* Scan timing */
switch (cmd->scan_begin_src) {
case TRIG_TIMER: /* periodic scanning */
timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_NEAREST);
/* set PACER clock */
/*DPRINTK ("rtd520: loading %d into pacer\n", timer); */
RtdPacerCounter(dev, timer);
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = (*dp >> 3) + 2048; /* convert to comedi unsigned data */
else
sample = *dp >> 3; /* low 3 bits are marker lines */
break;
*dp++ = sample; /* put processed value back */
case TRIG_EXT:
RtdPacerStartSource(dev, 1); /* EXTERNALy trigger pacer */
break;
if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
s->async->cur_chan = 0;
default:
DPRINTK("rtd520: Warning! ignoring scan_begin_src mode %d\n",
cmd->scan_begin_src);
}
++ii; /* number ready to transfer */
if (devpriv->aiCount > 0) { /* < 0, means read forever */
if (--devpriv->aiCount == 0) { /* done */
/*DPRINTK ("rtd520: Final %d samples\n", ii); */
break;
}
/* Sample timing within a scan */
switch (cmd->convert_src) {
case TRIG_TIMER: /* periodic */
if (cmd->chanlist_len > 1) { /* only needed for multi-channel */
timer = rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_NEAREST);
/* setup BURST clock */
/*DPRINTK ("rtd520: loading %d into burst\n", timer); */
RtdBurstCounter(dev, timer);
}
}
/* now pass the whole array to the comedi buffer */
dp = devpriv->dma0Buff[devpriv->dma0Offset];
n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
if (n < (ii * sizeof(s16))) { /* any residual is an error */
DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
ii - (n / sizeof(s16)));
s->async->events |= COMEDI_CB_ERROR;
return -1;
}
comedi_buf_memcpy_to(s->async, 0, dp, n);
comedi_buf_write_free(s->async, n);
break;
/*
* always at least 1 scan -- 1/2 FIFO is larger than our max scan list
*/
s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
case TRIG_EXT: /* external */
RtdBurstStartSource(dev, 2); /* EXTERNALy trigger burst */
break;
if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) { /* next buffer */
devpriv->dma0Offset = 0;
default:
DPRINTK("rtd520: Warning! ignoring convert_src mode %d\n",
cmd->convert_src);
}
return 0;
}
#endif /* USE_DMA */
/*
Handle all rtd520 interrupts.
Runs atomically and is never re-entered.
This is a "slow handler"; other interrupts may be active.
The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
void *d)
{ /* our data *//* cpu context (ignored) */
struct comedi_device *dev = d; /* must be called "dev" for devpriv */
u16 status;
u16 fifoStatus;
struct comedi_subdevice *s = dev->subdevices + 0; /* analog in subdevice */
if (!dev->attached)
return IRQ_NONE;
/* end configuration */
devpriv->intCount++; /* DEBUG statistics */
/* This doesn't seem to work. There is no way to clear an interrupt
that the priority controller has queued! */
RtdInterruptClearMask(dev, ~0); /* clear any existing flags */
RtdInterruptClear(dev);
fifoStatus = RtdFifoStatus(dev);
/* check for FIFO full, this automatically halts the ADC! */
if (!(fifoStatus & FS_ADC_NOT_FULL)) { /* 0 -> full */
DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto abortTransfer;
}
/* TODO: allow multiple interrupt sources */
if (devpriv->transCount > 0) { /* transfer every N samples */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every %d\n", devpriv->transCount);
} else { /* 1/2 FIFO transfers */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* Check DMA */
u32 istatus = RtdPlxInterruptRead(dev);
devpriv->flags |= DMA0_ACTIVE;
if (istatus & ICS_DMA0_A) {
if (ai_process_dma(dev, s) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n",
devpriv->aiCount);
RtdDma0Control(dev,
(devpriv->dma0Control &
~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
goto abortTransfer;
}
/* point to first transfer in ring */
devpriv->dma0Offset = 0;
RtdDma0Mode(dev, DMA_MODE_BITS);
RtdDma0Next(dev, /* point to first block */
devpriv->dma0Chain[DMA_CHAIN_COUNT - 1].next);
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL); /* set DMA trigger source */
/*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n",
devpriv->aiCount, istatus); */
RtdDma0Control(dev,
(devpriv->
dma0Control & ~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (DMA).\n");
goto transferDone;
}
comedi_event(dev, s);
} else {
/*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */
}
}
/* Fall through and check for other interrupt sources */
RtdPlxInterruptWrite(dev, /* enable interrupt */
RtdPlxInterruptRead(dev) | ICS_DMA0_E);
/* Must be 2 steps. See PLX app note about "Starting a DMA transfer" */
RtdDma0Control(dev, PLX_DMA_EN_BIT); /* enable DMA (clear INTR?) */
RtdDma0Control(dev, PLX_DMA_EN_BIT | PLX_DMA_START_BIT); /*start DMA */
DPRINTK("rtd520: Using DMA0 transfers. plxInt %x RtdInt %x\n",
RtdPlxInterruptRead(dev), devpriv->intMask);
#else /* USE_DMA */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every 1/2 FIFO\n");
#endif /* USE_DMA */
status = RtdInterruptStatus(dev);
/* if interrupt was not caused by our board, or handled above */
if (0 == status)
return IRQ_HANDLED;
if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
/* since the priority interrupt controller may have queued a sample
counter interrupt, even though we have already finished,
we must handle the possibility that there is no data here */
if (!(fifoStatus & FS_ADC_HEMPTY)) { /* 0 -> 1/2 full */
/*DPRINTK("rtd520: Sample int, reading 1/2FIFO. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777); */
if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto transferDone;
}
comedi_event(dev, s);
} else if (devpriv->transCount > 0) { /* read often */
/*DPRINTK("rtd520: Sample int, reading %d fifo_status 0x%x\n",
devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
if (fifoStatus & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
if (ai_read_n(dev, s, devpriv->transCount) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (N) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK
("rtd520: Samples Done (N). fifo_status was 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
goto transferDone;
}
comedi_event(dev, s);
}
} else { /* wait for 1/2 FIFO (old) */
DPRINTK
("rtd520: Sample int. Wait for 1/2. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
}
} else {
DPRINTK("rtd520: unknown interrupt source!\n");
}
if (0xffff & RtdInterruptOverrunStatus(dev)) { /* interrupt overrun */
DPRINTK
("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n",
devpriv->aiCount, 0xffff & RtdInterruptOverrunStatus(dev));
goto abortTransfer;
}
/* clear the interrupt */
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
return IRQ_HANDLED;
/* BUG: start_src is ASSUMED to be TRIG_NOW */
/* BUG? it seems like things are running before the "start" */
RtdPacerStart(dev); /* Start PACER */
return 0;
}
abortTransfer:
RtdAdcClearFifo(dev); /* clears full flag */
s->async->events |= COMEDI_CB_ERROR;
devpriv->aiCount = 0; /* stop and don't transfer any more */
/* fall into transferDone */
/*
Stop a running data acquisition.
*/
static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
u16 status;
transferDone:
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0); /* mask out SAMPLE */
RtdInterruptMask(dev, 0);
devpriv->aiCount = 0; /* stop and don't transfer any more */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/* if Using DMA, then we should have read everything by now */
if (devpriv->aiCount > 0) {
DPRINTK("rtd520: Lost DMA data! %ld remain\n",
devpriv->aiCount);
}
}
#endif /* USE_DMA */
if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
fifoStatus = RtdFifoStatus(dev);
DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777); /* should read all 0s */
ai_read_dregs(dev, s); /* read anything left in FIFO */
}
s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
comedi_event(dev, s);
/* clear the interrupt */
status = RtdInterruptStatus(dev);
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
fifoStatus = RtdFifoStatus(dev); /* DEBUG */
DPRINTK
("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return IRQ_HANDLED;
}
#if 0
/*
return the number of samples available
*/
static int rtd_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s)
{
/* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
/* Not sure what to do if DMA is active */
return s->async->buf_write_count - s->async->buf_read_count;
("rtd520: Acquisition canceled. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return 0;
}
#endif
/*
cmdtest tests a particular command to see if it is valid.
Using the cmdtest ioctl, a user can create a valid cmd
and then have it executed by the cmd ioctl (asyncronously).
cmdtest returns 1,2,3,4 or 0, depending on which tests
the command passes.
Output one (or more) analog values to a single port as fast as possible.
*/
static int rtd_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
static int rtd_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int err = 0;
int tmp;
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
int i;
int chan = CR_CHAN(insn->chanspec);
int range = CR_RANGE(insn->chanspec);
/* Configure the output range (table index matches the range values) */
RtdDacRange(dev, chan, range);
if (err)
return 1;
/* Writing a list of values to an AO channel is probably not
* very useful, but that's how the interface is defined. */
for (i = 0; i < insn->n; ++i) {
int val = data[i] << 3;
int stat = 0; /* initialize to avoid bogus warning */
int ii;
/* step 2: make sure trigger sources are unique
and mutually compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT) {
err++;
}
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
err++;
/* VERIFY: comedi range and offset conversions */
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
if ((range > 1) /* bipolar */
&& (data[i] < 2048)) {
/* offset and sign extend */
val = (((int)data[i]) - 2048) << 3;
} else { /* unipolor */
val = data[i] << 3;
}
if (err)
return 2;
DPRINTK
("comedi: rtd520 DAC chan=%d range=%d writing %d as 0x%x\n",
chan, range, data[i], val);
/* step 3: make sure arguments are trivially compatible */
/* a typical programming sequence */
RtdDacFifoPut(dev, chan, val); /* put the value in */
RtdDacUpdate(dev, chan); /* trigger the conversion */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
devpriv->aoValue[chan] = data[i]; /* save for read back */
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Note: these are time periods, not actual rates */
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->scan_begin_arg < RTD_MAX_SPEED_1) {
cmd->scan_begin_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED_1) {
cmd->scan_begin_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->scan_begin_arg < RTD_MAX_SPEED) {
cmd->scan_begin_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED) {
cmd->scan_begin_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
}
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
if (cmd->scan_begin_arg > 9) {
cmd->scan_begin_arg = 9;
err++;
}
}
if (cmd->convert_src == TRIG_TIMER) {
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->convert_arg < RTD_MAX_SPEED_1) {
cmd->convert_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED_1) {
cmd->convert_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->convert_arg < RTD_MAX_SPEED) {
cmd->convert_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->convert_arg > RTD_MIN_SPEED) {
cmd->convert_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_DOWN);
err++;
}
for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
/* 1 -> not empty */
if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY :
FS_DAC2_NOT_EMPTY))
break;
WAIT_QUIETLY;
}
} else {
/* external trigger */
/* see above */
if (cmd->convert_arg > 9) {
cmd->convert_arg = 9;
err++;
if (ii >= RTD_DAC_TIMEOUT) {
DPRINTK
("rtd520: Error: DAC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
}
}
#if 0
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
#endif
if (cmd->stop_src == TRIG_COUNT) {
/* TODO check for rounding error due to counter wrap */
/* return the number of samples read/written */
return i;
}
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
/* AO subdevices should have a read insn as well as a write insn.
* Usually this means copying a value stored in devpriv. */
static int rtd_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
if (err)
return 3;
for (i = 0; i < insn->n; i++)
data[i] = devpriv->aoValue[chan];
/* step 4: fix up any arguments */
return i;
}
if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
cmd->chanlist_len = RTD_MAX_CHANLIST;
err++;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
rtd_ns_to_timer(&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg)
err++;
/*
Write a masked set of bits and the read back the port.
We track what the bits should be (i.e. we don't read the port first).
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
rtd_ns_to_timer(&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg)
err++;
DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write
*/
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
if (insn->n != 2)
return -EINVAL;
if (cmd->scan_begin_src == TRIG_TIMER
&& (cmd->scan_begin_arg
< (cmd->convert_arg * cmd->scan_end_arg))) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
RtdDio0Write(dev, s->state);
}
/* on return, data[1] contains the value of the digital
* input lines. */
data[1] = RtdDio0Read(dev);
if (err)
return 4;
/*DPRINTK("rtd520:port_0 wrote: 0x%x read: 0x%x\n", s->state, data[1]); */
return 0;
return 2;
}
/*
Execute a analog in command with many possible triggering options.
The data get stored in the async structure of the subdevice.
This is usually done by an interrupt handler.
Userland gets to the data using read calls.
Configure one bit on a IO port as Input or Output (hence the name :-).
*/
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct comedi_cmd *cmd = &s->async->cmd;
int timer;
/* stop anything currently running */
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* make sure PACER is stopped */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0);
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* cancel anything running */
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
if (RtdPlxInterruptRead(dev) & ICS_DMA0_A) { /*clear pending int */
RtdDma0Control(dev, PLX_CLEAR_DMA_INTR_BIT);
}
}
RtdDma0Reset(dev); /* reset onboard state */
#endif /* USE_DMA */
RtdAdcClearFifo(dev); /* clear any old data */
RtdInterruptOverrunClear(dev);
devpriv->intCount = 0;
if (!dev->irq) { /* we need interrupts for this */
DPRINTK("rtd520: ERROR! No interrupt available!\n");
return -ENXIO;
}
/* start configuration */
/* load channel list and reset CGT */
rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
int chan = CR_CHAN(insn->chanspec);
/* setup the common case and override if needed */
if (cmd->chanlist_len > 1) {
/*DPRINTK ("rtd520: Multi channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdBurstStartSource(dev, 1); /* PACER triggers burst */
RtdAdcConversionSource(dev, 2); /* BURST triggers ADC */
} else { /* single channel */
/*DPRINTK ("rtd520: single channel setup\n"); */
RtdPacerStartSource(dev, 0); /* software triggers pacer */
RtdAdcConversionSource(dev, 1); /* PACER triggers ADC */
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->io_bits |= 1 << chan; /* 1 means Out */
break;
case INSN_CONFIG_DIO_INPUT:
s->io_bits &= ~(1 << chan);
break;
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
break;
default:
return -EINVAL;
}
RtdAboutCounter(dev, devpriv->fifoLen / 2 - 1); /* 1/2 FIFO */
if (TRIG_TIMER == cmd->scan_begin_src) {
/* scan_begin_arg is in nanoseconds */
/* find out how many samples to wait before transferring */
if (cmd->flags & TRIG_WAKE_EOS) {
/* this may generate un-sustainable interrupt rates */
/* the application is responsible for doing the right thing */
devpriv->transCount = cmd->chanlist_len;
devpriv->flags |= SEND_EOS;
} else {
/* arrange to transfer data periodically */
devpriv->transCount
=
(TRANS_TARGET_PERIOD * cmd->chanlist_len) /
cmd->scan_begin_arg;
if (devpriv->transCount < cmd->chanlist_len) {
/* transfer after each scan (and avoid 0) */
devpriv->transCount = cmd->chanlist_len;
} else { /* make a multiple of scan length */
devpriv->transCount =
(devpriv->transCount +
cmd->chanlist_len - 1)
/ cmd->chanlist_len;
devpriv->transCount *= cmd->chanlist_len;
}
devpriv->flags |= SEND_EOS;
}
if (devpriv->transCount >= (devpriv->fifoLen / 2)) {
/* out of counter range, use 1/2 fifo instead */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
} else {
/* interrupt for each transfer */
RtdAboutCounter(dev, devpriv->transCount - 1);
}
DPRINTK("rtd520: port_0_direction=0x%x (1 means out)\n", s->io_bits);
/* TODO support digital match interrupts and strobes */
RtdDioStatusWrite(dev, 0x01); /* make Dio0Ctrl point to direction */
RtdDio0CtrlWrite(dev, s->io_bits); /* set direction 1 means Out */
RtdDioStatusWrite(dev, 0); /* make Dio0Ctrl clear interrupts */
DPRINTK
("rtd520: scanLen=%d transferCount=%d fifoLen=%d\n scanTime(ns)=%d flags=0x%x\n",
cmd->chanlist_len, devpriv->transCount, devpriv->fifoLen,
cmd->scan_begin_arg, devpriv->flags);
} else { /* unknown timing, just use 1/2 FIFO */
devpriv->transCount = 0;
devpriv->flags &= ~SEND_EOS;
}
RtdPacerClockSource(dev, 1); /* use INTERNAL 8Mhz clock source */
RtdAboutStopEnable(dev, 1); /* just interrupt, dont stop */
/* port1 can only be all input or all output */
/* BUG??? these look like enumerated values, but they are bit fields */
/* there are also 2 user input lines and 2 user output lines */
/* First, setup when to stop */
switch (cmd->stop_src) {
case TRIG_COUNT: /* stop after N scans */
devpriv->aiCount = cmd->stop_arg * cmd->chanlist_len;
if ((devpriv->transCount > 0)
&& (devpriv->transCount > devpriv->aiCount)) {
devpriv->transCount = devpriv->aiCount;
}
break;
return 1;
}
case TRIG_NONE: /* stop when cancel is called */
devpriv->aiCount = -1; /* read forever */
break;
static int rtd_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{ /* board name and options flags */
struct comedi_subdevice *s;
struct pci_dev *pcidev;
int ret;
resource_size_t physLas0; /* configuration */
resource_size_t physLas1; /* data area */
resource_size_t physLcfg; /* PLX9080 */
#ifdef USE_DMA
int index;
#endif
default:
DPRINTK("rtd520: Warning! ignoring stop_src mode %d\n",
cmd->stop_src);
}
printk(KERN_INFO "comedi%d: rtd520 attaching.\n", dev->minor);
/* Scan timing */
switch (cmd->scan_begin_src) {
case TRIG_TIMER: /* periodic scanning */
timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_NEAREST);
/* set PACER clock */
/*DPRINTK ("rtd520: loading %d into pacer\n", timer); */
RtdPacerCounter(dev, timer);
#if defined(CONFIG_COMEDI_DEBUG) && defined(USE_DMA)
/* You can set this a load time: modprobe comedi comedi_debug=1 */
if (0 == comedi_debug) /* force DMA debug printks */
comedi_debug = 1;
#endif
break;
/*
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(struct rtdPrivate)) < 0)
return -ENOMEM;
case TRIG_EXT:
RtdPacerStartSource(dev, 1); /* EXTERNALy trigger pacer */
break;
/*
* Probe the device to determine what device in the series it is.
*/
for (pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, NULL);
pcidev != NULL;
pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, pcidev)) {
int i;
default:
DPRINTK("rtd520: Warning! ignoring scan_begin_src mode %d\n",
cmd->scan_begin_src);
if (it->options[0] || it->options[1]) {
if (pcidev->bus->number != it->options[0]
|| PCI_SLOT(pcidev->devfn) != it->options[1]) {
continue;
}
}
for (i = 0; i < ARRAY_SIZE(rtd520Boards); ++i) {
if (pcidev->device == rtd520Boards[i].device_id) {
dev->board_ptr = &rtd520Boards[i];
break;
}
}
if (dev->board_ptr)
break; /* found one */
}
/* Sample timing within a scan */
switch (cmd->convert_src) {
case TRIG_TIMER: /* periodic */
if (cmd->chanlist_len > 1) { /* only needed for multi-channel */
timer = rtd_ns_to_timer(&cmd->convert_arg,
TRIG_ROUND_NEAREST);
/* setup BURST clock */
/*DPRINTK ("rtd520: loading %d into burst\n", timer); */
RtdBurstCounter(dev, timer);
if (!pcidev) {
if (it->options[0] && it->options[1]) {
printk(KERN_INFO "No RTD card at bus=%d slot=%d.\n",
it->options[0], it->options[1]);
} else {
printk(KERN_INFO "No RTD card found.\n");
}
return -EIO;
}
devpriv->pci_dev = pcidev;
dev->board_name = thisboard->name;
break;
case TRIG_EXT: /* external */
RtdBurstStartSource(dev, 2); /* EXTERNALy trigger burst */
break;
default:
DPRINTK("rtd520: Warning! ignoring convert_src mode %d\n",
cmd->convert_src);
ret = comedi_pci_enable(pcidev, DRV_NAME);
if (ret < 0) {
printk(KERN_INFO "Failed to enable PCI device and request regions.\n");
return ret;
}
/* end configuration */
devpriv->got_regions = 1;
/* This doesn't seem to work. There is no way to clear an interrupt
that the priority controller has queued! */
RtdInterruptClearMask(dev, ~0); /* clear any existing flags */
RtdInterruptClear(dev);
/*
* Initialize base addresses
*/
/* Get the physical address from PCI config */
physLas0 = pci_resource_start(devpriv->pci_dev, LAS0_PCIINDEX);
physLas1 = pci_resource_start(devpriv->pci_dev, LAS1_PCIINDEX);
physLcfg = pci_resource_start(devpriv->pci_dev, LCFG_PCIINDEX);
/* Now have the kernel map this into memory */
/* ASSUME page aligned */
devpriv->las0 = ioremap_nocache(physLas0, LAS0_PCISIZE);
devpriv->las1 = ioremap_nocache(physLas1, LAS1_PCISIZE);
devpriv->lcfg = ioremap_nocache(physLcfg, LCFG_PCISIZE);
/* TODO: allow multiple interrupt sources */
if (devpriv->transCount > 0) { /* transfer every N samples */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every %d\n", devpriv->transCount);
} else { /* 1/2 FIFO transfers */
#ifdef USE_DMA
devpriv->flags |= DMA0_ACTIVE;
if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg)
return -ENOMEM;
/* point to first transfer in ring */
devpriv->dma0Offset = 0;
RtdDma0Mode(dev, DMA_MODE_BITS);
RtdDma0Next(dev, /* point to first block */
devpriv->dma0Chain[DMA_CHAIN_COUNT - 1].next);
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL); /* set DMA trigger source */
RtdPlxInterruptWrite(dev, /* enable interrupt */
RtdPlxInterruptRead(dev) | ICS_DMA0_E);
/* Must be 2 steps. See PLX app note about "Starting a DMA transfer" */
RtdDma0Control(dev, PLX_DMA_EN_BIT); /* enable DMA (clear INTR?) */
RtdDma0Control(dev, PLX_DMA_EN_BIT | PLX_DMA_START_BIT); /*start DMA */
DPRINTK("rtd520: Using DMA0 transfers. plxInt %x RtdInt %x\n",
RtdPlxInterruptRead(dev), devpriv->intMask);
#else /* USE_DMA */
RtdInterruptMask(dev, IRQM_ADC_ABOUT_CNT);
DPRINTK("rtd520: Transferring every 1/2 FIFO\n");
#endif /* USE_DMA */
}
DPRINTK("%s: LAS0=%llx, LAS1=%llx, CFG=%llx.\n", dev->board_name,
(unsigned long long)physLas0, (unsigned long long)physLas1,
(unsigned long long)physLcfg);
{ /* The RTD driver does this */
unsigned char pci_latency;
u16 revision;
/*uint32_t epld_version; */
/* BUG: start_src is ASSUMED to be TRIG_NOW */
/* BUG? it seems like things are running before the "start" */
RtdPacerStart(dev); /* Start PACER */
return 0;
}
pci_read_config_word(devpriv->pci_dev, PCI_REVISION_ID,
&revision);
DPRINTK("%s: PCI revision %d.\n", dev->board_name, revision);
/*
Stop a running data acquisition.
*/
static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
u16 status;
pci_read_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency < 32) {
printk(KERN_INFO "%s: PCI latency changed from %d to %d\n",
dev->board_name, pci_latency, 32);
pci_write_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, 32);
} else {
DPRINTK("rtd520: PCI latency = %d\n", pci_latency);
}
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0);
devpriv->aiCount = 0; /* stop and don't transfer any more */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/*
* Undocumented EPLD version (doesn't match RTD driver results)
*/
/*DPRINTK ("rtd520: Reading epld from %p\n",
devpriv->las0+0);
epld_version = readl (devpriv->las0+0);
if ((epld_version & 0xF0) >> 4 == 0x0F) {
DPRINTK("rtd520: pre-v8 EPLD. (%x)\n", epld_version);
} else {
DPRINTK("rtd520: EPLD version %x.\n", epld_version >> 4);
} */
}
#endif /* USE_DMA */
status = RtdInterruptStatus(dev);
DPRINTK
("rtd520: Acquisition canceled. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return 0;
}
/*
Given a desired period and the clock period (both in ns),
return the proper counter value (divider-1).
Sets the original period to be the true value.
Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec, /* desired period (in ns) */
int round_mode, int base)
{ /* clock period (in ns) */
int divider;
/* Show board configuration */
printk(KERN_INFO "%s:", dev->board_name);
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/*
* Allocate the subdevice structures. alloc_subdevice() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_subdevices(dev, 4) < 0)
return -ENOMEM;
/* Note: we don't check for max, because different timers
have different ranges */
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
s = dev->subdevices + 0;
dev->read_subdev = s;
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags =
SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF | SDF_CMD_READ;
s->n_chan = thisboard->aiChans;
s->maxdata = (1 << thisboard->aiBits) - 1;
if (thisboard->aiMaxGain <= 32)
s->range_table = &rtd_ai_7520_range;
else
s->range_table = &rtd_ai_4520_range;
/*
Given a desired period (in ns),
return the proper counter value (divider-1) for the internal clock.
Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
s->len_chanlist = RTD_MAX_CHANLIST; /* devpriv->fifoLen */
s->insn_read = rtd_ai_rinsn;
s->do_cmd = rtd_ai_cmd;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
/* s->poll = rtd_ai_poll; *//* not ready yet */
/*
Output one (or more) analog values to a single port as fast as possible.
*/
static int rtd_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
int range = CR_RANGE(insn->chanspec);
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = (1 << thisboard->aiBits) - 1;
s->range_table = &rtd_ao_range;
s->insn_write = rtd_ao_winsn;
s->insn_read = rtd_ao_rinsn;
/* Configure the output range (table index matches the range values) */
RtdDacRange(dev, chan, range);
s = dev->subdevices + 2;
/* digital i/o subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
/* we only support port 0 right now. Ignoring port 1 and user IO */
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
/* Writing a list of values to an AO channel is probably not
* very useful, but that's how the interface is defined. */
for (i = 0; i < insn->n; ++i) {
int val = data[i] << 3;
int stat = 0; /* initialize to avoid bogus warning */
int ii;
/* timer/counter subdevices (not currently supported) */
s = dev->subdevices + 3;
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 3;
s->maxdata = 0xffff;
/* VERIFY: comedi range and offset conversions */
/* initialize board, per RTD spec */
/* also, initialize shadow registers */
RtdResetBoard(dev);
udelay(100); /* needed? */
RtdPlxInterruptWrite(dev, 0);
RtdInterruptMask(dev, 0); /* and sets shadow */
RtdInterruptClearMask(dev, ~0); /* and sets shadow */
RtdInterruptClear(dev); /* clears bits set by mask */
RtdInterruptOverrunClear(dev);
RtdClearCGT(dev);
RtdAdcClearFifo(dev);
RtdDacClearFifo(dev, 0);
RtdDacClearFifo(dev, 1);
/* clear digital IO fifo */
RtdDioStatusWrite(dev, 0); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 0, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 1, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 2, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 3, 0); /* safe state, set shadow */
/* TODO: set user out source ??? */
if ((range > 1) /* bipolar */
&& (data[i] < 2048)) {
/* offset and sign extend */
val = (((int)data[i]) - 2048) << 3;
} else { /* unipolor */
val = data[i] << 3;
}
/* check if our interrupt is available and get it */
ret = request_irq(devpriv->pci_dev->irq, rtd_interrupt,
IRQF_SHARED, DRV_NAME, dev);
DPRINTK
("comedi: rtd520 DAC chan=%d range=%d writing %d as 0x%x\n",
chan, range, data[i], val);
if (ret < 0) {
printk("Could not get interrupt! (%u)\n",
devpriv->pci_dev->irq);
return ret;
}
dev->irq = devpriv->pci_dev->irq;
printk(KERN_INFO "( irq=%u )", dev->irq);
/* a typical programming sequence */
RtdDacFifoPut(dev, chan, val); /* put the value in */
RtdDacUpdate(dev, chan); /* trigger the conversion */
ret = rtd520_probe_fifo_depth(dev);
if (ret < 0)
return ret;
devpriv->aoValue[chan] = data[i]; /* save for read back */
devpriv->fifoLen = ret;
printk("( fifoLen=%d )", devpriv->fifoLen);
#ifdef USE_DMA
if (dev->irq > 0) {
printk("( DMA buff=%d )\n", DMA_CHAIN_COUNT);
/*
* The PLX9080 has 2 DMA controllers, but there could be
* 4 sources: ADC, digital, DAC1, and DAC2. Since only the
* ADC supports cmd mode right now, this isn't an issue (yet)
*/
devpriv->dma0Offset = 0;
for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
/* 1 -> not empty */
if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY :
FS_DAC2_NOT_EMPTY))
break;
WAIT_QUIETLY;
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Buff[index] =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
&devpriv->
dma0BuffPhysAddr[index]);
if (devpriv->dma0Buff[index] == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/*DPRINTK ("buff[%d] @ %p virtual, %x PCI\n",
index,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]); */
}
if (ii >= RTD_DAC_TIMEOUT) {
DPRINTK
("rtd520: Error: DAC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
/*
* setup DMA descriptor ring (use cpu_to_le32 for byte
* ordering?)
*/
devpriv->dma0Chain =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT,
&devpriv->dma0ChainPhysAddr);
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Chain[index].pci_start_addr =
devpriv->dma0BuffPhysAddr[index];
devpriv->dma0Chain[index].local_start_addr =
DMALADDR_ADC;
devpriv->dma0Chain[index].transfer_size =
sizeof(u16) * devpriv->fifoLen / 2;
devpriv->dma0Chain[index].next =
(devpriv->dma0ChainPhysAddr + ((index +
1) %
(DMA_CHAIN_COUNT))
* sizeof(devpriv->dma0Chain[0]))
| DMA_TRANSFER_BITS;
/*DPRINTK ("ring[%d] @%lx PCI: %x, local: %x, N: 0x%x, next: %x\n",
index,
((long)devpriv->dma0ChainPhysAddr
+ (index * sizeof(devpriv->dma0Chain[0]))),
devpriv->dma0Chain[index].pci_start_addr,
devpriv->dma0Chain[index].local_start_addr,
devpriv->dma0Chain[index].transfer_size,
devpriv->dma0Chain[index].next); */
}
}
/* return the number of samples read/written */
return i;
}
if (devpriv->dma0Chain == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/* AO subdevices should have a read insn as well as a write insn.
* Usually this means copying a value stored in devpriv. */
static int rtd_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
RtdDma0Mode(dev, DMA_MODE_BITS);
/* set DMA trigger source */
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL);
} else {
printk(KERN_INFO "( no IRQ->no DMA )");
}
#endif /* USE_DMA */
for (i = 0; i < insn->n; i++)
data[i] = devpriv->aoValue[chan];
if (dev->irq) { /* enable plx9080 interrupts */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
printk("\ncomedi%d: rtd520 driver attached.\n", dev->minor);
return i;
}
return 1;
/*
Write a masked set of bits and the read back the port.
We track what the bits should be (i.e. we don't read the port first).
#if 0
/* hit an error, clean up memory and return ret */
/* rtd_attach_die_error: */
#ifdef USE_DMA
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) { /* free buffer memory */
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc)
* DMA_CHAIN_COUNT,
devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
/* subdevices and priv are freed by the core */
if (dev->irq) {
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
free_irq(dev->irq, dev);
}
DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write
*/
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
if (insn->n != 2)
return -EINVAL;
/* release all regions that were allocated */
if (devpriv->las0)
iounmap(devpriv->las0);
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
if (devpriv->las1)
iounmap(devpriv->las1);
/* Write out the new digital output lines */
RtdDio0Write(dev, s->state);
}
/* on return, data[1] contains the value of the digital
* input lines. */
data[1] = RtdDio0Read(dev);
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
/*DPRINTK("rtd520:port_0 wrote: 0x%x read: 0x%x\n", s->state, data[1]); */
if (devpriv->pci_dev)
pci_dev_put(devpriv->pci_dev);
return 2;
return ret;
#endif
}
/*
Configure one bit on a IO port as Input or Output (hence the name :-).
*/
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
static void rtd_detach(struct comedi_device *dev)
{
int chan = CR_CHAN(insn->chanspec);
#ifdef USE_DMA
int index;
#endif
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->io_bits |= 1 << chan; /* 1 means Out */
break;
case INSN_CONFIG_DIO_INPUT:
s->io_bits &= ~(1 << chan);
break;
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
break;
default:
return -EINVAL;
if (devpriv) {
/* Shut down any board ops by resetting it */
#ifdef USE_DMA
if (devpriv->lcfg) {
RtdDma0Control(dev, 0); /* disable DMA */
RtdDma1Control(dev, 0); /* disable DMA */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
#endif /* USE_DMA */
if (devpriv->las0) {
RtdResetBoard(dev);
RtdInterruptMask(dev, 0);
RtdInterruptClearMask(dev, ~0);
RtdInterruptClear(dev); /* clears bits set by mask */
}
#ifdef USE_DMA
/* release DMA */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) {
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->
dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT, devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
if (dev->irq) {
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E |
ICS_DMA1_E));
free_irq(dev->irq, dev);
}
if (devpriv->las0)
iounmap(devpriv->las0);
if (devpriv->las1)
iounmap(devpriv->las1);
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
if (devpriv->pci_dev) {
if (devpriv->got_regions)
comedi_pci_disable(devpriv->pci_dev);
pci_dev_put(devpriv->pci_dev);
}
}
DPRINTK("rtd520: port_0_direction=0x%x (1 means out)\n", s->io_bits);
/* TODO support digital match interrupts and strobes */
RtdDioStatusWrite(dev, 0x01); /* make Dio0Ctrl point to direction */
RtdDio0CtrlWrite(dev, s->io_bits); /* set direction 1 means Out */
RtdDioStatusWrite(dev, 0); /* make Dio0Ctrl clear interrupts */
/* port1 can only be all input or all output */
/* there are also 2 user input lines and 2 user output lines */
return 1;
}
static struct comedi_driver rtd520_driver = {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment