Commit c98d90fd authored by H Hartley Sweeten's avatar H Hartley Sweeten Committed by Greg Kroah-Hartman

staging: comedi: rtd520 complete the refactor to remove all forward declarations

Complete the refactor of the rtd520 driver to remove all the
forward declarations.
Signed-off-by: default avatarH Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Cc: Mori Hess <fmhess@users.sourceforge.net>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 262ea0d4
...@@ -702,1085 +702,688 @@ struct rtdPrivate { ...@@ -702,1085 +702,688 @@ struct rtdPrivate {
#define RtdDma1Status(dev) \ #define RtdDma1Status(dev) \
readb(devpriv->lcfg+LCFG_DMACSR1) readb(devpriv->lcfg+LCFG_DMACSR1)
static int rtd_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int rtd_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_cmd *cmd);
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
/* /*
* static int rtd_ai_poll(struct comedi_device *dev, Given a desired period and the clock period (both in ns),
* struct comedi_subdevice *s); return the proper counter value (divider-1).
*/ Sets the original period to be the true value.
static int rtd_ns_to_timer(unsigned int *ns, int roundMode); Note: you have to check if the value is larger than the counter range!
static irqreturn_t rtd_interrupt(int irq, void *d); */
static int rtd520_probe_fifo_depth(struct comedi_device *dev); static int rtd_ns_to_timer_base(unsigned int *nanosec, /* desired period (in ns) */
int round_mode, int base)
{ /* clock period (in ns) */
int divider;
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/* Note: we don't check for max, because different timers
have different ranges */
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
/* /*
* Attach is called by the Comedi core to configure the driver Given a desired period (in ns),
* for a particular board. If you specified a board_name array return the proper counter value (divider-1) for the internal clock.
* in the driver structure, dev->board_ptr contains that Sets the original period to be the true value.
* address. */
*/ static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
static int rtd_attach(struct comedi_device *dev, struct comedi_devconfig *it) {
{ /* board name and options flags */ return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
struct comedi_subdevice *s; }
struct pci_dev *pcidev;
int ret;
resource_size_t physLas0; /* configuration */
resource_size_t physLas1; /* data area */
resource_size_t physLcfg; /* PLX9080 */
#ifdef USE_DMA
int index;
#endif
printk(KERN_INFO "comedi%d: rtd520 attaching.\n", dev->minor); /*
Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
unsigned int comediChan, int chanIndex)
{ /* index in channel list */
unsigned int chan, range, aref;
unsigned short r = 0;
#if defined(CONFIG_COMEDI_DEBUG) && defined(USE_DMA) chan = CR_CHAN(comediChan);
/* You can set this a load time: modprobe comedi comedi_debug=1 */ range = CR_RANGE(comediChan);
if (0 == comedi_debug) /* force DMA debug printks */ aref = CR_AREF(comediChan);
comedi_debug = 1;
#endif
/* r |= chan & 0xf;
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(struct rtdPrivate)) < 0)
return -ENOMEM;
/* /* Note: we also setup the channel list bipolar flag array */
* Probe the device to determine what device in the series it is. if (range < thisboard->range10Start) { /* first batch are +-5 */
*/ r |= 0x000; /* +-5 range */
for (pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, NULL); r |= (range & 0x7) << 4; /* gain */
pcidev != NULL; CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, pcidev)) { } else if (range < thisboard->rangeUniStart) { /* second batch are +-10 */
int i; r |= 0x100; /* +-10 range */
/* gain */
r |= ((range - thisboard->range10Start) & 0x7) << 4;
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else { /* last batch is +10 */
r |= 0x200; /* +10 range */
/* gain */
r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
}
if (it->options[0] || it->options[1]) { switch (aref) {
if (pcidev->bus->number != it->options[0] case AREF_GROUND: /* on-board ground */
|| PCI_SLOT(pcidev->devfn) != it->options[1]) { break;
continue;
case AREF_COMMON:
r |= 0x80; /* ref external analog common */
break;
case AREF_DIFF:
r |= 0x400; /* differential inputs */
break;
case AREF_OTHER: /* ??? */
break;
}
/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
chan, range, aref, r); */
return r;
}
/*
Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
unsigned int n_chan, unsigned int *list)
{
if (n_chan > 1) { /* setup channel gain table */
int ii;
RtdClearCGT(dev);
RtdEnableCGT(dev, 1); /* enable table */
for (ii = 0; ii < n_chan; ii++) {
RtdWriteCGTable(dev, rtdConvertChanGain(dev, list[ii],
ii));
} }
} else { /* just use the channel gain latch */
RtdEnableCGT(dev, 0); /* disable table, enable latch */
RtdWriteCGLatch(dev, rtdConvertChanGain(dev, list[0], 0));
} }
for (i = 0; i < ARRAY_SIZE(rtd520Boards); ++i) { }
if (pcidev->device == rtd520Boards[i].device_id) {
dev->board_ptr = &rtd520Boards[i]; /* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned i;
static const unsigned limit = 0x2000;
unsigned fifo_size = 0;
RtdAdcClearFifo(dev);
rtd_load_channelgain_list(dev, 1, &chanspec);
RtdAdcConversionSource(dev, 0); /* software */
/* convert samples */
for (i = 0; i < limit; ++i) {
unsigned fifo_status;
/* trigger conversion */
RtdAdcStart(dev);
udelay(1);
fifo_status = RtdFifoStatus(dev);
if ((fifo_status & FS_ADC_HEMPTY) == 0) {
fifo_size = 2 * i;
break; break;
} }
} }
if (dev->board_ptr) if (i == limit) {
break; /* found one */ printk(KERN_INFO "\ncomedi: %s: failed to probe fifo size.\n",
} DRV_NAME);
if (!pcidev) { return -EIO;
if (it->options[0] && it->options[1]) {
printk(KERN_INFO "No RTD card at bus=%d slot=%d.\n",
it->options[0], it->options[1]);
} else {
printk(KERN_INFO "No RTD card found.\n");
} }
RtdAdcClearFifo(dev);
if (fifo_size != 0x400 && fifo_size != 0x2000) {
printk
(KERN_INFO "\ncomedi: %s: unexpected fifo size of %i, expected 1024 or 8192.\n",
DRV_NAME, fifo_size);
return -EIO; return -EIO;
} }
devpriv->pci_dev = pcidev; return fifo_size;
dev->board_name = thisboard->name; }
ret = comedi_pci_enable(pcidev, DRV_NAME); /*
if (ret < 0) { "instructions" read/write data in "one-shot" or "software-triggered"
printk(KERN_INFO "Failed to enable PCI device and request regions.\n"); mode (simplest case).
return ret; This doesn't use interrupts.
}
devpriv->got_regions = 1;
/* Note, we don't do any settling delays. Use a instruction list to
* Initialize base addresses select, delay, then read.
*/ */
/* Get the physical address from PCI config */ static int rtd_ai_rinsn(struct comedi_device *dev,
physLas0 = pci_resource_start(devpriv->pci_dev, LAS0_PCIINDEX); struct comedi_subdevice *s, struct comedi_insn *insn,
physLas1 = pci_resource_start(devpriv->pci_dev, LAS1_PCIINDEX); unsigned int *data)
physLcfg = pci_resource_start(devpriv->pci_dev, LCFG_PCIINDEX); {
/* Now have the kernel map this into memory */ int n, ii;
/* ASSUME page aligned */ int stat;
devpriv->las0 = ioremap_nocache(physLas0, LAS0_PCISIZE);
devpriv->las1 = ioremap_nocache(physLas1, LAS1_PCISIZE);
devpriv->lcfg = ioremap_nocache(physLcfg, LCFG_PCISIZE);
if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg)
return -ENOMEM;
/* clear any old fifo data */
RtdAdcClearFifo(dev);
DPRINTK("%s: LAS0=%llx, LAS1=%llx, CFG=%llx.\n", dev->board_name, /* write channel to multiplexer and clear channel gain table */
(unsigned long long)physLas0, (unsigned long long)physLas1, rtd_load_channelgain_list(dev, 1, &insn->chanspec);
(unsigned long long)physLcfg);
{ /* The RTD driver does this */
unsigned char pci_latency;
u16 revision;
/*uint32_t epld_version; */
pci_read_config_word(devpriv->pci_dev, PCI_REVISION_ID, /* set conversion source */
&revision); RtdAdcConversionSource(dev, 0); /* software */
DPRINTK("%s: PCI revision %d.\n", dev->board_name, revision);
pci_read_config_byte(devpriv->pci_dev, /* convert n samples */
PCI_LATENCY_TIMER, &pci_latency); for (n = 0; n < insn->n; n++) {
if (pci_latency < 32) { s16 d;
printk(KERN_INFO "%s: PCI latency changed from %d to %d\n", /* trigger conversion */
dev->board_name, pci_latency, 32); RtdAdcStart(dev);
pci_write_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, 32);
} else {
DPRINTK("rtd520: PCI latency = %d\n", pci_latency);
}
/* for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
* Undocumented EPLD version (doesn't match RTD driver results) stat = RtdFifoStatus(dev);
*/ if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
/*DPRINTK ("rtd520: Reading epld from %p\n", break;
devpriv->las0+0); WAIT_QUIETLY;
epld_version = readl (devpriv->las0+0); }
if ((epld_version & 0xF0) >> 4 == 0x0F) { if (ii >= RTD_ADC_TIMEOUT) {
DPRINTK("rtd520: pre-v8 EPLD. (%x)\n", epld_version); DPRINTK
} else { ("rtd520: Error: ADC never finished! FifoStatus=0x%x\n",
DPRINTK("rtd520: EPLD version %x.\n", epld_version >> 4); stat ^ 0x6666);
} */ return -ETIMEDOUT;
} }
/* Show board configuration */ /* read data */
printk(KERN_INFO "%s:", dev->board_name); d = RtdAdcFifoGet(dev); /* get 2s comp value */
/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
/* convert to comedi unsigned data */
data[n] = d + 2048;
else
data[n] = d;
}
/* /* return the number of samples read/written */
* Allocate the subdevice structures. alloc_subdevice() is a return n;
* convenient macro defined in comedidev.h. }
*/
if (alloc_subdevices(dev, 4) < 0)
return -ENOMEM;
/*
Get what we know is there.... Fast!
This uses 1/2 the bus cycles of read_dregs (below).
s = dev->subdevices + 0; The manual claims that we can do a lword read, but it doesn't work here.
dev->read_subdev = s; */
/* analog input subdevice */ static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
s->type = COMEDI_SUBD_AI; int count)
s->subdev_flags = {
SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF | SDF_CMD_READ; int ii;
s->n_chan = thisboard->aiChans;
s->maxdata = (1 << thisboard->aiBits) - 1;
if (thisboard->aiMaxGain <= 32)
s->range_table = &rtd_ai_7520_range;
else
s->range_table = &rtd_ai_4520_range;
s->len_chanlist = RTD_MAX_CHANLIST; /* devpriv->fifoLen */ for (ii = 0; ii < count; ii++) {
s->insn_read = rtd_ai_rinsn; short sample;
s->do_cmd = rtd_ai_cmd; s16 d;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
/* s->poll = rtd_ai_poll; *//* not ready yet */
s = dev->subdevices + 1; if (0 == devpriv->aiCount) { /* done */
/* analog output subdevice */ d = RtdAdcFifoGet(dev); /* Read N and discard */
s->type = COMEDI_SUBD_AO; continue;
s->subdev_flags = SDF_WRITABLE; }
s->n_chan = 2; #if 0
s->maxdata = (1 << thisboard->aiBits) - 1; if (0 == (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY)) { /* DEBUG */
s->range_table = &rtd_ao_range; DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
s->insn_write = rtd_ao_winsn; count);
s->insn_read = rtd_ao_rinsn; break;
}
#endif
d = RtdAdcFifoGet(dev); /* get 2s comp value */
s = dev->subdevices + 2; d = d >> 3; /* low 3 bits are marker lines */
/* digital i/o subdevice */ if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
s->type = COMEDI_SUBD_DIO; /* convert to comedi unsigned data */
s->subdev_flags = SDF_READABLE | SDF_WRITABLE; sample = d + 2048;
/* we only support port 0 right now. Ignoring port 1 and user IO */ } else
s->n_chan = 8; sample = d;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
/* timer/counter subdevices (not currently supported) */ if (!comedi_buf_put(s->async, sample))
s = dev->subdevices + 3; return -1;
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 3;
s->maxdata = 0xffff;
/* initialize board, per RTD spec */ if (devpriv->aiCount > 0) /* < 0, means read forever */
/* also, initialize shadow registers */ devpriv->aiCount--;
RtdResetBoard(dev); }
udelay(100); /* needed? */ return 0;
RtdPlxInterruptWrite(dev, 0); }
RtdInterruptMask(dev, 0); /* and sets shadow */
RtdInterruptClearMask(dev, ~0); /* and sets shadow */
RtdInterruptClear(dev); /* clears bits set by mask */
RtdInterruptOverrunClear(dev);
RtdClearCGT(dev);
RtdAdcClearFifo(dev);
RtdDacClearFifo(dev, 0);
RtdDacClearFifo(dev, 1);
/* clear digital IO fifo */
RtdDioStatusWrite(dev, 0); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 0, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 1, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 2, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 3, 0); /* safe state, set shadow */
/* TODO: set user out source ??? */
/* check if our interrupt is available and get it */ /*
ret = request_irq(devpriv->pci_dev->irq, rtd_interrupt, unknown amout of data is waiting in fifo.
IRQF_SHARED, DRV_NAME, dev); */
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
while (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
short sample;
s16 d = RtdAdcFifoGet(dev); /* get 2s comp value */
if (ret < 0) { if (0 == devpriv->aiCount) { /* done */
printk("Could not get interrupt! (%u)\n", continue; /* read rest */
devpriv->pci_dev->irq);
return ret;
} }
dev->irq = devpriv->pci_dev->irq;
printk(KERN_INFO "( irq=%u )", dev->irq);
ret = rtd520_probe_fifo_depth(dev); d = d >> 3; /* low 3 bits are marker lines */
if (ret < 0) if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
return ret; /* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
devpriv->fifoLen = ret; if (!comedi_buf_put(s->async, sample))
printk("( fifoLen=%d )", devpriv->fifoLen); return -1;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
#ifdef USE_DMA #ifdef USE_DMA
if (dev->irq > 0) { /*
printk("( DMA buff=%d )\n", DMA_CHAIN_COUNT); Terminate a DMA transfer and wait for everything to quiet down
/* */
* The PLX9080 has 2 DMA controllers, but there could be void abort_dma(struct comedi_device *dev, unsigned int channel)
* 4 sources: ADC, digital, DAC1, and DAC2. Since only the { /* DMA channel 0, 1 */
* ADC supports cmd mode right now, this isn't an issue (yet) unsigned long dma_cs_addr; /* the control/status register */
*/ uint8_t status;
devpriv->dma0Offset = 0; unsigned int ii;
/* unsigned long flags; */
for (index = 0; index < DMA_CHAIN_COUNT; index++) { dma_cs_addr = (unsigned long)devpriv->lcfg
devpriv->dma0Buff[index] = + ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
pci_alloc_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
&devpriv->
dma0BuffPhysAddr[index]);
if (devpriv->dma0Buff[index] == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/*DPRINTK ("buff[%d] @ %p virtual, %x PCI\n",
index,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]); */
}
/* /* spinlock for plx dma control/status reg */
* setup DMA descriptor ring (use cpu_to_le32 for byte /* spin_lock_irqsave( &dev->spinlock, flags ); */
* ordering?)
*/
devpriv->dma0Chain =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT,
&devpriv->dma0ChainPhysAddr);
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Chain[index].pci_start_addr =
devpriv->dma0BuffPhysAddr[index];
devpriv->dma0Chain[index].local_start_addr =
DMALADDR_ADC;
devpriv->dma0Chain[index].transfer_size =
sizeof(u16) * devpriv->fifoLen / 2;
devpriv->dma0Chain[index].next =
(devpriv->dma0ChainPhysAddr + ((index +
1) %
(DMA_CHAIN_COUNT))
* sizeof(devpriv->dma0Chain[0]))
| DMA_TRANSFER_BITS;
/*DPRINTK ("ring[%d] @%lx PCI: %x, local: %x, N: 0x%x, next: %x\n",
index,
((long)devpriv->dma0ChainPhysAddr
+ (index * sizeof(devpriv->dma0Chain[0]))),
devpriv->dma0Chain[index].pci_start_addr,
devpriv->dma0Chain[index].local_start_addr,
devpriv->dma0Chain[index].transfer_size,
devpriv->dma0Chain[index].next); */
}
if (devpriv->dma0Chain == NULL) { /* abort dma transfer if necessary */
ret = -ENOMEM; status = readb(dma_cs_addr);
goto rtd_attach_die_error; if ((status & PLX_DMA_EN_BIT) == 0) { /* not enabled (Error?) */
DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
channel, status);
goto abortDmaExit;
} }
RtdDma0Mode(dev, DMA_MODE_BITS); /* wait to make sure done bit is zero (needed?) */
/* set DMA trigger source */ for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) {
RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL); WAIT_QUIETLY;
} else { status = readb(dma_cs_addr);
printk(KERN_INFO "( no IRQ->no DMA )");
} }
#endif /* USE_DMA */ if (status & PLX_DMA_DONE_BIT) {
printk("rtd520: Timeout waiting for dma %i done clear\n",
if (dev->irq) { /* enable plx9080 interrupts */ channel);
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE); goto abortDmaExit;
} }
printk("\ncomedi%d: rtd520 driver attached.\n", dev->minor); /* disable channel (required) */
writeb(0, dma_cs_addr);
return 1; udelay(1); /* needed?? */
/* set abort bit for channel */
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);
#if 0 /* wait for dma done bit to be set */
/* hit an error, clean up memory and return ret */ status = readb(dma_cs_addr);
/* rtd_attach_die_error: */ for (ii = 0;
#ifdef USE_DMA (status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT; ii++) {
for (index = 0; index < DMA_CHAIN_COUNT; index++) { status = readb(dma_cs_addr);
if (NULL != devpriv->dma0Buff[index]) { /* free buffer memory */ WAIT_QUIETLY;
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc)
* DMA_CHAIN_COUNT,
devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
} }
#endif /* USE_DMA */ if ((status & PLX_DMA_DONE_BIT) == 0) {
/* subdevices and priv are freed by the core */ printk("rtd520: Timeout waiting for dma %i done set\n",
if (dev->irq) { channel);
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
free_irq(dev->irq, dev);
} }
/* release all regions that were allocated */ abortDmaExit:
if (devpriv->las0) /* spin_unlock_irqrestore( &dev->spinlock, flags ); */
iounmap(devpriv->las0); }
if (devpriv->las1) /*
iounmap(devpriv->las1); Process what is in the DMA transfer buffer and pass to comedi
Note: this is not re-entrant
*/
static int ai_process_dma(struct comedi_device *dev, struct comedi_subdevice *s)
{
int ii, n;
s16 *dp;
if (devpriv->lcfg) if (devpriv->aiCount == 0) /* transfer already complete */
iounmap(devpriv->lcfg); return 0;
if (devpriv->pci_dev) dp = devpriv->dma0Buff[devpriv->dma0Offset];
pci_dev_put(devpriv->pci_dev); for (ii = 0; ii < devpriv->fifoLen / 2;) { /* convert samples */
short sample;
return ret; if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
#endif sample = (*dp >> 3) + 2048; /* convert to comedi unsigned data */
} else
sample = *dp >> 3; /* low 3 bits are marker lines */
static void rtd_detach(struct comedi_device *dev) *dp++ = sample; /* put processed value back */
{
#ifdef USE_DMA
int index;
#endif
if (devpriv) { if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
/* Shut down any board ops by resetting it */ s->async->cur_chan = 0;
#ifdef USE_DMA
if (devpriv->lcfg) { ++ii; /* number ready to transfer */
RtdDma0Control(dev, 0); /* disable DMA */ if (devpriv->aiCount > 0) { /* < 0, means read forever */
RtdDma1Control(dev, 0); /* disable DMA */ if (--devpriv->aiCount == 0) { /* done */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE); /*DPRINTK ("rtd520: Final %d samples\n", ii); */
} break;
#endif /* USE_DMA */
if (devpriv->las0) {
RtdResetBoard(dev);
RtdInterruptMask(dev, 0);
RtdInterruptClearMask(dev, ~0);
RtdInterruptClear(dev); /* clears bits set by mask */
}
#ifdef USE_DMA
/* release DMA */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) {
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->
dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
} }
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT, devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
} }
#endif /* USE_DMA */
if (dev->irq) {
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E |
ICS_DMA1_E));
free_irq(dev->irq, dev);
} }
if (devpriv->las0)
iounmap(devpriv->las0); /* now pass the whole array to the comedi buffer */
if (devpriv->las1) dp = devpriv->dma0Buff[devpriv->dma0Offset];
iounmap(devpriv->las1); n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
if (devpriv->lcfg) if (n < (ii * sizeof(s16))) { /* any residual is an error */
iounmap(devpriv->lcfg); DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
if (devpriv->pci_dev) { ii - (n / sizeof(s16)));
if (devpriv->got_regions) s->async->events |= COMEDI_CB_ERROR;
comedi_pci_disable(devpriv->pci_dev); return -1;
pci_dev_put(devpriv->pci_dev);
} }
comedi_buf_memcpy_to(s->async, 0, dp, n);
comedi_buf_write_free(s->async, n);
/*
* always at least 1 scan -- 1/2 FIFO is larger than our max scan list
*/
s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) { /* next buffer */
devpriv->dma0Offset = 0;
} }
return 0;
} }
#endif /* USE_DMA */
/* /*
Convert a single comedi channel-gain entry to a RTD520 table entry Handle all rtd520 interrupts.
Runs atomically and is never re-entered.
This is a "slow handler"; other interrupts may be active.
The data conversion may someday happen in a "bottom half".
*/ */
static unsigned short rtdConvertChanGain(struct comedi_device *dev, static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
unsigned int comediChan, int chanIndex) void *d)
{ /* index in channel list */ { /* our data *//* cpu context (ignored) */
unsigned int chan, range, aref; struct comedi_device *dev = d; /* must be called "dev" for devpriv */
unsigned short r = 0; u16 status;
u16 fifoStatus;
struct comedi_subdevice *s = dev->subdevices + 0; /* analog in subdevice */
chan = CR_CHAN(comediChan); if (!dev->attached)
range = CR_RANGE(comediChan); return IRQ_NONE;
aref = CR_AREF(comediChan);
r |= chan & 0xf; devpriv->intCount++; /* DEBUG statistics */
/* Note: we also setup the channel list bipolar flag array */ fifoStatus = RtdFifoStatus(dev);
if (range < thisboard->range10Start) { /* first batch are +-5 */ /* check for FIFO full, this automatically halts the ADC! */
r |= 0x000; /* +-5 range */ if (!(fifoStatus & FS_ADC_NOT_FULL)) { /* 0 -> full */
r |= (range & 0x7) << 4; /* gain */ DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex); goto abortTransfer;
} else if (range < thisboard->rangeUniStart) { /* second batch are +-10 */
r |= 0x100; /* +-10 range */
/* gain */
r |= ((range - thisboard->range10Start) & 0x7) << 4;
CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
} else { /* last batch is +10 */
r |= 0x200; /* +10 range */
/* gain */
r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
} }
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* Check DMA */
u32 istatus = RtdPlxInterruptRead(dev);
switch (aref) { if (istatus & ICS_DMA0_A) {
case AREF_GROUND: /* on-board ground */ if (ai_process_dma(dev, s) < 0) {
break; DPRINTK
("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n",
case AREF_COMMON: devpriv->aiCount);
r |= 0x80; /* ref external analog common */ RtdDma0Control(dev,
break; (devpriv->dma0Control &
~PLX_DMA_START_BIT)
case AREF_DIFF: | PLX_CLEAR_DMA_INTR_BIT);
r |= 0x400; /* differential inputs */ goto abortTransfer;
break;
case AREF_OTHER: /* ??? */
break;
} }
/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
chan, range, aref, r); */
return r;
}
/* /*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n",
Setup the channel-gain table from a comedi list devpriv->aiCount, istatus); */
*/ RtdDma0Control(dev,
static void rtd_load_channelgain_list(struct comedi_device *dev, (devpriv->
unsigned int n_chan, unsigned int *list) dma0Control & ~PLX_DMA_START_BIT)
{ | PLX_CLEAR_DMA_INTR_BIT);
if (n_chan > 1) { /* setup channel gain table */ if (0 == devpriv->aiCount) { /* counted down */
int ii; DPRINTK("rtd520: Samples Done (DMA).\n");
RtdClearCGT(dev); goto transferDone;
RtdEnableCGT(dev, 1); /* enable table */
for (ii = 0; ii < n_chan; ii++) {
RtdWriteCGTable(dev, rtdConvertChanGain(dev, list[ii],
ii));
} }
} else { /* just use the channel gain latch */ comedi_event(dev, s);
RtdEnableCGT(dev, 0); /* disable table, enable latch */ } else {
RtdWriteCGLatch(dev, rtdConvertChanGain(dev, list[0], 0)); /*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */
} }
} }
/* Fall through and check for other interrupt sources */
#endif /* USE_DMA */
/* determine fifo size by doing adc conversions until the fifo half status = RtdInterruptStatus(dev);
empty status flag clears */ /* if interrupt was not caused by our board, or handled above */
static int rtd520_probe_fifo_depth(struct comedi_device *dev) if (0 == status)
{ return IRQ_HANDLED;
unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
unsigned i;
static const unsigned limit = 0x2000;
unsigned fifo_size = 0;
RtdAdcClearFifo(dev); if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
rtd_load_channelgain_list(dev, 1, &chanspec); /* since the priority interrupt controller may have queued a sample
RtdAdcConversionSource(dev, 0); /* software */ counter interrupt, even though we have already finished,
/* convert samples */ we must handle the possibility that there is no data here */
for (i = 0; i < limit; ++i) { if (!(fifoStatus & FS_ADC_HEMPTY)) { /* 0 -> 1/2 full */
unsigned fifo_status; /*DPRINTK("rtd520: Sample int, reading 1/2FIFO. fifo_status 0x%x\n",
/* trigger conversion */ (fifoStatus ^ 0x6666) & 0x7777); */
RtdAdcStart(dev); if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
udelay(1); DPRINTK
fifo_status = RtdFifoStatus(dev); ("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n",
if ((fifo_status & FS_ADC_HEMPTY) == 0) { devpriv->aiCount);
fifo_size = 2 * i; goto abortTransfer;
break;
} }
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto transferDone;
} }
if (i == limit) { comedi_event(dev, s);
printk(KERN_INFO "\ncomedi: %s: failed to probe fifo size.\n", } else if (devpriv->transCount > 0) { /* read often */
DRV_NAME); /*DPRINTK("rtd520: Sample int, reading %d fifo_status 0x%x\n",
return -EIO; devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
if (fifoStatus & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
if (ai_read_n(dev, s, devpriv->transCount) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (N) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
} }
RtdAdcClearFifo(dev); if (0 == devpriv->aiCount) { /* counted down */
if (fifo_size != 0x400 && fifo_size != 0x2000) { DPRINTK
printk ("rtd520: Samples Done (N). fifo_status was 0x%x\n",
(KERN_INFO "\ncomedi: %s: unexpected fifo size of %i, expected 1024 or 8192.\n", (fifoStatus ^ 0x6666) & 0x7777);
DRV_NAME, fifo_size); goto transferDone;
return -EIO;
} }
return fifo_size; comedi_event(dev, s);
}
/*
"instructions" read/write data in "one-shot" or "software-triggered"
mode (simplest case).
This doesn't use interrupts.
Note, we don't do any settling delays. Use a instruction list to
select, delay, then read.
*/
static int rtd_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int n, ii;
int stat;
/* clear any old fifo data */
RtdAdcClearFifo(dev);
/* write channel to multiplexer and clear channel gain table */
rtd_load_channelgain_list(dev, 1, &insn->chanspec);
/* set conversion source */
RtdAdcConversionSource(dev, 0); /* software */
/* convert n samples */
for (n = 0; n < insn->n; n++) {
s16 d;
/* trigger conversion */
RtdAdcStart(dev);
for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
if (stat & FS_ADC_NOT_EMPTY) /* 1 -> not empty */
break;
WAIT_QUIETLY;
} }
if (ii >= RTD_ADC_TIMEOUT) { } else { /* wait for 1/2 FIFO (old) */
DPRINTK DPRINTK
("rtd520: Error: ADC never finished! FifoStatus=0x%x\n", ("rtd520: Sample int. Wait for 1/2. fifo_status 0x%x\n",
stat ^ 0x6666); (fifoStatus ^ 0x6666) & 0x7777);
return -ETIMEDOUT;
} }
} else {
/* read data */ DPRINTK("rtd520: unknown interrupt source!\n");
d = RtdAdcFifoGet(dev); /* get 2s comp value */
/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
/* convert to comedi unsigned data */
data[n] = d + 2048;
else
data[n] = d;
} }
/* return the number of samples read/written */ if (0xffff & RtdInterruptOverrunStatus(dev)) { /* interrupt overrun */
return n; DPRINTK
} ("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n",
devpriv->aiCount, 0xffff & RtdInterruptOverrunStatus(dev));
/* goto abortTransfer;
Get what we know is there.... Fast! }
This uses 1/2 the bus cycles of read_dregs (below).
The manual claims that we can do a lword read, but it doesn't work here. /* clear the interrupt */
*/ RtdInterruptClearMask(dev, status);
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s, RtdInterruptClear(dev);
int count) return IRQ_HANDLED;
{
int ii;
for (ii = 0; ii < count; ii++) { abortTransfer:
short sample; RtdAdcClearFifo(dev); /* clears full flag */
s16 d; s->async->events |= COMEDI_CB_ERROR;
devpriv->aiCount = 0; /* stop and don't transfer any more */
/* fall into transferDone */
if (0 == devpriv->aiCount) { /* done */ transferDone:
d = RtdAdcFifoGet(dev); /* Read N and discard */ RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
continue; RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0); /* mask out SAMPLE */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/* if Using DMA, then we should have read everything by now */
if (devpriv->aiCount > 0) {
DPRINTK("rtd520: Lost DMA data! %ld remain\n",
devpriv->aiCount);
} }
#if 0
if (0 == (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY)) { /* DEBUG */
DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
count);
break;
} }
#endif #endif /* USE_DMA */
d = RtdAdcFifoGet(dev); /* get 2s comp value */
d = d >> 3; /* low 3 bits are marker lines */ if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) { fifoStatus = RtdFifoStatus(dev);
/* convert to comedi unsigned data */ DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777); /* should read all 0s */
sample = d + 2048; ai_read_dregs(dev, s); /* read anything left in FIFO */
} else }
sample = d;
if (!comedi_buf_put(s->async, sample)) s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
return -1; comedi_event(dev, s);
if (devpriv->aiCount > 0) /* < 0, means read forever */ /* clear the interrupt */
devpriv->aiCount--; status = RtdInterruptStatus(dev);
} RtdInterruptClearMask(dev, status);
return 0; RtdInterruptClear(dev);
fifoStatus = RtdFifoStatus(dev); /* DEBUG */
DPRINTK
("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return IRQ_HANDLED;
} }
#if 0
/* /*
unknown amout of data is waiting in fifo. return the number of samples available
*/ */
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s) static int rtd_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s)
{ {
while (RtdFifoStatus(dev) & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */ /* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
short sample; /* Not sure what to do if DMA is active */
s16 d = RtdAdcFifoGet(dev); /* get 2s comp value */ return s->async->buf_write_count - s->async->buf_read_count;
}
if (0 == devpriv->aiCount) { /* done */ #endif
continue; /* read rest */
}
d = d >> 3; /* low 3 bits are marker lines */
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
/* convert to comedi unsigned data */
sample = d + 2048;
} else
sample = d;
if (!comedi_buf_put(s->async, sample))
return -1;
if (devpriv->aiCount > 0) /* < 0, means read forever */
devpriv->aiCount--;
}
return 0;
}
#ifdef USE_DMA
/* /*
Terminate a DMA transfer and wait for everything to quiet down cmdtest tests a particular command to see if it is valid.
*/ Using the cmdtest ioctl, a user can create a valid cmd
void abort_dma(struct comedi_device *dev, unsigned int channel) and then have it executed by the cmd ioctl (asyncronously).
{ /* DMA channel 0, 1 */
unsigned long dma_cs_addr; /* the control/status register */
uint8_t status;
unsigned int ii;
/* unsigned long flags; */
dma_cs_addr = (unsigned long)devpriv->lcfg
+ ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
/* spinlock for plx dma control/status reg */
/* spin_lock_irqsave( &dev->spinlock, flags ); */
/* abort dma transfer if necessary */
status = readb(dma_cs_addr);
if ((status & PLX_DMA_EN_BIT) == 0) { /* not enabled (Error?) */
DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
channel, status);
goto abortDmaExit;
}
/* wait to make sure done bit is zero (needed?) */ cmdtest returns 1,2,3,4 or 0, depending on which tests
for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) { the command passes.
WAIT_QUIETLY; */
status = readb(dma_cs_addr);
}
if (status & PLX_DMA_DONE_BIT) {
printk("rtd520: Timeout waiting for dma %i done clear\n",
channel);
goto abortDmaExit;
}
/* disable channel (required) */ static int rtd_ai_cmdtest(struct comedi_device *dev,
writeb(0, dma_cs_addr); struct comedi_subdevice *s, struct comedi_cmd *cmd)
udelay(1); /* needed?? */ {
/* set abort bit for channel */ int err = 0;
writeb(PLX_DMA_ABORT_BIT, dma_cs_addr); int tmp;
/* wait for dma done bit to be set */ /* step 1: make sure trigger sources are trivially valid */
status = readb(dma_cs_addr);
for (ii = 0;
(status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT; ii++) {
status = readb(dma_cs_addr);
WAIT_QUIETLY;
}
if ((status & PLX_DMA_DONE_BIT) == 0) {
printk("rtd520: Timeout waiting for dma %i done set\n",
channel);
}
abortDmaExit: tmp = cmd->start_src;
/* spin_unlock_irqrestore( &dev->spinlock, flags ); */ cmd->start_src &= TRIG_NOW;
} if (!cmd->start_src || tmp != cmd->start_src)
err++;
/* tmp = cmd->scan_begin_src;
Process what is in the DMA transfer buffer and pass to comedi cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT;
Note: this is not re-entrant if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
*/ err++;
static int ai_process_dma(struct comedi_device *dev, struct comedi_subdevice *s)
{
int ii, n;
s16 *dp;
if (devpriv->aiCount == 0) /* transfer already complete */
return 0;
dp = devpriv->dma0Buff[devpriv->dma0Offset]; tmp = cmd->convert_src;
for (ii = 0; ii < devpriv->fifoLen / 2;) { /* convert samples */ cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
short sample; if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
sample = (*dp >> 3) + 2048; /* convert to comedi unsigned data */
else
sample = *dp >> 3; /* low 3 bits are marker lines */
*dp++ = sample; /* put processed value back */ tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
s->async->cur_chan = 0;
++ii; /* number ready to transfer */ tmp = cmd->stop_src;
if (devpriv->aiCount > 0) { /* < 0, means read forever */ cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (--devpriv->aiCount == 0) { /* done */ if (!cmd->stop_src || tmp != cmd->stop_src)
/*DPRINTK ("rtd520: Final %d samples\n", ii); */ err++;
break;
}
}
}
/* now pass the whole array to the comedi buffer */
dp = devpriv->dma0Buff[devpriv->dma0Offset];
n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
if (n < (ii * sizeof(s16))) { /* any residual is an error */
DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
ii - (n / sizeof(s16)));
s->async->events |= COMEDI_CB_ERROR;
return -1;
}
comedi_buf_memcpy_to(s->async, 0, dp, n);
comedi_buf_write_free(s->async, n);
/* if (err)
* always at least 1 scan -- 1/2 FIFO is larger than our max scan list return 1;
*/
s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) { /* next buffer */ /* step 2: make sure trigger sources are unique
devpriv->dma0Offset = 0; and mutually compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT) {
err++;
} }
return 0; if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
} err++;
#endif /* USE_DMA */
/* if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
Handle all rtd520 interrupts. err++;
Runs atomically and is never re-entered.
This is a "slow handler"; other interrupts may be active.
The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq, /* interrupt number (ignored) */
void *d)
{ /* our data *//* cpu context (ignored) */
struct comedi_device *dev = d; /* must be called "dev" for devpriv */
u16 status;
u16 fifoStatus;
struct comedi_subdevice *s = dev->subdevices + 0; /* analog in subdevice */
if (!dev->attached) if (err)
return IRQ_NONE; return 2;
devpriv->intCount++; /* DEBUG statistics */ /* step 3: make sure arguments are trivially compatible */
fifoStatus = RtdFifoStatus(dev); if (cmd->start_arg != 0) {
/* check for FIFO full, this automatically halts the ADC! */ cmd->start_arg = 0;
if (!(fifoStatus & FS_ADC_NOT_FULL)) { /* 0 -> full */ err++;
DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto abortTransfer;
} }
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) { /* Check DMA */
u32 istatus = RtdPlxInterruptRead(dev);
if (istatus & ICS_DMA0_A) { if (cmd->scan_begin_src == TRIG_TIMER) {
if (ai_process_dma(dev, s) < 0) { /* Note: these are time periods, not actual rates */
DPRINTK if (1 == cmd->chanlist_len) { /* no scanning */
("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n", if (cmd->scan_begin_arg < RTD_MAX_SPEED_1) {
devpriv->aiCount); cmd->scan_begin_arg = RTD_MAX_SPEED_1;
RtdDma0Control(dev, rtd_ns_to_timer(&cmd->scan_begin_arg,
(devpriv->dma0Control & TRIG_ROUND_UP);
~PLX_DMA_START_BIT) err++;
| PLX_CLEAR_DMA_INTR_BIT);
goto abortTransfer;
} }
if (cmd->scan_begin_arg > RTD_MIN_SPEED_1) {
/*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n", cmd->scan_begin_arg = RTD_MIN_SPEED_1;
devpriv->aiCount, istatus); */ rtd_ns_to_timer(&cmd->scan_begin_arg,
RtdDma0Control(dev, TRIG_ROUND_DOWN);
(devpriv-> err++;
dma0Control & ~PLX_DMA_START_BIT)
| PLX_CLEAR_DMA_INTR_BIT);
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (DMA).\n");
goto transferDone;
} }
comedi_event(dev, s);
} else { } else {
/*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */ if (cmd->scan_begin_arg < RTD_MAX_SPEED) {
cmd->scan_begin_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
} }
} if (cmd->scan_begin_arg > RTD_MIN_SPEED) {
/* Fall through and check for other interrupt sources */ cmd->scan_begin_arg = RTD_MIN_SPEED;
#endif /* USE_DMA */ rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
status = RtdInterruptStatus(dev); err++;
/* if interrupt was not caused by our board, or handled above */
if (0 == status)
return IRQ_HANDLED;
if (status & IRQM_ADC_ABOUT_CNT) { /* sample count -> read FIFO */
/* since the priority interrupt controller may have queued a sample
counter interrupt, even though we have already finished,
we must handle the possibility that there is no data here */
if (!(fifoStatus & FS_ADC_HEMPTY)) { /* 0 -> 1/2 full */
/*DPRINTK("rtd520: Sample int, reading 1/2FIFO. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777); */
if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777); /* should be all 0s */
goto transferDone;
}
comedi_event(dev, s);
} else if (devpriv->transCount > 0) { /* read often */
/*DPRINTK("rtd520: Sample int, reading %d fifo_status 0x%x\n",
devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
if (fifoStatus & FS_ADC_NOT_EMPTY) { /* 1 -> not empty */
if (ai_read_n(dev, s, devpriv->transCount) < 0) {
DPRINTK
("rtd520: comedi read buffer overflow (N) with %ld to go!\n",
devpriv->aiCount);
goto abortTransfer;
}
if (0 == devpriv->aiCount) { /* counted down */
DPRINTK
("rtd520: Samples Done (N). fifo_status was 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
goto transferDone;
}
comedi_event(dev, s);
}
} else { /* wait for 1/2 FIFO (old) */
DPRINTK
("rtd520: Sample int. Wait for 1/2. fifo_status 0x%x\n",
(fifoStatus ^ 0x6666) & 0x7777);
}
} else {
DPRINTK("rtd520: unknown interrupt source!\n");
}
if (0xffff & RtdInterruptOverrunStatus(dev)) { /* interrupt overrun */
DPRINTK
("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n",
devpriv->aiCount, 0xffff & RtdInterruptOverrunStatus(dev));
goto abortTransfer;
}
/* clear the interrupt */
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
return IRQ_HANDLED;
abortTransfer:
RtdAdcClearFifo(dev); /* clears full flag */
s->async->events |= COMEDI_CB_ERROR;
devpriv->aiCount = 0; /* stop and don't transfer any more */
/* fall into transferDone */
transferDone:
RtdPacerStopSource(dev, 0); /* stop on SOFTWARE stop */
RtdPacerStop(dev); /* Stop PACER */
RtdAdcConversionSource(dev, 0); /* software trigger only */
RtdInterruptMask(dev, 0); /* mask out SAMPLE */
#ifdef USE_DMA
if (devpriv->flags & DMA0_ACTIVE) {
RtdPlxInterruptWrite(dev, /* disable any more interrupts */
RtdPlxInterruptRead(dev) & ~ICS_DMA0_E);
abort_dma(dev, 0);
devpriv->flags &= ~DMA0_ACTIVE;
/* if Using DMA, then we should have read everything by now */
if (devpriv->aiCount > 0) {
DPRINTK("rtd520: Lost DMA data! %ld remain\n",
devpriv->aiCount);
}
}
#endif /* USE_DMA */
if (devpriv->aiCount > 0) { /* there shouldn't be anything left */
fifoStatus = RtdFifoStatus(dev);
DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777); /* should read all 0s */
ai_read_dregs(dev, s); /* read anything left in FIFO */
}
s->async->events |= COMEDI_CB_EOA; /* signal end to comedi */
comedi_event(dev, s);
/* clear the interrupt */
status = RtdInterruptStatus(dev);
RtdInterruptClearMask(dev, status);
RtdInterruptClear(dev);
fifoStatus = RtdFifoStatus(dev); /* DEBUG */
DPRINTK
("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n",
devpriv->intCount, status,
0xffff & RtdInterruptOverrunStatus(dev));
return IRQ_HANDLED;
}
#if 0
/*
return the number of samples available
*/
static int rtd_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s)
{
/* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
/* Not sure what to do if DMA is active */
return s->async->buf_write_count - s->async->buf_read_count;
}
#endif
/*
cmdtest tests a particular command to see if it is valid.
Using the cmdtest ioctl, a user can create a valid cmd
and then have it executed by the cmd ioctl (asyncronously).
cmdtest returns 1,2,3,4 or 0, depending on which tests
the command passes.
*/
static int rtd_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
int err = 0;
int tmp;
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER | TRIG_EXT;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique
and mutually compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT) {
err++;
}
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
err++;
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Note: these are time periods, not actual rates */
if (1 == cmd->chanlist_len) { /* no scanning */
if (cmd->scan_begin_arg < RTD_MAX_SPEED_1) {
cmd->scan_begin_arg = RTD_MAX_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED_1) {
cmd->scan_begin_arg = RTD_MIN_SPEED_1;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
}
} else {
if (cmd->scan_begin_arg < RTD_MAX_SPEED) {
cmd->scan_begin_arg = RTD_MAX_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_UP);
err++;
}
if (cmd->scan_begin_arg > RTD_MIN_SPEED) {
cmd->scan_begin_arg = RTD_MIN_SPEED;
rtd_ns_to_timer(&cmd->scan_begin_arg,
TRIG_ROUND_DOWN);
err++;
} }
} }
} else { } else {
...@@ -2117,49 +1720,6 @@ static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) ...@@ -2117,49 +1720,6 @@ static int rtd_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
return 0; return 0;
} }
/*
Given a desired period and the clock period (both in ns),
return the proper counter value (divider-1).
Sets the original period to be the true value.
Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec, /* desired period (in ns) */
int round_mode, int base)
{ /* clock period (in ns) */
int divider;
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
if (divider < 2)
divider = 2; /* min is divide by 2 */
/* Note: we don't check for max, because different timers
have different ranges */
*nanosec = base * divider;
return divider - 1; /* countdown is divisor+1 */
}
/*
Given a desired period (in ns),
return the proper counter value (divider-1) for the internal clock.
Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
/* /*
Output one (or more) analog values to a single port as fast as possible. Output one (or more) analog values to a single port as fast as possible.
*/ */
...@@ -2174,144 +1734,554 @@ static int rtd_ao_winsn(struct comedi_device *dev, ...@@ -2174,144 +1734,554 @@ static int rtd_ao_winsn(struct comedi_device *dev,
/* Configure the output range (table index matches the range values) */ /* Configure the output range (table index matches the range values) */
RtdDacRange(dev, chan, range); RtdDacRange(dev, chan, range);
/* Writing a list of values to an AO channel is probably not /* Writing a list of values to an AO channel is probably not
* very useful, but that's how the interface is defined. */ * very useful, but that's how the interface is defined. */
for (i = 0; i < insn->n; ++i) { for (i = 0; i < insn->n; ++i) {
int val = data[i] << 3; int val = data[i] << 3;
int stat = 0; /* initialize to avoid bogus warning */ int stat = 0; /* initialize to avoid bogus warning */
int ii; int ii;
/* VERIFY: comedi range and offset conversions */
if ((range > 1) /* bipolar */
&& (data[i] < 2048)) {
/* offset and sign extend */
val = (((int)data[i]) - 2048) << 3;
} else { /* unipolor */
val = data[i] << 3;
}
DPRINTK
("comedi: rtd520 DAC chan=%d range=%d writing %d as 0x%x\n",
chan, range, data[i], val);
/* a typical programming sequence */
RtdDacFifoPut(dev, chan, val); /* put the value in */
RtdDacUpdate(dev, chan); /* trigger the conversion */
devpriv->aoValue[chan] = data[i]; /* save for read back */
for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) {
stat = RtdFifoStatus(dev);
/* 1 -> not empty */
if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY :
FS_DAC2_NOT_EMPTY))
break;
WAIT_QUIETLY;
}
if (ii >= RTD_DAC_TIMEOUT) {
DPRINTK
("rtd520: Error: DAC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
}
}
/* return the number of samples read/written */
return i;
}
/* AO subdevices should have a read insn as well as a write insn.
* Usually this means copying a value stored in devpriv. */
static int rtd_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
for (i = 0; i < insn->n; i++)
data[i] = devpriv->aoValue[chan];
return i;
}
/*
Write a masked set of bits and the read back the port.
We track what the bits should be (i.e. we don't read the port first).
DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write
*/
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
if (insn->n != 2)
return -EINVAL;
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
RtdDio0Write(dev, s->state);
}
/* on return, data[1] contains the value of the digital
* input lines. */
data[1] = RtdDio0Read(dev);
/*DPRINTK("rtd520:port_0 wrote: 0x%x read: 0x%x\n", s->state, data[1]); */
return 2;
}
/*
Configure one bit on a IO port as Input or Output (hence the name :-).
*/
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int chan = CR_CHAN(insn->chanspec);
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->io_bits |= 1 << chan; /* 1 means Out */
break;
case INSN_CONFIG_DIO_INPUT:
s->io_bits &= ~(1 << chan);
break;
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
break;
default:
return -EINVAL;
}
DPRINTK("rtd520: port_0_direction=0x%x (1 means out)\n", s->io_bits);
/* TODO support digital match interrupts and strobes */
RtdDioStatusWrite(dev, 0x01); /* make Dio0Ctrl point to direction */
RtdDio0CtrlWrite(dev, s->io_bits); /* set direction 1 means Out */
RtdDioStatusWrite(dev, 0); /* make Dio0Ctrl clear interrupts */
/* port1 can only be all input or all output */
/* there are also 2 user input lines and 2 user output lines */
return 1;
}
static int rtd_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{ /* board name and options flags */
struct comedi_subdevice *s;
struct pci_dev *pcidev;
int ret;
resource_size_t physLas0; /* configuration */
resource_size_t physLas1; /* data area */
resource_size_t physLcfg; /* PLX9080 */
#ifdef USE_DMA
int index;
#endif
printk(KERN_INFO "comedi%d: rtd520 attaching.\n", dev->minor);
#if defined(CONFIG_COMEDI_DEBUG) && defined(USE_DMA)
/* You can set this a load time: modprobe comedi comedi_debug=1 */
if (0 == comedi_debug) /* force DMA debug printks */
comedi_debug = 1;
#endif
/*
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(struct rtdPrivate)) < 0)
return -ENOMEM;
/*
* Probe the device to determine what device in the series it is.
*/
for (pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, NULL);
pcidev != NULL;
pcidev = pci_get_device(PCI_VENDOR_ID_RTD, PCI_ANY_ID, pcidev)) {
int i;
if (it->options[0] || it->options[1]) {
if (pcidev->bus->number != it->options[0]
|| PCI_SLOT(pcidev->devfn) != it->options[1]) {
continue;
}
}
for (i = 0; i < ARRAY_SIZE(rtd520Boards); ++i) {
if (pcidev->device == rtd520Boards[i].device_id) {
dev->board_ptr = &rtd520Boards[i];
break;
}
}
if (dev->board_ptr)
break; /* found one */
}
if (!pcidev) {
if (it->options[0] && it->options[1]) {
printk(KERN_INFO "No RTD card at bus=%d slot=%d.\n",
it->options[0], it->options[1]);
} else {
printk(KERN_INFO "No RTD card found.\n");
}
return -EIO;
}
devpriv->pci_dev = pcidev;
dev->board_name = thisboard->name;
ret = comedi_pci_enable(pcidev, DRV_NAME);
if (ret < 0) {
printk(KERN_INFO "Failed to enable PCI device and request regions.\n");
return ret;
}
devpriv->got_regions = 1;
/*
* Initialize base addresses
*/
/* Get the physical address from PCI config */
physLas0 = pci_resource_start(devpriv->pci_dev, LAS0_PCIINDEX);
physLas1 = pci_resource_start(devpriv->pci_dev, LAS1_PCIINDEX);
physLcfg = pci_resource_start(devpriv->pci_dev, LCFG_PCIINDEX);
/* Now have the kernel map this into memory */
/* ASSUME page aligned */
devpriv->las0 = ioremap_nocache(physLas0, LAS0_PCISIZE);
devpriv->las1 = ioremap_nocache(physLas1, LAS1_PCISIZE);
devpriv->lcfg = ioremap_nocache(physLcfg, LCFG_PCISIZE);
if (!devpriv->las0 || !devpriv->las1 || !devpriv->lcfg)
return -ENOMEM;
DPRINTK("%s: LAS0=%llx, LAS1=%llx, CFG=%llx.\n", dev->board_name,
(unsigned long long)physLas0, (unsigned long long)physLas1,
(unsigned long long)physLcfg);
{ /* The RTD driver does this */
unsigned char pci_latency;
u16 revision;
/*uint32_t epld_version; */
pci_read_config_word(devpriv->pci_dev, PCI_REVISION_ID,
&revision);
DPRINTK("%s: PCI revision %d.\n", dev->board_name, revision);
pci_read_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency < 32) {
printk(KERN_INFO "%s: PCI latency changed from %d to %d\n",
dev->board_name, pci_latency, 32);
pci_write_config_byte(devpriv->pci_dev,
PCI_LATENCY_TIMER, 32);
} else {
DPRINTK("rtd520: PCI latency = %d\n", pci_latency);
}
/*
* Undocumented EPLD version (doesn't match RTD driver results)
*/
/*DPRINTK ("rtd520: Reading epld from %p\n",
devpriv->las0+0);
epld_version = readl (devpriv->las0+0);
if ((epld_version & 0xF0) >> 4 == 0x0F) {
DPRINTK("rtd520: pre-v8 EPLD. (%x)\n", epld_version);
} else {
DPRINTK("rtd520: EPLD version %x.\n", epld_version >> 4);
} */
}
/* Show board configuration */
printk(KERN_INFO "%s:", dev->board_name);
/*
* Allocate the subdevice structures. alloc_subdevice() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_subdevices(dev, 4) < 0)
return -ENOMEM;
s = dev->subdevices + 0;
dev->read_subdev = s;
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags =
SDF_READABLE | SDF_GROUND | SDF_COMMON | SDF_DIFF | SDF_CMD_READ;
s->n_chan = thisboard->aiChans;
s->maxdata = (1 << thisboard->aiBits) - 1;
if (thisboard->aiMaxGain <= 32)
s->range_table = &rtd_ai_7520_range;
else
s->range_table = &rtd_ai_4520_range;
s->len_chanlist = RTD_MAX_CHANLIST; /* devpriv->fifoLen */
s->insn_read = rtd_ai_rinsn;
s->do_cmd = rtd_ai_cmd;
s->do_cmdtest = rtd_ai_cmdtest;
s->cancel = rtd_ai_cancel;
/* s->poll = rtd_ai_poll; *//* not ready yet */
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = (1 << thisboard->aiBits) - 1;
s->range_table = &rtd_ao_range;
s->insn_write = rtd_ao_winsn;
s->insn_read = rtd_ao_rinsn;
s = dev->subdevices + 2;
/* digital i/o subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
/* we only support port 0 right now. Ignoring port 1 and user IO */
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = rtd_dio_insn_bits;
s->insn_config = rtd_dio_insn_config;
/* timer/counter subdevices (not currently supported) */
s = dev->subdevices + 3;
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 3;
s->maxdata = 0xffff;
/* initialize board, per RTD spec */
/* also, initialize shadow registers */
RtdResetBoard(dev);
udelay(100); /* needed? */
RtdPlxInterruptWrite(dev, 0);
RtdInterruptMask(dev, 0); /* and sets shadow */
RtdInterruptClearMask(dev, ~0); /* and sets shadow */
RtdInterruptClear(dev); /* clears bits set by mask */
RtdInterruptOverrunClear(dev);
RtdClearCGT(dev);
RtdAdcClearFifo(dev);
RtdDacClearFifo(dev, 0);
RtdDacClearFifo(dev, 1);
/* clear digital IO fifo */
RtdDioStatusWrite(dev, 0); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 0, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 1, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 2, 0x30); /* safe state, set shadow */
RtdUtcCtrlPut(dev, 3, 0); /* safe state, set shadow */
/* TODO: set user out source ??? */
/* check if our interrupt is available and get it */
ret = request_irq(devpriv->pci_dev->irq, rtd_interrupt,
IRQF_SHARED, DRV_NAME, dev);
if (ret < 0) {
printk("Could not get interrupt! (%u)\n",
devpriv->pci_dev->irq);
return ret;
}
dev->irq = devpriv->pci_dev->irq;
printk(KERN_INFO "( irq=%u )", dev->irq);
ret = rtd520_probe_fifo_depth(dev);
if (ret < 0)
return ret;
devpriv->fifoLen = ret;
printk("( fifoLen=%d )", devpriv->fifoLen);
#ifdef USE_DMA
if (dev->irq > 0) {
printk("( DMA buff=%d )\n", DMA_CHAIN_COUNT);
/*
* The PLX9080 has 2 DMA controllers, but there could be
* 4 sources: ADC, digital, DAC1, and DAC2. Since only the
* ADC supports cmd mode right now, this isn't an issue (yet)
*/
devpriv->dma0Offset = 0;
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Buff[index] =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
&devpriv->
dma0BuffPhysAddr[index]);
if (devpriv->dma0Buff[index] == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
/*DPRINTK ("buff[%d] @ %p virtual, %x PCI\n",
index,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]); */
}
/*
* setup DMA descriptor ring (use cpu_to_le32 for byte
* ordering?)
*/
devpriv->dma0Chain =
pci_alloc_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT,
&devpriv->dma0ChainPhysAddr);
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
devpriv->dma0Chain[index].pci_start_addr =
devpriv->dma0BuffPhysAddr[index];
devpriv->dma0Chain[index].local_start_addr =
DMALADDR_ADC;
devpriv->dma0Chain[index].transfer_size =
sizeof(u16) * devpriv->fifoLen / 2;
devpriv->dma0Chain[index].next =
(devpriv->dma0ChainPhysAddr + ((index +
1) %
(DMA_CHAIN_COUNT))
* sizeof(devpriv->dma0Chain[0]))
| DMA_TRANSFER_BITS;
/*DPRINTK ("ring[%d] @%lx PCI: %x, local: %x, N: 0x%x, next: %x\n",
index,
((long)devpriv->dma0ChainPhysAddr
+ (index * sizeof(devpriv->dma0Chain[0]))),
devpriv->dma0Chain[index].pci_start_addr,
devpriv->dma0Chain[index].local_start_addr,
devpriv->dma0Chain[index].transfer_size,
devpriv->dma0Chain[index].next); */
}
/* VERIFY: comedi range and offset conversions */ if (devpriv->dma0Chain == NULL) {
ret = -ENOMEM;
goto rtd_attach_die_error;
}
if ((range > 1) /* bipolar */ RtdDma0Mode(dev, DMA_MODE_BITS);
&& (data[i] < 2048)) { /* set DMA trigger source */
/* offset and sign extend */ RtdDma0Source(dev, DMAS_ADFIFO_HALF_FULL);
val = (((int)data[i]) - 2048) << 3; } else {
} else { /* unipolor */ printk(KERN_INFO "( no IRQ->no DMA )");
val = data[i] << 3;
} }
#endif /* USE_DMA */
DPRINTK if (dev->irq) { /* enable plx9080 interrupts */
("comedi: rtd520 DAC chan=%d range=%d writing %d as 0x%x\n", RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
chan, range, data[i], val); }
/* a typical programming sequence */ printk("\ncomedi%d: rtd520 driver attached.\n", dev->minor);
RtdDacFifoPut(dev, chan, val); /* put the value in */
RtdDacUpdate(dev, chan); /* trigger the conversion */
devpriv->aoValue[chan] = data[i]; /* save for read back */ return 1;
for (ii = 0; ii < RTD_DAC_TIMEOUT; ++ii) { #if 0
stat = RtdFifoStatus(dev); /* hit an error, clean up memory and return ret */
/* 1 -> not empty */ /* rtd_attach_die_error: */
if (stat & ((0 == chan) ? FS_DAC1_NOT_EMPTY : #ifdef USE_DMA
FS_DAC2_NOT_EMPTY)) for (index = 0; index < DMA_CHAIN_COUNT; index++) {
break; if (NULL != devpriv->dma0Buff[index]) { /* free buffer memory */
WAIT_QUIETLY; pci_free_consistent(devpriv->pci_dev,
sizeof(u16) * devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
} }
if (ii >= RTD_DAC_TIMEOUT) {
DPRINTK
("rtd520: Error: DAC never finished! FifoStatus=0x%x\n",
stat ^ 0x6666);
return -ETIMEDOUT;
} }
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc)
* DMA_CHAIN_COUNT,
devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
/* subdevices and priv are freed by the core */
if (dev->irq) {
/* disable interrupt controller */
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E | ICS_DMA1_E));
free_irq(dev->irq, dev);
} }
/* return the number of samples read/written */ /* release all regions that were allocated */
return i; if (devpriv->las0)
} iounmap(devpriv->las0);
/* AO subdevices should have a read insn as well as a write insn. if (devpriv->las1)
* Usually this means copying a value stored in devpriv. */ iounmap(devpriv->las1);
static int rtd_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
for (i = 0; i < insn->n; i++) if (devpriv->lcfg)
data[i] = devpriv->aoValue[chan]; iounmap(devpriv->lcfg);
if (devpriv->pci_dev)
pci_dev_put(devpriv->pci_dev);
return i; return ret;
#endif
} }
/* static void rtd_detach(struct comedi_device *dev)
Write a masked set of bits and the read back the port.
We track what the bits should be (i.e. we don't read the port first).
DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write
*/
static int rtd_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{ {
if (insn->n != 2) #ifdef USE_DMA
return -EINVAL; int index;
#endif
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */ if (devpriv) {
RtdDio0Write(dev, s->state); /* Shut down any board ops by resetting it */
#ifdef USE_DMA
if (devpriv->lcfg) {
RtdDma0Control(dev, 0); /* disable DMA */
RtdDma1Control(dev, 0); /* disable DMA */
RtdPlxInterruptWrite(dev, ICS_PIE | ICS_PLIE);
}
#endif /* USE_DMA */
if (devpriv->las0) {
RtdResetBoard(dev);
RtdInterruptMask(dev, 0);
RtdInterruptClearMask(dev, ~0);
RtdInterruptClear(dev); /* clears bits set by mask */
}
#ifdef USE_DMA
/* release DMA */
for (index = 0; index < DMA_CHAIN_COUNT; index++) {
if (NULL != devpriv->dma0Buff[index]) {
pci_free_consistent(devpriv->pci_dev,
sizeof(u16) *
devpriv->fifoLen / 2,
devpriv->dma0Buff[index],
devpriv->
dma0BuffPhysAddr[index]);
devpriv->dma0Buff[index] = NULL;
}
}
if (NULL != devpriv->dma0Chain) {
pci_free_consistent(devpriv->pci_dev,
sizeof(struct plx_dma_desc) *
DMA_CHAIN_COUNT, devpriv->dma0Chain,
devpriv->dma0ChainPhysAddr);
devpriv->dma0Chain = NULL;
}
#endif /* USE_DMA */
if (dev->irq) {
RtdPlxInterruptWrite(dev, RtdPlxInterruptRead(dev)
& ~(ICS_PLIE | ICS_DMA0_E |
ICS_DMA1_E));
free_irq(dev->irq, dev);
}
if (devpriv->las0)
iounmap(devpriv->las0);
if (devpriv->las1)
iounmap(devpriv->las1);
if (devpriv->lcfg)
iounmap(devpriv->lcfg);
if (devpriv->pci_dev) {
if (devpriv->got_regions)
comedi_pci_disable(devpriv->pci_dev);
pci_dev_put(devpriv->pci_dev);
} }
/* on return, data[1] contains the value of the digital
* input lines. */
data[1] = RtdDio0Read(dev);
/*DPRINTK("rtd520:port_0 wrote: 0x%x read: 0x%x\n", s->state, data[1]); */
return 2;
}
/*
Configure one bit on a IO port as Input or Output (hence the name :-).
*/
static int rtd_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int chan = CR_CHAN(insn->chanspec);
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->io_bits |= 1 << chan; /* 1 means Out */
break;
case INSN_CONFIG_DIO_INPUT:
s->io_bits &= ~(1 << chan);
break;
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->io_bits & (1 << chan)) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
break;
default:
return -EINVAL;
} }
DPRINTK("rtd520: port_0_direction=0x%x (1 means out)\n", s->io_bits);
/* TODO support digital match interrupts and strobes */
RtdDioStatusWrite(dev, 0x01); /* make Dio0Ctrl point to direction */
RtdDio0CtrlWrite(dev, s->io_bits); /* set direction 1 means Out */
RtdDioStatusWrite(dev, 0); /* make Dio0Ctrl clear interrupts */
/* port1 can only be all input or all output */
/* there are also 2 user input lines and 2 user output lines */
return 1;
} }
static struct comedi_driver rtd520_driver = { static struct comedi_driver rtd520_driver = {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment