Commit cc1aeedb authored by Sarah Walker's avatar Sarah Walker Committed by Maxime Ripard

drm/imagination: Implement firmware infrastructure and META FW support

The infrastructure includes parsing of the firmware image, initialising
FW-side structures, handling the kernel and firmware command
ringbuffers and starting & stopping the firmware processor.

This patch also adds the necessary support code for the META firmware
processor.

Changes since v8:
- Fix documentation for pvr_fwccb_process()
- Corrected license identifiers

Changes since v6:
- Add a minimum retry count to pvr_kccb_reserve_slot_sync()

Changes since v5:
- Add workaround for BRN 71242
- Attempt to recover GPU on MMU flush command failure

Changes since v4:
- Remove use of drm_gem_shmem_get_pages()
- Remove interrupt resource name

Changes since v3:
- Hard reset FW processor on watchdog timeout
- Switch to threaded IRQ
- Rework FW object creation/initialisation to aid hard reset
- Added MODULE_FIRMWARE()
- Use drm_dev_{enter,exit}
Signed-off-by: default avatarSarah Walker <sarah.walker@imgtec.com>
Signed-off-by: default avatarDonald Robson <donald.robson@imgtec.com>
Link: https://lore.kernel.org/r/bb52a8dc84f296b37dc6668dfe8fbaf2ba551139.1700668843.git.donald.robson@imgtec.comSigned-off-by: default avatarMaxime Ripard <mripard@kernel.org>
parent 727538a4
...@@ -4,10 +4,14 @@ ...@@ -4,10 +4,14 @@
subdir-ccflags-y := -I$(srctree)/$(src) subdir-ccflags-y := -I$(srctree)/$(src)
powervr-y := \ powervr-y := \
pvr_ccb.o \
pvr_device.o \ pvr_device.o \
pvr_device_info.o \ pvr_device_info.o \
pvr_drv.o \ pvr_drv.o \
pvr_fw.o \ pvr_fw.o \
pvr_fw_meta.o \
pvr_fw_startstop.o \
pvr_fw_trace.o \
pvr_gem.o \ pvr_gem.o \
pvr_mmu.o \ pvr_mmu.o \
pvr_power.o \ pvr_power.o \
......
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_ccb.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_fw.h"
#include "pvr_gem.h"
#include "pvr_power.h"
#include <drm/drm_managed.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#define RESERVE_SLOT_TIMEOUT (1 * HZ) /* 1s */
#define RESERVE_SLOT_MIN_RETRIES 10
static void
ccb_ctrl_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_ccb_ctl *ctrl = cpu_ptr;
struct pvr_ccb *pvr_ccb = priv;
ctrl->write_offset = 0;
ctrl->read_offset = 0;
ctrl->wrap_mask = pvr_ccb->num_cmds - 1;
ctrl->cmd_size = pvr_ccb->cmd_size;
}
/**
* pvr_ccb_init() - Initialise a CCB
* @pvr_dev: Device pointer.
* @pvr_ccb: Pointer to CCB structure to initialise.
* @num_cmds_log2: Log2 of number of commands in this CCB.
* @cmd_size: Command size for this CCB.
*
* Return:
* * Zero on success, or
* * Any error code returned by pvr_fw_object_create_and_map().
*/
static int
pvr_ccb_init(struct pvr_device *pvr_dev, struct pvr_ccb *pvr_ccb,
u32 num_cmds_log2, size_t cmd_size)
{
u32 num_cmds = 1 << num_cmds_log2;
u32 ccb_size = num_cmds * cmd_size;
int err;
pvr_ccb->num_cmds = num_cmds;
pvr_ccb->cmd_size = cmd_size;
err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_ccb->lock);
if (err)
return err;
/*
* Map CCB and control structure as uncached, so we don't have to flush
* CPU cache repeatedly when polling for space.
*/
pvr_ccb->ctrl = pvr_fw_object_create_and_map(pvr_dev, sizeof(*pvr_ccb->ctrl),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
ccb_ctrl_init, pvr_ccb, &pvr_ccb->ctrl_obj);
if (IS_ERR(pvr_ccb->ctrl))
return PTR_ERR(pvr_ccb->ctrl);
pvr_ccb->ccb = pvr_fw_object_create_and_map(pvr_dev, ccb_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &pvr_ccb->ccb_obj);
if (IS_ERR(pvr_ccb->ccb)) {
err = PTR_ERR(pvr_ccb->ccb);
goto err_free_ctrl;
}
pvr_fw_object_get_fw_addr(pvr_ccb->ctrl_obj, &pvr_ccb->ctrl_fw_addr);
pvr_fw_object_get_fw_addr(pvr_ccb->ccb_obj, &pvr_ccb->ccb_fw_addr);
WRITE_ONCE(pvr_ccb->ctrl->write_offset, 0);
WRITE_ONCE(pvr_ccb->ctrl->read_offset, 0);
WRITE_ONCE(pvr_ccb->ctrl->wrap_mask, num_cmds - 1);
WRITE_ONCE(pvr_ccb->ctrl->cmd_size, cmd_size);
return 0;
err_free_ctrl:
pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj);
return err;
}
/**
* pvr_ccb_fini() - Release CCB structure
* @pvr_ccb: CCB to release.
*/
void
pvr_ccb_fini(struct pvr_ccb *pvr_ccb)
{
pvr_fw_object_unmap_and_destroy(pvr_ccb->ccb_obj);
pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj);
}
/**
* pvr_ccb_slot_available_locked() - Test whether any slots are available in CCB
* @pvr_ccb: CCB to test.
* @write_offset: Address to store number of next available slot. May be %NULL.
*
* Caller must hold @pvr_ccb->lock.
*
* Return:
* * %true if a slot is available, or
* * %false if no slot is available.
*/
static __always_inline bool
pvr_ccb_slot_available_locked(struct pvr_ccb *pvr_ccb, u32 *write_offset)
{
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 next_write_offset = (READ_ONCE(ctrl->write_offset) + 1) & READ_ONCE(ctrl->wrap_mask);
lockdep_assert_held(&pvr_ccb->lock);
if (READ_ONCE(ctrl->read_offset) != next_write_offset) {
if (write_offset)
*write_offset = next_write_offset;
return true;
}
return false;
}
static void
process_fwccb_command(struct pvr_device *pvr_dev, struct rogue_fwif_fwccb_cmd *cmd)
{
switch (cmd->cmd_type) {
case ROGUE_FWIF_FWCCB_CMD_REQUEST_GPU_RESTART:
pvr_power_reset(pvr_dev, false);
break;
default:
drm_info(from_pvr_device(pvr_dev), "Received unknown FWCCB command %x\n",
cmd->cmd_type);
break;
}
}
/**
* pvr_fwccb_process() - Process any pending FWCCB commands
* @pvr_dev: Target PowerVR device
*/
void pvr_fwccb_process(struct pvr_device *pvr_dev)
{
struct rogue_fwif_fwccb_cmd *fwccb = pvr_dev->fwccb.ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->fwccb.ctrl;
u32 read_offset;
mutex_lock(&pvr_dev->fwccb.lock);
while ((read_offset = READ_ONCE(ctrl->read_offset)) != READ_ONCE(ctrl->write_offset)) {
struct rogue_fwif_fwccb_cmd cmd = fwccb[read_offset];
WRITE_ONCE(ctrl->read_offset, (read_offset + 1) & READ_ONCE(ctrl->wrap_mask));
/* Drop FWCCB lock while we process command. */
mutex_unlock(&pvr_dev->fwccb.lock);
process_fwccb_command(pvr_dev, &cmd);
mutex_lock(&pvr_dev->fwccb.lock);
}
mutex_unlock(&pvr_dev->fwccb.lock);
}
/**
* pvr_kccb_capacity() - Returns the maximum number of usable KCCB slots.
* @pvr_dev: Target PowerVR device
*
* Return:
* * The maximum number of active slots.
*/
static u32 pvr_kccb_capacity(struct pvr_device *pvr_dev)
{
/* Capacity is the number of slot minus one to cope with the wrapping
* mechanisms. If we were to use all slots, we might end up with
* read_offset == write_offset, which the FW considers as a KCCB-is-empty
* condition.
*/
return pvr_dev->kccb.slot_count - 1;
}
/**
* pvr_kccb_used_slot_count_locked() - Get the number of used slots
* @pvr_dev: Device pointer.
*
* KCCB lock must be held.
*
* Return:
* * The number of slots currently used.
*/
static u32
pvr_kccb_used_slot_count_locked(struct pvr_device *pvr_dev)
{
struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 wr_offset = READ_ONCE(ctrl->write_offset);
u32 rd_offset = READ_ONCE(ctrl->read_offset);
u32 used_count;
lockdep_assert_held(&pvr_ccb->lock);
if (wr_offset >= rd_offset)
used_count = wr_offset - rd_offset;
else
used_count = wr_offset + pvr_dev->kccb.slot_count - rd_offset;
return used_count;
}
/**
* pvr_kccb_send_cmd_reserved_powered() - Send command to the KCCB, with the PM ref
* held and a slot pre-reserved
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*/
void
pvr_kccb_send_cmd_reserved_powered(struct pvr_device *pvr_dev,
struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb;
struct rogue_fwif_kccb_cmd *kccb = pvr_ccb->ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 old_write_offset;
u32 new_write_offset;
WARN_ON(pvr_dev->lost);
mutex_lock(&pvr_ccb->lock);
if (WARN_ON(!pvr_dev->kccb.reserved_count))
goto out_unlock;
old_write_offset = READ_ONCE(ctrl->write_offset);
/* We reserved the slot, we should have one available. */
if (WARN_ON(!pvr_ccb_slot_available_locked(pvr_ccb, &new_write_offset)))
goto out_unlock;
memcpy(&kccb[old_write_offset], cmd,
sizeof(struct rogue_fwif_kccb_cmd));
if (kccb_slot) {
*kccb_slot = old_write_offset;
/* Clear return status for this slot. */
WRITE_ONCE(pvr_dev->kccb.rtn[old_write_offset],
ROGUE_FWIF_KCCB_RTN_SLOT_NO_RESPONSE);
}
mb(); /* memory barrier */
WRITE_ONCE(ctrl->write_offset, new_write_offset);
pvr_dev->kccb.reserved_count--;
/* Kick MTS */
pvr_fw_mts_schedule(pvr_dev,
PVR_FWIF_DM_GP & ~ROGUE_CR_MTS_SCHEDULE_DM_CLRMSK);
out_unlock:
mutex_unlock(&pvr_ccb->lock);
}
/**
* pvr_kccb_try_reserve_slot() - Try to reserve a KCCB slot
* @pvr_dev: Device pointer.
*
* Return:
* * true if a KCCB slot was reserved, or
* * false otherwise.
*/
static bool pvr_kccb_try_reserve_slot(struct pvr_device *pvr_dev)
{
bool reserved = false;
u32 used_count;
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (pvr_dev->kccb.reserved_count < pvr_kccb_capacity(pvr_dev) - used_count) {
pvr_dev->kccb.reserved_count++;
reserved = true;
}
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return reserved;
}
/**
* pvr_kccb_reserve_slot_sync() - Try to reserve a slot synchronously
* @pvr_dev: Device pointer.
*
* Return:
* * 0 on success, or
* * -EBUSY if no slots were reserved after %RESERVE_SLOT_TIMEOUT, with a minimum of
* %RESERVE_SLOT_MIN_RETRIES retries.
*/
static int pvr_kccb_reserve_slot_sync(struct pvr_device *pvr_dev)
{
unsigned long start_timestamp = jiffies;
bool reserved = false;
u32 retries = 0;
while ((jiffies - start_timestamp) < (u32)RESERVE_SLOT_TIMEOUT ||
retries < RESERVE_SLOT_MIN_RETRIES) {
reserved = pvr_kccb_try_reserve_slot(pvr_dev);
if (reserved)
break;
usleep_range(1, 50);
if (retries < U32_MAX)
retries++;
}
return reserved ? 0 : -EBUSY;
}
/**
* pvr_kccb_send_cmd_powered() - Send command to the KCCB, with a PM ref held
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -EBUSY if timeout while waiting for a free KCCB slot.
*/
int
pvr_kccb_send_cmd_powered(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
int err;
err = pvr_kccb_reserve_slot_sync(pvr_dev);
if (err)
return err;
pvr_kccb_send_cmd_reserved_powered(pvr_dev, cmd, kccb_slot);
return 0;
}
/**
* pvr_kccb_send_cmd() - Send command to the KCCB
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -EBUSY if timeout while waiting for a free KCCB slot.
*/
int
pvr_kccb_send_cmd(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
int err;
err = pvr_power_get(pvr_dev);
if (err)
return err;
err = pvr_kccb_send_cmd_powered(pvr_dev, cmd, kccb_slot);
pvr_power_put(pvr_dev);
return err;
}
/**
* pvr_kccb_wait_for_completion() - Wait for a KCCB command to complete
* @pvr_dev: Device pointer.
* @slot_nr: KCCB slot to wait on.
* @timeout: Timeout length (in jiffies).
* @rtn_out: Location to store KCCB command result. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -ETIMEDOUT on timeout.
*/
int
pvr_kccb_wait_for_completion(struct pvr_device *pvr_dev, u32 slot_nr,
u32 timeout, u32 *rtn_out)
{
int ret = wait_event_timeout(pvr_dev->kccb.rtn_q, READ_ONCE(pvr_dev->kccb.rtn[slot_nr]) &
ROGUE_FWIF_KCCB_RTN_SLOT_CMD_EXECUTED, timeout);
if (ret && rtn_out)
*rtn_out = READ_ONCE(pvr_dev->kccb.rtn[slot_nr]);
return ret ? 0 : -ETIMEDOUT;
}
/**
* pvr_kccb_is_idle() - Returns whether the device's KCCB is idle
* @pvr_dev: Device pointer
*
* Returns:
* * %true if the KCCB is idle (contains no commands), or
* * %false if the KCCB contains pending commands.
*/
bool
pvr_kccb_is_idle(struct pvr_device *pvr_dev)
{
struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->kccb.ccb.ctrl;
bool idle;
mutex_lock(&pvr_dev->kccb.ccb.lock);
idle = (READ_ONCE(ctrl->write_offset) == READ_ONCE(ctrl->read_offset));
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return idle;
}
static const char *
pvr_kccb_fence_get_driver_name(struct dma_fence *f)
{
return PVR_DRIVER_NAME;
}
static const char *
pvr_kccb_fence_get_timeline_name(struct dma_fence *f)
{
return "kccb";
}
static const struct dma_fence_ops pvr_kccb_fence_ops = {
.get_driver_name = pvr_kccb_fence_get_driver_name,
.get_timeline_name = pvr_kccb_fence_get_timeline_name,
};
/**
* struct pvr_kccb_fence - Fence object used to wait for a KCCB slot
*/
struct pvr_kccb_fence {
/** @base: Base dma_fence object. */
struct dma_fence base;
/** @node: Node used to insert the fence in the pvr_device::kccb::waiters list. */
struct list_head node;
};
/**
* pvr_kccb_wake_up_waiters() - Check the KCCB waiters
* @pvr_dev: Target PowerVR device
*
* Signal as many KCCB fences as we have slots available.
*/
void pvr_kccb_wake_up_waiters(struct pvr_device *pvr_dev)
{
struct pvr_kccb_fence *fence, *tmp_fence;
u32 used_count, available_count;
/* Wake up those waiting for KCCB slot execution. */
wake_up_all(&pvr_dev->kccb.rtn_q);
/* Then iterate over all KCCB fences and signal as many as we can. */
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (WARN_ON(used_count + pvr_dev->kccb.reserved_count > pvr_kccb_capacity(pvr_dev)))
goto out_unlock;
available_count = pvr_kccb_capacity(pvr_dev) - used_count - pvr_dev->kccb.reserved_count;
list_for_each_entry_safe(fence, tmp_fence, &pvr_dev->kccb.waiters, node) {
if (!available_count)
break;
list_del(&fence->node);
pvr_dev->kccb.reserved_count++;
available_count--;
dma_fence_signal(&fence->base);
dma_fence_put(&fence->base);
}
out_unlock:
mutex_unlock(&pvr_dev->kccb.ccb.lock);
}
/**
* pvr_kccb_fini() - Cleanup device KCCB
* @pvr_dev: Target PowerVR device
*/
void pvr_kccb_fini(struct pvr_device *pvr_dev)
{
pvr_ccb_fini(&pvr_dev->kccb.ccb);
WARN_ON(!list_empty(&pvr_dev->kccb.waiters));
WARN_ON(pvr_dev->kccb.reserved_count);
}
/**
* pvr_kccb_init() - Initialise device KCCB
* @pvr_dev: Target PowerVR device
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_ccb_init().
*/
int
pvr_kccb_init(struct pvr_device *pvr_dev)
{
pvr_dev->kccb.slot_count = 1 << ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
INIT_LIST_HEAD(&pvr_dev->kccb.waiters);
pvr_dev->kccb.fence_ctx.id = dma_fence_context_alloc(1);
spin_lock_init(&pvr_dev->kccb.fence_ctx.lock);
return pvr_ccb_init(pvr_dev, &pvr_dev->kccb.ccb,
ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT,
sizeof(struct rogue_fwif_kccb_cmd));
}
/**
* pvr_kccb_fence_alloc() - Allocate a pvr_kccb_fence object
*
* Return:
* * NULL if the allocation fails, or
* * A valid dma_fence pointer otherwise.
*/
struct dma_fence *pvr_kccb_fence_alloc(void)
{
struct pvr_kccb_fence *kccb_fence;
kccb_fence = kzalloc(sizeof(*kccb_fence), GFP_KERNEL);
if (!kccb_fence)
return NULL;
return &kccb_fence->base;
}
/**
* pvr_kccb_fence_put() - Drop a KCCB fence reference
* @fence: The fence to drop the reference on.
*
* If the fence hasn't been initialized yet, dma_fence_free() is called. This
* way we have a single function taking care of both cases.
*/
void pvr_kccb_fence_put(struct dma_fence *fence)
{
if (!fence)
return;
if (!fence->ops) {
dma_fence_free(fence);
} else {
WARN_ON(fence->ops != &pvr_kccb_fence_ops);
dma_fence_put(fence);
}
}
/**
* pvr_kccb_reserve_slot() - Reserve a KCCB slot for later use
* @pvr_dev: Target PowerVR device
* @f: KCCB fence object previously allocated with pvr_kccb_fence_alloc()
*
* Try to reserve a KCCB slot, and if there's no slot available,
* initializes the fence object and queue it to the waiters list.
*
* If NULL is returned, that means the slot is reserved. In that case,
* the @f is freed and shouldn't be accessed after that point.
*
* Return:
* * NULL if a slot was available directly, or
* * A valid dma_fence object to wait on if no slot was available.
*/
struct dma_fence *
pvr_kccb_reserve_slot(struct pvr_device *pvr_dev, struct dma_fence *f)
{
struct pvr_kccb_fence *fence = container_of(f, struct pvr_kccb_fence, base);
struct dma_fence *out_fence = NULL;
u32 used_count;
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (pvr_dev->kccb.reserved_count >= pvr_kccb_capacity(pvr_dev) - used_count) {
dma_fence_init(&fence->base, &pvr_kccb_fence_ops,
&pvr_dev->kccb.fence_ctx.lock,
pvr_dev->kccb.fence_ctx.id,
atomic_inc_return(&pvr_dev->kccb.fence_ctx.seqno));
out_fence = dma_fence_get(&fence->base);
list_add_tail(&fence->node, &pvr_dev->kccb.waiters);
} else {
pvr_kccb_fence_put(f);
pvr_dev->kccb.reserved_count++;
}
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return out_fence;
}
/**
* pvr_kccb_release_slot() - Release a KCCB slot reserved with
* pvr_kccb_reserve_slot()
* @pvr_dev: Target PowerVR device
*
* Should only be called if something failed after the
* pvr_kccb_reserve_slot() call and you know you won't call
* pvr_kccb_send_cmd_reserved().
*/
void pvr_kccb_release_slot(struct pvr_device *pvr_dev)
{
mutex_lock(&pvr_dev->kccb.ccb.lock);
if (!WARN_ON(!pvr_dev->kccb.reserved_count))
pvr_dev->kccb.reserved_count--;
mutex_unlock(&pvr_dev->kccb.ccb.lock);
}
/**
* pvr_fwccb_init() - Initialise device FWCCB
* @pvr_dev: Target PowerVR device
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_ccb_init().
*/
int
pvr_fwccb_init(struct pvr_device *pvr_dev)
{
return pvr_ccb_init(pvr_dev, &pvr_dev->fwccb,
ROGUE_FWIF_FWCCB_NUMCMDS_LOG2,
sizeof(struct rogue_fwif_fwccb_cmd));
}
/* SPDX-License-Identifier: GPL-2.0-only OR MIT */
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#ifndef PVR_CCB_H
#define PVR_CCB_H
#include "pvr_rogue_fwif.h"
#include <linux/mutex.h>
#include <linux/types.h>
/* Forward declaration from pvr_device.h. */
struct pvr_device;
/* Forward declaration from pvr_gem.h. */
struct pvr_fw_object;
struct pvr_ccb {
/** @ctrl_obj: FW object representing CCB control structure. */
struct pvr_fw_object *ctrl_obj;
/** @ccb_obj: FW object representing CCB. */
struct pvr_fw_object *ccb_obj;
/** @ctrl_fw_addr: FW virtual address of CCB control structure. */
u32 ctrl_fw_addr;
/** @ccb_fw_addr: FW virtual address of CCB. */
u32 ccb_fw_addr;
/** @num_cmds: Number of commands in this CCB. */
u32 num_cmds;
/** @cmd_size: Size of each command in this CCB, in bytes. */
u32 cmd_size;
/** @lock: Mutex protecting @ctrl and @ccb. */
struct mutex lock;
/**
* @ctrl: Kernel mapping of CCB control structure. @lock must be held
* when accessing.
*/
struct rogue_fwif_ccb_ctl *ctrl;
/** @ccb: Kernel mapping of CCB. @lock must be held when accessing. */
void *ccb;
};
int pvr_kccb_init(struct pvr_device *pvr_dev);
void pvr_kccb_fini(struct pvr_device *pvr_dev);
int pvr_fwccb_init(struct pvr_device *pvr_dev);
void pvr_ccb_fini(struct pvr_ccb *ccb);
void pvr_fwccb_process(struct pvr_device *pvr_dev);
struct dma_fence *pvr_kccb_fence_alloc(void);
void pvr_kccb_fence_put(struct dma_fence *fence);
struct dma_fence *
pvr_kccb_reserve_slot(struct pvr_device *pvr_dev, struct dma_fence *f);
void pvr_kccb_release_slot(struct pvr_device *pvr_dev);
int pvr_kccb_send_cmd(struct pvr_device *pvr_dev,
struct rogue_fwif_kccb_cmd *cmd, u32 *kccb_slot);
int pvr_kccb_send_cmd_powered(struct pvr_device *pvr_dev,
struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot);
void pvr_kccb_send_cmd_reserved_powered(struct pvr_device *pvr_dev,
struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot);
int pvr_kccb_wait_for_completion(struct pvr_device *pvr_dev, u32 slot_nr, u32 timeout,
u32 *rtn_out);
bool pvr_kccb_is_idle(struct pvr_device *pvr_dev);
void pvr_kccb_wake_up_waiters(struct pvr_device *pvr_dev);
#endif /* PVR_CCB_H */
...@@ -114,6 +114,87 @@ static int pvr_device_clk_init(struct pvr_device *pvr_dev) ...@@ -114,6 +114,87 @@ static int pvr_device_clk_init(struct pvr_device *pvr_dev)
return 0; return 0;
} }
static irqreturn_t pvr_device_irq_thread_handler(int irq, void *data)
{
struct pvr_device *pvr_dev = data;
irqreturn_t ret = IRQ_NONE;
/* We are in the threaded handler, we can keep dequeuing events until we
* don't see any. This should allow us to reduce the number of interrupts
* when the GPU is receiving a massive amount of short jobs.
*/
while (pvr_fw_irq_pending(pvr_dev)) {
pvr_fw_irq_clear(pvr_dev);
if (pvr_dev->fw_dev.booted) {
pvr_fwccb_process(pvr_dev);
pvr_kccb_wake_up_waiters(pvr_dev);
}
pm_runtime_mark_last_busy(from_pvr_device(pvr_dev)->dev);
ret = IRQ_HANDLED;
}
/* Unmask FW irqs before returning, so new interrupts can be received. */
pvr_fw_irq_enable(pvr_dev);
return ret;
}
static irqreturn_t pvr_device_irq_handler(int irq, void *data)
{
struct pvr_device *pvr_dev = data;
if (!pvr_fw_irq_pending(pvr_dev))
return IRQ_NONE; /* Spurious IRQ - ignore. */
/* Mask the FW interrupts before waking up the thread. Will be unmasked
* when the thread handler is done processing events.
*/
pvr_fw_irq_disable(pvr_dev);
return IRQ_WAKE_THREAD;
}
/**
* pvr_device_irq_init() - Initialise IRQ required by a PowerVR device
* @pvr_dev: Target PowerVR device.
*
* Returns:
* * 0 on success,
* * Any error returned by platform_get_irq_byname(), or
* * Any error returned by request_irq().
*/
static int
pvr_device_irq_init(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct platform_device *plat_dev = to_platform_device(drm_dev->dev);
init_waitqueue_head(&pvr_dev->kccb.rtn_q);
pvr_dev->irq = platform_get_irq(plat_dev, 0);
if (pvr_dev->irq < 0)
return pvr_dev->irq;
/* Clear any pending events before requesting the IRQ line. */
pvr_fw_irq_clear(pvr_dev);
pvr_fw_irq_enable(pvr_dev);
return request_threaded_irq(pvr_dev->irq, pvr_device_irq_handler,
pvr_device_irq_thread_handler,
IRQF_SHARED, "gpu", pvr_dev);
}
/**
* pvr_device_irq_fini() - Deinitialise IRQ required by a PowerVR device
* @pvr_dev: Target PowerVR device.
*/
static void
pvr_device_irq_fini(struct pvr_device *pvr_dev)
{
free_irq(pvr_dev->irq, pvr_dev);
}
/** /**
* pvr_build_firmware_filename() - Construct a PowerVR firmware filename * pvr_build_firmware_filename() - Construct a PowerVR firmware filename
* @pvr_dev: Target PowerVR device. * @pvr_dev: Target PowerVR device.
...@@ -324,7 +405,19 @@ pvr_device_gpu_init(struct pvr_device *pvr_dev) ...@@ -324,7 +405,19 @@ pvr_device_gpu_init(struct pvr_device *pvr_dev)
return PTR_ERR(pvr_dev->kernel_vm_ctx); return PTR_ERR(pvr_dev->kernel_vm_ctx);
} }
err = pvr_fw_init(pvr_dev);
if (err)
goto err_vm_ctx_put;
return 0; return 0;
err_vm_ctx_put:
if (pvr_dev->fw_dev.processor_type != PVR_FW_PROCESSOR_TYPE_MIPS) {
pvr_vm_context_put(pvr_dev->kernel_vm_ctx);
pvr_dev->kernel_vm_ctx = NULL;
}
return err;
} }
/** /**
...@@ -334,6 +427,8 @@ pvr_device_gpu_init(struct pvr_device *pvr_dev) ...@@ -334,6 +427,8 @@ pvr_device_gpu_init(struct pvr_device *pvr_dev)
static void static void
pvr_device_gpu_fini(struct pvr_device *pvr_dev) pvr_device_gpu_fini(struct pvr_device *pvr_dev)
{ {
pvr_fw_fini(pvr_dev);
if (pvr_dev->fw_dev.processor_type != PVR_FW_PROCESSOR_TYPE_MIPS) { if (pvr_dev->fw_dev.processor_type != PVR_FW_PROCESSOR_TYPE_MIPS) {
WARN_ON(!pvr_vm_context_put(pvr_dev->kernel_vm_ctx)); WARN_ON(!pvr_vm_context_put(pvr_dev->kernel_vm_ctx));
pvr_dev->kernel_vm_ctx = NULL; pvr_dev->kernel_vm_ctx = NULL;
...@@ -386,10 +481,17 @@ pvr_device_init(struct pvr_device *pvr_dev) ...@@ -386,10 +481,17 @@ pvr_device_init(struct pvr_device *pvr_dev)
if (err) if (err)
goto err_pm_runtime_put; goto err_pm_runtime_put;
err = pvr_device_irq_init(pvr_dev);
if (err)
goto err_device_gpu_fini;
pm_runtime_put(dev); pm_runtime_put(dev);
return 0; return 0;
err_device_gpu_fini:
pvr_device_gpu_fini(pvr_dev);
err_pm_runtime_put: err_pm_runtime_put:
pm_runtime_put_sync_suspend(dev); pm_runtime_put_sync_suspend(dev);
...@@ -407,6 +509,7 @@ pvr_device_fini(struct pvr_device *pvr_dev) ...@@ -407,6 +509,7 @@ pvr_device_fini(struct pvr_device *pvr_dev)
* Deinitialization stages are performed in reverse order compared to * Deinitialization stages are performed in reverse order compared to
* the initialization stages in pvr_device_init(). * the initialization stages in pvr_device_init().
*/ */
pvr_device_irq_fini(pvr_dev);
pvr_device_gpu_fini(pvr_dev); pvr_device_gpu_fini(pvr_dev);
} }
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#ifndef PVR_DEVICE_H #ifndef PVR_DEVICE_H
#define PVR_DEVICE_H #define PVR_DEVICE_H
#include "pvr_ccb.h"
#include "pvr_device_info.h" #include "pvr_device_info.h"
#include "pvr_fw.h" #include "pvr_fw.h"
...@@ -123,6 +124,12 @@ struct pvr_device { ...@@ -123,6 +124,12 @@ struct pvr_device {
*/ */
struct clk *mem_clk; struct clk *mem_clk;
/** @irq: IRQ number. */
int irq;
/** @fwccb: Firmware CCB. */
struct pvr_ccb fwccb;
/** /**
* @kernel_vm_ctx: Virtual memory context used for kernel mappings. * @kernel_vm_ctx: Virtual memory context used for kernel mappings.
* *
...@@ -153,6 +160,49 @@ struct pvr_device { ...@@ -153,6 +160,49 @@ struct pvr_device {
u32 kccb_stall_count; u32 kccb_stall_count;
} watchdog; } watchdog;
struct {
/** @ccb: Kernel CCB. */
struct pvr_ccb ccb;
/** @rtn_q: Waitqueue for KCCB command return waiters. */
wait_queue_head_t rtn_q;
/** @rtn_obj: Object representing KCCB return slots. */
struct pvr_fw_object *rtn_obj;
/**
* @rtn: Pointer to CPU mapping of KCCB return slots. Must be accessed by
* READ_ONCE()/WRITE_ONCE().
*/
u32 *rtn;
/** @slot_count: Total number of KCCB slots available. */
u32 slot_count;
/** @reserved_count: Number of KCCB slots reserved for future use. */
u32 reserved_count;
/**
* @waiters: List of KCCB slot waiters.
*/
struct list_head waiters;
/** @fence_ctx: KCCB fence context. */
struct {
/** @id: KCCB fence context ID allocated with dma_fence_context_alloc(). */
u64 id;
/** @seqno: Sequence number incremented each time a fence is created. */
atomic_t seqno;
/**
* @lock: Lock used to synchronize access to fences allocated by this
* context.
*/
spinlock_t lock;
} fence_ctx;
} kccb;
/** /**
* @lost: %true if the device has been lost. * @lost: %true if the device has been lost.
* *
...@@ -161,6 +211,16 @@ struct pvr_device { ...@@ -161,6 +211,16 @@ struct pvr_device {
*/ */
bool lost; bool lost;
/**
* @reset_sem: Reset semaphore.
*
* GPU reset code will lock this for writing. Any code that submits commands to the firmware
* that isn't in an IRQ handler or on the scheduler workqueue must lock this for reading.
* Once this has been successfully locked, &pvr_dev->lost _must_ be checked, and -%EIO must
* be returned if it is set.
*/
struct rw_semaphore reset_sem;
/** @sched_wq: Workqueue for schedulers. */ /** @sched_wq: Workqueue for schedulers. */
struct workqueue_struct *sched_wq; struct workqueue_struct *sched_wq;
}; };
......
...@@ -1331,3 +1331,4 @@ MODULE_AUTHOR("Imagination Technologies Ltd."); ...@@ -1331,3 +1331,4 @@ MODULE_AUTHOR("Imagination Technologies Ltd.");
MODULE_DESCRIPTION(PVR_DRIVER_DESC); MODULE_DESCRIPTION(PVR_DRIVER_DESC);
MODULE_LICENSE("Dual MIT/GPL"); MODULE_LICENSE("Dual MIT/GPL");
MODULE_IMPORT_NS(DMA_BUF); MODULE_IMPORT_NS(DMA_BUF);
MODULE_FIRMWARE("powervr/rogue_33.15.11.3_v1.fw");
// SPDX-License-Identifier: GPL-2.0-only OR MIT // SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */ /* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_ccb.h"
#include "pvr_device.h" #include "pvr_device.h"
#include "pvr_device_info.h" #include "pvr_device_info.h"
#include "pvr_fw.h" #include "pvr_fw.h"
#include "pvr_fw_info.h"
#include "pvr_fw_startstop.h"
#include "pvr_fw_trace.h"
#include "pvr_gem.h"
#include "pvr_power.h"
#include "pvr_rogue_fwif_dev_info.h"
#include "pvr_rogue_heap_config.h"
#include "pvr_vm.h"
#include <drm/drm_drv.h> #include <drm/drm_drv.h>
#include <drm/drm_managed.h>
#include <drm/drm_mm.h>
#include <linux/clk.h>
#include <linux/firmware.h> #include <linux/firmware.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/sizes.h> #include <linux/sizes.h>
#define FW_MAX_SUPPORTED_MAJOR_VERSION 1 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
#define FW_BOOT_TIMEOUT_USEC 5000000
/* Config heap occupies top 192k of the firmware heap. */
#define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
#define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
/* Main firmware allocations should come from the remainder of the heap. */
#define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
/* Offsets from start of configuration area of FW heap. */
#define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
#define PVR_ROGUE_FWIF_OSINIT_OFFSET \
(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
#define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
#define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
#define PVR_SYNC_OBJ_SIZE sizeof(u32)
const struct pvr_fw_layout_entry *
pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 entry;
for (entry = 0; entry < num_layout_entries; entry++) {
if (layout_entries[entry].id == id)
return &layout_entries[entry];
}
return NULL;
}
static const struct pvr_fw_layout_entry *
pvr_fw_find_private_data(struct pvr_device *pvr_dev)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 entry;
for (entry = 0; entry < num_layout_entries; entry++) {
if (layout_entries[entry].id == META_PRIVATE_DATA ||
layout_entries[entry].id == MIPS_PRIVATE_DATA ||
layout_entries[entry].id == RISCV_PRIVATE_DATA)
return &layout_entries[entry];
}
return NULL;
}
#define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
/** /**
* pvr_fw_validate() - Parse firmware header and check compatibility * pvr_fw_validate() - Parse firmware header and check compatibility
* @pvr_dev: Device pointer. * @pvr_dev: Device pointer.
...@@ -122,6 +190,704 @@ pvr_fw_get_device_info(struct pvr_device *pvr_dev) ...@@ -122,6 +190,704 @@ pvr_fw_get_device_info(struct pvr_device *pvr_dev)
header->feature_param_size); header->feature_param_size);
} }
static void
layout_get_sizes(struct pvr_device *pvr_dev)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
fw_mem->code_alloc_size = 0;
fw_mem->data_alloc_size = 0;
fw_mem->core_code_alloc_size = 0;
fw_mem->core_data_alloc_size = 0;
/* Extract section sizes from FW layout table. */
for (u32 entry = 0; entry < num_layout_entries; entry++) {
switch (layout_entries[entry].type) {
case FW_CODE:
fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
break;
case FW_DATA:
fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
break;
case FW_COREMEM_CODE:
fw_mem->core_code_alloc_size +=
layout_entries[entry].alloc_size;
break;
case FW_COREMEM_DATA:
fw_mem->core_data_alloc_size +=
layout_entries[entry].alloc_size;
break;
case NONE:
break;
}
}
}
int
pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
void **host_addr_out)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u32 end_addr = addr + size;
int entry = 0;
/* Ensure requested range is not zero, and size is not causing addr to overflow. */
if (end_addr <= addr)
return -EINVAL;
for (entry = 0; entry < num_layout_entries; entry++) {
u32 entry_start_addr = layout_entries[entry].base_addr;
u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
if (addr >= entry_start_addr && addr < entry_end_addr &&
end_addr > entry_start_addr && end_addr <= entry_end_addr) {
switch (layout_entries[entry].type) {
case FW_CODE:
*host_addr_out = fw_code_ptr;
break;
case FW_DATA:
*host_addr_out = fw_data_ptr;
break;
case FW_COREMEM_CODE:
*host_addr_out = fw_core_code_ptr;
break;
case FW_COREMEM_DATA:
*host_addr_out = fw_core_data_ptr;
break;
default:
return -EINVAL;
}
/* Direct Mem write to mapped memory */
addr -= layout_entries[entry].base_addr;
addr += layout_entries[entry].alloc_offset;
/*
* Add offset to pointer to FW allocation only if that
* allocation is available
*/
*(u8 **)host_addr_out += addr;
return 0;
}
}
return -EINVAL;
}
static int
pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->fwif_connection_ctl =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
sizeof(*fw_dev->fwif_connection_ctl),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL,
&fw_dev->mem.fwif_connection_ctl_obj);
if (IS_ERR(fw_dev->fwif_connection_ctl)) {
drm_err(drm_dev,
"Unable to allocate FWIF connection control memory\n");
return PTR_ERR(fw_dev->fwif_connection_ctl);
}
return 0;
}
static void
pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
}
static void
fw_osinit_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
&fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
&fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
fwif_osinit->hwr_debug_dump_limit = 0;
rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
}
static void
fw_osdata_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
}
static void
fw_fault_page_init(void *cpu_ptr, void *priv)
{
u32 *fault_page = cpu_ptr;
for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
fault_page[i] = 0xdeadbee0;
}
static void
fw_sysinit_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
struct pvr_device *pvr_dev = priv;
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
dma_addr_t fault_dma_addr = 0;
u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
WARN_ON(!clock_speed_hz);
WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
&fwif_sysinit->trace_buf_ctl_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
&fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
if (fw_mem->core_data_obj) {
pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
&fwif_sysinit->coremem_data_store.fw_addr);
}
/* Currently unsupported. */
fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
/* Skip alignment checks. */
fwif_sysinit->align_checks = 0;
fwif_sysinit->filter_flags = 0;
fwif_sysinit->hw_perf_filter = 0;
fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
fwif_sysinit->active_pm_latency_ms = 0;
fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
fwif_sysinit->firmware_started = false;
fwif_sysinit->marker_val = 1;
memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
sizeof(fwif_sysinit->bvnc_km_feature_flags));
}
#define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
static void
fw_sysdata_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
struct pvr_device *pvr_dev = priv;
u32 slc_size_in_kilobytes = 0;
u32 config_flags = 0;
WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
fwif_sysdata->config_flags = config_flags;
}
static void
fw_runtime_cfg_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
struct pvr_device *pvr_dev = priv;
u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
WARN_ON(!clock_speed_hz);
runtime_cfg->core_clock_speed = clock_speed_hz;
runtime_cfg->active_pm_latency_ms = 0;
runtime_cfg->active_pm_latency_persistant = true;
WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
&runtime_cfg->default_dusts_num_init) != 0);
}
static void
fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
}
static int
pvr_fw_create_structures(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
int err;
fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->power_sync_obj);
if (IS_ERR(fw_dev->power_sync)) {
drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
return PTR_ERR(fw_dev->power_sync);
}
fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->hwrinfobuf_obj);
if (IS_ERR(fw_dev->hwrinfobuf)) {
drm_err(drm_dev,
"Unable to allocate FW hwrinfobuf structure\n");
err = PTR_ERR(fw_dev->hwrinfobuf);
goto err_release_power_sync;
}
err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->mmucache_sync_obj);
if (err) {
drm_err(drm_dev,
"Unable to allocate MMU cache sync object\n");
goto err_release_hwrinfobuf;
}
fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
sizeof(*fw_dev->fwif_sysdata),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_sysdata_init, pvr_dev,
&fw_mem->sysdata_obj);
if (IS_ERR(fw_dev->fwif_sysdata)) {
drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
err = PTR_ERR(fw_dev->fwif_sysdata);
goto err_release_mmucache_sync_obj;
}
err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate FW fault page\n");
goto err_release_sysdata;
}
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
goto err_release_fault_page;
}
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
if (err) {
drm_err(drm_dev, "Unable to allocate FW runtime config\n");
goto err_release_gpu_util_fwcb;
}
err = pvr_fw_trace_init(pvr_dev);
if (err)
goto err_release_runtime_cfg;
fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
sizeof(*fw_dev->fwif_osdata),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_osdata_init, pvr_dev,
&fw_mem->osdata_obj);
if (IS_ERR(fw_dev->fwif_osdata)) {
drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
err = PTR_ERR(fw_dev->fwif_osdata);
goto err_fw_trace_fini;
}
fw_dev->fwif_osinit =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_OSINIT_OFFSET,
sizeof(*fw_dev->fwif_osinit),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
if (IS_ERR(fw_dev->fwif_osinit)) {
drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
err = PTR_ERR(fw_dev->fwif_osinit);
goto err_release_osdata;
}
fw_dev->fwif_sysinit =
pvr_fw_object_create_and_map_offset(pvr_dev,
fw_dev->fw_heap_info.config_offset +
PVR_ROGUE_FWIF_SYSINIT_OFFSET,
sizeof(*fw_dev->fwif_sysinit),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
if (IS_ERR(fw_dev->fwif_sysinit)) {
drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
err = PTR_ERR(fw_dev->fwif_sysinit);
goto err_release_osinit;
}
return 0;
err_release_osinit:
pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
err_release_osdata:
pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
err_fw_trace_fini:
pvr_fw_trace_fini(pvr_dev);
err_release_runtime_cfg:
pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
err_release_gpu_util_fwcb:
pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
err_release_fault_page:
pvr_fw_object_destroy(fw_mem->fault_page_obj);
err_release_sysdata:
pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
err_release_mmucache_sync_obj:
pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
err_release_hwrinfobuf:
pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
err_release_power_sync:
pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
return err;
}
static void
pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
struct pvr_fw_mem *fw_mem = &fw_dev->mem;
pvr_fw_trace_fini(pvr_dev);
pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
pvr_fw_object_destroy(fw_mem->fault_page_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
}
/**
* pvr_fw_process() - Process firmware image, allocate FW memory and create boot
* arguments
* @pvr_dev: Device pointer.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_object_create_and_map_offset(), or
* * Any error returned by pvr_fw_object_create_and_map().
*/
static int
pvr_fw_process(struct pvr_device *pvr_dev)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
const u8 *fw = pvr_dev->fw_dev.firmware->data;
const struct pvr_fw_layout_entry *private_data;
u8 *fw_code_ptr;
u8 *fw_data_ptr;
u8 *fw_core_code_ptr;
u8 *fw_core_data_ptr;
int err;
layout_get_sizes(pvr_dev);
private_data = pvr_fw_find_private_data(pvr_dev);
if (!private_data)
return -EINVAL;
/* Allocate and map memory for firmware sections. */
/*
* Code allocation must be at the start of the firmware heap, otherwise
* firmware processor will be unable to boot.
*
* This has the useful side-effect that for every other object in the
* driver, a firmware address of 0 is invalid.
*/
fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->code_obj);
if (IS_ERR(fw_code_ptr)) {
drm_err(drm_dev, "Unable to allocate FW code memory\n");
return PTR_ERR(fw_code_ptr);
}
if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
fw_data_ptr =
pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
fw_mem->data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->data_obj);
} else {
fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->data_obj);
}
if (IS_ERR(fw_data_ptr)) {
drm_err(drm_dev, "Unable to allocate FW data memory\n");
err = PTR_ERR(fw_data_ptr);
goto err_free_fw_code_obj;
}
/* Core code and data sections are optional. */
if (fw_mem->core_code_alloc_size) {
fw_core_code_ptr =
pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->core_code_obj);
if (IS_ERR(fw_core_code_ptr)) {
drm_err(drm_dev,
"Unable to allocate FW core code memory\n");
err = PTR_ERR(fw_core_code_ptr);
goto err_free_fw_data_obj;
}
} else {
fw_core_code_ptr = NULL;
}
if (fw_mem->core_data_alloc_size) {
fw_core_data_ptr =
pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &fw_mem->core_data_obj);
if (IS_ERR(fw_core_data_ptr)) {
drm_err(drm_dev,
"Unable to allocate FW core data memory\n");
err = PTR_ERR(fw_core_data_ptr);
goto err_free_fw_core_code_obj;
}
} else {
fw_core_data_ptr = NULL;
}
fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
if (fw_mem->core_code_alloc_size)
fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
if (fw_mem->core_data_alloc_size)
fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
if (!fw_mem->code || !fw_mem->data ||
(!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
(!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
err = -ENOMEM;
goto err_free_kdata;
}
err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
fw_mem->code, fw_mem->data, fw_mem->core_code,
fw_mem->core_data, fw_mem->core_code_alloc_size);
if (err)
goto err_free_fw_core_data_obj;
memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
if (fw_mem->core_code)
memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
if (fw_mem->core_data)
memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
/* We're finished with the firmware section memory on the CPU, unmap. */
if (fw_core_data_ptr)
pvr_fw_object_vunmap(fw_mem->core_data_obj);
if (fw_core_code_ptr)
pvr_fw_object_vunmap(fw_mem->core_code_obj);
pvr_fw_object_vunmap(fw_mem->data_obj);
fw_data_ptr = NULL;
pvr_fw_object_vunmap(fw_mem->code_obj);
fw_code_ptr = NULL;
err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
if (err)
goto err_free_fw_core_data_obj;
return 0;
err_free_kdata:
kfree(fw_mem->core_data);
kfree(fw_mem->core_code);
kfree(fw_mem->data);
kfree(fw_mem->code);
err_free_fw_core_data_obj:
if (fw_core_data_ptr)
pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
err_free_fw_core_code_obj:
if (fw_core_code_ptr)
pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
err_free_fw_data_obj:
if (fw_data_ptr)
pvr_fw_object_vunmap(fw_mem->data_obj);
pvr_fw_object_destroy(fw_mem->data_obj);
err_free_fw_code_obj:
if (fw_code_ptr)
pvr_fw_object_vunmap(fw_mem->code_obj);
pvr_fw_object_destroy(fw_mem->code_obj);
return err;
}
static int
pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
{
u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
if (IS_ERR(dest_ptr))
return PTR_ERR(dest_ptr);
memcpy(dest_ptr, src_ptr, size);
pvr_fw_object_vunmap(dest_obj);
return 0;
}
static int
pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
{
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
int err;
err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
if (err)
return err;
err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
if (err)
return err;
if (fw_mem->core_code) {
err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
fw_mem->core_code_alloc_size);
if (err)
return err;
}
if (fw_mem->core_data) {
err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
fw_mem->core_data_alloc_size);
if (err)
return err;
}
return 0;
}
static void
pvr_fw_cleanup(struct pvr_device *pvr_dev)
{
struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
pvr_fw_fini_fwif_connection_ctl(pvr_dev);
if (fw_mem->core_code_obj)
pvr_fw_object_destroy(fw_mem->core_code_obj);
if (fw_mem->core_data_obj)
pvr_fw_object_destroy(fw_mem->core_data_obj);
pvr_fw_object_destroy(fw_mem->code_obj);
pvr_fw_object_destroy(fw_mem->data_obj);
}
/**
* pvr_wait_for_fw_boot() - Wait for firmware to finish booting
* @pvr_dev: Target PowerVR device.
*
* Returns:
* * 0 on success, or
* * -%ETIMEDOUT if firmware fails to boot within timeout.
*/
int
pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
{
ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
return 0;
}
return -ETIMEDOUT;
}
/*
* pvr_fw_heap_info_init() - Calculate size and masks for FW heap
* @pvr_dev: Target PowerVR device.
* @log2_size: Log2 of raw heap size.
* @reserved_size: Size of reserved area of heap, in bytes. May be zero.
*/
void
pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
fw_dev->fw_heap_info.log2_size = log2_size;
fw_dev->fw_heap_info.reserved_size = reserved_size;
fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
(PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
}
/** /**
* pvr_fw_validate_init_device_info() - Validate firmware and initialise device information * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
* @pvr_dev: Target PowerVR device. * @pvr_dev: Target PowerVR device.
...@@ -143,3 +909,579 @@ pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev) ...@@ -143,3 +909,579 @@ pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
return pvr_fw_get_device_info(pvr_dev); return pvr_fw_get_device_info(pvr_dev);
} }
/**
* pvr_fw_init() - Initialise and boot firmware
* @pvr_dev: Target PowerVR device
*
* On successful completion of the function the PowerVR device will be
* initialised and ready to use.
*
* Returns:
* * 0 on success,
* * -%EINVAL on invalid firmware image,
* * -%ENOMEM on out of memory, or
* * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
*/
int
pvr_fw_init(struct pvr_device *pvr_dev)
{
u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
int err;
if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
fw_dev->defs = &pvr_fw_defs_meta;
else
return -EINVAL;
err = fw_dev->defs->init(pvr_dev);
if (err)
return err;
drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
spin_lock_init(&fw_dev->fw_mm_lock);
INIT_LIST_HEAD(&fw_dev->fw_objs.list);
err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
if (err)
goto err_mm_takedown;
err = pvr_fw_process(pvr_dev);
if (err)
goto err_mm_takedown;
/* Initialise KCCB and FWCCB. */
err = pvr_kccb_init(pvr_dev);
if (err)
goto err_fw_cleanup;
err = pvr_fwccb_init(pvr_dev);
if (err)
goto err_kccb_fini;
/* Allocate memory for KCCB return slots. */
pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &pvr_dev->kccb.rtn_obj);
if (IS_ERR(pvr_dev->kccb.rtn)) {
err = PTR_ERR(pvr_dev->kccb.rtn);
goto err_fwccb_fini;
}
err = pvr_fw_create_structures(pvr_dev);
if (err)
goto err_kccb_rtn_release;
err = pvr_fw_start(pvr_dev);
if (err)
goto err_destroy_structures;
err = pvr_wait_for_fw_boot(pvr_dev);
if (err) {
drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
goto err_fw_stop;
}
fw_dev->booted = true;
return 0;
err_fw_stop:
pvr_fw_stop(pvr_dev);
err_destroy_structures:
pvr_fw_destroy_structures(pvr_dev);
err_kccb_rtn_release:
pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
err_fwccb_fini:
pvr_ccb_fini(&pvr_dev->fwccb);
err_kccb_fini:
pvr_kccb_fini(pvr_dev);
err_fw_cleanup:
pvr_fw_cleanup(pvr_dev);
err_mm_takedown:
drm_mm_takedown(&fw_dev->fw_mm);
if (fw_dev->defs->fini)
fw_dev->defs->fini(pvr_dev);
return err;
}
/**
* pvr_fw_fini() - Shutdown firmware processor and free associated memory
* @pvr_dev: Target PowerVR device
*/
void
pvr_fw_fini(struct pvr_device *pvr_dev)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->booted = false;
pvr_fw_destroy_structures(pvr_dev);
pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
/*
* Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
* been unregistered at this point so no new work should be being submitted.
*/
pvr_ccb_fini(&pvr_dev->fwccb);
pvr_kccb_fini(pvr_dev);
pvr_fw_cleanup(pvr_dev);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
drm_mm_takedown(&fw_dev->fw_mm);
if (fw_dev->defs->fini)
fw_dev->defs->fini(pvr_dev);
}
/**
* pvr_fw_mts_schedule() - Schedule work via an MTS kick
* @pvr_dev: Target PowerVR device
* @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
*/
void
pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
{
/* Ensure memory is flushed before kicking MTS. */
wmb();
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
/* Ensure the MTS kick goes through before continuing. */
mb();
}
/**
* pvr_fw_structure_cleanup() - Send FW cleanup request for an object
* @pvr_dev: Target PowerVR device.
* @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
* @fw_obj: Pointer to FW object containing object to cleanup.
* @offset: Offset within FW object of object to cleanup.
*
* Returns:
* * 0 on success,
* * -EBUSY if object is busy,
* * -ETIMEDOUT on timeout, or
* * -EIO if device is lost.
*/
int
pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
u32 offset)
{
struct rogue_fwif_kccb_cmd cmd;
int slot_nr;
int idx;
int err;
u32 rtn;
struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
down_read(&pvr_dev->reset_sem);
if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
err = -EIO;
goto err_up_read;
}
cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
cmd.kccb_flags = 0;
cleanup_req->cleanup_type = type;
switch (type) {
case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.context_fw_addr);
break;
case ROGUE_FWIF_CLEANUP_HWRTDATA:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.hwrt_data_fw_addr);
break;
case ROGUE_FWIF_CLEANUP_FREELIST:
pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
&cleanup_req->cleanup_data.freelist_fw_addr);
break;
default:
err = -EINVAL;
goto err_drm_dev_exit;
}
err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
if (err)
goto err_drm_dev_exit;
err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
if (err)
goto err_drm_dev_exit;
if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
err = -EBUSY;
err_drm_dev_exit:
drm_dev_exit(idx);
err_up_read:
up_read(&pvr_dev->reset_sem);
return err;
}
/**
* pvr_fw_object_fw_map() - Map a FW object in firmware address space
* @pvr_dev: Device pointer.
* @fw_obj: FW object to map.
* @dev_addr: Desired address in device space, if a specific address is
* required. 0 otherwise.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if @fw_obj is already mapped but has no references, or
* * Any error returned by DRM.
*/
static int
pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
int err;
spin_lock(&fw_dev->fw_mm_lock);
if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
err = -EINVAL;
goto err_unlock;
}
if (!dev_addr) {
/*
* Allocate from the main heap only (firmware heap minus
* config space).
*/
err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
gem_obj->size, 0, 0,
fw_dev->fw_heap_info.gpu_addr,
fw_dev->fw_heap_info.gpu_addr +
fw_dev->fw_heap_info.size, 0);
if (err)
goto err_unlock;
} else {
fw_obj->fw_mm_node.start = dev_addr;
fw_obj->fw_mm_node.size = gem_obj->size;
err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
if (err)
goto err_unlock;
}
spin_unlock(&fw_dev->fw_mm_lock);
/* Map object on GPU. */
err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
if (err)
goto err_remove_node;
fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
return 0;
err_remove_node:
spin_lock(&fw_dev->fw_mm_lock);
drm_mm_remove_node(&fw_obj->fw_mm_node);
err_unlock:
spin_unlock(&fw_dev->fw_mm_lock);
return err;
}
/**
* pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
* @fw_obj: FW object to unmap.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if object is not currently mapped.
*/
static int
pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
spin_lock(&fw_dev->fw_mm_lock);
if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
spin_unlock(&fw_dev->fw_mm_lock);
return -EINVAL;
}
drm_mm_remove_node(&fw_obj->fw_mm_node);
spin_unlock(&fw_dev->fw_mm_lock);
return 0;
}
static void *
pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
u64 flags, u64 dev_addr,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
struct pvr_fw_object *fw_obj;
void *cpu_ptr;
int err;
/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
flags |= DRM_PVR_BO_PM_FW_PROTECT;
fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
if (!fw_obj)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&fw_obj->node);
fw_obj->init = init;
fw_obj->init_priv = init_priv;
fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
if (IS_ERR(fw_obj->gem)) {
err = PTR_ERR(fw_obj->gem);
fw_obj->gem = NULL;
goto err_put_object;
}
err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
if (err)
goto err_put_object;
cpu_ptr = pvr_fw_object_vmap(fw_obj);
if (IS_ERR(cpu_ptr)) {
err = PTR_ERR(cpu_ptr);
goto err_put_object;
}
*fw_obj_out = fw_obj;
if (fw_obj->init)
fw_obj->init(cpu_ptr, fw_obj->init_priv);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
return cpu_ptr;
err_put_object:
pvr_fw_object_destroy(fw_obj);
return ERR_PTR(err);
}
/**
* pvr_fw_object_create() - Create a FW object and map to firmware
* @pvr_dev: PowerVR device pointer.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_object_create_common().
*/
int
pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv), void *init_priv,
struct pvr_fw_object **fw_obj_out)
{
void *cpu_ptr;
cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
fw_obj_out);
if (IS_ERR(cpu_ptr))
return PTR_ERR(cpu_ptr);
pvr_fw_object_vunmap(*fw_obj_out);
return 0;
}
/**
* pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
* @pvr_dev: PowerVR device pointer.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
* mapping.
*
* Returns:
* * Pointer to CPU mapping of newly created object, or
* * Any error returned by pvr_fw_object_create(), or
* * Any error returned by pvr_fw_object_vmap().
*/
void *
pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
fw_obj_out);
}
/**
* pvr_fw_object_create_and_map_offset() - Create a FW object and map to
* firmware at the provided offset and to the CPU.
* @pvr_dev: PowerVR device pointer.
* @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
* @size: Size of object, in bytes.
* @flags: Options which affect both this operation and future mapping
* operations performed on the returned object. Must be a combination of
* DRM_PVR_BO_* and/or PVR_BO_* flags.
* @init: Initialisation callback.
* @init_priv: Private pointer to pass to initialisation callback.
* @fw_obj_out: Pointer to location to store created object pointer.
*
* %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
* this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
* set.
*
* Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
* mapping.
*
* Returns:
* * Pointer to CPU mapping of newly created object, or
* * Any error returned by pvr_fw_object_create(), or
* * Any error returned by pvr_fw_object_vmap().
*/
void *
pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
u32 dev_offset, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **fw_obj_out)
{
u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
fw_obj_out);
}
/**
* pvr_fw_object_destroy() - Destroy a pvr_fw_object
* @fw_obj: Pointer to object to destroy.
*/
void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_del(&fw_obj->node);
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
/* If we can't unmap, leak the memory. */
if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
return;
}
if (fw_obj->gem)
pvr_gem_object_put(fw_obj->gem);
kfree(fw_obj);
}
/**
* pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
* given offset.
* @fw_obj: Pointer to object.
* @offset: Desired offset from start of object.
* @fw_addr_out: Location to store address to.
*/
void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
}
/*
* pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
* structures
* @pvr_dev: Device pointer
*
* If this function returns an error then the caller must regard the device as lost.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
*/
int
pvr_fw_hard_reset(struct pvr_device *pvr_dev)
{
struct list_head *pos;
int err;
/* Reset all FW objects */
mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
WARN_ON(IS_ERR(cpu_ptr));
if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
if (fw_obj->init)
fw_obj->init(cpu_ptr, fw_obj->init_priv);
}
pvr_fw_object_vunmap(fw_obj);
}
mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
err = pvr_fw_reinit_code_data(pvr_dev);
if (err)
return err;
return 0;
}
...@@ -5,6 +5,10 @@ ...@@ -5,6 +5,10 @@
#define PVR_FW_H #define PVR_FW_H
#include "pvr_fw_info.h" #include "pvr_fw_info.h"
#include "pvr_fw_trace.h"
#include "pvr_gem.h"
#include <drm/drm_mm.h>
#include <linux/types.h> #include <linux/types.h>
...@@ -12,6 +16,289 @@ ...@@ -12,6 +16,289 @@
struct pvr_device; struct pvr_device;
struct pvr_file; struct pvr_file;
/* Forward declaration from "pvr_vm.h". */
struct pvr_vm_context;
#define ROGUE_FWIF_FWCCB_NUMCMDS_LOG2 5
#define ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT 7
/**
* struct pvr_fw_object - container for firmware memory allocations
*/
struct pvr_fw_object {
/** @ref_count: FW object reference counter. */
struct kref ref_count;
/** @gem: GEM object backing the FW object. */
struct pvr_gem_object *gem;
/**
* @fw_mm_node: Node representing mapping in FW address space. @pvr_obj->lock must
* be held when writing.
*/
struct drm_mm_node fw_mm_node;
/**
* @fw_addr_offset: Virtual address offset of firmware mapping. Only
* valid if @flags has %PVR_GEM_OBJECT_FLAGS_FW_MAPPED
* set.
*/
u32 fw_addr_offset;
/**
* @init: Initialisation callback. Will be called on object creation and FW hard reset.
* Object will have been zeroed before this is called.
*/
void (*init)(void *cpu_ptr, void *priv);
/** @init_priv: Private data for initialisation callback. */
void *init_priv;
/** @node: Node for firmware object list. */
struct list_head node;
};
/**
* struct pvr_fw_defs - FW processor function table and static definitions
*/
struct pvr_fw_defs {
/**
* @init:
*
* FW processor specific initialisation.
* @pvr_dev: Target PowerVR device.
*
* This function must call pvr_fw_heap_calculate() to initialise the firmware heap for this
* FW processor.
*
* This function is mandatory.
*
* Returns:
* * 0 on success, or
* * Any appropriate error on failure.
*/
int (*init)(struct pvr_device *pvr_dev);
/**
* @fini:
*
* FW processor specific finalisation.
* @pvr_dev: Target PowerVR device.
*
* This function is optional.
*/
void (*fini)(struct pvr_device *pvr_dev);
/**
* @fw_process:
*
* Load and process firmware image.
* @pvr_dev: Target PowerVR device.
* @fw: Pointer to firmware image.
* @fw_code_ptr: Pointer to firmware code section.
* @fw_data_ptr: Pointer to firmware data section.
* @fw_core_code_ptr: Pointer to firmware core code section. May be %NULL.
* @fw_core_data_ptr: Pointer to firmware core data section. May be %NULL.
* @core_code_alloc_size: Total allocation size of core code section.
*
* This function is mandatory.
*
* Returns:
* * 0 on success, or
* * Any appropriate error on failure.
*/
int (*fw_process)(struct pvr_device *pvr_dev, const u8 *fw,
u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr,
u8 *fw_core_data_ptr, u32 core_code_alloc_size);
/**
* @vm_map:
*
* Map FW object into FW processor address space.
* @pvr_dev: Target PowerVR device.
* @fw_obj: FW object to map.
*
* This function is mandatory.
*
* Returns:
* * 0 on success, or
* * Any appropriate error on failure.
*/
int (*vm_map)(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj);
/**
* @vm_unmap:
*
* Unmap FW object from FW processor address space.
* @pvr_dev: Target PowerVR device.
* @fw_obj: FW object to map.
*
* This function is mandatory.
*/
void (*vm_unmap)(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj);
/**
* @get_fw_addr_with_offset:
*
* Called to get address of object in firmware address space, with offset.
* @fw_obj: Pointer to object.
* @offset: Desired offset from start of object.
*
* This function is mandatory.
*
* Returns:
* * Address in firmware address space.
*/
u32 (*get_fw_addr_with_offset)(struct pvr_fw_object *fw_obj, u32 offset);
/**
* @wrapper_init:
*
* Called to initialise FW wrapper.
* @pvr_dev: Target PowerVR device.
*
* This function is mandatory.
*
* Returns:
* * 0 on success.
* * Any appropriate error on failure.
*/
int (*wrapper_init)(struct pvr_device *pvr_dev);
/**
* @has_fixed_data_addr:
*
* Called to check if firmware fixed data must be loaded at the address given by the
* firmware layout table.
*
* This function is mandatory.
*
* Returns:
* * %true if firmware fixed data must be loaded at the address given by the firmware
* layout table.
* * %false otherwise.
*/
bool (*has_fixed_data_addr)(void);
/**
* @irq: FW Interrupt information.
*
* Those are processor dependent, and should be initialized by the
* processor backend in pvr_fw_funcs::init().
*/
struct {
/** @enable_reg: FW interrupt enable register. */
u32 enable_reg;
/** @status_reg: FW interrupt status register. */
u32 status_reg;
/**
* @clear_reg: FW interrupt clear register.
*
* If @status_reg == @clear_reg, we clear by write a bit to zero,
* otherwise we clear by writing a bit to one.
*/
u32 clear_reg;
/** @event_mask: Bitmask of events to listen for. */
u32 event_mask;
/** @clear_mask: Value to write to the clear_reg in order to clear FW IRQs. */
u32 clear_mask;
} irq;
};
/**
* struct pvr_fw_mem - FW memory allocations
*/
struct pvr_fw_mem {
/** @code_obj: Object representing firmware code. */
struct pvr_fw_object *code_obj;
/** @data_obj: Object representing firmware data. */
struct pvr_fw_object *data_obj;
/**
* @core_code_obj: Object representing firmware core code. May be
* %NULL if firmware does not contain this section.
*/
struct pvr_fw_object *core_code_obj;
/**
* @core_data_obj: Object representing firmware core data. May be
* %NULL if firmware does not contain this section.
*/
struct pvr_fw_object *core_data_obj;
/** @code: Driver-side copy of firmware code. */
u8 *code;
/** @data: Driver-side copy of firmware data. */
u8 *data;
/**
* @core_code: Driver-side copy of firmware core code. May be %NULL if firmware does not
* contain this section.
*/
u8 *core_code;
/**
* @core_data: Driver-side copy of firmware core data. May be %NULL if firmware does not
* contain this section.
*/
u8 *core_data;
/** @code_alloc_size: Allocation size of firmware code section. */
u32 code_alloc_size;
/** @data_alloc_size: Allocation size of firmware data section. */
u32 data_alloc_size;
/** @core_code_alloc_size: Allocation size of firmware core code section. */
u32 core_code_alloc_size;
/** @core_data_alloc_size: Allocation size of firmware core data section. */
u32 core_data_alloc_size;
/**
* @fwif_connection_ctl_obj: Object representing FWIF connection control
* structure.
*/
struct pvr_fw_object *fwif_connection_ctl_obj;
/** @osinit_obj: Object representing FW OSINIT structure. */
struct pvr_fw_object *osinit_obj;
/** @sysinit_obj: Object representing FW SYSINIT structure. */
struct pvr_fw_object *sysinit_obj;
/** @osdata_obj: Object representing FW OSDATA structure. */
struct pvr_fw_object *osdata_obj;
/** @hwrinfobuf_obj: Object representing FW hwrinfobuf structure. */
struct pvr_fw_object *hwrinfobuf_obj;
/** @sysdata_obj: Object representing FW SYSDATA structure. */
struct pvr_fw_object *sysdata_obj;
/** @power_sync_obj: Object representing power sync state. */
struct pvr_fw_object *power_sync_obj;
/** @fault_page_obj: Object representing FW fault page. */
struct pvr_fw_object *fault_page_obj;
/** @gpu_util_fwcb_obj: Object representing FW GPU utilisation control structure. */
struct pvr_fw_object *gpu_util_fwcb_obj;
/** @runtime_cfg_obj: Object representing FW runtime config structure. */
struct pvr_fw_object *runtime_cfg_obj;
/** @mmucache_sync_obj: Object used as the sync parameter in an MMU cache operation. */
struct pvr_fw_object *mmucache_sync_obj;
};
struct pvr_fw_device { struct pvr_fw_device {
/** @firmware: Handle to the firmware loaded into the device. */ /** @firmware: Handle to the firmware loaded into the device. */
const struct firmware *firmware; const struct firmware *firmware;
...@@ -22,13 +309,200 @@ struct pvr_fw_device { ...@@ -22,13 +309,200 @@ struct pvr_fw_device {
/** @layout_entries: Pointer to firmware layout. */ /** @layout_entries: Pointer to firmware layout. */
const struct pvr_fw_layout_entry *layout_entries; const struct pvr_fw_layout_entry *layout_entries;
/** @mem: Structure containing objects representing firmware memory allocations. */
struct pvr_fw_mem mem;
/** @booted: %true if the firmware has been booted, %false otherwise. */
bool booted;
/** /**
* @processor_type: FW processor type for this device. Must be one of * @processor_type: FW processor type for this device. Must be one of
* %PVR_FW_PROCESSOR_TYPE_*. * %PVR_FW_PROCESSOR_TYPE_*.
*/ */
u16 processor_type; u16 processor_type;
/** @funcs: Function table for the FW processor used by this device. */
const struct pvr_fw_defs *defs;
/** @processor_data: Pointer to data specific to FW processor. */
union {
/** @mips_data: Pointer to MIPS-specific data. */
struct pvr_fw_mips_data *mips_data;
} processor_data;
/** @fw_heap_info: Firmware heap information. */
struct {
/** @gpu_addr: Base address of firmware heap in GPU address space. */
u64 gpu_addr;
/** @size: Size of main area of heap. */
u32 size;
/** @offset_mask: Mask for offsets within FW heap. */
u32 offset_mask;
/** @raw_size: Raw size of heap, including reserved areas. */
u32 raw_size;
/** @log2_size: Log2 of raw size of heap. */
u32 log2_size;
/** @config_offset: Offset of config area within heap. */
u32 config_offset;
/** @reserved_size: Size of reserved area in heap. */
u32 reserved_size;
} fw_heap_info;
/** @fw_mm: Firmware address space allocator. */
struct drm_mm fw_mm;
/** @fw_mm_lock: Lock protecting access to &fw_mm. */
spinlock_t fw_mm_lock;
/** @fw_mm_base: Base address of address space managed by @fw_mm. */
u64 fw_mm_base;
/**
* @fwif_connection_ctl: Pointer to CPU mapping of FWIF connection
* control structure.
*/
struct rogue_fwif_connection_ctl *fwif_connection_ctl;
/** @fwif_sysinit: Pointer to CPU mapping of FW SYSINIT structure. */
struct rogue_fwif_sysinit *fwif_sysinit;
/** @fwif_sysdata: Pointer to CPU mapping of FW SYSDATA structure. */
struct rogue_fwif_sysdata *fwif_sysdata;
/** @fwif_osinit: Pointer to CPU mapping of FW OSINIT structure. */
struct rogue_fwif_osinit *fwif_osinit;
/** @fwif_osdata: Pointer to CPU mapping of FW OSDATA structure. */
struct rogue_fwif_osdata *fwif_osdata;
/** @power_sync: Pointer to CPU mapping of power sync state. */
u32 *power_sync;
/** @hwrinfobuf: Pointer to CPU mapping of FW HWR info buffer. */
struct rogue_fwif_hwrinfobuf *hwrinfobuf;
/** @fw_trace: Device firmware trace buffer state. */
struct pvr_fw_trace fw_trace;
/** @fw_objs: Structure tracking FW objects. */
struct {
/** @list: Head of FW object list. */
struct list_head list;
/** @lock: Lock protecting access to FW object list. */
struct mutex lock;
} fw_objs;
}; };
#define pvr_fw_irq_read_reg(pvr_dev, name) \
pvr_cr_read32((pvr_dev), (pvr_dev)->fw_dev.defs->irq.name ## _reg)
#define pvr_fw_irq_write_reg(pvr_dev, name, value) \
pvr_cr_write32((pvr_dev), (pvr_dev)->fw_dev.defs->irq.name ## _reg, value)
#define pvr_fw_irq_pending(pvr_dev) \
(pvr_fw_irq_read_reg(pvr_dev, status) & (pvr_dev)->fw_dev.defs->irq.event_mask)
#define pvr_fw_irq_clear(pvr_dev) \
pvr_fw_irq_write_reg(pvr_dev, clear, (pvr_dev)->fw_dev.defs->irq.clear_mask)
#define pvr_fw_irq_enable(pvr_dev) \
pvr_fw_irq_write_reg(pvr_dev, enable, (pvr_dev)->fw_dev.defs->irq.event_mask)
#define pvr_fw_irq_disable(pvr_dev) \
pvr_fw_irq_write_reg(pvr_dev, enable, 0)
extern const struct pvr_fw_defs pvr_fw_defs_meta;
extern const struct pvr_fw_defs pvr_fw_defs_mips;
int pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev); int pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev);
int pvr_fw_init(struct pvr_device *pvr_dev);
void pvr_fw_fini(struct pvr_device *pvr_dev);
int pvr_wait_for_fw_boot(struct pvr_device *pvr_dev);
int
pvr_fw_hard_reset(struct pvr_device *pvr_dev);
void pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val);
void
pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size);
const struct pvr_fw_layout_entry *
pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id);
int
pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
void **host_addr_out);
int
pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
u32 offset);
int pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv), void *init_priv,
struct pvr_fw_object **pvr_obj_out);
void *pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **pvr_obj_out);
void *
pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev, u32 dev_offset, size_t size,
u64 flags, void (*init)(void *cpu_ptr, void *priv),
void *init_priv, struct pvr_fw_object **pvr_obj_out);
static __always_inline void *
pvr_fw_object_vmap(struct pvr_fw_object *fw_obj)
{
return pvr_gem_object_vmap(fw_obj->gem);
}
static __always_inline void
pvr_fw_object_vunmap(struct pvr_fw_object *fw_obj)
{
pvr_gem_object_vunmap(fw_obj->gem);
}
void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj);
static __always_inline void
pvr_fw_object_unmap_and_destroy(struct pvr_fw_object *fw_obj)
{
pvr_fw_object_vunmap(fw_obj);
pvr_fw_object_destroy(fw_obj);
}
/**
* pvr_fw_get_dma_addr() - Get DMA address for given offset in firmware object
* @fw_obj: Pointer to object to lookup address in.
* @offset: Offset within object to lookup address at.
* @dma_addr_out: Pointer to location to store DMA address.
*
* Returns:
* * 0 on success, or
* * -%EINVAL if object is not currently backed, or if @offset is out of valid
* range for this object.
*/
static __always_inline int
pvr_fw_object_get_dma_addr(struct pvr_fw_object *fw_obj, u32 offset, dma_addr_t *dma_addr_out)
{
return pvr_gem_get_dma_addr(fw_obj->gem, offset, dma_addr_out);
}
void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out);
static __always_inline void
pvr_fw_object_get_fw_addr(struct pvr_fw_object *fw_obj, u32 *fw_addr_out)
{
pvr_fw_object_get_fw_addr_offset(fw_obj, 0, fw_addr_out);
}
#endif /* PVR_FW_H */ #endif /* PVR_FW_H */
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_device.h"
#include "pvr_fw.h"
#include "pvr_fw_info.h"
#include "pvr_gem.h"
#include "pvr_rogue_cr_defs.h"
#include "pvr_rogue_meta.h"
#include "pvr_vm.h"
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/ktime.h>
#include <linux/types.h>
#define ROGUE_FW_HEAP_META_SHIFT 25 /* 32 MB */
#define POLL_TIMEOUT_USEC 1000000
/**
* pvr_meta_cr_read32() - Read a META register via the Slave Port
* @pvr_dev: Device pointer.
* @reg_addr: Address of register to read.
* @reg_value_out: Pointer to location to store register value.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_cr_poll_reg32().
*/
int
pvr_meta_cr_read32(struct pvr_device *pvr_dev, u32 reg_addr, u32 *reg_value_out)
{
int err;
/* Wait for Slave Port to be Ready. */
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL1,
ROGUE_CR_META_SP_MSLVCTRL1_READY_EN |
ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN,
ROGUE_CR_META_SP_MSLVCTRL1_READY_EN |
ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN,
POLL_TIMEOUT_USEC);
if (err)
return err;
/* Issue a Read. */
pvr_cr_write32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL0,
reg_addr | ROGUE_CR_META_SP_MSLVCTRL0_RD_EN);
(void)pvr_cr_read32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL0); /* Fence write. */
/* Wait for Slave Port to be Ready. */
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_META_SP_MSLVCTRL1,
ROGUE_CR_META_SP_MSLVCTRL1_READY_EN |
ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN,
ROGUE_CR_META_SP_MSLVCTRL1_READY_EN |
ROGUE_CR_META_SP_MSLVCTRL1_GBLPORT_IDLE_EN,
POLL_TIMEOUT_USEC);
if (err)
return err;
*reg_value_out = pvr_cr_read32(pvr_dev, ROGUE_CR_META_SP_MSLVDATAX);
return 0;
}
static int
pvr_meta_wrapper_init(struct pvr_device *pvr_dev)
{
u64 garten_config;
/* Configure META to Master boot. */
pvr_cr_write64(pvr_dev, ROGUE_CR_META_BOOT, ROGUE_CR_META_BOOT_MODE_EN);
/* Set Garten IDLE to META idle and Set the Garten Wrapper BIF Fence address. */
/* Garten IDLE bit controlled by META. */
garten_config = ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_IDLE_CTRL_META;
/* The fence addr is set during the fw init sequence. */
/* Set PC = 0 for fences. */
garten_config &=
ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_PC_BASE_CLRMSK;
garten_config |=
(u64)MMU_CONTEXT_MAPPING_FWPRIV
<< ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_PC_BASE_SHIFT;
/* Set SLC DM=META. */
garten_config |= ((u64)ROGUE_FW_SEGMMU_META_BIFDM_ID)
<< ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG_FENCE_DM_SHIFT;
pvr_cr_write64(pvr_dev, ROGUE_CR_MTS_GARTEN_WRAPPER_CONFIG, garten_config);
return 0;
}
static __always_inline void
add_boot_arg(u32 **boot_conf, u32 param, u32 data)
{
*(*boot_conf)++ = param;
*(*boot_conf)++ = data;
}
static int
meta_ldr_cmd_loadmem(struct drm_device *drm_dev, const u8 *fw,
struct rogue_meta_ldr_l1_data_blk *l1_data, u32 coremem_size, u8 *fw_code_ptr,
u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr, const u32 fw_size)
{
struct rogue_meta_ldr_l2_data_blk *l2_block =
(struct rogue_meta_ldr_l2_data_blk *)(fw +
l1_data->cmd_data[1]);
struct pvr_device *pvr_dev = to_pvr_device(drm_dev);
u32 offset = l1_data->cmd_data[0];
u32 data_size;
void *write_addr;
int err;
/* Verify header is within bounds. */
if (((u8 *)l2_block - fw) >= fw_size || ((u8 *)(l2_block + 1) - fw) >= fw_size)
return -EINVAL;
data_size = l2_block->length - 6 /* L2 Tag length and checksum */;
/* Verify data is within bounds. */
if (((u8 *)l2_block->block_data - fw) >= fw_size ||
((((u8 *)l2_block->block_data) + data_size) - fw) >= fw_size)
return -EINVAL;
if (!ROGUE_META_IS_COREMEM_CODE(offset, coremem_size) &&
!ROGUE_META_IS_COREMEM_DATA(offset, coremem_size)) {
/* Global range is aliased to local range */
offset &= ~META_MEM_GLOBAL_RANGE_BIT;
}
err = pvr_fw_find_mmu_segment(pvr_dev, offset, data_size, fw_code_ptr, fw_data_ptr,
fw_core_code_ptr, fw_core_data_ptr, &write_addr);
if (err) {
drm_err(drm_dev,
"Addr 0x%x (size: %d) not found in any firmware segment",
offset, data_size);
return err;
}
memcpy(write_addr, l2_block->block_data, data_size);
return 0;
}
static int
meta_ldr_cmd_zeromem(struct drm_device *drm_dev,
struct rogue_meta_ldr_l1_data_blk *l1_data, u32 coremem_size,
u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr)
{
struct pvr_device *pvr_dev = to_pvr_device(drm_dev);
u32 offset = l1_data->cmd_data[0];
u32 byte_count = l1_data->cmd_data[1];
void *write_addr;
int err;
if (ROGUE_META_IS_COREMEM_DATA(offset, coremem_size)) {
/* cannot zero coremem directly */
return 0;
}
/* Global range is aliased to local range */
offset &= ~META_MEM_GLOBAL_RANGE_BIT;
err = pvr_fw_find_mmu_segment(pvr_dev, offset, byte_count, fw_code_ptr, fw_data_ptr,
fw_core_code_ptr, fw_core_data_ptr, &write_addr);
if (err) {
drm_err(drm_dev,
"Addr 0x%x (size: %d) not found in any firmware segment",
offset, byte_count);
return err;
}
memset(write_addr, 0, byte_count);
return 0;
}
static int
meta_ldr_cmd_config(struct drm_device *drm_dev, const u8 *fw,
struct rogue_meta_ldr_l1_data_blk *l1_data,
const u32 fw_size, u32 **boot_conf_ptr)
{
struct rogue_meta_ldr_l2_data_blk *l2_block =
(struct rogue_meta_ldr_l2_data_blk *)(fw +
l1_data->cmd_data[0]);
struct rogue_meta_ldr_cfg_blk *config_command;
u32 l2_block_size;
u32 curr_block_size = 0;
u32 *boot_conf = boot_conf_ptr ? *boot_conf_ptr : NULL;
/* Verify block header is within bounds. */
if (((u8 *)l2_block - fw) >= fw_size || ((u8 *)(l2_block + 1) - fw) >= fw_size)
return -EINVAL;
l2_block_size = l2_block->length - 6 /* L2 Tag length and checksum */;
config_command = (struct rogue_meta_ldr_cfg_blk *)l2_block->block_data;
if (((u8 *)config_command - fw) >= fw_size ||
((((u8 *)config_command) + l2_block_size) - fw) >= fw_size)
return -EINVAL;
while (l2_block_size >= 12) {
if (config_command->type != ROGUE_META_LDR_CFG_WRITE)
return -EINVAL;
/*
* Only write to bootloader if we got a valid pointer to the FW
* code allocation.
*/
if (boot_conf) {
u32 register_offset = config_command->block_data[0];
u32 register_value = config_command->block_data[1];
/* Do register write */
add_boot_arg(&boot_conf, register_offset,
register_value);
}
curr_block_size = 12;
l2_block_size -= curr_block_size;
config_command = (struct rogue_meta_ldr_cfg_blk
*)((uintptr_t)config_command +
curr_block_size);
}
if (boot_conf_ptr)
*boot_conf_ptr = boot_conf;
return 0;
}
/**
* process_ldr_command_stream() - Process LDR firmware image and populate
* firmware sections
* @pvr_dev: Device pointer.
* @fw: Pointer to firmware image.
* @fw_code_ptr: Pointer to FW code section.
* @fw_data_ptr: Pointer to FW data section.
* @fw_core_code_ptr: Pointer to FW coremem code section.
* @fw_core_data_ptr: Pointer to FW coremem data section.
* @boot_conf_ptr: Pointer to boot config argument pointer.
*
* Returns :
* * 0 on success, or
* * -EINVAL on any error in LDR command stream.
*/
static int
process_ldr_command_stream(struct pvr_device *pvr_dev, const u8 *fw, u8 *fw_code_ptr,
u8 *fw_data_ptr, u8 *fw_core_code_ptr,
u8 *fw_core_data_ptr, u32 **boot_conf_ptr)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct rogue_meta_ldr_block_hdr *ldr_header =
(struct rogue_meta_ldr_block_hdr *)fw;
struct rogue_meta_ldr_l1_data_blk *l1_data =
(struct rogue_meta_ldr_l1_data_blk *)(fw + ldr_header->sl_data);
const u32 fw_size = pvr_dev->fw_dev.firmware->size;
int err;
u32 *boot_conf = boot_conf_ptr ? *boot_conf_ptr : NULL;
u32 coremem_size;
err = PVR_FEATURE_VALUE(pvr_dev, meta_coremem_size, &coremem_size);
if (err)
return err;
coremem_size *= SZ_1K;
while (l1_data) {
/* Verify block header is within bounds. */
if (((u8 *)l1_data - fw) >= fw_size || ((u8 *)(l1_data + 1) - fw) >= fw_size)
return -EINVAL;
if (ROGUE_META_LDR_BLK_IS_COMMENT(l1_data->cmd)) {
/* Don't process comment blocks */
goto next_block;
}
switch (l1_data->cmd & ROGUE_META_LDR_CMD_MASK)
case ROGUE_META_LDR_CMD_LOADMEM: {
err = meta_ldr_cmd_loadmem(drm_dev, fw, l1_data,
coremem_size,
fw_code_ptr, fw_data_ptr,
fw_core_code_ptr,
fw_core_data_ptr, fw_size);
if (err)
return err;
break;
case ROGUE_META_LDR_CMD_START_THREADS:
/* Don't process this block */
break;
case ROGUE_META_LDR_CMD_ZEROMEM:
err = meta_ldr_cmd_zeromem(drm_dev, l1_data,
coremem_size,
fw_code_ptr, fw_data_ptr,
fw_core_code_ptr,
fw_core_data_ptr);
if (err)
return err;
break;
case ROGUE_META_LDR_CMD_CONFIG:
err = meta_ldr_cmd_config(drm_dev, fw, l1_data, fw_size,
&boot_conf);
if (err)
return err;
break;
default:
return -EINVAL;
}
next_block:
if (l1_data->next == 0xFFFFFFFF)
break;
l1_data = (struct rogue_meta_ldr_l1_data_blk *)(fw +
l1_data->next);
}
if (boot_conf_ptr)
*boot_conf_ptr = boot_conf;
return 0;
}
static void
configure_seg_id(u64 seg_out_addr, u32 seg_base, u32 seg_limit, u32 seg_id,
u32 **boot_conf_ptr)
{
u32 seg_out_addr0 = seg_out_addr & 0x00000000FFFFFFFFUL;
u32 seg_out_addr1 = (seg_out_addr >> 32) & 0x00000000FFFFFFFFUL;
u32 *boot_conf = *boot_conf_ptr;
/* META segments have a minimum size. */
u32 limit_off = max(seg_limit, ROGUE_FW_SEGMMU_ALIGN);
/* The limit is an offset, therefore off = size - 1. */
limit_off -= 1;
seg_base |= ROGUE_FW_SEGMMU_ALLTHRS_WRITEABLE;
add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_BASE(seg_id), seg_base);
add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_LIMIT(seg_id), limit_off);
add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_OUTA0(seg_id), seg_out_addr0);
add_boot_arg(&boot_conf, META_CR_MMCU_SEGMENT_N_OUTA1(seg_id), seg_out_addr1);
*boot_conf_ptr = boot_conf;
}
static u64 get_fw_obj_gpu_addr(struct pvr_fw_object *fw_obj)
{
struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(fw_obj->gem)->dev);
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
return fw_obj->fw_addr_offset + fw_dev->fw_heap_info.gpu_addr;
}
static void
configure_seg_mmu(struct pvr_device *pvr_dev, u32 **boot_conf_ptr)
{
const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
u64 seg_out_addr_top;
u32 i;
seg_out_addr_top =
ROGUE_FW_SEGMMU_OUTADDR_TOP_SLC(MMU_CONTEXT_MAPPING_FWPRIV,
ROGUE_FW_SEGMMU_META_BIFDM_ID);
for (i = 0; i < num_layout_entries; i++) {
/*
* FW code is using the bootloader segment which is already
* configured on boot. FW coremem code and data don't use the
* segment MMU. Only the FW data segment needs to be configured.
*/
if (layout_entries[i].type == FW_DATA) {
u32 seg_id = ROGUE_FW_SEGMMU_DATA_ID;
u64 seg_out_addr = get_fw_obj_gpu_addr(pvr_dev->fw_dev.mem.data_obj);
seg_out_addr += layout_entries[i].alloc_offset;
seg_out_addr |= seg_out_addr_top;
/* Write the sequence to the bootldr. */
configure_seg_id(seg_out_addr,
layout_entries[i].base_addr,
layout_entries[i].alloc_size, seg_id,
boot_conf_ptr);
break;
}
}
}
static void
configure_meta_caches(u32 **boot_conf_ptr)
{
u32 *boot_conf = *boot_conf_ptr;
u32 d_cache_t0, i_cache_t0;
u32 d_cache_t1, i_cache_t1;
u32 d_cache_t2, i_cache_t2;
u32 d_cache_t3, i_cache_t3;
/* Initialise I/Dcache settings */
d_cache_t0 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE;
d_cache_t1 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE;
d_cache_t2 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE;
d_cache_t3 = META_CR_SYSC_DCPARTX_CACHED_WRITE_ENABLE;
i_cache_t0 = 0;
i_cache_t1 = 0;
i_cache_t2 = 0;
i_cache_t3 = 0;
d_cache_t0 |= META_CR_SYSC_XCPARTX_LOCAL_ADDR_FULL_CACHE;
i_cache_t0 |= META_CR_SYSC_XCPARTX_LOCAL_ADDR_FULL_CACHE;
/* Local region MMU enhanced bypass: WIN-3 mode for code and data caches */
add_boot_arg(&boot_conf, META_CR_MMCU_LOCAL_EBCTRL,
META_CR_MMCU_LOCAL_EBCTRL_ICWIN |
META_CR_MMCU_LOCAL_EBCTRL_DCWIN);
/* Data cache partitioning thread 0 to 3 */
add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(0), d_cache_t0);
add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(1), d_cache_t1);
add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(2), d_cache_t2);
add_boot_arg(&boot_conf, META_CR_SYSC_DCPART(3), d_cache_t3);
/* Enable data cache hits */
add_boot_arg(&boot_conf, META_CR_MMCU_DCACHE_CTRL,
META_CR_MMCU_XCACHE_CTRL_CACHE_HITS_EN);
/* Instruction cache partitioning thread 0 to 3 */
add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(0), i_cache_t0);
add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(1), i_cache_t1);
add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(2), i_cache_t2);
add_boot_arg(&boot_conf, META_CR_SYSC_ICPART(3), i_cache_t3);
/* Enable instruction cache hits */
add_boot_arg(&boot_conf, META_CR_MMCU_ICACHE_CTRL,
META_CR_MMCU_XCACHE_CTRL_CACHE_HITS_EN);
add_boot_arg(&boot_conf, 0x040000C0, 0);
*boot_conf_ptr = boot_conf;
}
static int
pvr_meta_fw_process(struct pvr_device *pvr_dev, const u8 *fw,
u8 *fw_code_ptr, u8 *fw_data_ptr, u8 *fw_core_code_ptr, u8 *fw_core_data_ptr,
u32 core_code_alloc_size)
{
struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
u32 *boot_conf;
int err;
boot_conf = ((u32 *)fw_code_ptr) + ROGUE_FW_BOOTLDR_CONF_OFFSET;
/* Slave port and JTAG accesses are privileged. */
add_boot_arg(&boot_conf, META_CR_SYSC_JTAG_THREAD,
META_CR_SYSC_JTAG_THREAD_PRIV_EN);
configure_seg_mmu(pvr_dev, &boot_conf);
/* Populate FW sections from LDR image. */
err = process_ldr_command_stream(pvr_dev, fw, fw_code_ptr, fw_data_ptr, fw_core_code_ptr,
fw_core_data_ptr, &boot_conf);
if (err)
return err;
configure_meta_caches(&boot_conf);
/* End argument list. */
add_boot_arg(&boot_conf, 0, 0);
if (fw_dev->mem.core_code_obj) {
u32 core_code_fw_addr;
pvr_fw_object_get_fw_addr(fw_dev->mem.core_code_obj, &core_code_fw_addr);
add_boot_arg(&boot_conf, core_code_fw_addr, core_code_alloc_size);
} else {
add_boot_arg(&boot_conf, 0, 0);
}
/* None of the cores supported by this driver have META DMA. */
add_boot_arg(&boot_conf, 0, 0);
return 0;
}
static int
pvr_meta_init(struct pvr_device *pvr_dev)
{
pvr_fw_heap_info_init(pvr_dev, ROGUE_FW_HEAP_META_SHIFT, 0);
return 0;
}
static u32
pvr_meta_get_fw_addr_with_offset(struct pvr_fw_object *fw_obj, u32 offset)
{
u32 fw_addr = fw_obj->fw_addr_offset + offset + ROGUE_FW_SEGMMU_DATA_BASE_ADDRESS;
/* META cacheability is determined by address. */
if (fw_obj->gem->flags & PVR_BO_FW_FLAGS_DEVICE_UNCACHED)
fw_addr |= ROGUE_FW_SEGMMU_DATA_META_UNCACHED |
ROGUE_FW_SEGMMU_DATA_VIVT_SLC_UNCACHED;
return fw_addr;
}
static int
pvr_meta_vm_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj)
{
struct pvr_gem_object *pvr_obj = fw_obj->gem;
return pvr_vm_map(pvr_dev->kernel_vm_ctx, pvr_obj, 0, fw_obj->fw_mm_node.start,
pvr_gem_object_size(pvr_obj));
}
static void
pvr_meta_vm_unmap(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj)
{
pvr_vm_unmap(pvr_dev->kernel_vm_ctx, fw_obj->fw_mm_node.start,
fw_obj->fw_mm_node.size);
}
static bool
pvr_meta_has_fixed_data_addr(void)
{
return false;
}
const struct pvr_fw_defs pvr_fw_defs_meta = {
.init = pvr_meta_init,
.fw_process = pvr_meta_fw_process,
.vm_map = pvr_meta_vm_map,
.vm_unmap = pvr_meta_vm_unmap,
.get_fw_addr_with_offset = pvr_meta_get_fw_addr_with_offset,
.wrapper_init = pvr_meta_wrapper_init,
.has_fixed_data_addr = pvr_meta_has_fixed_data_addr,
.irq = {
.enable_reg = ROGUE_CR_META_SP_MSLVIRQENABLE,
.status_reg = ROGUE_CR_META_SP_MSLVIRQSTATUS,
.clear_reg = ROGUE_CR_META_SP_MSLVIRQSTATUS,
.event_mask = ROGUE_CR_META_SP_MSLVIRQSTATUS_TRIGVECT2_EN,
.clear_mask = ROGUE_CR_META_SP_MSLVIRQSTATUS_TRIGVECT2_CLRMSK,
},
};
/* SPDX-License-Identifier: GPL-2.0-only OR MIT */
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#ifndef PVR_FW_META_H
#define PVR_FW_META_H
#include <linux/types.h>
/* Forward declaration from pvr_device.h */
struct pvr_device;
int pvr_meta_cr_read32(struct pvr_device *pvr_dev, u32 reg_addr, u32 *reg_value_out);
#endif /* PVR_FW_META_H */
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_device.h"
#include "pvr_fw.h"
#include "pvr_fw_meta.h"
#include "pvr_fw_startstop.h"
#include "pvr_rogue_cr_defs.h"
#include "pvr_rogue_meta.h"
#include "pvr_vm.h"
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/types.h>
#define POLL_TIMEOUT_USEC 1000000
static void
rogue_axi_ace_list_init(struct pvr_device *pvr_dev)
{
/* Setup AXI-ACE config. Set everything to outer cache. */
u64 reg_val =
(3U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_AWDOMAIN_NON_SNOOPING_SHIFT) |
(3U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_ARDOMAIN_NON_SNOOPING_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_ARDOMAIN_CACHE_MAINTENANCE_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_AWDOMAIN_COHERENT_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_ARDOMAIN_COHERENT_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_AWCACHE_COHERENT_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_ARCACHE_COHERENT_SHIFT) |
(2U << ROGUE_CR_AXI_ACE_LITE_CONFIGURATION_ARCACHE_CACHE_MAINTENANCE_SHIFT);
pvr_cr_write64(pvr_dev, ROGUE_CR_AXI_ACE_LITE_CONFIGURATION, reg_val);
}
static void
rogue_bif_init(struct pvr_device *pvr_dev)
{
dma_addr_t pc_dma_addr;
u64 pc_addr;
/* Acquire the address of the Kernel Page Catalogue. */
pc_dma_addr = pvr_vm_get_page_table_root_addr(pvr_dev->kernel_vm_ctx);
/* Write the kernel catalogue base. */
pc_addr = ((((u64)pc_dma_addr >> ROGUE_CR_BIF_CAT_BASE0_ADDR_ALIGNSHIFT)
<< ROGUE_CR_BIF_CAT_BASE0_ADDR_SHIFT) &
~ROGUE_CR_BIF_CAT_BASE0_ADDR_CLRMSK);
pvr_cr_write64(pvr_dev, BIF_CAT_BASEX(MMU_CONTEXT_MAPPING_FWPRIV),
pc_addr);
}
static int
rogue_slc_init(struct pvr_device *pvr_dev)
{
u16 slc_cache_line_size_bits;
u32 reg_val;
int err;
/*
* SLC Misc control.
*
* Note: This is a 64bit register and we set only the lower 32bits
* leaving the top 32bits (ROGUE_CR_SLC_CTRL_MISC_SCRAMBLE_BITS)
* unchanged from the HW default.
*/
reg_val = (pvr_cr_read32(pvr_dev, ROGUE_CR_SLC_CTRL_MISC) &
ROGUE_CR_SLC_CTRL_MISC_ENABLE_PSG_HAZARD_CHECK_EN) |
ROGUE_CR_SLC_CTRL_MISC_ADDR_DECODE_MODE_PVR_HASH1;
err = PVR_FEATURE_VALUE(pvr_dev, slc_cache_line_size_bits, &slc_cache_line_size_bits);
if (err)
return err;
/* Bypass burst combiner if SLC line size is smaller than 1024 bits. */
if (slc_cache_line_size_bits < 1024)
reg_val |= ROGUE_CR_SLC_CTRL_MISC_BYPASS_BURST_COMBINER_EN;
if (PVR_HAS_QUIRK(pvr_dev, 71242) && !PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support))
reg_val |= ROGUE_CR_SLC_CTRL_MISC_LAZYWB_OVERRIDE_EN;
pvr_cr_write32(pvr_dev, ROGUE_CR_SLC_CTRL_MISC, reg_val);
return 0;
}
/**
* pvr_fw_start() - Start FW processor and boot firmware
* @pvr_dev: Target PowerVR device.
*
* Returns:
* * 0 on success, or
* * Any error returned by rogue_slc_init().
*/
int
pvr_fw_start(struct pvr_device *pvr_dev)
{
bool has_reset2 = PVR_HAS_FEATURE(pvr_dev, xe_tpu2);
u64 soft_reset_mask;
int err;
if (PVR_HAS_FEATURE(pvr_dev, pbe2_in_xe))
soft_reset_mask = ROGUE_CR_SOFT_RESET__PBE2_XE__MASKFULL;
else
soft_reset_mask = ROGUE_CR_SOFT_RESET_MASKFULL;
if (PVR_HAS_FEATURE(pvr_dev, sys_bus_secure_reset)) {
/*
* Disable the default sys_bus_secure protection to perform
* minimal setup.
*/
pvr_cr_write32(pvr_dev, ROGUE_CR_SYS_BUS_SECURE, 0);
(void)pvr_cr_read32(pvr_dev, ROGUE_CR_SYS_BUS_SECURE); /* Fence write */
}
/* Set Rogue in soft-reset. */
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET, soft_reset_mask);
if (has_reset2)
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET2, ROGUE_CR_SOFT_RESET2_MASKFULL);
/* Read soft-reset to fence previous write in order to clear the SOCIF pipeline. */
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET);
if (has_reset2)
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET2);
/* Take Rascal and Dust out of reset. */
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET,
soft_reset_mask ^ ROGUE_CR_SOFT_RESET_RASCALDUSTS_EN);
if (has_reset2)
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET2, 0);
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET);
if (has_reset2)
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET2);
/* Take everything out of reset but the FW processor. */
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET, ROGUE_CR_SOFT_RESET_GARTEN_EN);
if (has_reset2)
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET2, 0);
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET);
if (has_reset2)
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET2);
err = rogue_slc_init(pvr_dev);
if (err)
goto err_reset;
/* Initialise Firmware wrapper. */
pvr_dev->fw_dev.defs->wrapper_init(pvr_dev);
/* We must init the AXI-ACE interface before first BIF transaction. */
rogue_axi_ace_list_init(pvr_dev);
if (pvr_dev->fw_dev.processor_type != PVR_FW_PROCESSOR_TYPE_MIPS) {
/* Initialise BIF. */
rogue_bif_init(pvr_dev);
}
/* Need to wait for at least 16 cycles before taking the FW processor out of reset ... */
udelay(3);
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET, 0x0);
(void)pvr_cr_read64(pvr_dev, ROGUE_CR_SOFT_RESET);
/* ... and afterwards. */
udelay(3);
return 0;
err_reset:
/* Put everything back into soft-reset. */
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET, soft_reset_mask);
return err;
}
/**
* pvr_fw_stop() - Stop FW processor
* @pvr_dev: Target PowerVR device.
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_cr_poll_reg32().
*/
int
pvr_fw_stop(struct pvr_device *pvr_dev)
{
const u32 sidekick_idle_mask = ROGUE_CR_SIDEKICK_IDLE_MASKFULL &
~(ROGUE_CR_SIDEKICK_IDLE_GARTEN_EN |
ROGUE_CR_SIDEKICK_IDLE_SOCIF_EN |
ROGUE_CR_SIDEKICK_IDLE_HOSTIF_EN);
bool skip_garten_idle = false;
u32 reg_value;
int err;
/*
* Wait for Sidekick/Jones to signal IDLE except for the Garten Wrapper.
* For cores with the LAYOUT_MARS feature, SIDEKICK would have been
* powered down by the FW.
*/
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_SIDEKICK_IDLE, sidekick_idle_mask,
sidekick_idle_mask, POLL_TIMEOUT_USEC);
if (err)
return err;
/* Unset MTS DM association with threads. */
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_INTCTX_THREAD0_DM_ASSOC,
ROGUE_CR_MTS_INTCTX_THREAD0_DM_ASSOC_MASKFULL &
ROGUE_CR_MTS_INTCTX_THREAD0_DM_ASSOC_DM_ASSOC_CLRMSK);
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_BGCTX_THREAD0_DM_ASSOC,
ROGUE_CR_MTS_BGCTX_THREAD0_DM_ASSOC_MASKFULL &
ROGUE_CR_MTS_BGCTX_THREAD0_DM_ASSOC_DM_ASSOC_CLRMSK);
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_INTCTX_THREAD1_DM_ASSOC,
ROGUE_CR_MTS_INTCTX_THREAD1_DM_ASSOC_MASKFULL &
ROGUE_CR_MTS_INTCTX_THREAD1_DM_ASSOC_DM_ASSOC_CLRMSK);
pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_BGCTX_THREAD1_DM_ASSOC,
ROGUE_CR_MTS_BGCTX_THREAD1_DM_ASSOC_MASKFULL &
ROGUE_CR_MTS_BGCTX_THREAD1_DM_ASSOC_DM_ASSOC_CLRMSK);
/* Extra Idle checks. */
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_BIF_STATUS_MMU, 0,
ROGUE_CR_BIF_STATUS_MMU_MASKFULL,
POLL_TIMEOUT_USEC);
if (err)
return err;
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_BIFPM_STATUS_MMU, 0,
ROGUE_CR_BIFPM_STATUS_MMU_MASKFULL,
POLL_TIMEOUT_USEC);
if (err)
return err;
if (!PVR_HAS_FEATURE(pvr_dev, xt_top_infrastructure)) {
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_BIF_READS_EXT_STATUS, 0,
ROGUE_CR_BIF_READS_EXT_STATUS_MASKFULL,
POLL_TIMEOUT_USEC);
if (err)
return err;
}
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_BIFPM_READS_EXT_STATUS, 0,
ROGUE_CR_BIFPM_READS_EXT_STATUS_MASKFULL,
POLL_TIMEOUT_USEC);
if (err)
return err;
err = pvr_cr_poll_reg64(pvr_dev, ROGUE_CR_SLC_STATUS1, 0,
ROGUE_CR_SLC_STATUS1_MASKFULL,
POLL_TIMEOUT_USEC);
if (err)
return err;
/*
* Wait for SLC to signal IDLE.
* For cores with the LAYOUT_MARS feature, SLC would have been powered
* down by the FW.
*/
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_SLC_IDLE,
ROGUE_CR_SLC_IDLE_MASKFULL,
ROGUE_CR_SLC_IDLE_MASKFULL, POLL_TIMEOUT_USEC);
if (err)
return err;
/*
* Wait for Sidekick/Jones to signal IDLE except for the Garten Wrapper.
* For cores with the LAYOUT_MARS feature, SIDEKICK would have been powered
* down by the FW.
*/
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_SIDEKICK_IDLE, sidekick_idle_mask,
sidekick_idle_mask, POLL_TIMEOUT_USEC);
if (err)
return err;
if (pvr_dev->fw_dev.processor_type == PVR_FW_PROCESSOR_TYPE_META) {
err = pvr_meta_cr_read32(pvr_dev, META_CR_TxVECINT_BHALT, &reg_value);
if (err)
return err;
/*
* Wait for Sidekick/Jones to signal IDLE including the Garten
* Wrapper if there is no debugger attached (TxVECINT_BHALT =
* 0x0).
*/
if (reg_value)
skip_garten_idle = true;
}
if (!skip_garten_idle) {
err = pvr_cr_poll_reg32(pvr_dev, ROGUE_CR_SIDEKICK_IDLE,
ROGUE_CR_SIDEKICK_IDLE_GARTEN_EN,
ROGUE_CR_SIDEKICK_IDLE_GARTEN_EN,
POLL_TIMEOUT_USEC);
if (err)
return err;
}
if (PVR_HAS_FEATURE(pvr_dev, pbe2_in_xe))
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET,
ROGUE_CR_SOFT_RESET__PBE2_XE__MASKFULL);
else
pvr_cr_write64(pvr_dev, ROGUE_CR_SOFT_RESET, ROGUE_CR_SOFT_RESET_MASKFULL);
return 0;
}
/* SPDX-License-Identifier: GPL-2.0-only OR MIT */
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#ifndef PVR_FW_STARTSTOP_H
#define PVR_FW_STARTSTOP_H
/* Forward declaration from pvr_device.h. */
struct pvr_device;
int pvr_fw_start(struct pvr_device *pvr_dev);
int pvr_fw_stop(struct pvr_device *pvr_dev);
#endif /* PVR_FW_STARTSTOP_H */
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_device.h"
#include "pvr_gem.h"
#include "pvr_rogue_fwif.h"
#include "pvr_fw_trace.h"
#include <drm/drm_file.h>
#include <linux/build_bug.h>
#include <linux/dcache.h>
#include <linux/sysfs.h>
#include <linux/types.h>
static void
tracebuf_ctrl_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_tracebuf *tracebuf_ctrl = cpu_ptr;
struct pvr_fw_trace *fw_trace = priv;
u32 thread_nr;
tracebuf_ctrl->tracebuf_size_in_dwords = ROGUE_FW_TRACE_BUF_DEFAULT_SIZE_IN_DWORDS;
tracebuf_ctrl->tracebuf_flags = 0;
if (fw_trace->group_mask)
tracebuf_ctrl->log_type = fw_trace->group_mask | ROGUE_FWIF_LOG_TYPE_TRACE;
else
tracebuf_ctrl->log_type = ROGUE_FWIF_LOG_TYPE_NONE;
for (thread_nr = 0; thread_nr < ARRAY_SIZE(fw_trace->buffers); thread_nr++) {
struct rogue_fwif_tracebuf_space *tracebuf_space =
&tracebuf_ctrl->tracebuf[thread_nr];
struct pvr_fw_trace_buffer *trace_buffer = &fw_trace->buffers[thread_nr];
pvr_fw_object_get_fw_addr(trace_buffer->buf_obj,
&tracebuf_space->trace_buffer_fw_addr);
tracebuf_space->trace_buffer = trace_buffer->buf;
tracebuf_space->trace_pointer = 0;
}
}
int pvr_fw_trace_init(struct pvr_device *pvr_dev)
{
struct pvr_fw_trace *fw_trace = &pvr_dev->fw_dev.fw_trace;
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
u32 thread_nr;
int err;
for (thread_nr = 0; thread_nr < ARRAY_SIZE(fw_trace->buffers); thread_nr++) {
struct pvr_fw_trace_buffer *trace_buffer = &fw_trace->buffers[thread_nr];
trace_buffer->buf =
pvr_fw_object_create_and_map(pvr_dev,
ROGUE_FW_TRACE_BUF_DEFAULT_SIZE_IN_DWORDS *
sizeof(*trace_buffer->buf),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED |
PVR_BO_FW_NO_CLEAR_ON_RESET,
NULL, NULL, &trace_buffer->buf_obj);
if (IS_ERR(trace_buffer->buf)) {
drm_err(drm_dev, "Unable to allocate trace buffer\n");
err = PTR_ERR(trace_buffer->buf);
trace_buffer->buf = NULL;
goto err_free_buf;
}
}
/* TODO: Provide control of group mask. */
fw_trace->group_mask = 0;
fw_trace->tracebuf_ctrl =
pvr_fw_object_create_and_map(pvr_dev,
sizeof(*fw_trace->tracebuf_ctrl),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED |
PVR_BO_FW_NO_CLEAR_ON_RESET,
tracebuf_ctrl_init, fw_trace,
&fw_trace->tracebuf_ctrl_obj);
if (IS_ERR(fw_trace->tracebuf_ctrl)) {
drm_err(drm_dev, "Unable to allocate trace buffer control structure\n");
err = PTR_ERR(fw_trace->tracebuf_ctrl);
goto err_free_buf;
}
BUILD_BUG_ON(ARRAY_SIZE(fw_trace->tracebuf_ctrl->tracebuf) !=
ARRAY_SIZE(fw_trace->buffers));
for (thread_nr = 0; thread_nr < ARRAY_SIZE(fw_trace->buffers); thread_nr++) {
struct rogue_fwif_tracebuf_space *tracebuf_space =
&fw_trace->tracebuf_ctrl->tracebuf[thread_nr];
struct pvr_fw_trace_buffer *trace_buffer = &fw_trace->buffers[thread_nr];
trace_buffer->tracebuf_space = tracebuf_space;
}
return 0;
err_free_buf:
for (thread_nr = 0; thread_nr < ARRAY_SIZE(fw_trace->buffers); thread_nr++) {
struct pvr_fw_trace_buffer *trace_buffer = &fw_trace->buffers[thread_nr];
if (trace_buffer->buf)
pvr_fw_object_unmap_and_destroy(trace_buffer->buf_obj);
}
return err;
}
void pvr_fw_trace_fini(struct pvr_device *pvr_dev)
{
struct pvr_fw_trace *fw_trace = &pvr_dev->fw_dev.fw_trace;
u32 thread_nr;
for (thread_nr = 0; thread_nr < ARRAY_SIZE(fw_trace->buffers); thread_nr++) {
struct pvr_fw_trace_buffer *trace_buffer = &fw_trace->buffers[thread_nr];
pvr_fw_object_unmap_and_destroy(trace_buffer->buf_obj);
}
pvr_fw_object_unmap_and_destroy(fw_trace->tracebuf_ctrl_obj);
}
/* SPDX-License-Identifier: GPL-2.0-only OR MIT */
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#ifndef PVR_FW_TRACE_H
#define PVR_FW_TRACE_H
#include <drm/drm_file.h>
#include <linux/types.h>
#include "pvr_rogue_fwif.h"
/* Forward declaration from pvr_device.h. */
struct pvr_device;
/* Forward declaration from pvr_gem.h. */
struct pvr_fw_object;
/* Forward declarations from pvr_rogue_fwif.h */
struct rogue_fwif_tracebuf;
struct rogue_fwif_tracebuf_space;
/**
* struct pvr_fw_trace_buffer - Structure representing a trace buffer
*/
struct pvr_fw_trace_buffer {
/** @buf_obj: FW buffer object representing trace buffer. */
struct pvr_fw_object *buf_obj;
/** @buf: Pointer to CPU mapping of trace buffer. */
u32 *buf;
/**
* @tracebuf_space: Pointer to FW tracebuf_space structure for this
* trace buffer.
*/
struct rogue_fwif_tracebuf_space *tracebuf_space;
};
/**
* struct pvr_fw_trace - Device firmware trace data
*/
struct pvr_fw_trace {
/**
* @tracebuf_ctrl_obj: Object representing FW trace buffer control
* structure.
*/
struct pvr_fw_object *tracebuf_ctrl_obj;
/**
* @tracebuf_ctrl: Pointer to CPU mapping of FW trace buffer control
* structure.
*/
struct rogue_fwif_tracebuf *tracebuf_ctrl;
/**
* @buffers: Array representing the actual trace buffers owned by this
* device.
*/
struct pvr_fw_trace_buffer buffers[ROGUE_FW_THREAD_MAX];
/** @group_mask: Mask of enabled trace groups. */
u32 group_mask;
};
int pvr_fw_trace_init(struct pvr_device *pvr_dev);
void pvr_fw_trace_fini(struct pvr_device *pvr_dev);
#if defined(CONFIG_DEBUG_FS)
/* Forward declaration from <linux/dcache.h>. */
struct dentry;
void pvr_fw_trace_mask_update(struct pvr_device *pvr_dev, u32 old_mask,
u32 new_mask);
void pvr_fw_trace_debugfs_init(struct pvr_device *pvr_dev, struct dentry *dir);
#endif /* defined(CONFIG_DEBUG_FS) */
#endif /* PVR_FW_TRACE_H */
...@@ -3,9 +3,11 @@ ...@@ -3,9 +3,11 @@
#include "pvr_mmu.h" #include "pvr_mmu.h"
#include "pvr_ccb.h"
#include "pvr_device.h" #include "pvr_device.h"
#include "pvr_fw.h" #include "pvr_fw.h"
#include "pvr_gem.h" #include "pvr_gem.h"
#include "pvr_power.h"
#include "pvr_rogue_fwif.h" #include "pvr_rogue_fwif.h"
#include "pvr_rogue_mmu_defs.h" #include "pvr_rogue_mmu_defs.h"
...@@ -95,7 +97,7 @@ static void pvr_mmu_set_flush_flags(struct pvr_device *pvr_dev, u32 flags) ...@@ -95,7 +97,7 @@ static void pvr_mmu_set_flush_flags(struct pvr_device *pvr_dev, u32 flags)
*/ */
void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev) void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev)
{ {
/* TODO: implement */ pvr_mmu_set_flush_flags(pvr_dev, PVR_MMU_SYNC_LEVEL_2_FLAGS);
} }
/** /**
...@@ -120,8 +122,70 @@ void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev) ...@@ -120,8 +122,70 @@ void pvr_mmu_flush_request_all(struct pvr_device *pvr_dev)
*/ */
int pvr_mmu_flush_exec(struct pvr_device *pvr_dev, bool wait) int pvr_mmu_flush_exec(struct pvr_device *pvr_dev, bool wait)
{ {
/* TODO: implement */ struct rogue_fwif_kccb_cmd cmd_mmu_cache = {};
return -ENODEV; struct rogue_fwif_mmucachedata *cmd_mmu_cache_data =
&cmd_mmu_cache.cmd_data.mmu_cache_data;
int err = 0;
u32 slot;
int idx;
if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx))
return -EIO;
/* Can't flush MMU if the firmware hasn't booted yet. */
if (!pvr_dev->fw_dev.booted)
goto err_drm_dev_exit;
cmd_mmu_cache_data->cache_flags =
atomic_xchg(&pvr_dev->mmu_flush_cache_flags, 0);
if (!cmd_mmu_cache_data->cache_flags)
goto err_drm_dev_exit;
cmd_mmu_cache.cmd_type = ROGUE_FWIF_KCCB_CMD_MMUCACHE;
pvr_fw_object_get_fw_addr(pvr_dev->fw_dev.mem.mmucache_sync_obj,
&cmd_mmu_cache_data->mmu_cache_sync_fw_addr);
cmd_mmu_cache_data->mmu_cache_sync_update_value = 0;
err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
if (err)
goto err_reset_and_retry;
err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
if (err)
goto err_reset_and_retry;
drm_dev_exit(idx);
return 0;
err_reset_and_retry:
/*
* Flush command failure is most likely the result of a firmware lockup. Hard
* reset the GPU and retry.
*/
err = pvr_power_reset(pvr_dev, true);
if (err)
goto err_drm_dev_exit; /* Device is lost. */
/* Retry sending flush request. */
err = pvr_kccb_send_cmd(pvr_dev, &cmd_mmu_cache, &slot);
if (err) {
pvr_device_lost(pvr_dev);
goto err_drm_dev_exit;
}
if (wait) {
err = pvr_kccb_wait_for_completion(pvr_dev, slot, HZ, NULL);
if (err)
pvr_device_lost(pvr_dev);
}
err_drm_dev_exit:
drm_dev_exit(idx);
return err;
} }
/** /**
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#include "pvr_device.h" #include "pvr_device.h"
#include "pvr_fw.h" #include "pvr_fw.h"
#include "pvr_fw_startstop.h"
#include "pvr_power.h" #include "pvr_power.h"
#include "pvr_rogue_fwif.h" #include "pvr_rogue_fwif.h"
...@@ -21,11 +22,38 @@ ...@@ -21,11 +22,38 @@
#define WATCHDOG_TIME_MS (500) #define WATCHDOG_TIME_MS (500)
/**
* pvr_device_lost() - Mark GPU device as lost
* @pvr_dev: Target PowerVR device.
*
* This will cause the DRM device to be unplugged.
*/
void
pvr_device_lost(struct pvr_device *pvr_dev)
{
if (!pvr_dev->lost) {
pvr_dev->lost = true;
drm_dev_unplug(from_pvr_device(pvr_dev));
}
}
static int static int
pvr_power_send_command(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *pow_cmd) pvr_power_send_command(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *pow_cmd)
{ {
/* TODO: implement */ struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
return -ENODEV; u32 slot_nr;
u32 value;
int err;
WRITE_ONCE(*fw_dev->power_sync, 0);
err = pvr_kccb_send_cmd_powered(pvr_dev, pow_cmd, &slot_nr);
if (err)
return err;
/* Wait for FW to acknowledge. */
return readl_poll_timeout(pvr_dev->fw_dev.power_sync, value, value != 0, 100,
POWER_SYNC_TIMEOUT_US);
} }
static int static int
...@@ -71,8 +99,7 @@ pvr_power_fw_disable(struct pvr_device *pvr_dev, bool hard_reset) ...@@ -71,8 +99,7 @@ pvr_power_fw_disable(struct pvr_device *pvr_dev, bool hard_reset)
return err; return err;
} }
/* TODO: stop firmware */ return pvr_fw_stop(pvr_dev);
return -ENODEV;
} }
static int static int
...@@ -80,11 +107,17 @@ pvr_power_fw_enable(struct pvr_device *pvr_dev) ...@@ -80,11 +107,17 @@ pvr_power_fw_enable(struct pvr_device *pvr_dev)
{ {
int err; int err;
/* TODO: start firmware */ err = pvr_fw_start(pvr_dev);
err = -ENODEV;
if (err) if (err)
return err; return err;
err = pvr_wait_for_fw_boot(pvr_dev);
if (err) {
drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
pvr_fw_stop(pvr_dev);
return err;
}
queue_delayed_work(pvr_dev->sched_wq, &pvr_dev->watchdog.work, queue_delayed_work(pvr_dev->sched_wq, &pvr_dev->watchdog.work,
msecs_to_jiffies(WATCHDOG_TIME_MS)); msecs_to_jiffies(WATCHDOG_TIME_MS));
...@@ -94,14 +127,39 @@ pvr_power_fw_enable(struct pvr_device *pvr_dev) ...@@ -94,14 +127,39 @@ pvr_power_fw_enable(struct pvr_device *pvr_dev)
bool bool
pvr_power_is_idle(struct pvr_device *pvr_dev) pvr_power_is_idle(struct pvr_device *pvr_dev)
{ {
/* TODO: implement */ /*
return true; * FW power state can be out of date if a KCCB command has been submitted but the FW hasn't
* started processing it yet. So also check the KCCB status.
*/
enum rogue_fwif_pow_state pow_state = READ_ONCE(pvr_dev->fw_dev.fwif_sysdata->pow_state);
bool kccb_idle = pvr_kccb_is_idle(pvr_dev);
return (pow_state == ROGUE_FWIF_POW_IDLE) && kccb_idle;
} }
static bool static bool
pvr_watchdog_kccb_stalled(struct pvr_device *pvr_dev) pvr_watchdog_kccb_stalled(struct pvr_device *pvr_dev)
{ {
/* TODO: implement */ /* Check KCCB commands are progressing. */
u32 kccb_cmds_executed = pvr_dev->fw_dev.fwif_osdata->kccb_cmds_executed;
bool kccb_is_idle = pvr_kccb_is_idle(pvr_dev);
if (pvr_dev->watchdog.old_kccb_cmds_executed == kccb_cmds_executed && !kccb_is_idle) {
pvr_dev->watchdog.kccb_stall_count++;
/*
* If we have commands pending with no progress for 2 consecutive polls then
* consider KCCB command processing stalled.
*/
if (pvr_dev->watchdog.kccb_stall_count == 2) {
pvr_dev->watchdog.kccb_stall_count = 0;
return true;
}
} else {
pvr_dev->watchdog.old_kccb_cmds_executed = kccb_cmds_executed;
pvr_dev->watchdog.kccb_stall_count = 0;
}
return false; return false;
} }
...@@ -118,6 +176,9 @@ pvr_watchdog_worker(struct work_struct *work) ...@@ -118,6 +176,9 @@ pvr_watchdog_worker(struct work_struct *work)
if (pm_runtime_get_if_in_use(from_pvr_device(pvr_dev)->dev) <= 0) if (pm_runtime_get_if_in_use(from_pvr_device(pvr_dev)->dev) <= 0)
goto out_requeue; goto out_requeue;
if (!pvr_dev->fw_dev.booted)
goto out_pm_runtime_put;
stalled = pvr_watchdog_kccb_stalled(pvr_dev); stalled = pvr_watchdog_kccb_stalled(pvr_dev);
if (stalled) { if (stalled) {
...@@ -127,6 +188,7 @@ pvr_watchdog_worker(struct work_struct *work) ...@@ -127,6 +188,7 @@ pvr_watchdog_worker(struct work_struct *work)
/* Device may be lost at this point. */ /* Device may be lost at this point. */
} }
out_pm_runtime_put:
pm_runtime_put(from_pvr_device(pvr_dev)->dev); pm_runtime_put(from_pvr_device(pvr_dev)->dev);
out_requeue: out_requeue:
...@@ -158,18 +220,26 @@ pvr_power_device_suspend(struct device *dev) ...@@ -158,18 +220,26 @@ pvr_power_device_suspend(struct device *dev)
struct platform_device *plat_dev = to_platform_device(dev); struct platform_device *plat_dev = to_platform_device(dev);
struct drm_device *drm_dev = platform_get_drvdata(plat_dev); struct drm_device *drm_dev = platform_get_drvdata(plat_dev);
struct pvr_device *pvr_dev = to_pvr_device(drm_dev); struct pvr_device *pvr_dev = to_pvr_device(drm_dev);
int err = 0;
int idx; int idx;
if (!drm_dev_enter(drm_dev, &idx)) if (!drm_dev_enter(drm_dev, &idx))
return -EIO; return -EIO;
if (pvr_dev->fw_dev.booted) {
err = pvr_power_fw_disable(pvr_dev, false);
if (err)
goto err_drm_dev_exit;
}
clk_disable_unprepare(pvr_dev->mem_clk); clk_disable_unprepare(pvr_dev->mem_clk);
clk_disable_unprepare(pvr_dev->sys_clk); clk_disable_unprepare(pvr_dev->sys_clk);
clk_disable_unprepare(pvr_dev->core_clk); clk_disable_unprepare(pvr_dev->core_clk);
err_drm_dev_exit:
drm_dev_exit(idx); drm_dev_exit(idx);
return 0; return err;
} }
int int
...@@ -196,10 +266,19 @@ pvr_power_device_resume(struct device *dev) ...@@ -196,10 +266,19 @@ pvr_power_device_resume(struct device *dev)
if (err) if (err)
goto err_sys_clk_disable; goto err_sys_clk_disable;
if (pvr_dev->fw_dev.booted) {
err = pvr_power_fw_enable(pvr_dev);
if (err)
goto err_mem_clk_disable;
}
drm_dev_exit(idx); drm_dev_exit(idx);
return 0; return 0;
err_mem_clk_disable:
clk_disable_unprepare(pvr_dev->mem_clk);
err_sys_clk_disable: err_sys_clk_disable:
clk_disable_unprepare(pvr_dev->sys_clk); clk_disable_unprepare(pvr_dev->sys_clk);
...@@ -239,7 +318,6 @@ pvr_power_device_idle(struct device *dev) ...@@ -239,7 +318,6 @@ pvr_power_device_idle(struct device *dev)
int int
pvr_power_reset(struct pvr_device *pvr_dev, bool hard_reset) pvr_power_reset(struct pvr_device *pvr_dev, bool hard_reset)
{ {
/* TODO: Implement hard reset. */
int err; int err;
/* /*
...@@ -248,13 +326,69 @@ pvr_power_reset(struct pvr_device *pvr_dev, bool hard_reset) ...@@ -248,13 +326,69 @@ pvr_power_reset(struct pvr_device *pvr_dev, bool hard_reset)
*/ */
WARN_ON(pvr_power_get(pvr_dev)); WARN_ON(pvr_power_get(pvr_dev));
err = pvr_power_fw_disable(pvr_dev, false); down_write(&pvr_dev->reset_sem);
if (err)
goto err_power_put; if (pvr_dev->lost) {
err = -EIO;
goto err_up_write;
}
/* Disable IRQs for the duration of the reset. */
disable_irq(pvr_dev->irq);
do {
err = pvr_power_fw_disable(pvr_dev, hard_reset);
if (!err) {
if (hard_reset) {
pvr_dev->fw_dev.booted = false;
WARN_ON(pm_runtime_force_suspend(from_pvr_device(pvr_dev)->dev));
err = pvr_fw_hard_reset(pvr_dev);
if (err)
goto err_device_lost;
err = pm_runtime_force_resume(from_pvr_device(pvr_dev)->dev);
pvr_dev->fw_dev.booted = true;
if (err)
goto err_device_lost;
} else {
/* Clear the FW faulted flags. */
pvr_dev->fw_dev.fwif_sysdata->hwr_state_flags &=
~(ROGUE_FWIF_HWR_FW_FAULT |
ROGUE_FWIF_HWR_RESTART_REQUESTED);
}
pvr_fw_irq_clear(pvr_dev);
err = pvr_power_fw_enable(pvr_dev);
}
if (err && hard_reset)
goto err_device_lost;
if (err && !hard_reset) {
drm_err(from_pvr_device(pvr_dev), "FW stalled, trying hard reset");
hard_reset = true;
}
} while (err);
enable_irq(pvr_dev->irq);
up_write(&pvr_dev->reset_sem);
pvr_power_put(pvr_dev);
return 0;
err_device_lost:
drm_err(from_pvr_device(pvr_dev), "GPU device lost");
pvr_device_lost(pvr_dev);
/* Leave IRQs disabled if the device is lost. */
err = pvr_power_fw_enable(pvr_dev); err_up_write:
up_write(&pvr_dev->reset_sem);
err_power_put:
pvr_power_put(pvr_dev); pvr_power_put(pvr_dev);
return err; return err;
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
int pvr_watchdog_init(struct pvr_device *pvr_dev); int pvr_watchdog_init(struct pvr_device *pvr_dev);
void pvr_watchdog_fini(struct pvr_device *pvr_dev); void pvr_watchdog_fini(struct pvr_device *pvr_dev);
void pvr_device_lost(struct pvr_device *pvr_dev);
bool pvr_power_is_idle(struct pvr_device *pvr_dev); bool pvr_power_is_idle(struct pvr_device *pvr_dev);
int pvr_power_device_suspend(struct device *dev); int pvr_power_device_suspend(struct device *dev);
......
...@@ -540,6 +540,16 @@ static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = { ...@@ -540,6 +540,16 @@ static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
.sm_step_unmap = pvr_vm_gpuva_unmap, .sm_step_unmap = pvr_vm_gpuva_unmap,
}; };
static void
fw_mem_context_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
struct pvr_vm_context *vm_ctx = priv;
fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
}
/** /**
* pvr_vm_create_context() - Create a new VM context. * pvr_vm_create_context() - Create a new VM context.
* @pvr_dev: Target PowerVR device. * @pvr_dev: Target PowerVR device.
...@@ -602,13 +612,19 @@ pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context) ...@@ -602,13 +612,19 @@ pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
} }
if (is_userspace_context) { if (is_userspace_context) {
/* TODO: Create FW mem context */ err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
err = -ENODEV; PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
goto err_put_ctx; fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
if (err)
goto err_page_table_destroy;
} }
return vm_ctx; return vm_ctx;
err_page_table_destroy:
pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
err_put_ctx: err_put_ctx:
pvr_vm_context_put(vm_ctx); pvr_vm_context_put(vm_ctx);
...@@ -628,8 +644,8 @@ pvr_vm_context_release(struct kref *ref_count) ...@@ -628,8 +644,8 @@ pvr_vm_context_release(struct kref *ref_count)
struct pvr_vm_context *vm_ctx = struct pvr_vm_context *vm_ctx =
container_of(ref_count, struct pvr_vm_context, ref_count); container_of(ref_count, struct pvr_vm_context, ref_count);
/* TODO: Destroy FW mem context */ if (vm_ctx->fw_mem_ctx_obj)
WARN_ON(vm_ctx->fw_mem_ctx_obj); pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start, WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
vm_ctx->gpuvm_mgr.mm_range)); vm_ctx->gpuvm_mgr.mm_range));
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment