Commit cd5afabe authored by Kent Overstreet's avatar Kent Overstreet Committed by Kent Overstreet

bcachefs: btree_locking.c

Start to centralize some of the locking code in a new file; more locking
code will be moving here in the future.
Signed-off-by: default avatarKent Overstreet <kent.overstreet@gmail.com>
parent 02afcb8c
......@@ -13,6 +13,7 @@ bcachefs-y := \
btree_io.o \
btree_iter.o \
btree_key_cache.o \
btree_locking.o \
btree_update_interior.o \
btree_update_leaf.o \
buckets.o \
......
......@@ -118,444 +118,6 @@ static inline bool btree_path_pos_in_node(struct btree_path *path,
!btree_path_pos_after_node(path, b);
}
/* Btree node locking: */
void bch2_btree_node_unlock_write(struct btree_trans *trans,
struct btree_path *path, struct btree *b)
{
bch2_btree_node_unlock_write_inlined(trans, path, b);
}
struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *trans,
struct btree_path *skip,
struct btree *b,
unsigned level)
{
struct btree_path *path;
struct six_lock_count ret = { 0, 0 };
if (IS_ERR_OR_NULL(b))
return ret;
trans_for_each_path(trans, path)
if (path != skip && path->l[level].b == b) {
ret.read += btree_node_read_locked(path, level);
ret.intent += btree_node_intent_locked(path, level);
}
return ret;
}
static inline void six_lock_readers_add(struct six_lock *lock, int nr)
{
if (!lock->readers)
atomic64_add(__SIX_VAL(read_lock, nr), &lock->state.counter);
else
this_cpu_add(*lock->readers, nr);
}
void __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree *b)
{
int readers = bch2_btree_node_lock_counts(trans, NULL, b, b->c.level).read;
/*
* Must drop our read locks before calling six_lock_write() -
* six_unlock() won't do wakeups until the reader count
* goes to 0, and it's safe because we have the node intent
* locked:
*/
six_lock_readers_add(&b->c.lock, -readers);
six_lock_write(&b->c.lock, NULL, NULL);
six_lock_readers_add(&b->c.lock, readers);
}
bool __bch2_btree_node_relock(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
struct btree *b = btree_path_node(path, level);
int want = __btree_lock_want(path, level);
if (!is_btree_node(path, level))
goto fail;
if (race_fault())
goto fail;
if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) ||
(btree_node_lock_seq_matches(path, b, level) &&
btree_node_lock_increment(trans, b, level, want))) {
mark_btree_node_locked(trans, path, level, want);
return true;
}
fail:
if (b != ERR_PTR(-BCH_ERR_no_btree_node_cached) &&
b != ERR_PTR(-BCH_ERR_no_btree_node_init))
trace_btree_node_relock_fail(trans, _RET_IP_, path, level);
return false;
}
bool bch2_btree_node_upgrade(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
struct btree *b = path->l[level].b;
if (!is_btree_node(path, level))
return false;
switch (btree_lock_want(path, level)) {
case BTREE_NODE_UNLOCKED:
BUG_ON(btree_node_locked(path, level));
return true;
case BTREE_NODE_READ_LOCKED:
BUG_ON(btree_node_intent_locked(path, level));
return bch2_btree_node_relock(trans, path, level);
case BTREE_NODE_INTENT_LOCKED:
break;
}
if (btree_node_intent_locked(path, level))
return true;
if (race_fault())
return false;
if (btree_node_locked(path, level)
? six_lock_tryupgrade(&b->c.lock)
: six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq))
goto success;
if (btree_node_lock_seq_matches(path, b, level) &&
btree_node_lock_increment(trans, b, level, BTREE_NODE_INTENT_LOCKED)) {
btree_node_unlock(trans, path, level);
goto success;
}
trace_btree_node_upgrade_fail(trans, _RET_IP_, path, level);
return false;
success:
mark_btree_node_intent_locked(trans, path, level);
return true;
}
static inline bool btree_path_get_locks(struct btree_trans *trans,
struct btree_path *path,
bool upgrade)
{
unsigned l = path->level;
int fail_idx = -1;
do {
if (!btree_path_node(path, l))
break;
if (!(upgrade
? bch2_btree_node_upgrade(trans, path, l)
: bch2_btree_node_relock(trans, path, l)))
fail_idx = l;
l++;
} while (l < path->locks_want);
/*
* When we fail to get a lock, we have to ensure that any child nodes
* can't be relocked so bch2_btree_path_traverse has to walk back up to
* the node that we failed to relock:
*/
if (fail_idx >= 0) {
__bch2_btree_path_unlock(trans, path);
btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
do {
path->l[fail_idx].b = upgrade
? ERR_PTR(-BCH_ERR_no_btree_node_upgrade)
: ERR_PTR(-BCH_ERR_no_btree_node_relock);
--fail_idx;
} while (fail_idx >= 0);
}
if (path->uptodate == BTREE_ITER_NEED_RELOCK)
path->uptodate = BTREE_ITER_UPTODATE;
bch2_trans_verify_locks(trans);
return path->uptodate < BTREE_ITER_NEED_RELOCK;
}
static struct bpos btree_node_pos(struct btree_bkey_cached_common *_b,
bool cached)
{
return !cached
? container_of(_b, struct btree, c)->key.k.p
: container_of(_b, struct bkey_cached, c)->key.pos;
}
/* Slowpath: */
int __bch2_btree_node_lock(struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct bpos pos, unsigned level,
enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p,
unsigned long ip)
{
struct btree_path *linked;
unsigned reason;
/* Check if it's safe to block: */
trans_for_each_path(trans, linked) {
if (!linked->nodes_locked)
continue;
/*
* Can't block taking an intent lock if we have _any_ nodes read
* locked:
*
* - Our read lock blocks another thread with an intent lock on
* the same node from getting a write lock, and thus from
* dropping its intent lock
*
* - And the other thread may have multiple nodes intent locked:
* both the node we want to intent lock, and the node we
* already have read locked - deadlock:
*/
if (type == SIX_LOCK_intent &&
linked->nodes_locked != linked->nodes_intent_locked) {
reason = 1;
goto deadlock;
}
if (linked->btree_id != path->btree_id) {
if (linked->btree_id < path->btree_id)
continue;
reason = 3;
goto deadlock;
}
/*
* Within the same btree, non-cached paths come before cached
* paths:
*/
if (linked->cached != path->cached) {
if (!linked->cached)
continue;
reason = 4;
goto deadlock;
}
/*
* Interior nodes must be locked before their descendants: if
* another path has possible descendants locked of the node
* we're about to lock, it must have the ancestors locked too:
*/
if (level > __fls(linked->nodes_locked)) {
reason = 5;
goto deadlock;
}
/* Must lock btree nodes in key order: */
if (btree_node_locked(linked, level) &&
bpos_cmp(pos, btree_node_pos((void *) linked->l[level].b,
linked->cached)) <= 0) {
reason = 7;
goto deadlock;
}
}
return btree_node_lock_type(trans, path, b, pos, level,
type, should_sleep_fn, p);
deadlock:
trace_trans_restart_would_deadlock(trans, ip, reason, linked, path, &pos);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock);
}
/* Btree iterator locking: */
#ifdef CONFIG_BCACHEFS_DEBUG
static void bch2_btree_path_verify_locks(struct btree_path *path)
{
unsigned l;
if (!path->nodes_locked) {
BUG_ON(path->uptodate == BTREE_ITER_UPTODATE &&
btree_path_node(path, path->level));
return;
}
for (l = 0; btree_path_node(path, l); l++)
BUG_ON(btree_lock_want(path, l) !=
btree_node_locked_type(path, l));
}
void bch2_trans_verify_locks(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
bch2_btree_path_verify_locks(path);
}
#else
static inline void bch2_btree_path_verify_locks(struct btree_path *path) {}
#endif
/* Btree path locking: */
/*
* Only for btree_cache.c - only relocks intent locks
*/
int bch2_btree_path_relock_intent(struct btree_trans *trans,
struct btree_path *path)
{
unsigned l;
for (l = path->level;
l < path->locks_want && btree_path_node(path, l);
l++) {
if (!bch2_btree_node_relock(trans, path, l)) {
__bch2_btree_path_unlock(trans, path);
btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
trace_trans_restart_relock_path_intent(trans, _RET_IP_, path);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path_intent);
}
}
return 0;
}
__flatten
static bool bch2_btree_path_relock_norestart(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
return btree_path_get_locks(trans, path, false);
}
static int __bch2_btree_path_relock(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
if (!bch2_btree_path_relock_norestart(trans, path, trace_ip)) {
trace_trans_restart_relock_path(trans, trace_ip, path);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path);
}
return 0;
}
static inline int bch2_btree_path_relock(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
return btree_node_locked(path, path->level)
? 0
: __bch2_btree_path_relock(trans, path, trace_ip);
}
bool __bch2_btree_path_upgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
struct btree_path *linked;
EBUG_ON(path->locks_want >= new_locks_want);
path->locks_want = new_locks_want;
if (btree_path_get_locks(trans, path, true))
return true;
/*
* XXX: this is ugly - we'd prefer to not be mucking with other
* iterators in the btree_trans here.
*
* On failure to upgrade the iterator, setting iter->locks_want and
* calling get_locks() is sufficient to make bch2_btree_path_traverse()
* get the locks we want on transaction restart.
*
* But if this iterator was a clone, on transaction restart what we did
* to this iterator isn't going to be preserved.
*
* Possibly we could add an iterator field for the parent iterator when
* an iterator is a copy - for now, we'll just upgrade any other
* iterators with the same btree id.
*
* The code below used to be needed to ensure ancestor nodes get locked
* before interior nodes - now that's handled by
* bch2_btree_path_traverse_all().
*/
if (!path->cached && !trans->in_traverse_all)
trans_for_each_path(trans, linked)
if (linked != path &&
linked->cached == path->cached &&
linked->btree_id == path->btree_id &&
linked->locks_want < new_locks_want) {
linked->locks_want = new_locks_want;
btree_path_get_locks(trans, linked, true);
}
return false;
}
void __bch2_btree_path_downgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
unsigned l;
EBUG_ON(path->locks_want < new_locks_want);
path->locks_want = new_locks_want;
while (path->nodes_locked &&
(l = __fls(path->nodes_locked)) >= path->locks_want) {
if (l > path->level) {
btree_node_unlock(trans, path, l);
} else {
if (btree_node_intent_locked(path, l)) {
six_lock_downgrade(&path->l[l].b->c.lock);
path->nodes_intent_locked ^= 1 << l;
}
break;
}
}
bch2_btree_path_verify_locks(path);
}
void bch2_trans_downgrade(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
bch2_btree_path_downgrade(trans, path);
}
/* Btree transaction locking: */
int bch2_trans_relock(struct btree_trans *trans)
{
struct btree_path *path;
if (unlikely(trans->restarted))
return -BCH_ERR_transaction_restart_relock;
trans_for_each_path(trans, path)
if (path->should_be_locked &&
bch2_btree_path_relock(trans, path, _RET_IP_)) {
trace_trans_restart_relock(trans, _RET_IP_, path);
BUG_ON(!trans->restarted);
return -BCH_ERR_transaction_restart_relock;
}
return 0;
}
void bch2_trans_unlock(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
__bch2_btree_path_unlock(trans, path);
}
/* Btree iterator: */
#ifdef CONFIG_BCACHEFS_DEBUG
......@@ -2036,10 +1598,8 @@ struct btree_path *bch2_path_get(struct btree_trans *trans,
*/
locks_want = min(locks_want, BTREE_MAX_DEPTH);
if (locks_want > path->locks_want) {
path->locks_want = locks_want;
btree_path_get_locks(trans, path, true);
}
if (locks_want > path->locks_want)
bch2_btree_path_upgrade_noupgrade_sibs(trans, path, locks_want);
return path;
}
......
......@@ -181,12 +181,10 @@ struct bkey_i *bch2_btree_journal_peek_slot(struct btree_trans *,
#ifdef CONFIG_BCACHEFS_DEBUG
void bch2_trans_verify_paths(struct btree_trans *);
void bch2_trans_verify_locks(struct btree_trans *);
void bch2_assert_pos_locked(struct btree_trans *, enum btree_id,
struct bpos, bool);
#else
static inline void bch2_trans_verify_paths(struct btree_trans *trans) {}
static inline void bch2_trans_verify_locks(struct btree_trans *trans) {}
static inline void bch2_assert_pos_locked(struct btree_trans *trans, enum btree_id id,
struct bpos pos, bool key_cache) {}
#endif
......@@ -231,20 +229,6 @@ static inline int btree_trans_restart(struct btree_trans *trans, int err)
bool bch2_btree_node_upgrade(struct btree_trans *,
struct btree_path *, unsigned);
bool __bch2_btree_path_upgrade(struct btree_trans *,
struct btree_path *, unsigned);
static inline bool bch2_btree_path_upgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
new_locks_want = min(new_locks_want, BTREE_MAX_DEPTH);
return path->locks_want < new_locks_want
? __bch2_btree_path_upgrade(trans, path, new_locks_want)
: path->uptodate == BTREE_ITER_UPTODATE;
}
void __bch2_btree_path_downgrade(struct btree_trans *, struct btree_path *, unsigned);
static inline void bch2_btree_path_downgrade(struct btree_trans *trans,
......
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_locking.h"
#include "btree_types.h"
struct lock_class_key bch2_btree_node_lock_key;
/* Btree node locking: */
void bch2_btree_node_unlock_write(struct btree_trans *trans,
struct btree_path *path, struct btree *b)
{
bch2_btree_node_unlock_write_inlined(trans, path, b);
}
struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *trans,
struct btree_path *skip,
struct btree *b,
unsigned level)
{
struct btree_path *path;
struct six_lock_count ret = { 0, 0 };
if (IS_ERR_OR_NULL(b))
return ret;
trans_for_each_path(trans, path)
if (path != skip && path->l[level].b == b) {
ret.read += btree_node_read_locked(path, level);
ret.intent += btree_node_intent_locked(path, level);
}
return ret;
}
static inline void six_lock_readers_add(struct six_lock *lock, int nr)
{
if (!lock->readers)
atomic64_add(__SIX_VAL(read_lock, nr), &lock->state.counter);
else
this_cpu_add(*lock->readers, nr);
}
void __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree *b)
{
int readers = bch2_btree_node_lock_counts(trans, NULL, b, b->c.level).read;
/*
* Must drop our read locks before calling six_lock_write() -
* six_unlock() won't do wakeups until the reader count
* goes to 0, and it's safe because we have the node intent
* locked:
*/
six_lock_readers_add(&b->c.lock, -readers);
six_lock_write(&b->c.lock, NULL, NULL);
six_lock_readers_add(&b->c.lock, readers);
}
bool __bch2_btree_node_relock(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
struct btree *b = btree_path_node(path, level);
int want = __btree_lock_want(path, level);
if (!is_btree_node(path, level))
goto fail;
if (race_fault())
goto fail;
if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) ||
(btree_node_lock_seq_matches(path, b, level) &&
btree_node_lock_increment(trans, b, level, want))) {
mark_btree_node_locked(trans, path, level, want);
return true;
}
fail:
if (b != ERR_PTR(-BCH_ERR_no_btree_node_cached) &&
b != ERR_PTR(-BCH_ERR_no_btree_node_init))
trace_btree_node_relock_fail(trans, _RET_IP_, path, level);
return false;
}
bool bch2_btree_node_upgrade(struct btree_trans *trans,
struct btree_path *path, unsigned level)
{
struct btree *b = path->l[level].b;
if (!is_btree_node(path, level))
return false;
switch (btree_lock_want(path, level)) {
case BTREE_NODE_UNLOCKED:
BUG_ON(btree_node_locked(path, level));
return true;
case BTREE_NODE_READ_LOCKED:
BUG_ON(btree_node_intent_locked(path, level));
return bch2_btree_node_relock(trans, path, level);
case BTREE_NODE_INTENT_LOCKED:
break;
}
if (btree_node_intent_locked(path, level))
return true;
if (race_fault())
return false;
if (btree_node_locked(path, level)
? six_lock_tryupgrade(&b->c.lock)
: six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq))
goto success;
if (btree_node_lock_seq_matches(path, b, level) &&
btree_node_lock_increment(trans, b, level, BTREE_NODE_INTENT_LOCKED)) {
btree_node_unlock(trans, path, level);
goto success;
}
trace_btree_node_upgrade_fail(trans, _RET_IP_, path, level);
return false;
success:
mark_btree_node_intent_locked(trans, path, level);
return true;
}
static inline bool btree_path_get_locks(struct btree_trans *trans,
struct btree_path *path,
bool upgrade)
{
unsigned l = path->level;
int fail_idx = -1;
do {
if (!btree_path_node(path, l))
break;
if (!(upgrade
? bch2_btree_node_upgrade(trans, path, l)
: bch2_btree_node_relock(trans, path, l)))
fail_idx = l;
l++;
} while (l < path->locks_want);
/*
* When we fail to get a lock, we have to ensure that any child nodes
* can't be relocked so bch2_btree_path_traverse has to walk back up to
* the node that we failed to relock:
*/
if (fail_idx >= 0) {
__bch2_btree_path_unlock(trans, path);
btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
do {
path->l[fail_idx].b = upgrade
? ERR_PTR(-BCH_ERR_no_btree_node_upgrade)
: ERR_PTR(-BCH_ERR_no_btree_node_relock);
--fail_idx;
} while (fail_idx >= 0);
}
if (path->uptodate == BTREE_ITER_NEED_RELOCK)
path->uptodate = BTREE_ITER_UPTODATE;
bch2_trans_verify_locks(trans);
return path->uptodate < BTREE_ITER_NEED_RELOCK;
}
/* Slowpath: */
int __bch2_btree_node_lock(struct btree_trans *trans,
struct btree_path *path,
struct btree *b,
struct bpos pos, unsigned level,
enum six_lock_type type,
six_lock_should_sleep_fn should_sleep_fn, void *p,
unsigned long ip)
{
struct btree_path *linked;
unsigned reason;
/* Check if it's safe to block: */
trans_for_each_path(trans, linked) {
if (!linked->nodes_locked)
continue;
/*
* Can't block taking an intent lock if we have _any_ nodes read
* locked:
*
* - Our read lock blocks another thread with an intent lock on
* the same node from getting a write lock, and thus from
* dropping its intent lock
*
* - And the other thread may have multiple nodes intent locked:
* both the node we want to intent lock, and the node we
* already have read locked - deadlock:
*/
if (type == SIX_LOCK_intent &&
linked->nodes_locked != linked->nodes_intent_locked) {
reason = 1;
goto deadlock;
}
if (linked->btree_id != path->btree_id) {
if (linked->btree_id < path->btree_id)
continue;
reason = 3;
goto deadlock;
}
/*
* Within the same btree, non-cached paths come before cached
* paths:
*/
if (linked->cached != path->cached) {
if (!linked->cached)
continue;
reason = 4;
goto deadlock;
}
/*
* Interior nodes must be locked before their descendants: if
* another path has possible descendants locked of the node
* we're about to lock, it must have the ancestors locked too:
*/
if (level > __fls(linked->nodes_locked)) {
reason = 5;
goto deadlock;
}
/* Must lock btree nodes in key order: */
if (btree_node_locked(linked, level) &&
bpos_cmp(pos, btree_node_pos((void *) linked->l[level].b,
linked->cached)) <= 0) {
reason = 7;
goto deadlock;
}
}
return btree_node_lock_type(trans, path, b, pos, level,
type, should_sleep_fn, p);
deadlock:
trace_trans_restart_would_deadlock(trans, ip, reason, linked, path, &pos);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock);
}
/* Btree iterator locking: */
#ifdef CONFIG_BCACHEFS_DEBUG
void bch2_btree_path_verify_locks(struct btree_path *path)
{
unsigned l;
if (!path->nodes_locked) {
BUG_ON(path->uptodate == BTREE_ITER_UPTODATE &&
btree_path_node(path, path->level));
return;
}
for (l = 0; btree_path_node(path, l); l++)
BUG_ON(btree_lock_want(path, l) !=
btree_node_locked_type(path, l));
}
void bch2_trans_verify_locks(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
bch2_btree_path_verify_locks(path);
}
#endif
/* Btree path locking: */
/*
* Only for btree_cache.c - only relocks intent locks
*/
int bch2_btree_path_relock_intent(struct btree_trans *trans,
struct btree_path *path)
{
unsigned l;
for (l = path->level;
l < path->locks_want && btree_path_node(path, l);
l++) {
if (!bch2_btree_node_relock(trans, path, l)) {
__bch2_btree_path_unlock(trans, path);
btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
trace_trans_restart_relock_path_intent(trans, _RET_IP_, path);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path_intent);
}
}
return 0;
}
__flatten
bool bch2_btree_path_relock_norestart(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
return btree_path_get_locks(trans, path, false);
}
int __bch2_btree_path_relock(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
if (!bch2_btree_path_relock_norestart(trans, path, trace_ip)) {
trace_trans_restart_relock_path(trans, trace_ip, path);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path);
}
return 0;
}
__flatten
bool bch2_btree_path_upgrade_norestart(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
return btree_path_get_locks(trans, path, true);
}
bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
EBUG_ON(path->locks_want >= new_locks_want);
path->locks_want = new_locks_want;
return btree_path_get_locks(trans, path, true);
}
bool __bch2_btree_path_upgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
struct btree_path *linked;
if (bch2_btree_path_upgrade_noupgrade_sibs(trans, path, new_locks_want))
return true;
/*
* XXX: this is ugly - we'd prefer to not be mucking with other
* iterators in the btree_trans here.
*
* On failure to upgrade the iterator, setting iter->locks_want and
* calling get_locks() is sufficient to make bch2_btree_path_traverse()
* get the locks we want on transaction restart.
*
* But if this iterator was a clone, on transaction restart what we did
* to this iterator isn't going to be preserved.
*
* Possibly we could add an iterator field for the parent iterator when
* an iterator is a copy - for now, we'll just upgrade any other
* iterators with the same btree id.
*
* The code below used to be needed to ensure ancestor nodes get locked
* before interior nodes - now that's handled by
* bch2_btree_path_traverse_all().
*/
if (!path->cached && !trans->in_traverse_all)
trans_for_each_path(trans, linked)
if (linked != path &&
linked->cached == path->cached &&
linked->btree_id == path->btree_id &&
linked->locks_want < new_locks_want) {
linked->locks_want = new_locks_want;
btree_path_get_locks(trans, linked, true);
}
return false;
}
void __bch2_btree_path_downgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
unsigned l;
EBUG_ON(path->locks_want < new_locks_want);
path->locks_want = new_locks_want;
while (path->nodes_locked &&
(l = __fls(path->nodes_locked)) >= path->locks_want) {
if (l > path->level) {
btree_node_unlock(trans, path, l);
} else {
if (btree_node_intent_locked(path, l)) {
six_lock_downgrade(&path->l[l].b->c.lock);
path->nodes_intent_locked ^= 1 << l;
}
break;
}
}
bch2_btree_path_verify_locks(path);
}
void bch2_trans_downgrade(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
bch2_btree_path_downgrade(trans, path);
}
/* Btree transaction locking: */
int bch2_trans_relock(struct btree_trans *trans)
{
struct btree_path *path;
if (unlikely(trans->restarted))
return -BCH_ERR_transaction_restart_relock;
trans_for_each_path(trans, path)
if (path->should_be_locked &&
bch2_btree_path_relock(trans, path, _RET_IP_)) {
trace_trans_restart_relock(trans, _RET_IP_, path);
BUG_ON(!trans->restarted);
return -BCH_ERR_transaction_restart_relock;
}
return 0;
}
void bch2_trans_unlock(struct btree_trans *trans)
{
struct btree_path *path;
trans_for_each_path(trans, path)
__bch2_btree_path_unlock(trans, path);
}
......@@ -13,6 +13,8 @@
#include "btree_iter.h"
#include "six.h"
extern struct lock_class_key bch2_btree_node_lock_key;
static inline bool is_btree_node(struct btree_path *path, unsigned l)
{
return l < BTREE_MAX_DEPTH && !IS_ERR_OR_NULL(path->l[l].b);
......@@ -300,6 +302,22 @@ static inline void bch2_btree_node_lock_write(struct btree_trans *trans,
__bch2_btree_node_lock_write(trans, b);
}
bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *,
struct btree_path *, unsigned);
bool __bch2_btree_path_upgrade(struct btree_trans *,
struct btree_path *, unsigned);
static inline bool bch2_btree_path_upgrade(struct btree_trans *trans,
struct btree_path *path,
unsigned new_locks_want)
{
new_locks_want = min(new_locks_want, BTREE_MAX_DEPTH);
return path->locks_want < new_locks_want
? __bch2_btree_path_upgrade(trans, path, new_locks_want)
: path->uptodate == BTREE_ITER_UPTODATE;
}
static inline void btree_path_set_should_be_locked(struct btree_path *path)
{
EBUG_ON(!btree_node_locked(path, path->level));
......@@ -326,4 +344,27 @@ static inline void btree_path_set_level_up(struct btree_trans *trans,
struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *,
struct btree_path *, struct btree *, unsigned);
bool bch2_btree_path_relock_norestart(struct btree_trans *,
struct btree_path *, unsigned long);
int __bch2_btree_path_relock(struct btree_trans *,
struct btree_path *, unsigned long);
static inline int bch2_btree_path_relock(struct btree_trans *trans,
struct btree_path *path, unsigned long trace_ip)
{
return btree_node_locked(path, path->level)
? 0
: __bch2_btree_path_relock(trans, path, trace_ip);
}
int bch2_btree_path_relock(struct btree_trans *, struct btree_path *, unsigned long);
#ifdef CONFIG_BCACHEFS_DEBUG
void bch2_btree_path_verify_locks(struct btree_path *);
void bch2_trans_verify_locks(struct btree_trans *);
#else
static inline void bch2_btree_path_verify_locks(struct btree_path *path) {}
static inline void bch2_trans_verify_locks(struct btree_trans *trans) {}
#endif
#endif /* _BCACHEFS_BTREE_LOCKING_H */
......@@ -336,6 +336,14 @@ struct bkey_cached {
struct bkey_i *k;
};
static inline struct bpos btree_node_pos(struct btree_bkey_cached_common *b,
bool cached)
{
return !cached
? container_of(b, struct btree, c)->key.k.p
: container_of(b, struct bkey_cached, c)->key.pos;
}
struct btree_insert_entry {
unsigned flags;
u8 bkey_type;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment