Commit d49278e3 authored by Per Forlin's avatar Per Forlin Committed by Dan Williams

dmaengine: dma40: Add support to split up large elements

The maximum transfer size of the stedma40 is (64k-1) x data-width.
If the transfer size of one element exceeds this limit
the job is split up and sent as linked transfer.
Signed-off-by: default avatarPer Forlin <per.forlin@linaro.org>
Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
parent e8a7e48b
...@@ -13,6 +13,14 @@ ...@@ -13,6 +13,14 @@
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
/*
* Maxium size for a single dma descriptor
* Size is limited to 16 bits.
* Size is in the units of addr-widths (1,2,4,8 bytes)
* Larger transfers will be split up to multiple linked desc
*/
#define STEDMA40_MAX_SEG_SIZE 0xFFFF
/* dev types for memcpy */ /* dev types for memcpy */
#define STEDMA40_DEV_DST_MEMORY (-1) #define STEDMA40_DEV_DST_MEMORY (-1)
#define STEDMA40_DEV_SRC_MEMORY (-1) #define STEDMA40_DEV_SRC_MEMORY (-1)
......
This diff is collapsed.
/* /*
* Copyright (C) ST-Ericsson SA 2007-2010 * Copyright (C) ST-Ericsson SA 2007-2010
* Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
* License terms: GNU General Public License (GPL) version 2 * License terms: GNU General Public License (GPL) version 2
*/ */
...@@ -122,15 +122,15 @@ void d40_phy_cfg(struct stedma40_chan_cfg *cfg, ...@@ -122,15 +122,15 @@ void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
*dst_cfg = dst; *dst_cfg = dst;
} }
int d40_phy_fill_lli(struct d40_phy_lli *lli, static int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data, dma_addr_t data,
u32 data_size, u32 data_size,
int psize, int psize,
dma_addr_t next_lli, dma_addr_t next_lli,
u32 reg_cfg, u32 reg_cfg,
bool term_int, bool term_int,
u32 data_width, u32 data_width,
bool is_device) bool is_device)
{ {
int num_elems; int num_elems;
...@@ -139,13 +139,6 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli, ...@@ -139,13 +139,6 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli,
else else
num_elems = 2 << psize; num_elems = 2 << psize;
/*
* Size is 16bit. data_width is 8, 16, 32 or 64 bit
* Block large than 64 KiB must be split.
*/
if (data_size > (0xffff << data_width))
return -EINVAL;
/* Must be aligned */ /* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width)) if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL; return -EINVAL;
...@@ -187,55 +180,118 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli, ...@@ -187,55 +180,118 @@ int d40_phy_fill_lli(struct d40_phy_lli *lli,
return 0; return 0;
} }
static int d40_seg_size(int size, int data_width1, int data_width2)
{
u32 max_w = max(data_width1, data_width2);
u32 min_w = min(data_width1, data_width2);
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
if (seg_max > STEDMA40_MAX_SEG_SIZE)
seg_max -= (1 << max_w);
if (size <= seg_max)
return size;
if (size <= 2 * seg_max)
return ALIGN(size / 2, 1 << max_w);
return seg_max;
}
struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t addr,
u32 size,
int psize,
dma_addr_t lli_phys,
u32 reg_cfg,
bool term_int,
u32 data_width1,
u32 data_width2,
bool is_device)
{
int err;
dma_addr_t next = lli_phys;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
if (term_int && size_rest == 0)
next = 0;
else
next = ALIGN(next + sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
err = d40_phy_fill_lli(lli,
addr,
size_seg,
psize,
next,
reg_cfg,
!next,
data_width1,
is_device);
if (err)
goto err;
lli++;
if (!is_device)
addr += size_seg;
} while (size_rest);
return lli;
err:
return NULL;
}
int d40_phy_sg_to_lli(struct scatterlist *sg, int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
dma_addr_t target, dma_addr_t target,
struct d40_phy_lli *lli, struct d40_phy_lli *lli_sg,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width1,
u32 data_width2,
int psize) int psize)
{ {
int total_size = 0; int total_size = 0;
int i; int i;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
dma_addr_t next_lli_phys;
dma_addr_t dst; dma_addr_t dst;
int err = 0; struct d40_phy_lli *lli = lli_sg;
dma_addr_t l_phys = lli_phys;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
/* If this scatter list entry is the last one, no next link */
if (sg_len - 1 == i)
next_lli_phys = 0;
else
next_lli_phys = ALIGN(lli_phys + (i + 1) *
sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
if (target) if (target)
dst = target; dst = target;
else else
dst = sg_phys(current_sg); dst = sg_phys(current_sg);
err = d40_phy_fill_lli(&lli[i], l_phys = ALIGN(lli_phys + (lli - lli_sg) *
dst, sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
sg_dma_len(current_sg),
psize, lli = d40_phy_buf_to_lli(lli,
next_lli_phys, dst,
reg_cfg, sg_dma_len(current_sg),
!next_lli_phys, psize,
data_width, l_phys,
target == dst); reg_cfg,
if (err) sg_len - 1 == i,
goto err; data_width1,
data_width2,
target == dst);
if (lli == NULL)
return -EINVAL;
} }
return total_size; return total_size;
err:
return err;
} }
...@@ -315,17 +371,20 @@ void d40_log_lli_lcla_write(struct d40_log_lli *lcla, ...@@ -315,17 +371,20 @@ void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
writel(lli_dst->lcsp13, &lcla[1].lcsp13); writel(lli_dst->lcsp13, &lcla[1].lcsp13);
} }
void d40_log_fill_lli(struct d40_log_lli *lli, static void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size, dma_addr_t data, u32 data_size,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width,
bool addr_inc) bool addr_inc)
{ {
lli->lcsp13 = reg_cfg; lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */ /* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) << lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
/* 16 LSBs address of the current element */ /* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */ /* 16 MSBs address of the current element */
...@@ -348,55 +407,94 @@ int d40_log_sg_to_dev(struct scatterlist *sg, ...@@ -348,55 +407,94 @@ int d40_log_sg_to_dev(struct scatterlist *sg,
int total_size = 0; int total_size = 0;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
struct d40_log_lli *lli_src = lli->src;
struct d40_log_lli *lli_dst = lli->dst;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
if (direction == DMA_TO_DEVICE) { if (direction == DMA_TO_DEVICE) {
d40_log_fill_lli(&lli->src[i], lli_src =
sg_phys(current_sg), d40_log_buf_to_lli(lli_src,
sg_dma_len(current_sg), sg_phys(current_sg),
lcsp->lcsp1, src_data_width, sg_dma_len(current_sg),
true); lcsp->lcsp1, src_data_width,
d40_log_fill_lli(&lli->dst[i], dst_data_width,
dev_addr, true);
sg_dma_len(current_sg), lli_dst =
lcsp->lcsp3, dst_data_width, d40_log_buf_to_lli(lli_dst,
false); dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp3, dst_data_width,
src_data_width,
false);
} else { } else {
d40_log_fill_lli(&lli->dst[i], lli_dst =
sg_phys(current_sg), d40_log_buf_to_lli(lli_dst,
sg_dma_len(current_sg), sg_phys(current_sg),
lcsp->lcsp3, dst_data_width, sg_dma_len(current_sg),
true); lcsp->lcsp3, dst_data_width,
d40_log_fill_lli(&lli->src[i], src_data_width,
dev_addr, true);
sg_dma_len(current_sg), lli_src =
lcsp->lcsp1, src_data_width, d40_log_buf_to_lli(lli_src,
false); dev_addr,
sg_dma_len(current_sg),
lcsp->lcsp1, src_data_width,
dst_data_width,
false);
} }
} }
return total_size; return total_size;
} }
struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t addr,
int size,
u32 lcsp13, /* src or dst*/
u32 data_width1,
u32 data_width2,
bool addr_inc)
{
struct d40_log_lli *lli = lli_sg;
int size_rest = size;
int size_seg = 0;
do {
size_seg = d40_seg_size(size_rest, data_width1, data_width2);
size_rest -= size_seg;
d40_log_fill_lli(lli,
addr,
size_seg,
lcsp13, data_width1,
addr_inc);
if (addr_inc)
addr += size_seg;
lli++;
} while (size_rest);
return lli;
}
int d40_log_sg_to_lli(struct scatterlist *sg, int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width) u32 data_width1, u32 data_width2)
{ {
int total_size = 0; int total_size = 0;
struct scatterlist *current_sg = sg; struct scatterlist *current_sg = sg;
int i; int i;
struct d40_log_lli *lli = lli_sg;
for_each_sg(sg, current_sg, sg_len, i) { for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg); total_size += sg_dma_len(current_sg);
lli = d40_log_buf_to_lli(lli,
d40_log_fill_lli(&lli_sg[i], sg_phys(current_sg),
sg_phys(current_sg), sg_dma_len(current_sg),
sg_dma_len(current_sg), lcsp13,
lcsp13, data_width, data_width1, data_width2, true);
true);
} }
return total_size; return total_size;
} }
...@@ -292,18 +292,20 @@ int d40_phy_sg_to_lli(struct scatterlist *sg, ...@@ -292,18 +292,20 @@ int d40_phy_sg_to_lli(struct scatterlist *sg,
struct d40_phy_lli *lli, struct d40_phy_lli *lli,
dma_addr_t lli_phys, dma_addr_t lli_phys,
u32 reg_cfg, u32 reg_cfg,
u32 data_width, u32 data_width1,
u32 data_width2,
int psize); int psize);
int d40_phy_fill_lli(struct d40_phy_lli *lli, struct d40_phy_lli *d40_phy_buf_to_lli(struct d40_phy_lli *lli,
dma_addr_t data, dma_addr_t data,
u32 data_size, u32 data_size,
int psize, int psize,
dma_addr_t next_lli, dma_addr_t next_lli,
u32 reg_cfg, u32 reg_cfg,
bool term_int, bool term_int,
u32 data_width, u32 data_width1,
bool is_device); u32 data_width2,
bool is_device);
void d40_phy_lli_write(void __iomem *virtbase, void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num, u32 phy_chan_num,
...@@ -312,12 +314,12 @@ void d40_phy_lli_write(void __iomem *virtbase, ...@@ -312,12 +314,12 @@ void d40_phy_lli_write(void __iomem *virtbase,
/* Logical channels */ /* Logical channels */
void d40_log_fill_lli(struct d40_log_lli *lli, struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
dma_addr_t data, dma_addr_t addr,
u32 data_size, int size,
u32 reg_cfg, u32 lcsp13, /* src or dst*/
u32 data_width, u32 data_width1, u32 data_width2,
bool addr_inc); bool addr_inc);
int d40_log_sg_to_dev(struct scatterlist *sg, int d40_log_sg_to_dev(struct scatterlist *sg,
int sg_len, int sg_len,
...@@ -332,7 +334,7 @@ int d40_log_sg_to_lli(struct scatterlist *sg, ...@@ -332,7 +334,7 @@ int d40_log_sg_to_lli(struct scatterlist *sg,
int sg_len, int sg_len,
struct d40_log_lli *lli_sg, struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/ u32 lcsp13, /* src or dst*/
u32 data_width); u32 data_width1, u32 data_width2);
void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lli_dst, struct d40_log_lli *lli_dst,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment