Commit d5c8725c authored by David S. Miller's avatar David S. Miller

Merge tag 'linux-can-next-for-5.17-20220108' of...

Merge tag 'linux-can-next-for-5.17-20220108' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2022-01-08

this is a pull request of 22 patches for net-next/master.

The first patch is by Tom Rix and fixes an uninitialized variable in
the janz-ican3 driver (introduced in linux-can-next-for-5.17-20220105).

The next 13 patches are by my and target the mcp251xfd driver. First
several cleanup patches, then the driver is prepared for the upcoming
ethtool ring parameter and IRQ coalescing support, which is added in a
later pull request.

The remaining 8 patches are by Dario Binacchi and me and enhance the
flexcan driver. The driver is moved into a sub directory. An ethtool
private flag is added to optionally disable CAN RTR frame reception,
to make use of more RX buffers. The resulting RX buffer configuration
can be read by ethtool ring parameter support. Finally documentation
for the ethtool private flag is added to the
Documentation/networking/device_drivers/can directory.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 82192cb4 bc3897f7
.. SPDX-License-Identifier: GPL-2.0+
=============================
Flexcan CAN Controller driver
=============================
Authors: Marc Kleine-Budde <mkl@pengutronix.de>,
Dario Binacchi <dario.binacchi@amarula.solutions.com>
On/off RTR frames reception
===========================
For most flexcan IP cores the driver supports 2 RX modes:
- FIFO
- mailbox
The older flexcan cores (integrated into the i.MX25, i.MX28, i.MX35
and i.MX53 SOCs) only receive RTR frames if the controller is
configured for RX-FIFO mode.
The RX FIFO mode uses a hardware FIFO with a depth of 6 CAN frames,
while the mailbox mode uses a software FIFO with a depth of up to 62
CAN frames. With the help of the bigger buffer, the mailbox mode
performs better under high system load situations.
As reception of RTR frames is part of the CAN standard, all flexcan
cores come up in a mode where RTR reception is possible.
With the "rx-rtr" private flag the ability to receive RTR frames can
be waived at the expense of losing the ability to receive RTR
messages. This trade off is beneficial in certain use cases.
"rx-rtr" on
Receive RTR frames. (default)
The CAN controller can and will receive RTR frames.
On some IP cores the controller cannot receive RTR frames in the
more performant "RX mailbox" mode and will use "RX FIFO" mode
instead.
"rx-rtr" off
Waive ability to receive RTR frames. (not supported on all IP cores)
This mode activates the "RX mailbox mode" for better performance, on
some IP cores RTR frames cannot be received anymore.
The setting can only be changed if the interface is down::
ip link set dev can0 down
ethtool --set-priv-flags can0 rx-rtr {off|on}
ip link set dev can0 up
.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
Controller Area Network (CAN) Device Drivers
============================================
Device drivers for CAN devices.
Contents:
.. toctree::
:maxdepth: 2
freescale/flexcan
.. only:: subproject and html
Indices
=======
* :ref:`genindex`
...@@ -11,6 +11,7 @@ Contents: ...@@ -11,6 +11,7 @@ Contents:
appletalk/index appletalk/index
atm/index atm/index
cable/index cable/index
can/index
cellular/index cellular/index
ethernet/index ethernet/index
fddi/index fddi/index
......
...@@ -16,7 +16,7 @@ obj-y += softing/ ...@@ -16,7 +16,7 @@ obj-y += softing/
obj-$(CONFIG_CAN_AT91) += at91_can.o obj-$(CONFIG_CAN_AT91) += at91_can.o
obj-$(CONFIG_CAN_CC770) += cc770/ obj-$(CONFIG_CAN_CC770) += cc770/
obj-$(CONFIG_CAN_C_CAN) += c_can/ obj-$(CONFIG_CAN_C_CAN) += c_can/
obj-$(CONFIG_CAN_FLEXCAN) += flexcan.o obj-$(CONFIG_CAN_FLEXCAN) += flexcan/
obj-$(CONFIG_CAN_GRCAN) += grcan.o obj-$(CONFIG_CAN_GRCAN) += grcan.o
obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd/ obj-$(CONFIG_CAN_IFI_CANFD) += ifi_canfd/
obj-$(CONFIG_CAN_JANZ_ICAN3) += janz-ican3.o obj-$(CONFIG_CAN_JANZ_ICAN3) += janz-ican3.o
......
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_CAN_FLEXCAN) += flexcan.o
flexcan-objs :=
flexcan-objs += flexcan-core.o
flexcan-objs += flexcan-ethtool.o
...@@ -15,7 +15,6 @@ ...@@ -15,7 +15,6 @@
#include <linux/can/dev.h> #include <linux/can/dev.h>
#include <linux/can/error.h> #include <linux/can/error.h>
#include <linux/can/led.h> #include <linux/can/led.h>
#include <linux/can/rx-offload.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/firmware/imx/sci.h> #include <linux/firmware/imx/sci.h>
...@@ -33,6 +32,8 @@ ...@@ -33,6 +32,8 @@
#include <linux/regmap.h> #include <linux/regmap.h>
#include <linux/regulator/consumer.h> #include <linux/regulator/consumer.h>
#include "flexcan.h"
#define DRV_NAME "flexcan" #define DRV_NAME "flexcan"
/* 8 for RX fifo and 2 error handling */ /* 8 for RX fifo and 2 error handling */
...@@ -173,9 +174,9 @@ ...@@ -173,9 +174,9 @@
/* FLEXCAN interrupt flag register (IFLAG) bits */ /* FLEXCAN interrupt flag register (IFLAG) bits */
/* Errata ERR005829 step7: Reserve first valid MB */ /* Errata ERR005829 step7: Reserve first valid MB */
#define FLEXCAN_TX_MB_RESERVED_OFF_FIFO 8 #define FLEXCAN_TX_MB_RESERVED_RX_FIFO 8
#define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP 0 #define FLEXCAN_TX_MB_RESERVED_RX_MAILBOX 0
#define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST (FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP + 1) #define FLEXCAN_RX_MB_RX_MAILBOX_FIRST (FLEXCAN_TX_MB_RESERVED_RX_MAILBOX + 1)
#define FLEXCAN_IFLAG_MB(x) BIT_ULL(x) #define FLEXCAN_IFLAG_MB(x) BIT_ULL(x)
#define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7) #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
#define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6) #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
...@@ -206,53 +207,6 @@ ...@@ -206,53 +207,6 @@
#define FLEXCAN_TIMEOUT_US (250) #define FLEXCAN_TIMEOUT_US (250)
/* FLEXCAN hardware feature flags
*
* Below is some version info we got:
* SOC Version IP-Version Glitch- [TR]WRN_INT IRQ Err Memory err RTR rece- FD Mode MB
* Filter? connected? Passive detection ption in MB Supported?
* MCF5441X FlexCAN2 ? no yes no no yes no 16
* MX25 FlexCAN2 03.00.00.00 no no no no no no 64
* MX28 FlexCAN2 03.00.04.00 yes yes no no no no 64
* MX35 FlexCAN2 03.00.00.00 no no no no no no 64
* MX53 FlexCAN2 03.00.00.00 yes no no no no no 64
* MX6s FlexCAN3 10.00.12.00 yes yes no no yes no 64
* MX8QM FlexCAN3 03.00.23.00 yes yes no no yes yes 64
* MX8MP FlexCAN3 03.00.17.01 yes yes no yes yes yes 64
* VF610 FlexCAN3 ? no yes no yes yes? no 64
* LS1021A FlexCAN2 03.00.04.00 no yes no no yes no 64
* LX2160A FlexCAN3 03.00.23.00 no yes no yes yes yes 64
*
* Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
*/
/* [TR]WRN_INT not connected */
#define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1)
/* Disable RX FIFO Global mask */
#define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2)
/* Enable EACEN and RRS bit in ctrl2 */
#define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3)
/* Disable non-correctable errors interrupt and freeze mode */
#define FLEXCAN_QUIRK_DISABLE_MECR BIT(4)
/* Use timestamp based offloading */
#define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5)
/* No interrupt for error passive */
#define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6)
/* default to BE register access */
#define FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN BIT(7)
/* Setup stop mode with GPR to support wakeup */
#define FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR BIT(8)
/* Support CAN-FD mode */
#define FLEXCAN_QUIRK_SUPPORT_FD BIT(9)
/* support memory detection and correction */
#define FLEXCAN_QUIRK_SUPPORT_ECC BIT(10)
/* Setup stop mode with SCU firmware to support wakeup */
#define FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW BIT(11)
/* Setup 3 separate interrupts, main, boff and err */
#define FLEXCAN_QUIRK_NR_IRQ_3 BIT(12)
/* Setup 16 mailboxes */
#define FLEXCAN_QUIRK_NR_MB_16 BIT(13)
/* Structure of the message buffer */ /* Structure of the message buffer */
struct flexcan_mb { struct flexcan_mb {
u32 can_ctrl; u32 can_ctrl;
...@@ -339,106 +293,80 @@ struct flexcan_regs { ...@@ -339,106 +293,80 @@ struct flexcan_regs {
static_assert(sizeof(struct flexcan_regs) == 0x4 * 18 + 0xfb8); static_assert(sizeof(struct flexcan_regs) == 0x4 * 18 + 0xfb8);
struct flexcan_devtype_data {
u32 quirks; /* quirks needed for different IP cores */
};
struct flexcan_stop_mode {
struct regmap *gpr;
u8 req_gpr;
u8 req_bit;
};
struct flexcan_priv {
struct can_priv can;
struct can_rx_offload offload;
struct device *dev;
struct flexcan_regs __iomem *regs;
struct flexcan_mb __iomem *tx_mb;
struct flexcan_mb __iomem *tx_mb_reserved;
u8 tx_mb_idx;
u8 mb_count;
u8 mb_size;
u8 clk_src; /* clock source of CAN Protocol Engine */
u8 scu_idx;
u64 rx_mask;
u64 tx_mask;
u32 reg_ctrl_default;
struct clk *clk_ipg;
struct clk *clk_per;
const struct flexcan_devtype_data *devtype_data;
struct regulator *reg_xceiver;
struct flexcan_stop_mode stm;
int irq_boff;
int irq_err;
/* IPC handle when setup stop mode by System Controller firmware(scfw) */
struct imx_sc_ipc *sc_ipc_handle;
/* Read and Write APIs */
u32 (*read)(void __iomem *addr);
void (*write)(u32 val, void __iomem *addr);
};
static const struct flexcan_devtype_data fsl_mcf5441x_devtype_data = { static const struct flexcan_devtype_data fsl_mcf5441x_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE | .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_NR_IRQ_3 | FLEXCAN_QUIRK_NR_MB_16, FLEXCAN_QUIRK_NR_IRQ_3 | FLEXCAN_QUIRK_NR_MB_16 |
FLEXCAN_QUIRK_SUPPPORT_RX_FIFO,
}; };
static const struct flexcan_devtype_data fsl_p1010_devtype_data = { static const struct flexcan_devtype_data fsl_p1010_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE | .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN, FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_FIFO,
}; };
static const struct flexcan_devtype_data fsl_imx25_devtype_data = { static const struct flexcan_devtype_data fsl_imx25_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE | .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
FLEXCAN_QUIRK_BROKEN_PERR_STATE, FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_FIFO,
}; };
static const struct flexcan_devtype_data fsl_imx28_devtype_data = { static const struct flexcan_devtype_data fsl_imx28_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE, .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_FIFO,
}; };
static const struct flexcan_devtype_data fsl_imx6q_devtype_data = { static const struct flexcan_devtype_data fsl_imx6q_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR, FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static const struct flexcan_devtype_data fsl_imx8qm_devtype_data = { static const struct flexcan_devtype_data fsl_imx8qm_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW, FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static struct flexcan_devtype_data fsl_imx8mp_devtype_data = { static struct flexcan_devtype_data fsl_imx8mp_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR |
FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC, FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static const struct flexcan_devtype_data fsl_vf610_devtype_data = { static const struct flexcan_devtype_data fsl_vf610_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_ECC, FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_ECC |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = { static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP, FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static const struct flexcan_devtype_data fsl_lx2160a_r1_devtype_data = { static const struct flexcan_devtype_data fsl_lx2160a_r1_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_SUPPORT_FD |
FLEXCAN_QUIRK_SUPPORT_ECC, FLEXCAN_QUIRK_SUPPORT_ECC |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR,
}; };
static const struct can_bittiming_const flexcan_bittiming_const = { static const struct can_bittiming_const flexcan_bittiming_const = {
...@@ -600,7 +528,7 @@ static inline int flexcan_enter_stop_mode(struct flexcan_priv *priv) ...@@ -600,7 +528,7 @@ static inline int flexcan_enter_stop_mode(struct flexcan_priv *priv)
priv->write(reg_mcr, &regs->mcr); priv->write(reg_mcr, &regs->mcr);
/* enable stop request */ /* enable stop request */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) {
ret = flexcan_stop_mode_enable_scfw(priv, true); ret = flexcan_stop_mode_enable_scfw(priv, true);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -619,7 +547,7 @@ static inline int flexcan_exit_stop_mode(struct flexcan_priv *priv) ...@@ -619,7 +547,7 @@ static inline int flexcan_exit_stop_mode(struct flexcan_priv *priv)
int ret; int ret;
/* remove stop request */ /* remove stop request */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) {
ret = flexcan_stop_mode_enable_scfw(priv, false); ret = flexcan_stop_mode_enable_scfw(priv, false);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -1022,7 +950,7 @@ static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload, ...@@ -1022,7 +950,7 @@ static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload,
mb = flexcan_get_mb(priv, n); mb = flexcan_get_mb(priv, n);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
u32 code; u32 code;
do { do {
...@@ -1087,7 +1015,7 @@ static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload, ...@@ -1087,7 +1015,7 @@ static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload,
} }
mark_as_read: mark_as_read:
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
flexcan_write64(priv, FLEXCAN_IFLAG_MB(n), &regs->iflag1); flexcan_write64(priv, FLEXCAN_IFLAG_MB(n), &regs->iflag1);
else else
priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1); priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1);
...@@ -1113,7 +1041,7 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id) ...@@ -1113,7 +1041,7 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id)
enum can_state last_state = priv->can.state; enum can_state last_state = priv->can.state;
/* reception interrupt */ /* reception interrupt */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
u64 reg_iflag_rx; u64 reg_iflag_rx;
int ret; int ret;
...@@ -1173,7 +1101,7 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id) ...@@ -1173,7 +1101,7 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id)
/* state change interrupt or broken error state quirk fix is enabled */ /* state change interrupt or broken error state quirk fix is enabled */
if ((reg_esr & FLEXCAN_ESR_ERR_STATE) || if ((reg_esr & FLEXCAN_ESR_ERR_STATE) ||
(priv->devtype_data->quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE | (priv->devtype_data.quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE |
FLEXCAN_QUIRK_BROKEN_PERR_STATE))) FLEXCAN_QUIRK_BROKEN_PERR_STATE)))
flexcan_irq_state(dev, reg_esr); flexcan_irq_state(dev, reg_esr);
...@@ -1195,11 +1123,11 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id) ...@@ -1195,11 +1123,11 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id)
* (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled
*/ */
if ((last_state != priv->can.state) && if ((last_state != priv->can.state) &&
(priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) && (priv->devtype_data.quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) &&
!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
switch (priv->can.state) { switch (priv->can.state) {
case CAN_STATE_ERROR_ACTIVE: case CAN_STATE_ERROR_ACTIVE:
if (priv->devtype_data->quirks & if (priv->devtype_data.quirks &
FLEXCAN_QUIRK_BROKEN_WERR_STATE) FLEXCAN_QUIRK_BROKEN_WERR_STATE)
flexcan_error_irq_enable(priv); flexcan_error_irq_enable(priv);
else else
...@@ -1423,26 +1351,26 @@ static int flexcan_rx_offload_setup(struct net_device *dev) ...@@ -1423,26 +1351,26 @@ static int flexcan_rx_offload_setup(struct net_device *dev)
else else
priv->mb_size = sizeof(struct flexcan_mb) + CAN_MAX_DLEN; priv->mb_size = sizeof(struct flexcan_mb) + CAN_MAX_DLEN;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_NR_MB_16) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_MB_16)
priv->mb_count = 16; priv->mb_count = 16;
else else
priv->mb_count = (sizeof(priv->regs->mb[0]) / priv->mb_size) + priv->mb_count = (sizeof(priv->regs->mb[0]) / priv->mb_size) +
(sizeof(priv->regs->mb[1]) / priv->mb_size); (sizeof(priv->regs->mb[1]) / priv->mb_size);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
priv->tx_mb_reserved = priv->tx_mb_reserved =
flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP); flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_RX_MAILBOX);
else else
priv->tx_mb_reserved = priv->tx_mb_reserved =
flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_FIFO); flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_RX_FIFO);
priv->tx_mb_idx = priv->mb_count - 1; priv->tx_mb_idx = priv->mb_count - 1;
priv->tx_mb = flexcan_get_mb(priv, priv->tx_mb_idx); priv->tx_mb = flexcan_get_mb(priv, priv->tx_mb_idx);
priv->tx_mask = FLEXCAN_IFLAG_MB(priv->tx_mb_idx); priv->tx_mask = FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
priv->offload.mailbox_read = flexcan_mailbox_read; priv->offload.mailbox_read = flexcan_mailbox_read;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST; priv->offload.mb_first = FLEXCAN_RX_MB_RX_MAILBOX_FIRST;
priv->offload.mb_last = priv->mb_count - 2; priv->offload.mb_last = priv->mb_count - 2;
priv->rx_mask = GENMASK_ULL(priv->offload.mb_last, priv->rx_mask = GENMASK_ULL(priv->offload.mb_last,
...@@ -1506,7 +1434,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1506,7 +1434,7 @@ static int flexcan_chip_start(struct net_device *dev)
if (err) if (err)
goto out_chip_disable; goto out_chip_disable;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_ECC) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SUPPORT_ECC)
flexcan_ram_init(dev); flexcan_ram_init(dev);
flexcan_set_bittiming(dev); flexcan_set_bittiming(dev);
...@@ -1532,10 +1460,10 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1532,10 +1460,10 @@ static int flexcan_chip_start(struct net_device *dev)
/* MCR /* MCR
* *
* FIFO: * FIFO:
* - disable for timestamp mode * - disable for mailbox mode
* - enable for FIFO mode * - enable for FIFO mode
*/ */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
reg_mcr &= ~FLEXCAN_MCR_FEN; reg_mcr &= ~FLEXCAN_MCR_FEN;
else else
reg_mcr |= FLEXCAN_MCR_FEN; reg_mcr |= FLEXCAN_MCR_FEN;
...@@ -1586,7 +1514,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1586,7 +1514,7 @@ static int flexcan_chip_start(struct net_device *dev)
* on most Flexcan cores, too. Otherwise we don't get * on most Flexcan cores, too. Otherwise we don't get
* any error warning or passive interrupts. * any error warning or passive interrupts.
*/ */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE || if (priv->devtype_data.quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE ||
priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
reg_ctrl |= FLEXCAN_CTRL_ERR_MSK; reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
else else
...@@ -1599,7 +1527,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1599,7 +1527,7 @@ static int flexcan_chip_start(struct net_device *dev)
netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl); netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
priv->write(reg_ctrl, &regs->ctrl); priv->write(reg_ctrl, &regs->ctrl);
if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) { if ((priv->devtype_data.quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) {
reg_ctrl2 = priv->read(&regs->ctrl2); reg_ctrl2 = priv->read(&regs->ctrl2);
reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS; reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS;
priv->write(reg_ctrl2, &regs->ctrl2); priv->write(reg_ctrl2, &regs->ctrl2);
...@@ -1631,7 +1559,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1631,7 +1559,7 @@ static int flexcan_chip_start(struct net_device *dev)
priv->write(reg_fdctrl, &regs->fdctrl); priv->write(reg_fdctrl, &regs->fdctrl);
} }
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) { for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) {
mb = flexcan_get_mb(priv, i); mb = flexcan_get_mb(priv, i);
priv->write(FLEXCAN_MB_CODE_RX_EMPTY, priv->write(FLEXCAN_MB_CODE_RX_EMPTY,
...@@ -1639,7 +1567,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1639,7 +1567,7 @@ static int flexcan_chip_start(struct net_device *dev)
} }
} else { } else {
/* clear and invalidate unused mailboxes first */ /* clear and invalidate unused mailboxes first */
for (i = FLEXCAN_TX_MB_RESERVED_OFF_FIFO; i < priv->mb_count; i++) { for (i = FLEXCAN_TX_MB_RESERVED_RX_FIFO; i < priv->mb_count; i++) {
mb = flexcan_get_mb(priv, i); mb = flexcan_get_mb(priv, i);
priv->write(FLEXCAN_MB_CODE_RX_INACTIVE, priv->write(FLEXCAN_MB_CODE_RX_INACTIVE,
&mb->can_ctrl); &mb->can_ctrl);
...@@ -1659,7 +1587,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1659,7 +1587,7 @@ static int flexcan_chip_start(struct net_device *dev)
priv->write(0x0, &regs->rx14mask); priv->write(0x0, &regs->rx14mask);
priv->write(0x0, &regs->rx15mask); priv->write(0x0, &regs->rx15mask);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
priv->write(0x0, &regs->rxfgmask); priv->write(0x0, &regs->rxfgmask);
/* clear acceptance filters */ /* clear acceptance filters */
...@@ -1673,7 +1601,7 @@ static int flexcan_chip_start(struct net_device *dev) ...@@ -1673,7 +1601,7 @@ static int flexcan_chip_start(struct net_device *dev)
* This also works around errata e5295 which generates false * This also works around errata e5295 which generates false
* positive memory errors and put the device in freeze mode. * positive memory errors and put the device in freeze mode.
*/ */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_DISABLE_MECR) {
/* Follow the protocol as described in "Detection /* Follow the protocol as described in "Detection
* and Correction of Memory Errors" to write to * and Correction of Memory Errors" to write to
* MECR register (step 1 - 5) * MECR register (step 1 - 5)
...@@ -1799,7 +1727,7 @@ static int flexcan_open(struct net_device *dev) ...@@ -1799,7 +1727,7 @@ static int flexcan_open(struct net_device *dev)
if (err) if (err)
goto out_can_rx_offload_disable; goto out_can_rx_offload_disable;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_NR_IRQ_3) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
err = request_irq(priv->irq_boff, err = request_irq(priv->irq_boff,
flexcan_irq, IRQF_SHARED, dev->name, dev); flexcan_irq, IRQF_SHARED, dev->name, dev);
if (err) if (err)
...@@ -1845,7 +1773,7 @@ static int flexcan_close(struct net_device *dev) ...@@ -1845,7 +1773,7 @@ static int flexcan_close(struct net_device *dev)
netif_stop_queue(dev); netif_stop_queue(dev);
flexcan_chip_interrupts_disable(dev); flexcan_chip_interrupts_disable(dev);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_NR_IRQ_3) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
free_irq(priv->irq_err, dev); free_irq(priv->irq_err, dev);
free_irq(priv->irq_boff, dev); free_irq(priv->irq_boff, dev);
} }
...@@ -2051,9 +1979,9 @@ static int flexcan_setup_stop_mode(struct platform_device *pdev) ...@@ -2051,9 +1979,9 @@ static int flexcan_setup_stop_mode(struct platform_device *pdev)
priv = netdev_priv(dev); priv = netdev_priv(dev);
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW)
ret = flexcan_setup_stop_mode_scfw(pdev); ret = flexcan_setup_stop_mode_scfw(pdev);
else if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR) else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR)
ret = flexcan_setup_stop_mode_gpr(pdev); ret = flexcan_setup_stop_mode_gpr(pdev);
else else
/* return 0 directly if doesn't support stop mode feature */ /* return 0 directly if doesn't support stop mode feature */
...@@ -2164,8 +2092,25 @@ static int flexcan_probe(struct platform_device *pdev) ...@@ -2164,8 +2092,25 @@ static int flexcan_probe(struct platform_device *pdev)
return -ENODEV; return -ENODEV;
if ((devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) && if ((devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) &&
!(devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)) { !((devtype_data->quirks &
dev_err(&pdev->dev, "CAN-FD mode doesn't work with FIFO mode!\n"); (FLEXCAN_QUIRK_USE_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR |
FLEXCAN_QUIRK_SUPPPORT_RX_FIFO)) ==
(FLEXCAN_QUIRK_USE_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR))) {
dev_err(&pdev->dev, "CAN-FD mode doesn't work in RX-FIFO mode!\n");
return -EINVAL;
}
if ((devtype_data->quirks &
(FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR)) ==
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR) {
dev_err(&pdev->dev,
"Quirks (0x%08x) inconsistent: RX_MAILBOX_RX supported but not RX_MAILBOX\n",
devtype_data->quirks);
return -EINVAL; return -EINVAL;
} }
...@@ -2177,13 +2122,15 @@ static int flexcan_probe(struct platform_device *pdev) ...@@ -2177,13 +2122,15 @@ static int flexcan_probe(struct platform_device *pdev)
SET_NETDEV_DEV(dev, &pdev->dev); SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &flexcan_netdev_ops; dev->netdev_ops = &flexcan_netdev_ops;
flexcan_set_ethtool_ops(dev);
dev->irq = irq; dev->irq = irq;
dev->flags |= IFF_ECHO; dev->flags |= IFF_ECHO;
priv = netdev_priv(dev); priv = netdev_priv(dev);
priv->devtype_data = *devtype_data;
if (of_property_read_bool(pdev->dev.of_node, "big-endian") || if (of_property_read_bool(pdev->dev.of_node, "big-endian") ||
devtype_data->quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) { priv->devtype_data.quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) {
priv->read = flexcan_read_be; priv->read = flexcan_read_be;
priv->write = flexcan_write_be; priv->write = flexcan_write_be;
} else { } else {
...@@ -2202,10 +2149,9 @@ static int flexcan_probe(struct platform_device *pdev) ...@@ -2202,10 +2149,9 @@ static int flexcan_probe(struct platform_device *pdev)
priv->clk_ipg = clk_ipg; priv->clk_ipg = clk_ipg;
priv->clk_per = clk_per; priv->clk_per = clk_per;
priv->clk_src = clk_src; priv->clk_src = clk_src;
priv->devtype_data = devtype_data;
priv->reg_xceiver = reg_xceiver; priv->reg_xceiver = reg_xceiver;
if (devtype_data->quirks & FLEXCAN_QUIRK_NR_IRQ_3) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
priv->irq_boff = platform_get_irq(pdev, 1); priv->irq_boff = platform_get_irq(pdev, 1);
if (priv->irq_boff <= 0) { if (priv->irq_boff <= 0) {
err = -ENODEV; err = -ENODEV;
...@@ -2218,7 +2164,7 @@ static int flexcan_probe(struct platform_device *pdev) ...@@ -2218,7 +2164,7 @@ static int flexcan_probe(struct platform_device *pdev)
} }
} }
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) { if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SUPPORT_FD) {
priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD | priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
CAN_CTRLMODE_FD_NON_ISO; CAN_CTRLMODE_FD_NON_ISO;
priv->can.bittiming_const = &flexcan_fd_bittiming_const; priv->can.bittiming_const = &flexcan_fd_bittiming_const;
......
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2022 Amarula Solutions, Dario Binacchi <dario.binacchi@amarulasolutions.com>
* Copyright (c) 2022 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
*
*/
#include <linux/can/dev.h>
#include <linux/ethtool.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include "flexcan.h"
static const char flexcan_priv_flags_strings[][ETH_GSTRING_LEN] = {
#define FLEXCAN_PRIV_FLAGS_RX_RTR BIT(0)
"rx-rtr",
};
static void
flexcan_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *ext_ack)
{
const struct flexcan_priv *priv = netdev_priv(ndev);
ring->rx_max_pending = priv->mb_count;
ring->tx_max_pending = priv->mb_count;
if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
ring->rx_pending = priv->offload.mb_last -
priv->offload.mb_first + 1;
else
ring->rx_pending = 6; /* RX-FIFO depth is fixed */
/* the drive currently supports only on TX buffer */
ring->tx_pending = 1;
}
static void
flexcan_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_PRIV_FLAGS:
memcpy(data, flexcan_priv_flags_strings,
sizeof(flexcan_priv_flags_strings));
}
}
static u32 flexcan_get_priv_flags(struct net_device *ndev)
{
const struct flexcan_priv *priv = netdev_priv(ndev);
u32 priv_flags = 0;
if (flexcan_active_rx_rtr(priv))
priv_flags |= FLEXCAN_PRIV_FLAGS_RX_RTR;
return priv_flags;
}
static int flexcan_set_priv_flags(struct net_device *ndev, u32 priv_flags)
{
struct flexcan_priv *priv = netdev_priv(ndev);
u32 quirks = priv->devtype_data.quirks;
if (priv_flags & FLEXCAN_PRIV_FLAGS_RX_RTR) {
if (flexcan_supports_rx_mailbox_rtr(priv))
quirks |= FLEXCAN_QUIRK_USE_RX_MAILBOX;
else if (flexcan_supports_rx_fifo(priv))
quirks &= ~FLEXCAN_QUIRK_USE_RX_MAILBOX;
else
quirks |= FLEXCAN_QUIRK_USE_RX_MAILBOX;
} else {
if (flexcan_supports_rx_mailbox(priv))
quirks |= FLEXCAN_QUIRK_USE_RX_MAILBOX;
else
quirks &= ~FLEXCAN_QUIRK_USE_RX_MAILBOX;
}
if (quirks != priv->devtype_data.quirks && netif_running(ndev))
return -EBUSY;
priv->devtype_data.quirks = quirks;
if (!(priv_flags & FLEXCAN_PRIV_FLAGS_RX_RTR) &&
!flexcan_active_rx_rtr(priv))
netdev_info(ndev,
"Activating RX mailbox mode, cannot receive RTR frames.\n");
return 0;
}
static int flexcan_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_PRIV_FLAGS:
return ARRAY_SIZE(flexcan_priv_flags_strings);
default:
return -EOPNOTSUPP;
}
}
static const struct ethtool_ops flexcan_ethtool_ops = {
.get_ringparam = flexcan_get_ringparam,
.get_strings = flexcan_get_strings,
.get_priv_flags = flexcan_get_priv_flags,
.set_priv_flags = flexcan_set_priv_flags,
.get_sset_count = flexcan_get_sset_count,
};
void flexcan_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &flexcan_ethtool_ops;
}
/* SPDX-License-Identifier: GPL-2.0
* flexcan.c - FLEXCAN CAN controller driver
*
* Copyright (c) 2005-2006 Varma Electronics Oy
* Copyright (c) 2009 Sascha Hauer, Pengutronix
* Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
* Copyright (c) 2014 David Jander, Protonic Holland
* Copyright (C) 2022 Amarula Solutions, Dario Binacchi <dario.binacchi@amarulasolutions.com>
*
* Based on code originally by Andrey Volkov <avolkov@varma-el.com>
*
*/
#ifndef _FLEXCAN_H
#define _FLEXCAN_H
#include <linux/can/rx-offload.h>
/* FLEXCAN hardware feature flags
*
* Below is some version info we got:
* SOC Version IP-Version Glitch- [TR]WRN_INT IRQ Err Memory err RTR rece- FD Mode MB
* Filter? connected? Passive detection ption in MB Supported?
* MCF5441X FlexCAN2 ? no yes no no yes no 16
* MX25 FlexCAN2 03.00.00.00 no no no no no no 64
* MX28 FlexCAN2 03.00.04.00 yes yes no no no no 64
* MX35 FlexCAN2 03.00.00.00 no no no no no no 64
* MX53 FlexCAN2 03.00.00.00 yes no no no no no 64
* MX6s FlexCAN3 10.00.12.00 yes yes no no yes no 64
* MX8QM FlexCAN3 03.00.23.00 yes yes no no yes yes 64
* MX8MP FlexCAN3 03.00.17.01 yes yes no yes yes yes 64
* VF610 FlexCAN3 ? no yes no yes yes? no 64
* LS1021A FlexCAN2 03.00.04.00 no yes no no yes no 64
* LX2160A FlexCAN3 03.00.23.00 no yes no yes yes yes 64
*
* Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
*/
/* [TR]WRN_INT not connected */
#define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1)
/* Disable RX FIFO Global mask */
#define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2)
/* Enable EACEN and RRS bit in ctrl2 */
#define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3)
/* Disable non-correctable errors interrupt and freeze mode */
#define FLEXCAN_QUIRK_DISABLE_MECR BIT(4)
/* Use mailboxes (not FIFO) for RX path */
#define FLEXCAN_QUIRK_USE_RX_MAILBOX BIT(5)
/* No interrupt for error passive */
#define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6)
/* default to BE register access */
#define FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN BIT(7)
/* Setup stop mode with GPR to support wakeup */
#define FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR BIT(8)
/* Support CAN-FD mode */
#define FLEXCAN_QUIRK_SUPPORT_FD BIT(9)
/* support memory detection and correction */
#define FLEXCAN_QUIRK_SUPPORT_ECC BIT(10)
/* Setup stop mode with SCU firmware to support wakeup */
#define FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW BIT(11)
/* Setup 3 separate interrupts, main, boff and err */
#define FLEXCAN_QUIRK_NR_IRQ_3 BIT(12)
/* Setup 16 mailboxes */
#define FLEXCAN_QUIRK_NR_MB_16 BIT(13)
/* Device supports RX via mailboxes */
#define FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX BIT(14)
/* Device supports RTR reception via mailboxes */
#define FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR BIT(15)
/* Device supports RX via FIFO */
#define FLEXCAN_QUIRK_SUPPPORT_RX_FIFO BIT(16)
struct flexcan_devtype_data {
u32 quirks; /* quirks needed for different IP cores */
};
struct flexcan_stop_mode {
struct regmap *gpr;
u8 req_gpr;
u8 req_bit;
};
struct flexcan_priv {
struct can_priv can;
struct can_rx_offload offload;
struct device *dev;
struct flexcan_regs __iomem *regs;
struct flexcan_mb __iomem *tx_mb;
struct flexcan_mb __iomem *tx_mb_reserved;
u8 tx_mb_idx;
u8 mb_count;
u8 mb_size;
u8 clk_src; /* clock source of CAN Protocol Engine */
u8 scu_idx;
u64 rx_mask;
u64 tx_mask;
u32 reg_ctrl_default;
struct clk *clk_ipg;
struct clk *clk_per;
struct flexcan_devtype_data devtype_data;
struct regulator *reg_xceiver;
struct flexcan_stop_mode stm;
int irq_boff;
int irq_err;
/* IPC handle when setup stop mode by System Controller firmware(scfw) */
struct imx_sc_ipc *sc_ipc_handle;
/* Read and Write APIs */
u32 (*read)(void __iomem *addr);
void (*write)(u32 val, void __iomem *addr);
};
void flexcan_set_ethtool_ops(struct net_device *dev);
static inline bool
flexcan_supports_rx_mailbox(const struct flexcan_priv *priv)
{
const u32 quirks = priv->devtype_data.quirks;
return quirks & FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX;
}
static inline bool
flexcan_supports_rx_mailbox_rtr(const struct flexcan_priv *priv)
{
const u32 quirks = priv->devtype_data.quirks;
return (quirks & (FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR)) ==
(FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX |
FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR);
}
static inline bool
flexcan_supports_rx_fifo(const struct flexcan_priv *priv)
{
const u32 quirks = priv->devtype_data.quirks;
return quirks & FLEXCAN_QUIRK_SUPPPORT_RX_FIFO;
}
static inline bool
flexcan_active_rx_rtr(const struct flexcan_priv *priv)
{
const u32 quirks = priv->devtype_data.quirks;
if (quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
if (quirks & FLEXCAN_QUIRK_SUPPPORT_RX_MAILBOX_RTR)
return true;
} else {
/* RX-FIFO is always RTR capable */
return true;
}
return false;
}
#endif /* _FLEXCAN_H */
...@@ -1285,7 +1285,7 @@ static unsigned int ican3_get_echo_skb(struct ican3_dev *mod) ...@@ -1285,7 +1285,7 @@ static unsigned int ican3_get_echo_skb(struct ican3_dev *mod)
{ {
struct sk_buff *skb = skb_dequeue(&mod->echoq); struct sk_buff *skb = skb_dequeue(&mod->echoq);
struct can_frame *cf; struct can_frame *cf;
u8 dlc; u8 dlc = 0;
/* this should never trigger unless there is a driver bug */ /* this should never trigger unless there is a driver bug */
if (!skb) { if (!skb) {
......
...@@ -3,9 +3,14 @@ ...@@ -3,9 +3,14 @@
obj-$(CONFIG_CAN_MCP251XFD) += mcp251xfd.o obj-$(CONFIG_CAN_MCP251XFD) += mcp251xfd.o
mcp251xfd-objs := mcp251xfd-objs :=
mcp251xfd-objs += mcp251xfd-chip-fifo.o
mcp251xfd-objs += mcp251xfd-core.o mcp251xfd-objs += mcp251xfd-core.o
mcp251xfd-objs += mcp251xfd-crc16.o mcp251xfd-objs += mcp251xfd-crc16.o
mcp251xfd-objs += mcp251xfd-regmap.o mcp251xfd-objs += mcp251xfd-regmap.o
mcp251xfd-objs += mcp251xfd-ring.o
mcp251xfd-objs += mcp251xfd-rx.o
mcp251xfd-objs += mcp251xfd-tef.o
mcp251xfd-objs += mcp251xfd-timestamp.o mcp251xfd-objs += mcp251xfd-timestamp.o
mcp251xfd-objs += mcp251xfd-tx.o
mcp251xfd-$(CONFIG_DEV_COREDUMP) += mcp251xfd-dump.o mcp251xfd-$(CONFIG_DEV_COREDUMP) += mcp251xfd-dump.o
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <linux/bitfield.h>
#include "mcp251xfd.h"
static int
mcp251xfd_chip_rx_fifo_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fifo_con;
/* Enable RXOVIE on _all_ RX FIFOs, not just the last one.
*
* FIFOs hit by a RX MAB overflow and RXOVIE enabled will
* generate a RXOVIF, use this to properly detect RX MAB
* overflows.
*/
fifo_con = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_RXTSEN |
MCP251XFD_REG_FIFOCON_RXOVIE |
MCP251XFD_REG_FIFOCON_TFNRFNIE;
if (mcp251xfd_is_fd_mode(priv))
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
return regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(ring->fifo_nr), fifo_con);
}
static int
mcp251xfd_chip_rx_filter_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fltcon;
fltcon = MCP251XFD_REG_FLTCON_FLTEN(ring->nr) |
MCP251XFD_REG_FLTCON_FBP(ring->nr, ring->fifo_nr);
return regmap_update_bits(priv->map_reg,
MCP251XFD_REG_FLTCON(ring->nr >> 2),
MCP251XFD_REG_FLTCON_FLT_MASK(ring->nr),
fltcon);
}
int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
const struct mcp251xfd_rx_ring *rx_ring;
u32 val;
int err, n;
/* TEF */
val = FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_TEFCON_TEFTSEN |
MCP251XFD_REG_TEFCON_TEFOVIE |
MCP251XFD_REG_TEFCON_TEFNEIE;
err = regmap_write(priv->map_reg, MCP251XFD_REG_TEFCON, val);
if (err)
return err;
/* FIFO 1 - TX */
val = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_TXEN |
MCP251XFD_REG_FIFOCON_TXATIE;
if (mcp251xfd_is_fd_mode(priv))
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_ONE_SHOT);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_UNLIMITED);
err = regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO),
val);
if (err)
return err;
/* RX FIFOs */
mcp251xfd_for_each_rx_ring(priv, rx_ring, n) {
err = mcp251xfd_chip_rx_fifo_init_one(priv, rx_ring);
if (err)
return err;
err = mcp251xfd_chip_rx_filter_init_one(priv, rx_ring);
if (err)
return err;
}
return 0;
}
...@@ -20,8 +20,6 @@ ...@@ -20,8 +20,6 @@
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/property.h> #include <linux/property.h>
#include <asm/unaligned.h>
#include "mcp251xfd.h" #include "mcp251xfd.h"
#define DEVICE_NAME "mcp251xfd" #define DEVICE_NAME "mcp251xfd"
...@@ -180,330 +178,6 @@ static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv) ...@@ -180,330 +178,6 @@ static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
return 0; return 0;
} }
static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
union mcp251xfd_write_reg_buf *write_reg_buf,
const u16 reg, const u32 mask, const u32 val)
{
u8 first_byte, last_byte, len;
u8 *data;
__le32 val_le32;
first_byte = mcp251xfd_first_byte_set(mask);
last_byte = mcp251xfd_last_byte_set(mask);
len = last_byte - first_byte + 1;
data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
memcpy(data, &val_le32, len);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
len);
/* CRC */
len += sizeof(write_reg_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
put_unaligned_be16(crc, (void *)write_reg_buf + len);
/* Total length */
len += sizeof(write_reg_buf->crc.crc);
} else {
len += sizeof(write_reg_buf->nocrc.cmd);
}
return len;
}
static inline int
mcp251xfd_tef_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tef_tail)
{
u32 tef_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFUA, &tef_ua);
if (err)
return err;
*tef_tail = tef_ua / sizeof(struct mcp251xfd_hw_tef_obj);
return 0;
}
static inline int
mcp251xfd_tx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tx_tail)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg,
MCP251XFD_REG_FIFOSTA(MCP251XFD_TX_FIFO),
&fifo_sta);
if (err)
return err;
*tx_tail = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline int
mcp251xfd_rx_head_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_head)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
&fifo_sta);
if (err)
return err;
*rx_head = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline int
mcp251xfd_rx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_tail)
{
u32 fifo_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOUA(ring->fifo_nr),
&fifo_ua);
if (err)
return err;
fifo_ua -= ring->base - MCP251XFD_RAM_START;
*rx_tail = fifo_ua / ring->obj_size;
return 0;
}
static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_tx_ring *ring,
struct mcp251xfd_tx_obj *tx_obj,
const u8 rts_buf_len,
const u8 n)
{
struct spi_transfer *xfer;
u16 addr;
/* FIFO load */
addr = mcp251xfd_get_tx_obj_addr(ring, n);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
addr);
else
mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
addr);
xfer = &tx_obj->xfer[0];
xfer->tx_buf = &tx_obj->buf;
xfer->len = 0; /* actual len is assigned on the fly */
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
/* FIFO request to send */
xfer = &tx_obj->xfer[1];
xfer->tx_buf = &ring->rts_buf;
xfer->len = rts_buf_len;
/* SPI message */
spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
ARRAY_SIZE(tx_obj->xfer));
}
static void mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tef_ring *tef_ring;
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring, *prev_rx_ring = NULL;
struct mcp251xfd_tx_obj *tx_obj;
struct spi_transfer *xfer;
u32 val;
u16 addr;
u8 len;
int i, j;
netdev_reset_queue(priv->ndev);
/* TEF */
tef_ring = priv->tef;
tef_ring->head = 0;
tef_ring->tail = 0;
/* FIFO increment TEF tail pointer */
addr = MCP251XFD_REG_TEFCON;
val = MCP251XFD_REG_TEFCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(tef_ring->uinc_xfer); j++) {
xfer = &tef_ring->uinc_xfer[j];
xfer->tx_buf = &tef_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
/* "cs_change == 1" on the last transfer results in an active
* chip select after the complete SPI message. This causes the
* controller to interpret the next register access as
* data. Set "cs_change" of the last transfer to "0" to
* properly deactivate the chip select at the end of the
* message.
*/
xfer->cs_change = 0;
/* TX */
tx_ring = priv->tx;
tx_ring->head = 0;
tx_ring->tail = 0;
tx_ring->base = mcp251xfd_get_tef_obj_addr(tx_ring->obj_num);
/* FIFO request to send */
addr = MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO);
val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
addr, val, val);
mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
/* RX */
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
rx_ring->head = 0;
rx_ring->tail = 0;
rx_ring->nr = i;
rx_ring->fifo_nr = MCP251XFD_RX_FIFO(i);
if (!prev_rx_ring)
rx_ring->base =
mcp251xfd_get_tx_obj_addr(tx_ring,
tx_ring->obj_num);
else
rx_ring->base = prev_rx_ring->base +
prev_rx_ring->obj_size *
prev_rx_ring->obj_num;
prev_rx_ring = rx_ring;
/* FIFO increment RX tail pointer */
addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
val = MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
xfer = &rx_ring->uinc_xfer[j];
xfer->tx_buf = &rx_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
/* "cs_change == 1" on the last transfer results in an
* active chip select after the complete SPI
* message. This causes the controller to interpret
* the next register access as data. Set "cs_change"
* of the last transfer to "0" to properly deactivate
* the chip select at the end of the message.
*/
xfer->cs_change = 0;
}
}
static void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
{
int i;
for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
kfree(priv->rx[i]);
priv->rx[i] = NULL;
}
}
static int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring;
int tef_obj_size, tx_obj_size, rx_obj_size;
int tx_obj_num;
int ram_free, i;
tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
/* listen-only mode works like FD mode */
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD)) {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
} else {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
}
tx_ring = priv->tx;
tx_ring->obj_num = tx_obj_num;
tx_ring->obj_size = tx_obj_size;
ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
(tef_obj_size + tx_obj_size);
for (i = 0;
i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
i++) {
int rx_obj_num;
rx_obj_num = ram_free / rx_obj_size;
rx_obj_num = min(1 << (fls(rx_obj_num) - 1),
MCP251XFD_RX_OBJ_NUM_MAX);
rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
GFP_KERNEL);
if (!rx_ring) {
mcp251xfd_ring_free(priv);
return -ENOMEM;
}
rx_ring->obj_num = rx_obj_num;
rx_ring->obj_size = rx_obj_size;
priv->rx[i] = rx_ring;
ram_free -= rx_ring->obj_num * rx_ring->obj_size;
}
priv->rx_ring_num = i;
netdev_dbg(priv->ndev,
"FIFO setup: TEF: %d*%d bytes = %d bytes, TX: %d*%d bytes = %d bytes\n",
tx_obj_num, tef_obj_size, tef_obj_size * tx_obj_num,
tx_obj_num, tx_obj_size, tx_obj_size * tx_obj_num);
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
netdev_dbg(priv->ndev,
"FIFO setup: RX-%d: %d*%d bytes = %d bytes\n",
i, rx_ring->obj_num, rx_ring->obj_size,
rx_ring->obj_size * rx_ring->obj_num);
}
netdev_dbg(priv->ndev,
"FIFO setup: free: %d bytes\n",
ram_free);
return 0;
}
static inline int static inline int
mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode) mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
{ {
...@@ -838,108 +512,6 @@ static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv) ...@@ -838,108 +512,6 @@ static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val); return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
} }
static int
mcp251xfd_chip_rx_fifo_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fifo_con;
/* Enable RXOVIE on _all_ RX FIFOs, not just the last one.
*
* FIFOs hit by a RX MAB overflow and RXOVIE enabled will
* generate a RXOVIF, use this to properly detect RX MAB
* overflows.
*/
fifo_con = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_RXTSEN |
MCP251XFD_REG_FIFOCON_RXOVIE |
MCP251XFD_REG_FIFOCON_TFNRFNIE;
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
return regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(ring->fifo_nr), fifo_con);
}
static int
mcp251xfd_chip_rx_filter_init_one(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u32 fltcon;
fltcon = MCP251XFD_REG_FLTCON_FLTEN(ring->nr) |
MCP251XFD_REG_FLTCON_FBP(ring->nr, ring->fifo_nr);
return regmap_update_bits(priv->map_reg,
MCP251XFD_REG_FLTCON(ring->nr >> 2),
MCP251XFD_REG_FLTCON_FLT_MASK(ring->nr),
fltcon);
}
static int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
const struct mcp251xfd_rx_ring *rx_ring;
u32 val;
int err, n;
/* TEF */
val = FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_TEFCON_TEFTSEN |
MCP251XFD_REG_TEFCON_TEFOVIE |
MCP251XFD_REG_TEFCON_TEFNEIE;
err = regmap_write(priv->map_reg, MCP251XFD_REG_TEFCON, val);
if (err)
return err;
/* FIFO 1 - TX */
val = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
tx_ring->obj_num - 1) |
MCP251XFD_REG_FIFOCON_TXEN |
MCP251XFD_REG_FIFOCON_TXATIE;
if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_64);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
MCP251XFD_REG_FIFOCON_PLSIZE_8);
if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_ONE_SHOT);
else
val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
MCP251XFD_REG_FIFOCON_TXAT_UNLIMITED);
err = regmap_write(priv->map_reg,
MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO),
val);
if (err)
return err;
/* RX FIFOs */
mcp251xfd_for_each_rx_ring(priv, rx_ring, n) {
err = mcp251xfd_chip_rx_fifo_init_one(priv, rx_ring);
if (err)
return err;
err = mcp251xfd_chip_rx_filter_init_one(priv, rx_ring);
if (err)
return err;
}
return 0;
}
static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv) static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
{ {
struct mcp251xfd_ecc *ecc = &priv->ecc; struct mcp251xfd_ecc *ecc = &priv->ecc;
...@@ -968,18 +540,10 @@ static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv) ...@@ -968,18 +540,10 @@ static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
return err; return err;
} }
static inline void mcp251xfd_ecc_tefif_successful(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
ecc->ecc_stat = 0;
}
static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv) static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
{ {
u8 mode; u8 mode;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK; mode = MCP251XFD_REG_CON_MODE_INT_LOOPBACK;
else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
...@@ -1186,433 +750,6 @@ static int mcp251xfd_get_berr_counter(const struct net_device *ndev, ...@@ -1186,433 +750,6 @@ static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
return __mcp251xfd_get_berr_counter(ndev, bec); return __mcp251xfd_get_berr_counter(ndev, bec);
} }
static int mcp251xfd_check_tef_tail(const struct mcp251xfd_priv *priv)
{
u8 tef_tail_chip, tef_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_tef_tail_get_from_chip(priv, &tef_tail_chip);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
if (tef_tail_chip != tef_tail) {
netdev_err(priv->ndev,
"TEF tail of chip (0x%02x) and ours (0x%08x) inconsistent.\n",
tef_tail_chip, tef_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_check_rx_tail(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u8 rx_tail_chip, rx_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_rx_tail_get_from_chip(priv, ring, &rx_tail_chip);
if (err)
return err;
rx_tail = mcp251xfd_get_rx_tail(ring);
if (rx_tail_chip != rx_tail) {
netdev_err(priv->ndev,
"RX tail of chip (%d) and ours (%d) inconsistent.\n",
rx_tail_chip, rx_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_handle_tefif_recover(const struct mcp251xfd_priv *priv, const u32 seq)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
u32 tef_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFSTA, &tef_sta);
if (err)
return err;
if (tef_sta & MCP251XFD_REG_TEFSTA_TEFOVIF) {
netdev_err(priv->ndev,
"Transmit Event FIFO buffer overflow.\n");
return -ENOBUFS;
}
netdev_info(priv->ndev,
"Transmit Event FIFO buffer %s. (seq=0x%08x, tef_tail=0x%08x, tef_head=0x%08x, tx_head=0x%08x).\n",
tef_sta & MCP251XFD_REG_TEFSTA_TEFFIF ?
"full" : tef_sta & MCP251XFD_REG_TEFSTA_TEFNEIF ?
"not empty" : "empty",
seq, priv->tef->tail, priv->tef->head, tx_ring->head);
/* The Sequence Number in the TEF doesn't match our tef_tail. */
return -EAGAIN;
}
static int
mcp251xfd_handle_tefif_one(struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_tef_obj *hw_tef_obj,
unsigned int *frame_len_ptr)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
u32 seq, seq_masked, tef_tail_masked, tef_tail;
seq = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK,
hw_tef_obj->flags);
/* Use the MCP2517FD mask on the MCP2518FD, too. We only
* compare 7 bits, this should be enough to detect
* net-yet-completed, i.e. old TEF objects.
*/
seq_masked = seq &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
tef_tail_masked = priv->tef->tail &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
if (seq_masked != tef_tail_masked)
return mcp251xfd_handle_tefif_recover(priv, seq);
tef_tail = mcp251xfd_get_tef_tail(priv);
skb = priv->can.echo_skb[tef_tail];
if (skb)
mcp251xfd_skb_set_timestamp(priv, skb, hw_tef_obj->ts);
stats->tx_bytes +=
can_rx_offload_get_echo_skb(&priv->offload,
tef_tail, hw_tef_obj->ts,
frame_len_ptr);
stats->tx_packets++;
priv->tef->tail++;
return 0;
}
static int mcp251xfd_tef_ring_update(struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
unsigned int new_head;
u8 chip_tx_tail;
int err;
err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
if (err)
return err;
/* chip_tx_tail, is the next TX-Object send by the HW.
* The new TEF head must be >= the old head, ...
*/
new_head = round_down(priv->tef->head, tx_ring->obj_num) + chip_tx_tail;
if (new_head <= priv->tef->head)
new_head += tx_ring->obj_num;
/* ... but it cannot exceed the TX head. */
priv->tef->head = min(new_head, tx_ring->head);
return mcp251xfd_check_tef_tail(priv);
}
static inline int
mcp251xfd_tef_obj_read(const struct mcp251xfd_priv *priv,
struct mcp251xfd_hw_tef_obj *hw_tef_obj,
const u8 offset, const u8 len)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
const int val_bytes = regmap_get_val_bytes(priv->map_rx);
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
(offset > tx_ring->obj_num ||
len > tx_ring->obj_num ||
offset + len > tx_ring->obj_num)) {
netdev_err(priv->ndev,
"Trying to read to many TEF objects (max=%d, offset=%d, len=%d).\n",
tx_ring->obj_num, offset, len);
return -ERANGE;
}
return regmap_bulk_read(priv->map_rx,
mcp251xfd_get_tef_obj_addr(offset),
hw_tef_obj,
sizeof(*hw_tef_obj) / val_bytes * len);
}
static int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_hw_tef_obj hw_tef_obj[MCP251XFD_TX_OBJ_NUM_MAX];
unsigned int total_frame_len = 0;
u8 tef_tail, len, l;
int err, i;
err = mcp251xfd_tef_ring_update(priv);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
len = mcp251xfd_get_tef_len(priv);
l = mcp251xfd_get_tef_linear_len(priv);
err = mcp251xfd_tef_obj_read(priv, hw_tef_obj, tef_tail, l);
if (err)
return err;
if (l < len) {
err = mcp251xfd_tef_obj_read(priv, &hw_tef_obj[l], 0, len - l);
if (err)
return err;
}
for (i = 0; i < len; i++) {
unsigned int frame_len = 0;
err = mcp251xfd_handle_tefif_one(priv, &hw_tef_obj[i], &frame_len);
/* -EAGAIN means the Sequence Number in the TEF
* doesn't match our tef_tail. This can happen if we
* read the TEF objects too early. Leave loop let the
* interrupt handler call us again.
*/
if (err == -EAGAIN)
goto out_netif_wake_queue;
if (err)
return err;
total_frame_len += frame_len;
}
out_netif_wake_queue:
len = i; /* number of handled goods TEFs */
if (len) {
struct mcp251xfd_tef_ring *ring = priv->tef;
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
int offset;
/* Increment the TEF FIFO tail pointer 'len' times in
* a single SPI message.
*
* Note:
* Calculate offset, so that the SPI transfer ends on
* the last message of the uinc_xfer array, which has
* "cs_change == 0", to properly deactivate the chip
* select.
*/
offset = ARRAY_SIZE(ring->uinc_xfer) - len;
err = spi_sync_transfer(priv->spi,
ring->uinc_xfer + offset, len);
if (err)
return err;
tx_ring->tail += len;
netdev_completed_queue(priv->ndev, len, total_frame_len);
err = mcp251xfd_check_tef_tail(priv);
if (err)
return err;
}
mcp251xfd_ecc_tefif_successful(priv);
if (mcp251xfd_get_tx_free(priv->tx)) {
/* Make sure that anybody stopping the queue after
* this sees the new tx_ring->tail.
*/
smp_mb();
netif_wake_queue(priv->ndev);
}
return 0;
}
static int
mcp251xfd_rx_ring_update(const struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
u32 new_head;
u8 chip_rx_head;
int err;
err = mcp251xfd_rx_head_get_from_chip(priv, ring, &chip_rx_head);
if (err)
return err;
/* chip_rx_head, is the next RX-Object filled by the HW.
* The new RX head must be >= the old head.
*/
new_head = round_down(ring->head, ring->obj_num) + chip_rx_head;
if (new_head <= ring->head)
new_head += ring->obj_num;
ring->head = new_head;
return mcp251xfd_check_rx_tail(priv, ring);
}
static void
mcp251xfd_hw_rx_obj_to_skb(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
struct sk_buff *skb)
{
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
u8 dlc;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_IDE) {
u32 sid, eid;
eid = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, hw_rx_obj->id);
sid = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, hw_rx_obj->id);
cfd->can_id = CAN_EFF_FLAG |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_SID_MASK, sid);
} else {
cfd->can_id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK,
hw_rx_obj->id);
}
dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC_MASK, hw_rx_obj->flags);
/* CANFD */
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF) {
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_ESI)
cfd->flags |= CANFD_ESI;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_BRS)
cfd->flags |= CANFD_BRS;
cfd->len = can_fd_dlc2len(dlc);
} else {
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR)
cfd->can_id |= CAN_RTR_FLAG;
can_frame_set_cc_len((struct can_frame *)cfd, dlc,
priv->can.ctrlmode);
}
if (!(hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR))
memcpy(cfd->data, hw_rx_obj->data, cfd->len);
mcp251xfd_skb_set_timestamp(priv, skb, hw_rx_obj->ts);
}
static int
mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
struct canfd_frame *cfd;
int err;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF)
skb = alloc_canfd_skb(priv->ndev, &cfd);
else
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cfd);
if (!skb) {
stats->rx_dropped++;
return 0;
}
mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static inline int
mcp251xfd_rx_obj_read(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
const u8 offset, const u8 len)
{
const int val_bytes = regmap_get_val_bytes(priv->map_rx);
int err;
err = regmap_bulk_read(priv->map_rx,
mcp251xfd_get_rx_obj_addr(ring, offset),
hw_rx_obj,
len * ring->obj_size / val_bytes);
return err;
}
static int
mcp251xfd_handle_rxif_ring(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj = ring->obj;
u8 rx_tail, len;
int err, i;
err = mcp251xfd_rx_ring_update(priv, ring);
if (err)
return err;
while ((len = mcp251xfd_get_rx_linear_len(ring))) {
int offset;
rx_tail = mcp251xfd_get_rx_tail(ring);
err = mcp251xfd_rx_obj_read(priv, ring, hw_rx_obj,
rx_tail, len);
if (err)
return err;
for (i = 0; i < len; i++) {
err = mcp251xfd_handle_rxif_one(priv, ring,
(void *)hw_rx_obj +
i * ring->obj_size);
if (err)
return err;
}
/* Increment the RX FIFO tail pointer 'len' times in a
* single SPI message.
*
* Note:
* Calculate offset, so that the SPI transfer ends on
* the last message of the uinc_xfer array, which has
* "cs_change == 0", to properly deactivate the chip
* select.
*/
offset = ARRAY_SIZE(ring->uinc_xfer) - len;
err = spi_sync_transfer(priv->spi,
ring->uinc_xfer + offset, len);
if (err)
return err;
ring->tail += len;
}
return 0;
}
static int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_rx_ring *ring;
int err, n;
mcp251xfd_for_each_rx_ring(priv, ring, n) {
err = mcp251xfd_handle_rxif_ring(priv, ring);
if (err)
return err;
}
return 0;
}
static struct sk_buff * static struct sk_buff *
mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv *priv, mcp251xfd_alloc_can_err_skb(struct mcp251xfd_priv *priv,
struct can_frame **cf, u32 *timestamp) struct can_frame **cf, u32 *timestamp)
...@@ -1653,12 +790,15 @@ static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv) ...@@ -1653,12 +790,15 @@ static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
/* If SERRIF is active, there was a RX MAB overflow. */ /* If SERRIF is active, there was a RX MAB overflow. */
if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) { if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
netdev_info(priv->ndev, if (net_ratelimit())
netdev_dbg(priv->ndev,
"RX-%d: MAB overflow detected.\n", "RX-%d: MAB overflow detected.\n",
ring->nr); ring->nr);
} else { } else {
netdev_info(priv->ndev, if (net_ratelimit())
"RX-%d: FIFO overflow.\n", ring->nr); netdev_dbg(priv->ndev,
"RX-%d: FIFO overflow.\n",
ring->nr);
} }
err = regmap_update_bits(priv->map_reg, err = regmap_update_bits(priv->map_reg,
...@@ -2311,212 +1451,23 @@ static irqreturn_t mcp251xfd_irq(int irq, void *dev_id) ...@@ -2311,212 +1451,23 @@ static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
return handled; return handled;
} }
static inline struct
mcp251xfd_tx_obj *mcp251xfd_get_tx_obj_next(struct mcp251xfd_tx_ring *tx_ring)
{
u8 tx_head;
tx_head = mcp251xfd_get_tx_head(tx_ring);
return &tx_ring->obj[tx_head];
}
static void
mcp251xfd_tx_obj_from_skb(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj,
const struct sk_buff *skb,
unsigned int seq)
{
const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
struct mcp251xfd_hw_tx_obj_raw *hw_tx_obj;
union mcp251xfd_tx_obj_load_buf *load_buf;
u8 dlc;
u32 id, flags;
int len_sanitized = 0, len;
if (cfd->can_id & CAN_EFF_FLAG) {
u32 sid, eid;
sid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_SID_MASK, cfd->can_id);
eid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_EID_MASK, cfd->can_id);
id = FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, sid);
flags = MCP251XFD_OBJ_FLAGS_IDE;
} else {
id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, cfd->can_id);
flags = 0;
}
/* Use the MCP2518FD mask even on the MCP2517FD. It doesn't
* harm, only the lower 7 bits will be transferred into the
* TEF object.
*/
flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK, seq);
if (cfd->can_id & CAN_RTR_FLAG)
flags |= MCP251XFD_OBJ_FLAGS_RTR;
else
len_sanitized = canfd_sanitize_len(cfd->len);
/* CANFD */
if (can_is_canfd_skb(skb)) {
if (cfd->flags & CANFD_ESI)
flags |= MCP251XFD_OBJ_FLAGS_ESI;
flags |= MCP251XFD_OBJ_FLAGS_FDF;
if (cfd->flags & CANFD_BRS)
flags |= MCP251XFD_OBJ_FLAGS_BRS;
dlc = can_fd_len2dlc(cfd->len);
} else {
dlc = can_get_cc_dlc((struct can_frame *)cfd,
priv->can.ctrlmode);
}
flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC_MASK, dlc);
load_buf = &tx_obj->buf;
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
hw_tx_obj = &load_buf->crc.hw_tx_obj;
else
hw_tx_obj = &load_buf->nocrc.hw_tx_obj;
put_unaligned_le32(id, &hw_tx_obj->id);
put_unaligned_le32(flags, &hw_tx_obj->flags);
/* Copy data */
memcpy(hw_tx_obj->data, cfd->data, cfd->len);
/* Clear unused data at end of CAN frame */
if (MCP251XFD_SANITIZE_CAN && len_sanitized) {
int pad_len;
pad_len = len_sanitized - cfd->len;
if (pad_len)
memset(hw_tx_obj->data + cfd->len, 0x0, pad_len);
}
/* Number of bytes to be written into the RAM of the controller */
len = sizeof(hw_tx_obj->id) + sizeof(hw_tx_obj->flags);
if (MCP251XFD_SANITIZE_CAN)
len += round_up(len_sanitized, sizeof(u32));
else
len += round_up(cfd->len, sizeof(u32));
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_ram(&load_buf->crc.cmd,
len);
/* CRC */
len += sizeof(load_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&load_buf->crc, len);
put_unaligned_be16(crc, (void *)load_buf + len);
/* Total length */
len += sizeof(load_buf->crc.crc);
} else {
len += sizeof(load_buf->nocrc.cmd);
}
tx_obj->xfer[0].len = len;
}
static int mcp251xfd_tx_obj_write(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj)
{
return spi_async(priv->spi, &tx_obj->msg);
}
static bool mcp251xfd_tx_busy(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_ring *tx_ring)
{
if (mcp251xfd_get_tx_free(tx_ring) > 0)
return false;
netif_stop_queue(priv->ndev);
/* Memory barrier before checking tx_free (head and tail) */
smp_mb();
if (mcp251xfd_get_tx_free(tx_ring) == 0) {
netdev_dbg(priv->ndev,
"Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
tx_ring->head, tx_ring->tail,
tx_ring->head - tx_ring->tail);
return true;
}
netif_start_queue(priv->ndev);
return false;
}
static netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
struct mcp251xfd_tx_obj *tx_obj;
unsigned int frame_len;
u8 tx_head;
int err;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (mcp251xfd_tx_busy(priv, tx_ring))
return NETDEV_TX_BUSY;
tx_obj = mcp251xfd_get_tx_obj_next(tx_ring);
mcp251xfd_tx_obj_from_skb(priv, tx_obj, skb, tx_ring->head);
/* Stop queue if we occupy the complete TX FIFO */
tx_head = mcp251xfd_get_tx_head(tx_ring);
tx_ring->head++;
if (mcp251xfd_get_tx_free(tx_ring) == 0)
netif_stop_queue(ndev);
frame_len = can_skb_get_frame_len(skb);
err = can_put_echo_skb(skb, ndev, tx_head, frame_len);
if (!err)
netdev_sent_queue(priv->ndev, frame_len);
err = mcp251xfd_tx_obj_write(priv, tx_obj);
if (err)
goto out_err;
return NETDEV_TX_OK;
out_err:
netdev_err(priv->ndev, "ERROR in %s: %d\n", __func__, err);
return NETDEV_TX_OK;
}
static int mcp251xfd_open(struct net_device *ndev) static int mcp251xfd_open(struct net_device *ndev)
{ {
struct mcp251xfd_priv *priv = netdev_priv(ndev); struct mcp251xfd_priv *priv = netdev_priv(ndev);
const struct spi_device *spi = priv->spi; const struct spi_device *spi = priv->spi;
int err; int err;
err = pm_runtime_get_sync(ndev->dev.parent); err = open_candev(ndev);
if (err < 0) { if (err)
pm_runtime_put_noidle(ndev->dev.parent);
return err; return err;
}
err = open_candev(ndev); err = pm_runtime_resume_and_get(ndev->dev.parent);
if (err) if (err)
goto out_pm_runtime_put; goto out_close_candev;
err = mcp251xfd_ring_alloc(priv); err = mcp251xfd_ring_alloc(priv);
if (err) if (err)
goto out_close_candev; goto out_pm_runtime_put;
err = mcp251xfd_transceiver_enable(priv); err = mcp251xfd_transceiver_enable(priv);
if (err) if (err)
...@@ -2552,11 +1503,11 @@ static int mcp251xfd_open(struct net_device *ndev) ...@@ -2552,11 +1503,11 @@ static int mcp251xfd_open(struct net_device *ndev)
mcp251xfd_transceiver_disable(priv); mcp251xfd_transceiver_disable(priv);
out_mcp251xfd_ring_free: out_mcp251xfd_ring_free:
mcp251xfd_ring_free(priv); mcp251xfd_ring_free(priv);
out_close_candev:
close_candev(ndev);
out_pm_runtime_put: out_pm_runtime_put:
mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED); mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
pm_runtime_put(ndev->dev.parent); pm_runtime_put(ndev->dev.parent);
out_close_candev:
close_candev(ndev);
return err; return err;
} }
...@@ -2625,7 +1576,7 @@ static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv) ...@@ -2625,7 +1576,7 @@ static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
if (!mcp251xfd_is_251X(priv) && if (!mcp251xfd_is_251X(priv) &&
priv->devtype_data.model != devtype_data->model) { priv->devtype_data.model != devtype_data->model) {
netdev_info(ndev, netdev_info(ndev,
"Detected %s, but firmware specifies a %s. Fixing up.", "Detected %s, but firmware specifies a %s. Fixing up.\n",
__mcp251xfd_get_model_str(devtype_data->model), __mcp251xfd_get_model_str(devtype_data->model),
mcp251xfd_get_model_str(priv)); mcp251xfd_get_model_str(priv));
} }
...@@ -2662,7 +1613,7 @@ static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv) ...@@ -2662,7 +1613,7 @@ static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
return 0; return 0;
netdev_info(priv->ndev, netdev_info(priv->ndev,
"RX_INT active after softreset, disabling RX_INT support."); "RX_INT active after softreset, disabling RX_INT support.\n");
devm_gpiod_put(&priv->spi->dev, priv->rx_int); devm_gpiod_put(&priv->spi->dev, priv->rx_int);
priv->rx_int = NULL; priv->rx_int = NULL;
......
...@@ -250,7 +250,6 @@ mcp251xfd_regmap_crc_read_check_crc(const struct mcp251xfd_map_buf_crc * const b ...@@ -250,7 +250,6 @@ mcp251xfd_regmap_crc_read_check_crc(const struct mcp251xfd_map_buf_crc * const b
return 0; return 0;
} }
static int static int
mcp251xfd_regmap_crc_read_one(struct mcp251xfd_priv *priv, mcp251xfd_regmap_crc_read_one(struct mcp251xfd_priv *priv,
struct spi_message *msg, unsigned int data_len) struct spi_message *msg, unsigned int data_len)
......
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <asm/unaligned.h>
#include "mcp251xfd.h"
static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
union mcp251xfd_write_reg_buf *write_reg_buf,
const u16 reg, const u32 mask, const u32 val)
{
u8 first_byte, last_byte, len;
u8 *data;
__le32 val_le32;
first_byte = mcp251xfd_first_byte_set(mask);
last_byte = mcp251xfd_last_byte_set(mask);
len = last_byte - first_byte + 1;
data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
memcpy(data, &val_le32, len);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
len);
/* CRC */
len += sizeof(write_reg_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
put_unaligned_be16(crc, (void *)write_reg_buf + len);
/* Total length */
len += sizeof(write_reg_buf->crc.crc);
} else {
len += sizeof(write_reg_buf->nocrc.cmd);
}
return len;
}
static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_tx_ring *ring,
struct mcp251xfd_tx_obj *tx_obj,
const u8 rts_buf_len,
const u8 n)
{
struct spi_transfer *xfer;
u16 addr;
/* FIFO load */
addr = mcp251xfd_get_tx_obj_addr(ring, n);
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
addr);
else
mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
addr);
xfer = &tx_obj->xfer[0];
xfer->tx_buf = &tx_obj->buf;
xfer->len = 0; /* actual len is assigned on the fly */
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
/* FIFO request to send */
xfer = &tx_obj->xfer[1];
xfer->tx_buf = &ring->rts_buf;
xfer->len = rts_buf_len;
/* SPI message */
spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
ARRAY_SIZE(tx_obj->xfer));
}
void mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tef_ring *tef_ring;
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring, *prev_rx_ring = NULL;
struct mcp251xfd_tx_obj *tx_obj;
struct spi_transfer *xfer;
u32 val;
u16 addr;
u8 len;
int i, j;
netdev_reset_queue(priv->ndev);
/* TEF */
tef_ring = priv->tef;
tef_ring->head = 0;
tef_ring->tail = 0;
/* FIFO increment TEF tail pointer */
addr = MCP251XFD_REG_TEFCON;
val = MCP251XFD_REG_TEFCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(tef_ring->uinc_xfer); j++) {
xfer = &tef_ring->uinc_xfer[j];
xfer->tx_buf = &tef_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
/* "cs_change == 1" on the last transfer results in an active
* chip select after the complete SPI message. This causes the
* controller to interpret the next register access as
* data. Set "cs_change" of the last transfer to "0" to
* properly deactivate the chip select at the end of the
* message.
*/
xfer->cs_change = 0;
/* TX */
tx_ring = priv->tx;
tx_ring->head = 0;
tx_ring->tail = 0;
tx_ring->base = mcp251xfd_get_tef_obj_addr(tx_ring->obj_num);
/* FIFO request to send */
addr = MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO);
val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
addr, val, val);
mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
/* RX */
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
rx_ring->head = 0;
rx_ring->tail = 0;
rx_ring->nr = i;
rx_ring->fifo_nr = MCP251XFD_RX_FIFO(i);
if (!prev_rx_ring)
rx_ring->base =
mcp251xfd_get_tx_obj_addr(tx_ring,
tx_ring->obj_num);
else
rx_ring->base = prev_rx_ring->base +
prev_rx_ring->obj_size *
prev_rx_ring->obj_num;
prev_rx_ring = rx_ring;
/* FIFO increment RX tail pointer */
addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
val = MCP251XFD_REG_FIFOCON_UINC;
len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
addr, val, val);
for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
xfer = &rx_ring->uinc_xfer[j];
xfer->tx_buf = &rx_ring->uinc_buf;
xfer->len = len;
xfer->cs_change = 1;
xfer->cs_change_delay.value = 0;
xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
}
/* "cs_change == 1" on the last transfer results in an
* active chip select after the complete SPI
* message. This causes the controller to interpret
* the next register access as data. Set "cs_change"
* of the last transfer to "0" to properly deactivate
* the chip select at the end of the message.
*/
xfer->cs_change = 0;
}
}
void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
{
int i;
for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
kfree(priv->rx[i]);
priv->rx[i] = NULL;
}
}
int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_tx_ring *tx_ring;
struct mcp251xfd_rx_ring *rx_ring;
int tef_obj_size, tx_obj_size, rx_obj_size;
int tx_obj_num;
int ram_free, i;
tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
if (mcp251xfd_is_fd_mode(priv)) {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
} else {
tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
}
tx_ring = priv->tx;
tx_ring->obj_num = tx_obj_num;
tx_ring->obj_size = tx_obj_size;
ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
(tef_obj_size + tx_obj_size);
for (i = 0;
i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
i++) {
int rx_obj_num;
rx_obj_num = ram_free / rx_obj_size;
rx_obj_num = min(1 << (fls(rx_obj_num) - 1),
MCP251XFD_RX_OBJ_NUM_MAX);
rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
GFP_KERNEL);
if (!rx_ring) {
mcp251xfd_ring_free(priv);
return -ENOMEM;
}
rx_ring->obj_num = rx_obj_num;
rx_ring->obj_size = rx_obj_size;
priv->rx[i] = rx_ring;
ram_free -= rx_ring->obj_num * rx_ring->obj_size;
}
priv->rx_ring_num = i;
netdev_dbg(priv->ndev,
"FIFO setup: TEF: %d*%d bytes = %d bytes, TX: %d*%d bytes = %d bytes\n",
tx_obj_num, tef_obj_size, tef_obj_size * tx_obj_num,
tx_obj_num, tx_obj_size, tx_obj_size * tx_obj_num);
mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
netdev_dbg(priv->ndev,
"FIFO setup: RX-%d: %d*%d bytes = %d bytes\n",
i, rx_ring->obj_num, rx_ring->obj_size,
rx_ring->obj_size * rx_ring->obj_num);
}
netdev_dbg(priv->ndev,
"FIFO setup: free: %d bytes\n",
ram_free);
return 0;
}
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <linux/bitfield.h>
#include "mcp251xfd.h"
static inline int
mcp251xfd_rx_head_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_head)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
&fifo_sta);
if (err)
return err;
*rx_head = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline int
mcp251xfd_rx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
u8 *rx_tail)
{
u32 fifo_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOUA(ring->fifo_nr),
&fifo_ua);
if (err)
return err;
fifo_ua -= ring->base - MCP251XFD_RAM_START;
*rx_tail = fifo_ua / ring->obj_size;
return 0;
}
static int
mcp251xfd_check_rx_tail(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring)
{
u8 rx_tail_chip, rx_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_rx_tail_get_from_chip(priv, ring, &rx_tail_chip);
if (err)
return err;
rx_tail = mcp251xfd_get_rx_tail(ring);
if (rx_tail_chip != rx_tail) {
netdev_err(priv->ndev,
"RX tail of chip (%d) and ours (%d) inconsistent.\n",
rx_tail_chip, rx_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_rx_ring_update(const struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
u32 new_head;
u8 chip_rx_head;
int err;
err = mcp251xfd_rx_head_get_from_chip(priv, ring, &chip_rx_head);
if (err)
return err;
/* chip_rx_head, is the next RX-Object filled by the HW.
* The new RX head must be >= the old head.
*/
new_head = round_down(ring->head, ring->obj_num) + chip_rx_head;
if (new_head <= ring->head)
new_head += ring->obj_num;
ring->head = new_head;
return mcp251xfd_check_rx_tail(priv, ring);
}
static void
mcp251xfd_hw_rx_obj_to_skb(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
struct sk_buff *skb)
{
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
u8 dlc;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_IDE) {
u32 sid, eid;
eid = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, hw_rx_obj->id);
sid = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, hw_rx_obj->id);
cfd->can_id = CAN_EFF_FLAG |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_REG_FRAME_EFF_SID_MASK, sid);
} else {
cfd->can_id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK,
hw_rx_obj->id);
}
dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC_MASK, hw_rx_obj->flags);
/* CANFD */
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF) {
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_ESI)
cfd->flags |= CANFD_ESI;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_BRS)
cfd->flags |= CANFD_BRS;
cfd->len = can_fd_dlc2len(dlc);
} else {
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR)
cfd->can_id |= CAN_RTR_FLAG;
can_frame_set_cc_len((struct can_frame *)cfd, dlc,
priv->can.ctrlmode);
}
if (!(hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR))
memcpy(cfd->data, hw_rx_obj->data, cfd->len);
mcp251xfd_skb_set_timestamp(priv, skb, hw_rx_obj->ts);
}
static int
mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring,
const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
struct canfd_frame *cfd;
int err;
if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF)
skb = alloc_canfd_skb(priv->ndev, &cfd);
else
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cfd);
if (!skb) {
stats->rx_dropped++;
return 0;
}
mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static inline int
mcp251xfd_rx_obj_read(const struct mcp251xfd_priv *priv,
const struct mcp251xfd_rx_ring *ring,
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
const u8 offset, const u8 len)
{
const int val_bytes = regmap_get_val_bytes(priv->map_rx);
int err;
err = regmap_bulk_read(priv->map_rx,
mcp251xfd_get_rx_obj_addr(ring, offset),
hw_rx_obj,
len * ring->obj_size / val_bytes);
return err;
}
static int
mcp251xfd_handle_rxif_ring(struct mcp251xfd_priv *priv,
struct mcp251xfd_rx_ring *ring)
{
struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj = ring->obj;
u8 rx_tail, len;
int err, i;
err = mcp251xfd_rx_ring_update(priv, ring);
if (err)
return err;
while ((len = mcp251xfd_get_rx_linear_len(ring))) {
int offset;
rx_tail = mcp251xfd_get_rx_tail(ring);
err = mcp251xfd_rx_obj_read(priv, ring, hw_rx_obj,
rx_tail, len);
if (err)
return err;
for (i = 0; i < len; i++) {
err = mcp251xfd_handle_rxif_one(priv, ring,
(void *)hw_rx_obj +
i * ring->obj_size);
if (err)
return err;
}
/* Increment the RX FIFO tail pointer 'len' times in a
* single SPI message.
*
* Note:
* Calculate offset, so that the SPI transfer ends on
* the last message of the uinc_xfer array, which has
* "cs_change == 0", to properly deactivate the chip
* select.
*/
offset = ARRAY_SIZE(ring->uinc_xfer) - len;
err = spi_sync_transfer(priv->spi,
ring->uinc_xfer + offset, len);
if (err)
return err;
ring->tail += len;
}
return 0;
}
int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_rx_ring *ring;
int err, n;
mcp251xfd_for_each_rx_ring(priv, ring, n) {
err = mcp251xfd_handle_rxif_ring(priv, ring);
if (err)
return err;
}
return 0;
}
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <linux/bitfield.h>
#include "mcp251xfd.h"
static inline int
mcp251xfd_tef_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tef_tail)
{
u32 tef_ua;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFUA, &tef_ua);
if (err)
return err;
*tef_tail = tef_ua / sizeof(struct mcp251xfd_hw_tef_obj);
return 0;
}
static int mcp251xfd_check_tef_tail(const struct mcp251xfd_priv *priv)
{
u8 tef_tail_chip, tef_tail;
int err;
if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
return 0;
err = mcp251xfd_tef_tail_get_from_chip(priv, &tef_tail_chip);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
if (tef_tail_chip != tef_tail) {
netdev_err(priv->ndev,
"TEF tail of chip (0x%02x) and ours (0x%08x) inconsistent.\n",
tef_tail_chip, tef_tail);
return -EILSEQ;
}
return 0;
}
static int
mcp251xfd_handle_tefif_recover(const struct mcp251xfd_priv *priv, const u32 seq)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
u32 tef_sta;
int err;
err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFSTA, &tef_sta);
if (err)
return err;
if (tef_sta & MCP251XFD_REG_TEFSTA_TEFOVIF) {
netdev_err(priv->ndev,
"Transmit Event FIFO buffer overflow.\n");
return -ENOBUFS;
}
netdev_info(priv->ndev,
"Transmit Event FIFO buffer %s. (seq=0x%08x, tef_tail=0x%08x, tef_head=0x%08x, tx_head=0x%08x).\n",
tef_sta & MCP251XFD_REG_TEFSTA_TEFFIF ?
"full" : tef_sta & MCP251XFD_REG_TEFSTA_TEFNEIF ?
"not empty" : "empty",
seq, priv->tef->tail, priv->tef->head, tx_ring->head);
/* The Sequence Number in the TEF doesn't match our tef_tail. */
return -EAGAIN;
}
static int
mcp251xfd_handle_tefif_one(struct mcp251xfd_priv *priv,
const struct mcp251xfd_hw_tef_obj *hw_tef_obj,
unsigned int *frame_len_ptr)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct sk_buff *skb;
u32 seq, seq_masked, tef_tail_masked, tef_tail;
seq = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK,
hw_tef_obj->flags);
/* Use the MCP2517FD mask on the MCP2518FD, too. We only
* compare 7 bits, this should be enough to detect
* net-yet-completed, i.e. old TEF objects.
*/
seq_masked = seq &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
tef_tail_masked = priv->tef->tail &
field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
if (seq_masked != tef_tail_masked)
return mcp251xfd_handle_tefif_recover(priv, seq);
tef_tail = mcp251xfd_get_tef_tail(priv);
skb = priv->can.echo_skb[tef_tail];
if (skb)
mcp251xfd_skb_set_timestamp(priv, skb, hw_tef_obj->ts);
stats->tx_bytes +=
can_rx_offload_get_echo_skb(&priv->offload,
tef_tail, hw_tef_obj->ts,
frame_len_ptr);
stats->tx_packets++;
priv->tef->tail++;
return 0;
}
static int mcp251xfd_tef_ring_update(struct mcp251xfd_priv *priv)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
unsigned int new_head;
u8 chip_tx_tail;
int err;
err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
if (err)
return err;
/* chip_tx_tail, is the next TX-Object send by the HW.
* The new TEF head must be >= the old head, ...
*/
new_head = round_down(priv->tef->head, tx_ring->obj_num) + chip_tx_tail;
if (new_head <= priv->tef->head)
new_head += tx_ring->obj_num;
/* ... but it cannot exceed the TX head. */
priv->tef->head = min(new_head, tx_ring->head);
return mcp251xfd_check_tef_tail(priv);
}
static inline int
mcp251xfd_tef_obj_read(const struct mcp251xfd_priv *priv,
struct mcp251xfd_hw_tef_obj *hw_tef_obj,
const u8 offset, const u8 len)
{
const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
const int val_bytes = regmap_get_val_bytes(priv->map_rx);
if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
(offset > tx_ring->obj_num ||
len > tx_ring->obj_num ||
offset + len > tx_ring->obj_num)) {
netdev_err(priv->ndev,
"Trying to read too many TEF objects (max=%d, offset=%d, len=%d).\n",
tx_ring->obj_num, offset, len);
return -ERANGE;
}
return regmap_bulk_read(priv->map_rx,
mcp251xfd_get_tef_obj_addr(offset),
hw_tef_obj,
sizeof(*hw_tef_obj) / val_bytes * len);
}
static inline void mcp251xfd_ecc_tefif_successful(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_ecc *ecc = &priv->ecc;
ecc->ecc_stat = 0;
}
int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv)
{
struct mcp251xfd_hw_tef_obj hw_tef_obj[MCP251XFD_TX_OBJ_NUM_MAX];
unsigned int total_frame_len = 0;
u8 tef_tail, len, l;
int err, i;
err = mcp251xfd_tef_ring_update(priv);
if (err)
return err;
tef_tail = mcp251xfd_get_tef_tail(priv);
len = mcp251xfd_get_tef_len(priv);
l = mcp251xfd_get_tef_linear_len(priv);
err = mcp251xfd_tef_obj_read(priv, hw_tef_obj, tef_tail, l);
if (err)
return err;
if (l < len) {
err = mcp251xfd_tef_obj_read(priv, &hw_tef_obj[l], 0, len - l);
if (err)
return err;
}
for (i = 0; i < len; i++) {
unsigned int frame_len = 0;
err = mcp251xfd_handle_tefif_one(priv, &hw_tef_obj[i], &frame_len);
/* -EAGAIN means the Sequence Number in the TEF
* doesn't match our tef_tail. This can happen if we
* read the TEF objects too early. Leave loop let the
* interrupt handler call us again.
*/
if (err == -EAGAIN)
goto out_netif_wake_queue;
if (err)
return err;
total_frame_len += frame_len;
}
out_netif_wake_queue:
len = i; /* number of handled goods TEFs */
if (len) {
struct mcp251xfd_tef_ring *ring = priv->tef;
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
int offset;
/* Increment the TEF FIFO tail pointer 'len' times in
* a single SPI message.
*
* Note:
* Calculate offset, so that the SPI transfer ends on
* the last message of the uinc_xfer array, which has
* "cs_change == 0", to properly deactivate the chip
* select.
*/
offset = ARRAY_SIZE(ring->uinc_xfer) - len;
err = spi_sync_transfer(priv->spi,
ring->uinc_xfer + offset, len);
if (err)
return err;
tx_ring->tail += len;
netdev_completed_queue(priv->ndev, len, total_frame_len);
err = mcp251xfd_check_tef_tail(priv);
if (err)
return err;
}
mcp251xfd_ecc_tefif_successful(priv);
if (mcp251xfd_get_tx_free(priv->tx)) {
/* Make sure that anybody stopping the queue after
* this sees the new tx_ring->tail.
*/
smp_mb();
netif_wake_queue(priv->ndev);
}
return 0;
}
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//
#include <asm/unaligned.h>
#include <linux/bitfield.h>
#include "mcp251xfd.h"
static inline struct
mcp251xfd_tx_obj *mcp251xfd_get_tx_obj_next(struct mcp251xfd_tx_ring *tx_ring)
{
u8 tx_head;
tx_head = mcp251xfd_get_tx_head(tx_ring);
return &tx_ring->obj[tx_head];
}
static void
mcp251xfd_tx_obj_from_skb(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj,
const struct sk_buff *skb,
unsigned int seq)
{
const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
struct mcp251xfd_hw_tx_obj_raw *hw_tx_obj;
union mcp251xfd_tx_obj_load_buf *load_buf;
u8 dlc;
u32 id, flags;
int len_sanitized = 0, len;
if (cfd->can_id & CAN_EFF_FLAG) {
u32 sid, eid;
sid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_SID_MASK, cfd->can_id);
eid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_EID_MASK, cfd->can_id);
id = FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, eid) |
FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, sid);
flags = MCP251XFD_OBJ_FLAGS_IDE;
} else {
id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, cfd->can_id);
flags = 0;
}
/* Use the MCP2518FD mask even on the MCP2517FD. It doesn't
* harm, only the lower 7 bits will be transferred into the
* TEF object.
*/
flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK, seq);
if (cfd->can_id & CAN_RTR_FLAG)
flags |= MCP251XFD_OBJ_FLAGS_RTR;
else
len_sanitized = canfd_sanitize_len(cfd->len);
/* CANFD */
if (can_is_canfd_skb(skb)) {
if (cfd->flags & CANFD_ESI)
flags |= MCP251XFD_OBJ_FLAGS_ESI;
flags |= MCP251XFD_OBJ_FLAGS_FDF;
if (cfd->flags & CANFD_BRS)
flags |= MCP251XFD_OBJ_FLAGS_BRS;
dlc = can_fd_len2dlc(cfd->len);
} else {
dlc = can_get_cc_dlc((struct can_frame *)cfd,
priv->can.ctrlmode);
}
flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC_MASK, dlc);
load_buf = &tx_obj->buf;
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
hw_tx_obj = &load_buf->crc.hw_tx_obj;
else
hw_tx_obj = &load_buf->nocrc.hw_tx_obj;
put_unaligned_le32(id, &hw_tx_obj->id);
put_unaligned_le32(flags, &hw_tx_obj->flags);
/* Copy data */
memcpy(hw_tx_obj->data, cfd->data, cfd->len);
/* Clear unused data at end of CAN frame */
if (MCP251XFD_SANITIZE_CAN && len_sanitized) {
int pad_len;
pad_len = len_sanitized - cfd->len;
if (pad_len)
memset(hw_tx_obj->data + cfd->len, 0x0, pad_len);
}
/* Number of bytes to be written into the RAM of the controller */
len = sizeof(hw_tx_obj->id) + sizeof(hw_tx_obj->flags);
if (MCP251XFD_SANITIZE_CAN)
len += round_up(len_sanitized, sizeof(u32));
else
len += round_up(cfd->len, sizeof(u32));
if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) {
u16 crc;
mcp251xfd_spi_cmd_crc_set_len_in_ram(&load_buf->crc.cmd,
len);
/* CRC */
len += sizeof(load_buf->crc.cmd);
crc = mcp251xfd_crc16_compute(&load_buf->crc, len);
put_unaligned_be16(crc, (void *)load_buf + len);
/* Total length */
len += sizeof(load_buf->crc.crc);
} else {
len += sizeof(load_buf->nocrc.cmd);
}
tx_obj->xfer[0].len = len;
}
static int mcp251xfd_tx_obj_write(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_obj *tx_obj)
{
return spi_async(priv->spi, &tx_obj->msg);
}
static bool mcp251xfd_tx_busy(const struct mcp251xfd_priv *priv,
struct mcp251xfd_tx_ring *tx_ring)
{
if (mcp251xfd_get_tx_free(tx_ring) > 0)
return false;
netif_stop_queue(priv->ndev);
/* Memory barrier before checking tx_free (head and tail) */
smp_mb();
if (mcp251xfd_get_tx_free(tx_ring) == 0) {
netdev_dbg(priv->ndev,
"Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
tx_ring->head, tx_ring->tail,
tx_ring->head - tx_ring->tail);
return true;
}
netif_start_queue(priv->ndev);
return false;
}
netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct mcp251xfd_priv *priv = netdev_priv(ndev);
struct mcp251xfd_tx_ring *tx_ring = priv->tx;
struct mcp251xfd_tx_obj *tx_obj;
unsigned int frame_len;
u8 tx_head;
int err;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (mcp251xfd_tx_busy(priv, tx_ring))
return NETDEV_TX_BUSY;
tx_obj = mcp251xfd_get_tx_obj_next(tx_ring);
mcp251xfd_tx_obj_from_skb(priv, tx_obj, skb, tx_ring->head);
/* Stop queue if we occupy the complete TX FIFO */
tx_head = mcp251xfd_get_tx_head(tx_ring);
tx_ring->head++;
if (mcp251xfd_get_tx_free(tx_ring) == 0)
netif_stop_queue(ndev);
frame_len = can_skb_get_frame_len(skb);
err = can_put_echo_skb(skb, ndev, tx_head, frame_len);
if (!err)
netdev_sent_queue(priv->ndev, frame_len);
err = mcp251xfd_tx_obj_write(priv, tx_obj);
if (err)
goto out_err;
return NETDEV_TX_OK;
out_err:
netdev_err(priv->ndev, "ERROR in %s: %d\n", __func__, err);
return NETDEV_TX_OK;
}
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#ifndef _MCP251XFD_H #ifndef _MCP251XFD_H
#define _MCP251XFD_H #define _MCP251XFD_H
#include <linux/bitfield.h>
#include <linux/can/core.h> #include <linux/can/core.h>
#include <linux/can/dev.h> #include <linux/can/dev.h>
#include <linux/can/rx-offload.h> #include <linux/can/rx-offload.h>
...@@ -625,6 +626,12 @@ MCP251XFD_IS(2517); ...@@ -625,6 +626,12 @@ MCP251XFD_IS(2517);
MCP251XFD_IS(2518); MCP251XFD_IS(2518);
MCP251XFD_IS(251X); MCP251XFD_IS(251X);
static inline bool mcp251xfd_is_fd_mode(const struct mcp251xfd_priv *priv)
{
/* listen-only mode works like FD mode */
return priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD);
}
static inline u8 mcp251xfd_first_byte_set(u32 mask) static inline u8 mcp251xfd_first_byte_set(u32 mask)
{ {
return (mask & 0x0000ffff) ? return (mask & 0x0000ffff) ?
...@@ -761,6 +768,24 @@ mcp251xfd_get_rx_obj_addr(const struct mcp251xfd_rx_ring *ring, u8 n) ...@@ -761,6 +768,24 @@ mcp251xfd_get_rx_obj_addr(const struct mcp251xfd_rx_ring *ring, u8 n)
return ring->base + ring->obj_size * n; return ring->base + ring->obj_size * n;
} }
static inline int
mcp251xfd_tx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
u8 *tx_tail)
{
u32 fifo_sta;
int err;
err = regmap_read(priv->map_reg,
MCP251XFD_REG_FIFOSTA(MCP251XFD_TX_FIFO),
&fifo_sta);
if (err)
return err;
*tx_tail = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
return 0;
}
static inline u8 mcp251xfd_get_tef_head(const struct mcp251xfd_priv *priv) static inline u8 mcp251xfd_get_tef_head(const struct mcp251xfd_priv *priv)
{ {
return priv->tef->head & (priv->tx->obj_num - 1); return priv->tef->head & (priv->tx->obj_num - 1);
...@@ -849,15 +874,24 @@ mcp251xfd_get_rx_linear_len(const struct mcp251xfd_rx_ring *ring) ...@@ -849,15 +874,24 @@ mcp251xfd_get_rx_linear_len(const struct mcp251xfd_rx_ring *ring)
(n) < (priv)->rx_ring_num; \ (n) < (priv)->rx_ring_num; \
(n)++, (ring) = *((priv)->rx + (n))) (n)++, (ring) = *((priv)->rx + (n)))
int mcp251xfd_regmap_init(struct mcp251xfd_priv *priv); int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv);
u16 mcp251xfd_crc16_compute2(const void *cmd, size_t cmd_size, u16 mcp251xfd_crc16_compute2(const void *cmd, size_t cmd_size,
const void *data, size_t data_size); const void *data, size_t data_size);
u16 mcp251xfd_crc16_compute(const void *data, size_t data_size); u16 mcp251xfd_crc16_compute(const void *data, size_t data_size);
int mcp251xfd_regmap_init(struct mcp251xfd_priv *priv);
void mcp251xfd_ring_init(struct mcp251xfd_priv *priv);
void mcp251xfd_ring_free(struct mcp251xfd_priv *priv);
int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv);
int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv);
int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv);
void mcp251xfd_skb_set_timestamp(const struct mcp251xfd_priv *priv, void mcp251xfd_skb_set_timestamp(const struct mcp251xfd_priv *priv,
struct sk_buff *skb, u32 timestamp); struct sk_buff *skb, u32 timestamp);
void mcp251xfd_timestamp_init(struct mcp251xfd_priv *priv); void mcp251xfd_timestamp_init(struct mcp251xfd_priv *priv);
void mcp251xfd_timestamp_stop(struct mcp251xfd_priv *priv); void mcp251xfd_timestamp_stop(struct mcp251xfd_priv *priv);
netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev);
#if IS_ENABLED(CONFIG_DEV_COREDUMP) #if IS_ENABLED(CONFIG_DEV_COREDUMP)
void mcp251xfd_dump(const struct mcp251xfd_priv *priv); void mcp251xfd_dump(const struct mcp251xfd_priv *priv);
#else #else
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment