Commit db141796 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux

Pull s390 patches from Martin Schwidefsky:
 "The biggest patch is the rework of the smp code, something I wanted to
  do for some time.  There are some patches for our various dump methods
  and one new thing: z/VM LGR detection.  LGR stands for linux-guest-
  relocation and is the guest migration feature of z/VM.  For debugging
  purposes we keep a log of the systems where a specific guest has lived."

Fix up trivial conflict in arch/s390/kernel/smp.c due to the scheduler
cleanup having removed some code next to removed s390 code.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
  [S390] kernel: Pass correct stack for smp_call_ipl_cpu()
  [S390] Ensure that vmcore_info pointer is never accessed directly
  [S390] dasd: prevent validate server for offline devices
  [S390] Remove monolithic build option for zcrypt driver.
  [S390] stack dump: fix indentation in output
  [S390] kernel: Add OS info memory interface
  [S390] Use block_sigmask()
  [S390] kernel: Add z/VM LGR detection
  [S390] irq: external interrupt code passing
  [S390] irq: set __ARCH_IRQ_EXIT_IRQS_DISABLED
  [S390] zfcpdump: Implement async sdias event processing
  [S390] Use copy_to_absolute_zero() instead of "stura/sturg"
  [S390] rework idle code
  [S390] rework smp code
  [S390] rename lowcore field
  [S390] Fix gcc 4.6.0 compile warning
parents 48aab2f7 c6da39f2
......@@ -170,24 +170,17 @@ struct s390_idle_data {
unsigned int sequence;
unsigned long long idle_count;
unsigned long long idle_enter;
unsigned long long idle_exit;
unsigned long long idle_time;
int nohz_delay;
};
DECLARE_PER_CPU(struct s390_idle_data, s390_idle);
void vtime_start_cpu(__u64 int_clock, __u64 enter_timer);
cputime64_t s390_get_idle_time(int cpu);
#define arch_idle_time(cpu) s390_get_idle_time(cpu)
static inline void s390_idle_check(struct pt_regs *regs, __u64 int_clock,
__u64 enter_timer)
{
if (regs->psw.mask & PSW_MASK_WAIT)
vtime_start_cpu(int_clock, enter_timer);
}
static inline int s390_nohz_delay(int cpu)
{
return __get_cpu_var(s390_idle).nohz_delay != 0;
......
......@@ -131,6 +131,7 @@ void debug_unregister(debug_info_t* id);
void debug_set_level(debug_info_t* id, int new_level);
void debug_set_critical(void);
void debug_stop_all(void);
static inline debug_entry_t*
......
......@@ -18,6 +18,7 @@
#define __ARCH_IRQ_STAT
#define __ARCH_HAS_DO_SOFTIRQ
#define __ARCH_IRQ_EXIT_IRQS_DISABLED
#define HARDIRQ_BITS 8
......
......@@ -169,5 +169,6 @@ enum diag308_rc {
extern int diag308(unsigned long subcode, void *addr);
extern void diag308_reset(void);
extern void store_status(void);
extern void lgr_info_log(void);
#endif /* _ASM_S390_IPL_H */
......@@ -34,7 +34,12 @@ enum interruption_class {
NR_IRQS,
};
typedef void (*ext_int_handler_t)(unsigned int, unsigned int, unsigned long);
struct ext_code {
unsigned short subcode;
unsigned short code;
};
typedef void (*ext_int_handler_t)(struct ext_code, unsigned int, unsigned long);
int register_external_interrupt(u16 code, ext_int_handler_t handler);
int unregister_external_interrupt(u16 code, ext_int_handler_t handler);
......
/*
* Copyright IBM Corp. 1999,2010
* Copyright IBM Corp. 1999,2012
* Author(s): Hartmut Penner <hp@de.ibm.com>,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Denis Joseph Barrow,
......@@ -12,14 +12,6 @@
#include <asm/ptrace.h>
#include <asm/cpu.h>
void restart_int_handler(void);
void ext_int_handler(void);
void system_call(void);
void pgm_check_handler(void);
void mcck_int_handler(void);
void io_int_handler(void);
void psw_restart_int_handler(void);
#ifdef CONFIG_32BIT
#define LC_ORDER 0
......@@ -56,7 +48,7 @@ struct _lowcore {
psw_t mcck_new_psw; /* 0x0070 */
psw_t io_new_psw; /* 0x0078 */
__u32 ext_params; /* 0x0080 */
__u16 cpu_addr; /* 0x0084 */
__u16 ext_cpu_addr; /* 0x0084 */
__u16 ext_int_code; /* 0x0086 */
__u16 svc_ilc; /* 0x0088 */
__u16 svc_code; /* 0x008a */
......@@ -117,32 +109,37 @@ struct _lowcore {
__u64 steal_timer; /* 0x0288 */
__u64 last_update_timer; /* 0x0290 */
__u64 last_update_clock; /* 0x0298 */
__u64 int_clock; /* 0x02a0 */
__u64 mcck_clock; /* 0x02a8 */
__u64 clock_comparator; /* 0x02b0 */
/* Current process. */
__u32 current_task; /* 0x02a0 */
__u32 thread_info; /* 0x02a4 */
__u32 kernel_stack; /* 0x02a8 */
__u32 current_task; /* 0x02b8 */
__u32 thread_info; /* 0x02bc */
__u32 kernel_stack; /* 0x02c0 */
/* Interrupt, panic and restart stack. */
__u32 async_stack; /* 0x02c4 */
__u32 panic_stack; /* 0x02c8 */
__u32 restart_stack; /* 0x02cc */
/* Interrupt and panic stack. */
__u32 async_stack; /* 0x02ac */
__u32 panic_stack; /* 0x02b0 */
/* Restart function and parameter. */
__u32 restart_fn; /* 0x02d0 */
__u32 restart_data; /* 0x02d4 */
__u32 restart_source; /* 0x02d8 */
/* Address space pointer. */
__u32 kernel_asce; /* 0x02b4 */
__u32 user_asce; /* 0x02b8 */
__u32 current_pid; /* 0x02bc */
__u32 kernel_asce; /* 0x02dc */
__u32 user_asce; /* 0x02e0 */
__u32 current_pid; /* 0x02e4 */
/* SMP info area */
__u32 cpu_nr; /* 0x02c0 */
__u32 softirq_pending; /* 0x02c4 */
__u32 percpu_offset; /* 0x02c8 */
__u32 ext_call_fast; /* 0x02cc */
__u64 int_clock; /* 0x02d0 */
__u64 mcck_clock; /* 0x02d8 */
__u64 clock_comparator; /* 0x02e0 */
__u32 machine_flags; /* 0x02e8 */
__u32 ftrace_func; /* 0x02ec */
__u8 pad_0x02f8[0x0300-0x02f0]; /* 0x02f0 */
__u32 cpu_nr; /* 0x02e8 */
__u32 softirq_pending; /* 0x02ec */
__u32 percpu_offset; /* 0x02f0 */
__u32 machine_flags; /* 0x02f4 */
__u32 ftrace_func; /* 0x02f8 */
__u8 pad_0x02fc[0x0300-0x02fc]; /* 0x02fc */
/* Interrupt response block */
__u8 irb[64]; /* 0x0300 */
......@@ -157,7 +154,9 @@ struct _lowcore {
__u32 ipib; /* 0x0e00 */
__u32 ipib_checksum; /* 0x0e04 */
__u32 vmcore_info; /* 0x0e08 */
__u8 pad_0x0e0c[0x0f00-0x0e0c]; /* 0x0e0c */
__u8 pad_0x0e0c[0x0e18-0x0e0c]; /* 0x0e0c */
__u32 os_info; /* 0x0e18 */
__u8 pad_0x0e1c[0x0f00-0x0e1c]; /* 0x0e1c */
/* Extended facility list */
__u64 stfle_fac_list[32]; /* 0x0f00 */
......@@ -189,7 +188,7 @@ struct _lowcore {
__u32 ipl_parmblock_ptr; /* 0x0014 */
__u8 pad_0x0018[0x0080-0x0018]; /* 0x0018 */
__u32 ext_params; /* 0x0080 */
__u16 cpu_addr; /* 0x0084 */
__u16 ext_cpu_addr; /* 0x0084 */
__u16 ext_int_code; /* 0x0086 */
__u16 svc_ilc; /* 0x0088 */
__u16 svc_code; /* 0x008a */
......@@ -254,34 +253,39 @@ struct _lowcore {
__u64 steal_timer; /* 0x02e0 */
__u64 last_update_timer; /* 0x02e8 */
__u64 last_update_clock; /* 0x02f0 */
__u64 int_clock; /* 0x02f8 */
__u64 mcck_clock; /* 0x0300 */
__u64 clock_comparator; /* 0x0308 */
/* Current process. */
__u64 current_task; /* 0x02f8 */
__u64 thread_info; /* 0x0300 */
__u64 kernel_stack; /* 0x0308 */
__u64 current_task; /* 0x0310 */
__u64 thread_info; /* 0x0318 */
__u64 kernel_stack; /* 0x0320 */
/* Interrupt, panic and restart stack. */
__u64 async_stack; /* 0x0328 */
__u64 panic_stack; /* 0x0330 */
__u64 restart_stack; /* 0x0338 */
/* Interrupt and panic stack. */
__u64 async_stack; /* 0x0310 */
__u64 panic_stack; /* 0x0318 */
/* Restart function and parameter. */
__u64 restart_fn; /* 0x0340 */
__u64 restart_data; /* 0x0348 */
__u64 restart_source; /* 0x0350 */
/* Address space pointer. */
__u64 kernel_asce; /* 0x0320 */
__u64 user_asce; /* 0x0328 */
__u64 current_pid; /* 0x0330 */
__u64 kernel_asce; /* 0x0358 */
__u64 user_asce; /* 0x0360 */
__u64 current_pid; /* 0x0368 */
/* SMP info area */
__u32 cpu_nr; /* 0x0338 */
__u32 softirq_pending; /* 0x033c */
__u64 percpu_offset; /* 0x0340 */
__u64 ext_call_fast; /* 0x0348 */
__u64 int_clock; /* 0x0350 */
__u64 mcck_clock; /* 0x0358 */
__u64 clock_comparator; /* 0x0360 */
__u64 vdso_per_cpu_data; /* 0x0368 */
__u64 machine_flags; /* 0x0370 */
__u64 ftrace_func; /* 0x0378 */
__u64 gmap; /* 0x0380 */
__u8 pad_0x0388[0x0400-0x0388]; /* 0x0388 */
__u32 cpu_nr; /* 0x0370 */
__u32 softirq_pending; /* 0x0374 */
__u64 percpu_offset; /* 0x0378 */
__u64 vdso_per_cpu_data; /* 0x0380 */
__u64 machine_flags; /* 0x0388 */
__u64 ftrace_func; /* 0x0390 */
__u64 gmap; /* 0x0398 */
__u8 pad_0x03a0[0x0400-0x03a0]; /* 0x03a0 */
/* Interrupt response block. */
__u8 irb[64]; /* 0x0400 */
......@@ -298,8 +302,15 @@ struct _lowcore {
*/
__u64 ipib; /* 0x0e00 */
__u32 ipib_checksum; /* 0x0e08 */
__u64 vmcore_info; /* 0x0e0c */
__u8 pad_0x0e14[0x0f00-0x0e14]; /* 0x0e14 */
/*
* Because the vmcore_info pointer is not 8 byte aligned it never
* should not be accessed directly. For accessing the pointer, first
* copy it to a local pointer variable.
*/
__u8 vmcore_info[8]; /* 0x0e0c */
__u8 pad_0x0e14[0x0e18-0x0e14]; /* 0x0e14 */
__u64 os_info; /* 0x0e18 */
__u8 pad_0x0e20[0x0f00-0x0e20]; /* 0x0e20 */
/* Extended facility list */
__u64 stfle_fac_list[32]; /* 0x0f00 */
......
/*
* OS info memory interface
*
* Copyright IBM Corp. 2012
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#ifndef _ASM_S390_OS_INFO_H
#define _ASM_S390_OS_INFO_H
#define OS_INFO_VERSION_MAJOR 1
#define OS_INFO_VERSION_MINOR 1
#define OS_INFO_MAGIC 0x4f53494e464f535aULL /* OSINFOSZ */
#define OS_INFO_VMCOREINFO 0
#define OS_INFO_REIPL_BLOCK 1
#define OS_INFO_INIT_FN 2
struct os_info_entry {
u64 addr;
u64 size;
u32 csum;
} __packed;
struct os_info {
u64 magic;
u32 csum;
u16 version_major;
u16 version_minor;
u64 crashkernel_addr;
u64 crashkernel_size;
struct os_info_entry entry[3];
u8 reserved[4004];
} __packed;
void os_info_init(void);
void os_info_entry_add(int nr, void *ptr, u64 len);
void os_info_crashkernel_add(unsigned long base, unsigned long size);
u32 os_info_csum(struct os_info *os_info);
#ifdef CONFIG_CRASH_DUMP
void *os_info_old_entry(int nr, unsigned long *size);
int copy_from_oldmem(void *dest, void *src, size_t count);
#else
static inline void *os_info_old_entry(int nr, unsigned long *size)
{
return NULL;
}
#endif
#endif /* _ASM_S390_OS_INFO_H */
/*
* Routines and structures for signalling other processors.
*
* Copyright IBM Corp. 1999,2010
* Author(s): Denis Joseph Barrow,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Heiko Carstens <heiko.carstens@de.ibm.com>,
*/
#ifndef __ASM_SIGP_H
#define __ASM_SIGP_H
#include <asm/system.h>
/* Get real cpu address from logical cpu number. */
extern unsigned short __cpu_logical_map[];
static inline int cpu_logical_map(int cpu)
{
#ifdef CONFIG_SMP
return __cpu_logical_map[cpu];
#else
return stap();
#endif
}
enum {
sigp_sense = 1,
sigp_external_call = 2,
sigp_emergency_signal = 3,
sigp_start = 4,
sigp_stop = 5,
sigp_restart = 6,
sigp_stop_and_store_status = 9,
sigp_initial_cpu_reset = 11,
sigp_cpu_reset = 12,
sigp_set_prefix = 13,
sigp_store_status_at_address = 14,
sigp_store_extended_status_at_address = 15,
sigp_set_architecture = 18,
sigp_conditional_emergency_signal = 19,
sigp_sense_running = 21,
};
enum {
sigp_order_code_accepted = 0,
sigp_status_stored = 1,
sigp_busy = 2,
sigp_not_operational = 3,
};
/*
* Definitions for external call.
*/
enum {
ec_schedule = 0,
ec_call_function,
ec_call_function_single,
ec_stop_cpu,
};
/*
* Signal processor.
*/
static inline int raw_sigp(u16 cpu, int order)
{
register unsigned long reg1 asm ("1") = 0;
int ccode;
asm volatile(
" sigp %1,%2,0(%3)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (ccode)
: "d" (reg1), "d" (cpu),
"a" (order) : "cc" , "memory");
return ccode;
}
/*
* Signal processor with parameter.
*/
static inline int raw_sigp_p(u32 parameter, u16 cpu, int order)
{
register unsigned int reg1 asm ("1") = parameter;
int ccode;
asm volatile(
" sigp %1,%2,0(%3)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (ccode)
: "d" (reg1), "d" (cpu),
"a" (order) : "cc" , "memory");
return ccode;
}
/*
* Signal processor with parameter and return status.
*/
static inline int raw_sigp_ps(u32 *status, u32 parm, u16 cpu, int order)
{
register unsigned int reg1 asm ("1") = parm;
int ccode;
asm volatile(
" sigp %1,%2,0(%3)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (ccode), "+d" (reg1)
: "d" (cpu), "a" (order)
: "cc" , "memory");
*status = reg1;
return ccode;
}
static inline int sigp(int cpu, int order)
{
return raw_sigp(cpu_logical_map(cpu), order);
}
static inline int sigp_p(u32 parameter, int cpu, int order)
{
return raw_sigp_p(parameter, cpu_logical_map(cpu), order);
}
static inline int sigp_ps(u32 *status, u32 parm, int cpu, int order)
{
return raw_sigp_ps(status, parm, cpu_logical_map(cpu), order);
}
#endif /* __ASM_SIGP_H */
/*
* Copyright IBM Corp. 1999,2009
* Copyright IBM Corp. 1999,2012
* Author(s): Denis Joseph Barrow,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Heiko Carstens <heiko.carstens@de.ibm.com>,
......@@ -10,71 +10,52 @@
#ifdef CONFIG_SMP
#include <asm/system.h>
#include <asm/sigp.h>
extern void machine_restart_smp(char *);
extern void machine_halt_smp(void);
extern void machine_power_off_smp(void);
#define raw_smp_processor_id() (S390_lowcore.cpu_nr)
extern int __cpu_disable (void);
extern void __cpu_die (unsigned int cpu);
extern int __cpu_up (unsigned int cpu);
extern struct mutex smp_cpu_state_mutex;
extern struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
extern int __cpu_up(unsigned int cpu);
extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
extern struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
extern void smp_switch_to_ipl_cpu(void (*func)(void *), void *);
extern void smp_switch_to_cpu(void (*)(void *), void *, unsigned long sp,
int from, int to);
extern void smp_restart_with_online_cpu(void);
extern void smp_restart_cpu(void);
extern void smp_call_online_cpu(void (*func)(void *), void *);
extern void smp_call_ipl_cpu(void (*func)(void *), void *);
/*
* returns 1 if (virtual) cpu is scheduled
* returns 0 otherwise
*/
static inline int smp_vcpu_scheduled(int cpu)
{
u32 status;
switch (sigp_ps(&status, 0, cpu, sigp_sense_running)) {
case sigp_status_stored:
/* Check for running status */
if (status & 0x400)
return 0;
break;
case sigp_not_operational:
return 0;
default:
break;
}
return 1;
}
extern int smp_find_processor_id(u16 address);
extern int smp_store_status(int cpu);
extern int smp_vcpu_scheduled(int cpu);
extern void smp_yield_cpu(int cpu);
extern void smp_yield(void);
extern void smp_stop_cpu(void);
#else /* CONFIG_SMP */
static inline void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
static inline void smp_call_ipl_cpu(void (*func)(void *), void *data)
{
func(data);
}
static inline void smp_restart_with_online_cpu(void)
static inline void smp_call_online_cpu(void (*func)(void *), void *data)
{
func(data);
}
#define smp_vcpu_scheduled (1)
static inline int smp_find_processor_id(int address) { return 0; }
static inline int smp_vcpu_scheduled(int cpu) { return 1; }
static inline void smp_yield_cpu(int cpu) { }
static inline void smp_yield(void) { }
static inline void smp_stop_cpu(void) { }
#endif /* CONFIG_SMP */
#ifdef CONFIG_HOTPLUG_CPU
extern int smp_rescan_cpus(void);
extern void __noreturn cpu_die(void);
extern void __cpu_die(unsigned int cpu);
extern int __cpu_disable(void);
#else
static inline int smp_rescan_cpus(void) { return 0; }
static inline void cpu_die(void) { }
......
......@@ -7,8 +7,10 @@
#ifndef __ASM_SYSTEM_H
#define __ASM_SYSTEM_H
#include <linux/preempt.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <asm/types.h>
#include <asm/ptrace.h>
#include <asm/setup.h>
......@@ -248,6 +250,38 @@ static inline int test_facility(unsigned long nr)
return (*ptr & (0x80 >> (nr & 7))) != 0;
}
/**
* stfle - Store facility list extended
* @stfle_fac_list: array where facility list can be stored
* @size: size of passed in array in double words
*/
static inline void stfle(u64 *stfle_fac_list, int size)
{
unsigned long nr;
preempt_disable();
S390_lowcore.stfl_fac_list = 0;
asm volatile(
" .insn s,0xb2b10000,0(0)\n" /* stfl */
"0:\n"
EX_TABLE(0b, 0b)
: "=m" (S390_lowcore.stfl_fac_list));
nr = 4; /* bytes stored by stfl */
memcpy(stfle_fac_list, &S390_lowcore.stfl_fac_list, 4);
if (S390_lowcore.stfl_fac_list & 0x01000000) {
/* More facility bits available with stfle */
register unsigned long reg0 asm("0") = size - 1;
asm volatile(".insn s,0xb2b00000,0(%1)" /* stfle */
: "+d" (reg0)
: "a" (stfle_fac_list)
: "memory", "cc");
nr = (reg0 + 1) * 8; /* # bytes stored by stfle */
}
memset((char *) stfle_fac_list + nr, 0, size * 8 - nr);
preempt_enable();
}
static inline unsigned short stap(void)
{
unsigned short cpu_address;
......
......@@ -33,8 +33,8 @@ struct vtimer_queue {
spinlock_t lock;
__u64 timer; /* last programmed timer */
__u64 elapsed; /* elapsed time of timer expire values */
__u64 idle; /* temp var for idle */
int do_spt; /* =1: reprogram cpu timer in idle */
__u64 idle_enter; /* cpu timer on idle enter */
__u64 idle_exit; /* cpu timer on idle exit */
};
extern void init_virt_timer(struct vtimer_list *timer);
......
......@@ -40,8 +40,8 @@ struct vdso_per_cpu_data {
extern struct vdso_data *vdso_data;
#ifdef CONFIG_64BIT
int vdso_alloc_per_cpu(int cpu, struct _lowcore *lowcore);
void vdso_free_per_cpu(int cpu, struct _lowcore *lowcore);
int vdso_alloc_per_cpu(struct _lowcore *lowcore);
void vdso_free_per_cpu(struct _lowcore *lowcore);
#endif
#endif /* __ASSEMBLY__ */
......
......@@ -23,7 +23,7 @@ CFLAGS_sysinfo.o += -Iinclude/math-emu -Iarch/s390/math-emu -w
obj-y := bitmap.o traps.o time.o process.o base.o early.o setup.o vtime.o \
processor.o sys_s390.o ptrace.o signal.o cpcmd.o ebcdic.o nmi.o \
debug.o irq.o ipl.o dis.o diag.o mem_detect.o sclp.o vdso.o \
sysinfo.o jump_label.o
sysinfo.o jump_label.o lgr.o os_info.o
obj-y += $(if $(CONFIG_64BIT),entry64.o,entry.o)
obj-y += $(if $(CONFIG_64BIT),reipl64.o,reipl.o)
......@@ -34,8 +34,6 @@ extra-y += $(if $(CONFIG_64BIT),head64.o,head31.o)
obj-$(CONFIG_MODULES) += s390_ksyms.o module.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_SCHED_BOOK) += topology.o
obj-$(CONFIG_SMP) += $(if $(CONFIG_64BIT),switch_cpu64.o, \
switch_cpu.o)
obj-$(CONFIG_HIBERNATION) += suspend.o swsusp_asm64.o
obj-$(CONFIG_AUDIT) += audit.o
compat-obj-$(CONFIG_AUDIT) += compat_audit.o
......
......@@ -8,9 +8,11 @@
#include <linux/kbuild.h>
#include <linux/sched.h>
#include <asm/cputime.h>
#include <asm/timer.h>
#include <asm/vdso.h>
#include <asm/sigp.h>
#include <asm/pgtable.h>
#include <asm/system.h>
/*
* Make sure that the compiler is new enough. We want a compiler that
......@@ -70,15 +72,15 @@ int main(void)
DEFINE(__CLOCK_MONOTONIC, CLOCK_MONOTONIC);
DEFINE(__CLOCK_REALTIME_RES, MONOTONIC_RES_NSEC);
BLANK();
/* constants for SIGP */
DEFINE(__SIGP_STOP, sigp_stop);
DEFINE(__SIGP_RESTART, sigp_restart);
DEFINE(__SIGP_SENSE, sigp_sense);
DEFINE(__SIGP_INITIAL_CPU_RESET, sigp_initial_cpu_reset);
BLANK();
/* idle data offsets */
DEFINE(__IDLE_ENTER, offsetof(struct s390_idle_data, idle_enter));
DEFINE(__IDLE_EXIT, offsetof(struct s390_idle_data, idle_exit));
/* vtimer queue offsets */
DEFINE(__VQ_IDLE_ENTER, offsetof(struct vtimer_queue, idle_enter));
DEFINE(__VQ_IDLE_EXIT, offsetof(struct vtimer_queue, idle_exit));
/* lowcore offsets */
DEFINE(__LC_EXT_PARAMS, offsetof(struct _lowcore, ext_params));
DEFINE(__LC_CPU_ADDRESS, offsetof(struct _lowcore, cpu_addr));
DEFINE(__LC_EXT_CPU_ADDR, offsetof(struct _lowcore, ext_cpu_addr));
DEFINE(__LC_EXT_INT_CODE, offsetof(struct _lowcore, ext_int_code));
DEFINE(__LC_SVC_ILC, offsetof(struct _lowcore, svc_ilc));
DEFINE(__LC_SVC_INT_CODE, offsetof(struct _lowcore, svc_code));
......@@ -95,20 +97,19 @@ int main(void)
DEFINE(__LC_IO_INT_WORD, offsetof(struct _lowcore, io_int_word));
DEFINE(__LC_STFL_FAC_LIST, offsetof(struct _lowcore, stfl_fac_list));
DEFINE(__LC_MCCK_CODE, offsetof(struct _lowcore, mcck_interruption_code));
DEFINE(__LC_DUMP_REIPL, offsetof(struct _lowcore, ipib));
BLANK();
DEFINE(__LC_RST_NEW_PSW, offsetof(struct _lowcore, restart_psw));
DEFINE(__LC_RST_OLD_PSW, offsetof(struct _lowcore, restart_old_psw));
DEFINE(__LC_EXT_OLD_PSW, offsetof(struct _lowcore, external_old_psw));
DEFINE(__LC_SVC_OLD_PSW, offsetof(struct _lowcore, svc_old_psw));
DEFINE(__LC_PGM_OLD_PSW, offsetof(struct _lowcore, program_old_psw));
DEFINE(__LC_MCK_OLD_PSW, offsetof(struct _lowcore, mcck_old_psw));
DEFINE(__LC_IO_OLD_PSW, offsetof(struct _lowcore, io_old_psw));
DEFINE(__LC_RST_NEW_PSW, offsetof(struct _lowcore, restart_psw));
DEFINE(__LC_EXT_NEW_PSW, offsetof(struct _lowcore, external_new_psw));
DEFINE(__LC_SVC_NEW_PSW, offsetof(struct _lowcore, svc_new_psw));
DEFINE(__LC_PGM_NEW_PSW, offsetof(struct _lowcore, program_new_psw));
DEFINE(__LC_MCK_NEW_PSW, offsetof(struct _lowcore, mcck_new_psw));
DEFINE(__LC_IO_NEW_PSW, offsetof(struct _lowcore, io_new_psw));
BLANK();
DEFINE(__LC_SAVE_AREA_SYNC, offsetof(struct _lowcore, save_area_sync));
DEFINE(__LC_SAVE_AREA_ASYNC, offsetof(struct _lowcore, save_area_async));
DEFINE(__LC_SAVE_AREA_RESTART, offsetof(struct _lowcore, save_area_restart));
......@@ -129,12 +130,16 @@ int main(void)
DEFINE(__LC_KERNEL_STACK, offsetof(struct _lowcore, kernel_stack));
DEFINE(__LC_ASYNC_STACK, offsetof(struct _lowcore, async_stack));
DEFINE(__LC_PANIC_STACK, offsetof(struct _lowcore, panic_stack));
DEFINE(__LC_RESTART_STACK, offsetof(struct _lowcore, restart_stack));
DEFINE(__LC_RESTART_FN, offsetof(struct _lowcore, restart_fn));
DEFINE(__LC_USER_ASCE, offsetof(struct _lowcore, user_asce));
DEFINE(__LC_INT_CLOCK, offsetof(struct _lowcore, int_clock));
DEFINE(__LC_MCCK_CLOCK, offsetof(struct _lowcore, mcck_clock));
DEFINE(__LC_MACHINE_FLAGS, offsetof(struct _lowcore, machine_flags));
DEFINE(__LC_FTRACE_FUNC, offsetof(struct _lowcore, ftrace_func));
DEFINE(__LC_IRB, offsetof(struct _lowcore, irb));
DEFINE(__LC_DUMP_REIPL, offsetof(struct _lowcore, ipib));
BLANK();
DEFINE(__LC_CPU_TIMER_SAVE_AREA, offsetof(struct _lowcore, cpu_timer_save_area));
DEFINE(__LC_CLOCK_COMP_SAVE_AREA, offsetof(struct _lowcore, clock_comp_save_area));
DEFINE(__LC_PSW_SAVE_AREA, offsetof(struct _lowcore, psw_save_area));
......
......@@ -581,7 +581,6 @@ static int setup_rt_frame32(int sig, struct k_sigaction *ka, siginfo_t *info,
int handle_signal32(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
{
sigset_t blocked;
int ret;
/* Set up the stack frame */
......@@ -591,10 +590,7 @@ int handle_signal32(unsigned long sig, struct k_sigaction *ka,
ret = setup_frame32(sig, ka, oldset, regs);
if (ret)
return ret;
sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
if (!(ka->sa.sa_flags & SA_NODEFER))
sigaddset(&blocked, sig);
set_current_blocked(&blocked);
block_sigmask(ka, sig);
return 0;
}
......@@ -14,6 +14,7 @@
#include <linux/bootmem.h>
#include <linux/elf.h>
#include <asm/ipl.h>
#include <asm/os_info.h>
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
......@@ -51,7 +52,7 @@ ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
/*
* Copy memory from old kernel
*/
static int copy_from_oldmem(void *dest, void *src, size_t count)
int copy_from_oldmem(void *dest, void *src, size_t count)
{
unsigned long copied = 0;
int rc;
......@@ -224,28 +225,44 @@ static void *nt_prpsinfo(void *ptr)
}
/*
* Initialize vmcoreinfo note (new kernel)
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
*/
static void *nt_vmcoreinfo(void *ptr)
static void *get_vmcoreinfo_old(unsigned long *size)
{
char nt_name[11], *vmcoreinfo;
Elf64_Nhdr note;
void *addr;
if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
return ptr;
return NULL;
memset(nt_name, 0, sizeof(nt_name));
if (copy_from_oldmem(&note, addr, sizeof(note)))
return ptr;
return NULL;
if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
return ptr;
return NULL;
if (strcmp(nt_name, "VMCOREINFO") != 0)
return ptr;
vmcoreinfo = kzalloc_panic(note.n_descsz + 1);
return NULL;
vmcoreinfo = kzalloc_panic(note.n_descsz);
if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
return NULL;
*size = note.n_descsz;
return vmcoreinfo;
}
/*
* Initialize vmcoreinfo note (new kernel)
*/
static void *nt_vmcoreinfo(void *ptr)
{
unsigned long size;
void *vmcoreinfo;
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
if (!vmcoreinfo)
vmcoreinfo = get_vmcoreinfo_old(&size);
if (!vmcoreinfo)
return ptr;
vmcoreinfo[note.n_descsz + 1] = 0;
return nt_init(ptr, 0, vmcoreinfo, note.n_descsz, "VMCOREINFO");
return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
}
/*
......
......@@ -2,8 +2,8 @@
* arch/s390/kernel/debug.c
* S/390 debug facility
*
* Copyright (C) 1999, 2000 IBM Deutschland Entwicklung GmbH,
* IBM Corporation
* Copyright IBM Corp. 1999, 2012
*
* Author(s): Michael Holzheu (holzheu@de.ibm.com),
* Holger Smolinski (Holger.Smolinski@de.ibm.com)
*
......@@ -167,6 +167,7 @@ static debug_info_t *debug_area_last = NULL;
static DEFINE_MUTEX(debug_mutex);
static int initialized;
static int debug_critical;
static const struct file_operations debug_file_ops = {
.owner = THIS_MODULE,
......@@ -932,6 +933,11 @@ debug_stop_all(void)
}
void debug_set_critical(void)
{
debug_critical = 1;
}
/*
* debug_event_common:
* - write debug entry with given size
......@@ -945,7 +951,11 @@ debug_event_common(debug_info_t * id, int level, const void *buf, int len)
if (!debug_active || !id->areas)
return NULL;
spin_lock_irqsave(&id->lock, flags);
if (debug_critical) {
if (!spin_trylock_irqsave(&id->lock, flags))
return NULL;
} else
spin_lock_irqsave(&id->lock, flags);
active = get_active_entry(id);
memset(DEBUG_DATA(active), 0, id->buf_size);
memcpy(DEBUG_DATA(active), buf, min(len, id->buf_size));
......@@ -968,7 +978,11 @@ debug_entry_t
if (!debug_active || !id->areas)
return NULL;
spin_lock_irqsave(&id->lock, flags);
if (debug_critical) {
if (!spin_trylock_irqsave(&id->lock, flags))
return NULL;
} else
spin_lock_irqsave(&id->lock, flags);
active = get_active_entry(id);
memset(DEBUG_DATA(active), 0, id->buf_size);
memcpy(DEBUG_DATA(active), buf, min(len, id->buf_size));
......@@ -1013,7 +1027,11 @@ debug_sprintf_event(debug_info_t* id, int level,char *string,...)
return NULL;
numargs=debug_count_numargs(string);
spin_lock_irqsave(&id->lock, flags);
if (debug_critical) {
if (!spin_trylock_irqsave(&id->lock, flags))
return NULL;
} else
spin_lock_irqsave(&id->lock, flags);
active = get_active_entry(id);
curr_event=(debug_sprintf_entry_t *) DEBUG_DATA(active);
va_start(ap,string);
......@@ -1047,7 +1065,11 @@ debug_sprintf_exception(debug_info_t* id, int level,char *string,...)
numargs=debug_count_numargs(string);
spin_lock_irqsave(&id->lock, flags);
if (debug_critical) {
if (!spin_trylock_irqsave(&id->lock, flags))
return NULL;
} else
spin_lock_irqsave(&id->lock, flags);
active = get_active_entry(id);
curr_event=(debug_sprintf_entry_t *)DEBUG_DATA(active);
va_start(ap,string);
......@@ -1428,10 +1450,10 @@ debug_hex_ascii_format_fn(debug_info_t * id, struct debug_view *view,
rc += sprintf(out_buf + rc, "| ");
for (i = 0; i < id->buf_size; i++) {
unsigned char c = in_buf[i];
if (!isprint(c))
rc += sprintf(out_buf + rc, ".");
else
if (isascii(c) && isprint(c))
rc += sprintf(out_buf + rc, "%c", c);
else
rc += sprintf(out_buf + rc, ".");
}
rc += sprintf(out_buf + rc, "\n");
return rc;
......
......@@ -29,6 +29,7 @@
#include <asm/sysinfo.h>
#include <asm/cpcmd.h>
#include <asm/sclp.h>
#include <asm/system.h>
#include "entry.h"
/*
......@@ -262,25 +263,8 @@ static noinline __init void setup_lowcore_early(void)
static noinline __init void setup_facility_list(void)
{
unsigned long nr;
S390_lowcore.stfl_fac_list = 0;
asm volatile(
" .insn s,0xb2b10000,0(0)\n" /* stfl */
"0:\n"
EX_TABLE(0b,0b) : "=m" (S390_lowcore.stfl_fac_list));
memcpy(&S390_lowcore.stfle_fac_list, &S390_lowcore.stfl_fac_list, 4);
nr = 4; /* # bytes stored by stfl */
if (test_facility(7)) {
/* More facility bits available with stfle */
register unsigned long reg0 asm("0") = MAX_FACILITY_BIT/64 - 1;
asm volatile(".insn s,0xb2b00000,%0" /* stfle */
: "=m" (S390_lowcore.stfle_fac_list), "+d" (reg0)
: : "cc");
nr = (reg0 + 1) * 8; /* # bytes stored by stfle */
}
memset((char *) S390_lowcore.stfle_fac_list + nr, 0,
MAX_FACILITY_BIT/8 - nr);
stfle(S390_lowcore.stfle_fac_list,
ARRAY_SIZE(S390_lowcore.stfle_fac_list));
}
static noinline __init void setup_hpage(void)
......
......@@ -2,7 +2,7 @@
* arch/s390/kernel/entry.S
* S390 low-level entry points.
*
* Copyright (C) IBM Corp. 1999,2006
* Copyright (C) IBM Corp. 1999,2012
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
* Hartmut Penner (hp@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
......@@ -105,14 +105,14 @@ STACK_SIZE = 1 << STACK_SHIFT
.macro ADD64 high,low,timer
al \high,\timer
al \low,\timer+4
al \low,4+\timer
brc 12,.+8
ahi \high,1
.endm
.macro SUB64 high,low,timer
sl \high,\timer
sl \low,\timer+4
sl \low,4+\timer
brc 3,.+8
ahi \high,-1
.endm
......@@ -471,7 +471,6 @@ io_tif:
jnz io_work # there is work to do (signals etc.)
io_restore:
mvc __LC_RETURN_PSW(8),__PT_PSW(%r11)
ni __LC_RETURN_PSW+1,0xfd # clean wait state bit
stpt __LC_EXIT_TIMER
lm %r0,%r15,__PT_R0(%r11)
lpsw __LC_RETURN_PSW
......@@ -606,12 +605,32 @@ ext_skip:
stm %r8,%r9,__PT_PSW(%r11)
TRACE_IRQS_OFF
lr %r2,%r11 # pass pointer to pt_regs
l %r3,__LC_CPU_ADDRESS # get cpu address + interruption code
l %r3,__LC_EXT_CPU_ADDR # get cpu address + interruption code
l %r4,__LC_EXT_PARAMS # get external parameters
l %r1,BASED(.Ldo_extint)
basr %r14,%r1 # call do_extint
j io_return
/*
* Load idle PSW. The second "half" of this function is in cleanup_idle.
*/
ENTRY(psw_idle)
st %r4,__SF_EMPTY(%r15)
basr %r1,0
la %r1,psw_idle_lpsw+4-.(%r1)
st %r1,__SF_EMPTY+4(%r15)
oi __SF_EMPTY+4(%r15),0x80
la %r1,.Lvtimer_max-psw_idle_lpsw-4(%r1)
stck __IDLE_ENTER(%r2)
ltr %r5,%r5
stpt __VQ_IDLE_ENTER(%r3)
jz psw_idle_lpsw
spt 0(%r1)
psw_idle_lpsw:
lpsw __SF_EMPTY(%r15)
br %r14
psw_idle_end:
__critical_end:
/*
......@@ -673,7 +692,6 @@ mcck_skip:
TRACE_IRQS_ON
mcck_return:
mvc __LC_RETURN_MCCK_PSW(8),__PT_PSW(%r11) # move return PSW
ni __LC_RETURN_MCCK_PSW+1,0xfd # clear wait state bit
tm __LC_RETURN_MCCK_PSW+1,0x01 # returning to user ?
jno 0f
lm %r0,%r15,__PT_R0(%r11)
......@@ -691,77 +709,30 @@ mcck_panic:
0: ahi %r15,-(STACK_FRAME_OVERHEAD + __PT_SIZE)
j mcck_skip
/*
* Restart interruption handler, kick starter for additional CPUs
*/
#ifdef CONFIG_SMP
__CPUINIT
ENTRY(restart_int_handler)
basr %r1,0
restart_base:
spt restart_vtime-restart_base(%r1)
stck __LC_LAST_UPDATE_CLOCK
mvc __LC_LAST_UPDATE_TIMER(8),restart_vtime-restart_base(%r1)
mvc __LC_EXIT_TIMER(8),restart_vtime-restart_base(%r1)
l %r15,__LC_GPREGS_SAVE_AREA+60 # load ksp
lctl %c0,%c15,__LC_CREGS_SAVE_AREA # get new ctl regs
lam %a0,%a15,__LC_AREGS_SAVE_AREA
lm %r6,%r15,__SF_GPRS(%r15)# load registers from clone
l %r1,__LC_THREAD_INFO
mvc __LC_USER_TIMER(8),__TI_user_timer(%r1)
mvc __LC_SYSTEM_TIMER(8),__TI_system_timer(%r1)
xc __LC_STEAL_TIMER(8),__LC_STEAL_TIMER
ssm __LC_PGM_NEW_PSW # turn dat on, keep irqs off
basr %r14,0
l %r14,restart_addr-.(%r14)
basr %r14,%r14 # call start_secondary
restart_addr:
.long start_secondary
.align 8
restart_vtime:
.long 0x7fffffff,0xffffffff
.previous
#else
/*
* If we do not run with SMP enabled, let the new CPU crash ...
*/
ENTRY(restart_int_handler)
basr %r1,0
restart_base:
lpsw restart_crash-restart_base(%r1)
.align 8
restart_crash:
.long 0x000a0000,0x00000000
restart_go:
#endif
#
# PSW restart interrupt handler
#
ENTRY(psw_restart_int_handler)
ENTRY(restart_int_handler)
st %r15,__LC_SAVE_AREA_RESTART
basr %r15,0
0: l %r15,.Lrestart_stack-0b(%r15) # load restart stack
l %r15,0(%r15)
l %r15,__LC_RESTART_STACK
ahi %r15,-__PT_SIZE # create pt_regs on stack
xc 0(__PT_SIZE,%r15),0(%r15)
stm %r0,%r14,__PT_R0(%r15)
mvc __PT_R15(4,%r15),__LC_SAVE_AREA_RESTART
mvc __PT_PSW(8,%r15),__LC_RST_OLD_PSW # store restart old psw
ahi %r15,-STACK_FRAME_OVERHEAD
xc __SF_BACKCHAIN(4,%r15),__SF_BACKCHAIN(%r15)
basr %r14,0
1: l %r14,.Ldo_restart-1b(%r14)
basr %r14,%r14
basr %r14,0 # load disabled wait PSW if
2: lpsw restart_psw_crash-2b(%r14) # do_restart returns
.align 4
.Ldo_restart:
.long do_restart
.Lrestart_stack:
.long restart_stack
.align 8
restart_psw_crash:
.long 0x000a0000,0x00000000 + restart_psw_crash
ahi %r15,-STACK_FRAME_OVERHEAD # create stack frame on stack
xc 0(STACK_FRAME_OVERHEAD,%r15),0(%r15)
lm %r1,%r3,__LC_RESTART_FN # load fn, parm & source cpu
ltr %r3,%r3 # test source cpu address
jm 1f # negative -> skip source stop
0: sigp %r4,%r3,1 # sigp sense to source cpu
brc 10,0b # wait for status stored
1: basr %r14,%r1 # call function
stap __SF_EMPTY(%r15) # store cpu address
lh %r3,__SF_EMPTY(%r15)
2: sigp %r4,%r3,5 # sigp stop to current cpu
brc 2,2b
3: j 3b
.section .kprobes.text, "ax"
......@@ -795,6 +766,8 @@ cleanup_table:
.long io_tif + 0x80000000
.long io_restore + 0x80000000
.long io_done + 0x80000000
.long psw_idle + 0x80000000
.long psw_idle_end + 0x80000000
cleanup_critical:
cl %r9,BASED(cleanup_table) # system_call
......@@ -813,6 +786,10 @@ cleanup_critical:
jl cleanup_io_tif
cl %r9,BASED(cleanup_table+28) # io_done
jl cleanup_io_restore
cl %r9,BASED(cleanup_table+32) # psw_idle
jl 0f
cl %r9,BASED(cleanup_table+36) # psw_idle_end
jl cleanup_idle
0: br %r14
cleanup_system_call:
......@@ -896,7 +873,6 @@ cleanup_io_restore:
jhe 0f
l %r9,12(%r11) # get saved r11 pointer to pt_regs
mvc __LC_RETURN_PSW(8),__PT_PSW(%r9)
ni __LC_RETURN_PSW+1,0xfd # clear wait state bit
mvc 0(32,%r11),__PT_R8(%r9)
lm %r0,%r7,__PT_R0(%r9)
0: lm %r8,%r9,__LC_RETURN_PSW
......@@ -904,11 +880,52 @@ cleanup_io_restore:
cleanup_io_restore_insn:
.long io_done - 4 + 0x80000000
cleanup_idle:
# copy interrupt clock & cpu timer
mvc __IDLE_EXIT(8,%r2),__LC_INT_CLOCK
mvc __VQ_IDLE_EXIT(8,%r3),__LC_ASYNC_ENTER_TIMER
chi %r11,__LC_SAVE_AREA_ASYNC
je 0f
mvc __IDLE_EXIT(8,%r2),__LC_MCCK_CLOCK
mvc __VQ_IDLE_EXIT(8,%r3),__LC_MCCK_ENTER_TIMER
0: # check if stck has been executed
cl %r9,BASED(cleanup_idle_insn)
jhe 1f
mvc __IDLE_ENTER(8,%r2),__IDLE_EXIT(%r2)
mvc __VQ_IDLE_ENTER(8,%r3),__VQ_IDLE_EXIT(%r3)
j 2f
1: # check if the cpu timer has been reprogrammed
ltr %r5,%r5
jz 2f
spt __VQ_IDLE_ENTER(%r3)
2: # account system time going idle
lm %r9,%r10,__LC_STEAL_TIMER
ADD64 %r9,%r10,__IDLE_ENTER(%r2)
SUB64 %r9,%r10,__LC_LAST_UPDATE_CLOCK
stm %r9,%r10,__LC_STEAL_TIMER
mvc __LC_LAST_UPDATE_CLOCK(8),__IDLE_EXIT(%r2)
lm %r9,%r10,__LC_SYSTEM_TIMER
ADD64 %r9,%r10,__LC_LAST_UPDATE_TIMER
SUB64 %r9,%r10,__VQ_IDLE_ENTER(%r3)
stm %r9,%r10,__LC_SYSTEM_TIMER
mvc __LC_LAST_UPDATE_TIMER(8),__VQ_IDLE_EXIT(%r3)
# prepare return psw
n %r8,BASED(cleanup_idle_wait) # clear wait state bit
l %r9,24(%r11) # return from psw_idle
br %r14
cleanup_idle_insn:
.long psw_idle_lpsw + 0x80000000
cleanup_idle_wait:
.long 0xfffdffff
/*
* Integer constants
*/
.align 4
.Lnr_syscalls: .long NR_syscalls
.Lnr_syscalls:
.long NR_syscalls
.Lvtimer_max:
.quad 0x7fffffffffffffff
/*
* Symbol constants
......
......@@ -4,11 +4,22 @@
#include <linux/types.h>
#include <linux/signal.h>
#include <asm/ptrace.h>
#include <asm/cputime.h>
#include <asm/timer.h>
extern void (*pgm_check_table[128])(struct pt_regs *);
extern void *restart_stack;
void system_call(void);
void pgm_check_handler(void);
void ext_int_handler(void);
void io_int_handler(void);
void mcck_int_handler(void);
void restart_int_handler(void);
void restart_call_handler(void);
void psw_idle(struct s390_idle_data *, struct vtimer_queue *,
unsigned long, int);
asmlinkage long do_syscall_trace_enter(struct pt_regs *regs);
asmlinkage void do_syscall_trace_exit(struct pt_regs *regs);
......@@ -24,9 +35,9 @@ int handle_signal32(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset, struct pt_regs *regs);
void do_notify_resume(struct pt_regs *regs);
void do_extint(struct pt_regs *regs, unsigned int, unsigned int, unsigned long);
struct ext_code;
void do_extint(struct pt_regs *regs, struct ext_code, unsigned int, unsigned long);
void do_restart(void);
int __cpuinit start_secondary(void *cpuvoid);
void __init startup_init(void);
void die(struct pt_regs *regs, const char *str);
......
......@@ -2,7 +2,7 @@
* arch/s390/kernel/entry64.S
* S390 low-level entry points.
*
* Copyright (C) IBM Corp. 1999,2010
* Copyright (C) IBM Corp. 1999,2012
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
* Hartmut Penner (hp@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
......@@ -489,7 +489,6 @@ io_restore:
lg %r14,__LC_VDSO_PER_CPU
lmg %r0,%r10,__PT_R0(%r11)
mvc __LC_RETURN_PSW(16),__PT_PSW(%r11)
ni __LC_RETURN_PSW+1,0xfd # clear wait state bit
stpt __LC_EXIT_TIMER
mvc __VDSO_ECTG_BASE(16,%r14),__LC_EXIT_TIMER
lmg %r11,%r15,__PT_R11(%r11)
......@@ -625,12 +624,30 @@ ext_skip:
TRACE_IRQS_OFF
lghi %r1,4096
lgr %r2,%r11 # pass pointer to pt_regs
llgf %r3,__LC_CPU_ADDRESS # get cpu address + interruption code
llgf %r3,__LC_EXT_CPU_ADDR # get cpu address + interruption code
llgf %r4,__LC_EXT_PARAMS # get external parameter
lg %r5,__LC_EXT_PARAMS2-4096(%r1) # get 64 bit external parameter
brasl %r14,do_extint
j io_return
/*
* Load idle PSW. The second "half" of this function is in cleanup_idle.
*/
ENTRY(psw_idle)
stg %r4,__SF_EMPTY(%r15)
larl %r1,psw_idle_lpsw+4
stg %r1,__SF_EMPTY+8(%r15)
larl %r1,.Lvtimer_max
stck __IDLE_ENTER(%r2)
ltr %r5,%r5
stpt __VQ_IDLE_ENTER(%r3)
jz psw_idle_lpsw
spt 0(%r1)
psw_idle_lpsw:
lpswe __SF_EMPTY(%r15)
br %r14
psw_idle_end:
__critical_end:
/*
......@@ -696,7 +713,6 @@ mcck_return:
lg %r14,__LC_VDSO_PER_CPU
lmg %r0,%r10,__PT_R0(%r11)
mvc __LC_RETURN_MCCK_PSW(16),__PT_PSW(%r11) # move return PSW
ni __LC_RETURN_MCCK_PSW+1,0xfd # clear wait state bit
tm __LC_RETURN_MCCK_PSW+1,0x01 # returning to user ?
jno 0f
stpt __LC_EXIT_TIMER
......@@ -713,68 +729,30 @@ mcck_panic:
0: aghi %r15,-(STACK_FRAME_OVERHEAD + __PT_SIZE)
j mcck_skip
/*
* Restart interruption handler, kick starter for additional CPUs
*/
#ifdef CONFIG_SMP
__CPUINIT
ENTRY(restart_int_handler)
basr %r1,0
restart_base:
spt restart_vtime-restart_base(%r1)
stck __LC_LAST_UPDATE_CLOCK
mvc __LC_LAST_UPDATE_TIMER(8),restart_vtime-restart_base(%r1)
mvc __LC_EXIT_TIMER(8),restart_vtime-restart_base(%r1)
lghi %r10,__LC_GPREGS_SAVE_AREA
lg %r15,120(%r10) # load ksp
lghi %r10,__LC_CREGS_SAVE_AREA
lctlg %c0,%c15,0(%r10) # get new ctl regs
lghi %r10,__LC_AREGS_SAVE_AREA
lam %a0,%a15,0(%r10)
lmg %r6,%r15,__SF_GPRS(%r15)# load registers from clone
lg %r1,__LC_THREAD_INFO
mvc __LC_USER_TIMER(8),__TI_user_timer(%r1)
mvc __LC_SYSTEM_TIMER(8),__TI_system_timer(%r1)
xc __LC_STEAL_TIMER(8),__LC_STEAL_TIMER
ssm __LC_PGM_NEW_PSW # turn dat on, keep irqs off
brasl %r14,start_secondary
.align 8
restart_vtime:
.long 0x7fffffff,0xffffffff
.previous
#else
/*
* If we do not run with SMP enabled, let the new CPU crash ...
*/
ENTRY(restart_int_handler)
basr %r1,0
restart_base:
lpswe restart_crash-restart_base(%r1)
.align 8
restart_crash:
.long 0x000a0000,0x00000000,0x00000000,0x00000000
restart_go:
#endif
#
# PSW restart interrupt handler
#
ENTRY(psw_restart_int_handler)
ENTRY(restart_int_handler)
stg %r15,__LC_SAVE_AREA_RESTART
larl %r15,restart_stack # load restart stack
lg %r15,0(%r15)
lg %r15,__LC_RESTART_STACK
aghi %r15,-__PT_SIZE # create pt_regs on stack
xc 0(__PT_SIZE,%r15),0(%r15)
stmg %r0,%r14,__PT_R0(%r15)
mvc __PT_R15(8,%r15),__LC_SAVE_AREA_RESTART
mvc __PT_PSW(16,%r15),__LC_RST_OLD_PSW # store restart old psw
aghi %r15,-STACK_FRAME_OVERHEAD
xc __SF_BACKCHAIN(8,%r15),__SF_BACKCHAIN(%r15)
brasl %r14,do_restart
larl %r14,restart_psw_crash # load disabled wait PSW if
lpswe 0(%r14) # do_restart returns
.align 8
restart_psw_crash:
.quad 0x0002000080000000,0x0000000000000000 + restart_psw_crash
aghi %r15,-STACK_FRAME_OVERHEAD # create stack frame on stack
xc 0(STACK_FRAME_OVERHEAD,%r15),0(%r15)
lmg %r1,%r3,__LC_RESTART_FN # load fn, parm & source cpu
ltgr %r3,%r3 # test source cpu address
jm 1f # negative -> skip source stop
0: sigp %r4,%r3,1 # sigp sense to source cpu
brc 10,0b # wait for status stored
1: basr %r14,%r1 # call function
stap __SF_EMPTY(%r15) # store cpu address
llgh %r3,__SF_EMPTY(%r15)
2: sigp %r4,%r3,5 # sigp stop to current cpu
brc 2,2b
3: j 3b
.section .kprobes.text, "ax"
......@@ -808,6 +786,8 @@ cleanup_table:
.quad io_tif
.quad io_restore
.quad io_done
.quad psw_idle
.quad psw_idle_end
cleanup_critical:
clg %r9,BASED(cleanup_table) # system_call
......@@ -826,6 +806,10 @@ cleanup_critical:
jl cleanup_io_tif
clg %r9,BASED(cleanup_table+56) # io_done
jl cleanup_io_restore
clg %r9,BASED(cleanup_table+64) # psw_idle
jl 0f
clg %r9,BASED(cleanup_table+72) # psw_idle_end
jl cleanup_idle
0: br %r14
......@@ -915,7 +899,6 @@ cleanup_io_restore:
je 0f
lg %r9,24(%r11) # get saved r11 pointer to pt_regs
mvc __LC_RETURN_PSW(16),__PT_PSW(%r9)
ni __LC_RETURN_PSW+1,0xfd # clear wait state bit
mvc 0(64,%r11),__PT_R8(%r9)
lmg %r0,%r7,__PT_R0(%r9)
0: lmg %r8,%r9,__LC_RETURN_PSW
......@@ -923,6 +906,42 @@ cleanup_io_restore:
cleanup_io_restore_insn:
.quad io_done - 4
cleanup_idle:
# copy interrupt clock & cpu timer
mvc __IDLE_EXIT(8,%r2),__LC_INT_CLOCK
mvc __VQ_IDLE_EXIT(8,%r3),__LC_ASYNC_ENTER_TIMER
cghi %r11,__LC_SAVE_AREA_ASYNC
je 0f
mvc __IDLE_EXIT(8,%r2),__LC_MCCK_CLOCK
mvc __VQ_IDLE_EXIT(8,%r3),__LC_MCCK_ENTER_TIMER
0: # check if stck & stpt have been executed
clg %r9,BASED(cleanup_idle_insn)
jhe 1f
mvc __IDLE_ENTER(8,%r2),__IDLE_EXIT(%r2)
mvc __VQ_IDLE_ENTER(8,%r3),__VQ_IDLE_EXIT(%r3)
j 2f
1: # check if the cpu timer has been reprogrammed
ltr %r5,%r5
jz 2f
spt __VQ_IDLE_ENTER(%r3)
2: # account system time going idle
lg %r9,__LC_STEAL_TIMER
alg %r9,__IDLE_ENTER(%r2)
slg %r9,__LC_LAST_UPDATE_CLOCK
stg %r9,__LC_STEAL_TIMER
mvc __LC_LAST_UPDATE_CLOCK(8),__IDLE_EXIT(%r2)
lg %r9,__LC_SYSTEM_TIMER
alg %r9,__LC_LAST_UPDATE_TIMER
slg %r9,__VQ_IDLE_ENTER(%r3)
stg %r9,__LC_SYSTEM_TIMER
mvc __LC_LAST_UPDATE_TIMER(8),__VQ_IDLE_EXIT(%r3)
# prepare return psw
nihh %r8,0xfffd # clear wait state bit
lg %r9,48(%r11) # return from psw_idle
br %r14
cleanup_idle_insn:
.quad psw_idle_lpsw
/*
* Integer constants
*/
......@@ -931,6 +950,8 @@ cleanup_io_restore_insn:
.quad __critical_start
.Lcritical_length:
.quad __critical_end - __critical_start
.Lvtimer_max:
.quad 0x7fffffffffffffff
#if defined(CONFIG_KVM) || defined(CONFIG_KVM_MODULE)
......
......@@ -2,7 +2,7 @@
* arch/s390/kernel/ipl.c
* ipl/reipl/dump support for Linux on s390.
*
* Copyright IBM Corp. 2005,2007
* Copyright IBM Corp. 2005,2012
* Author(s): Michael Holzheu <holzheu@de.ibm.com>
* Heiko Carstens <heiko.carstens@de.ibm.com>
* Volker Sameske <sameske@de.ibm.com>
......@@ -17,6 +17,7 @@
#include <linux/fs.h>
#include <linux/gfp.h>
#include <linux/crash_dump.h>
#include <linux/debug_locks.h>
#include <asm/ipl.h>
#include <asm/smp.h>
#include <asm/setup.h>
......@@ -25,8 +26,9 @@
#include <asm/ebcdic.h>
#include <asm/reset.h>
#include <asm/sclp.h>
#include <asm/sigp.h>
#include <asm/checksum.h>
#include <asm/debug.h>
#include <asm/os_info.h>
#include "entry.h"
#define IPL_PARM_BLOCK_VERSION 0
......@@ -571,7 +573,7 @@ static void __ipl_run(void *unused)
static void ipl_run(struct shutdown_trigger *trigger)
{
smp_switch_to_ipl_cpu(__ipl_run, NULL);
smp_call_ipl_cpu(__ipl_run, NULL);
}
static int __init ipl_init(void)
......@@ -950,6 +952,13 @@ static struct attribute_group reipl_nss_attr_group = {
.attrs = reipl_nss_attrs,
};
static void set_reipl_block_actual(struct ipl_parameter_block *reipl_block)
{
reipl_block_actual = reipl_block;
os_info_entry_add(OS_INFO_REIPL_BLOCK, reipl_block_actual,
reipl_block->hdr.len);
}
/* reipl type */
static int reipl_set_type(enum ipl_type type)
......@@ -965,7 +974,7 @@ static int reipl_set_type(enum ipl_type type)
reipl_method = REIPL_METHOD_CCW_VM;
else
reipl_method = REIPL_METHOD_CCW_CIO;
reipl_block_actual = reipl_block_ccw;
set_reipl_block_actual(reipl_block_ccw);
break;
case IPL_TYPE_FCP:
if (diag308_set_works)
......@@ -974,7 +983,7 @@ static int reipl_set_type(enum ipl_type type)
reipl_method = REIPL_METHOD_FCP_RO_VM;
else
reipl_method = REIPL_METHOD_FCP_RO_DIAG;
reipl_block_actual = reipl_block_fcp;
set_reipl_block_actual(reipl_block_fcp);
break;
case IPL_TYPE_FCP_DUMP:
reipl_method = REIPL_METHOD_FCP_DUMP;
......@@ -984,7 +993,7 @@ static int reipl_set_type(enum ipl_type type)
reipl_method = REIPL_METHOD_NSS_DIAG;
else
reipl_method = REIPL_METHOD_NSS;
reipl_block_actual = reipl_block_nss;
set_reipl_block_actual(reipl_block_nss);
break;
case IPL_TYPE_UNKNOWN:
reipl_method = REIPL_METHOD_DEFAULT;
......@@ -1101,7 +1110,7 @@ static void __reipl_run(void *unused)
static void reipl_run(struct shutdown_trigger *trigger)
{
smp_switch_to_ipl_cpu(__reipl_run, NULL);
smp_call_ipl_cpu(__reipl_run, NULL);
}
static void reipl_block_ccw_init(struct ipl_parameter_block *ipb)
......@@ -1256,6 +1265,29 @@ static int __init reipl_fcp_init(void)
return 0;
}
static int __init reipl_type_init(void)
{
enum ipl_type reipl_type = ipl_info.type;
struct ipl_parameter_block *reipl_block;
unsigned long size;
reipl_block = os_info_old_entry(OS_INFO_REIPL_BLOCK, &size);
if (!reipl_block)
goto out;
/*
* If we have an OS info reipl block, this will be used
*/
if (reipl_block->hdr.pbt == DIAG308_IPL_TYPE_FCP) {
memcpy(reipl_block_fcp, reipl_block, size);
reipl_type = IPL_TYPE_FCP;
} else if (reipl_block->hdr.pbt == DIAG308_IPL_TYPE_CCW) {
memcpy(reipl_block_ccw, reipl_block, size);
reipl_type = IPL_TYPE_CCW;
}
out:
return reipl_set_type(reipl_type);
}
static int __init reipl_init(void)
{
int rc;
......@@ -1277,10 +1309,7 @@ static int __init reipl_init(void)
rc = reipl_nss_init();
if (rc)
return rc;
rc = reipl_set_type(ipl_info.type);
if (rc)
return rc;
return 0;
return reipl_type_init();
}
static struct shutdown_action __refdata reipl_action = {
......@@ -1421,7 +1450,7 @@ static void dump_run(struct shutdown_trigger *trigger)
if (dump_method == DUMP_METHOD_NONE)
return;
smp_send_stop();
smp_switch_to_ipl_cpu(__dump_run, NULL);
smp_call_ipl_cpu(__dump_run, NULL);
}
static int __init dump_ccw_init(void)
......@@ -1499,30 +1528,12 @@ static struct shutdown_action __refdata dump_action = {
static void dump_reipl_run(struct shutdown_trigger *trigger)
{
preempt_disable();
/*
* Bypass dynamic address translation (DAT) when storing IPL parameter
* information block address and checksum into the prefix area
* (corresponding to absolute addresses 0-8191).
* When enhanced DAT applies and the STE format control in one,
* the absolute address is formed without prefixing. In this case a
* normal store (stg/st) into the prefix area would no more match to
* absolute addresses 0-8191.
*/
#ifdef CONFIG_64BIT
asm volatile("sturg %0,%1"
:: "a" ((unsigned long) reipl_block_actual),
"a" (&lowcore_ptr[smp_processor_id()]->ipib));
#else
asm volatile("stura %0,%1"
:: "a" ((unsigned long) reipl_block_actual),
"a" (&lowcore_ptr[smp_processor_id()]->ipib));
#endif
asm volatile("stura %0,%1"
:: "a" (csum_partial(reipl_block_actual,
reipl_block_actual->hdr.len, 0)),
"a" (&lowcore_ptr[smp_processor_id()]->ipib_checksum));
preempt_enable();
u32 csum;
csum = csum_partial(reipl_block_actual, reipl_block_actual->hdr.len, 0);
copy_to_absolute_zero(&S390_lowcore.ipib_checksum, &csum, sizeof(csum));
copy_to_absolute_zero(&S390_lowcore.ipib, &reipl_block_actual,
sizeof(reipl_block_actual));
dump_run(trigger);
}
......@@ -1623,9 +1634,7 @@ static void stop_run(struct shutdown_trigger *trigger)
if (strcmp(trigger->name, ON_PANIC_STR) == 0 ||
strcmp(trigger->name, ON_RESTART_STR) == 0)
disabled_wait((unsigned long) __builtin_return_address(0));
while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
cpu_relax();
for (;;);
smp_stop_cpu();
}
static struct shutdown_action stop_action = {SHUTDOWN_ACTION_STOP_STR,
......@@ -1713,6 +1722,7 @@ static struct kobj_attribute on_panic_attr =
static void do_panic(void)
{
lgr_info_log();
on_panic_trigger.action->fn(&on_panic_trigger);
stop_run(&on_panic_trigger);
}
......@@ -1738,9 +1748,8 @@ static ssize_t on_restart_store(struct kobject *kobj,
static struct kobj_attribute on_restart_attr =
__ATTR(on_restart, 0644, on_restart_show, on_restart_store);
void do_restart(void)
static void __do_restart(void *ignore)
{
smp_restart_with_online_cpu();
smp_send_stop();
#ifdef CONFIG_CRASH_DUMP
crash_kexec(NULL);
......@@ -1749,6 +1758,14 @@ void do_restart(void)
stop_run(&on_restart_trigger);
}
void do_restart(void)
{
tracing_off();
debug_locks_off();
lgr_info_log();
smp_call_online_cpu(__do_restart, NULL);
}
/* on halt */
static struct shutdown_trigger on_halt_trigger = {ON_HALT_STR, &stop_action};
......
......@@ -202,31 +202,27 @@ int unregister_external_interrupt(u16 code, ext_int_handler_t handler)
}
EXPORT_SYMBOL(unregister_external_interrupt);
void __irq_entry do_extint(struct pt_regs *regs, unsigned int ext_int_code,
void __irq_entry do_extint(struct pt_regs *regs, struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct pt_regs *old_regs;
unsigned short code;
struct ext_int_info *p;
int index;
code = (unsigned short) ext_int_code;
old_regs = set_irq_regs(regs);
s390_idle_check(regs, S390_lowcore.int_clock,
S390_lowcore.async_enter_timer);
irq_enter();
if (S390_lowcore.int_clock >= S390_lowcore.clock_comparator)
/* Serve timer interrupts first. */
clock_comparator_work();
kstat_cpu(smp_processor_id()).irqs[EXTERNAL_INTERRUPT]++;
if (code != 0x1004)
if (ext_code.code != 0x1004)
__get_cpu_var(s390_idle).nohz_delay = 1;
index = ext_hash(code);
index = ext_hash(ext_code.code);
rcu_read_lock();
list_for_each_entry_rcu(p, &ext_int_hash[index], entry)
if (likely(p->code == code))
p->handler(ext_int_code, param32, param64);
if (likely(p->code == ext_code.code))
p->handler(ext_code, param32, param64);
rcu_read_unlock();
irq_exit();
set_irq_regs(old_regs);
......
/*
* Linux Guest Relocation (LGR) detection
*
* Copyright IBM Corp. 2012
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <asm/sysinfo.h>
#include <asm/ebcdic.h>
#include <asm/system.h>
#include <asm/debug.h>
#include <asm/ipl.h>
#define LGR_TIMER_INTERVAL_SECS (30 * 60)
#define VM_LEVEL_MAX 2 /* Maximum is 8, but we only record two levels */
/*
* LGR info: Contains stfle and stsi data
*/
struct lgr_info {
/* Bit field with facility information: 4 DWORDs are stored */
u64 stfle_fac_list[4];
/* Level of system (1 = CEC, 2 = LPAR, 3 = z/VM */
u32 level;
/* Level 1: CEC info (stsi 1.1.1) */
char manufacturer[16];
char type[4];
char sequence[16];
char plant[4];
char model[16];
/* Level 2: LPAR info (stsi 2.2.2) */
u16 lpar_number;
char name[8];
/* Level 3: VM info (stsi 3.2.2) */
u8 vm_count;
struct {
char name[8];
char cpi[16];
} vm[VM_LEVEL_MAX];
} __packed __aligned(8);
/*
* LGR globals
*/
static void *lgr_page;
static struct lgr_info lgr_info_last;
static struct lgr_info lgr_info_cur;
static struct debug_info *lgr_dbf;
/*
* Return number of valid stsi levels
*/
static inline int stsi_0(void)
{
int rc = stsi(NULL, 0, 0, 0);
return rc == -ENOSYS ? rc : (((unsigned int) rc) >> 28);
}
/*
* Copy buffer and then convert it to ASCII
*/
static void cpascii(char *dst, char *src, int size)
{
memcpy(dst, src, size);
EBCASC(dst, size);
}
/*
* Fill LGR info with 1.1.1 stsi data
*/
static void lgr_stsi_1_1_1(struct lgr_info *lgr_info)
{
struct sysinfo_1_1_1 *si = lgr_page;
if (stsi(si, 1, 1, 1) == -ENOSYS)
return;
cpascii(lgr_info->manufacturer, si->manufacturer,
sizeof(si->manufacturer));
cpascii(lgr_info->type, si->type, sizeof(si->type));
cpascii(lgr_info->model, si->model, sizeof(si->model));
cpascii(lgr_info->sequence, si->sequence, sizeof(si->sequence));
cpascii(lgr_info->plant, si->plant, sizeof(si->plant));
}
/*
* Fill LGR info with 2.2.2 stsi data
*/
static void lgr_stsi_2_2_2(struct lgr_info *lgr_info)
{
struct sysinfo_2_2_2 *si = lgr_page;
if (stsi(si, 2, 2, 2) == -ENOSYS)
return;
cpascii(lgr_info->name, si->name, sizeof(si->name));
memcpy(&lgr_info->lpar_number, &si->lpar_number,
sizeof(lgr_info->lpar_number));
}
/*
* Fill LGR info with 3.2.2 stsi data
*/
static void lgr_stsi_3_2_2(struct lgr_info *lgr_info)
{
struct sysinfo_3_2_2 *si = lgr_page;
int i;
if (stsi(si, 3, 2, 2) == -ENOSYS)
return;
for (i = 0; i < min_t(u8, si->count, VM_LEVEL_MAX); i++) {
cpascii(lgr_info->vm[i].name, si->vm[i].name,
sizeof(si->vm[i].name));
cpascii(lgr_info->vm[i].cpi, si->vm[i].cpi,
sizeof(si->vm[i].cpi));
}
lgr_info->vm_count = si->count;
}
/*
* Fill LGR info with current data
*/
static void lgr_info_get(struct lgr_info *lgr_info)
{
memset(lgr_info, 0, sizeof(*lgr_info));
stfle(lgr_info->stfle_fac_list, ARRAY_SIZE(lgr_info->stfle_fac_list));
lgr_info->level = stsi_0();
if (lgr_info->level == -ENOSYS)
return;
if (lgr_info->level >= 1)
lgr_stsi_1_1_1(lgr_info);
if (lgr_info->level >= 2)
lgr_stsi_2_2_2(lgr_info);
if (lgr_info->level >= 3)
lgr_stsi_3_2_2(lgr_info);
}
/*
* Check if LGR info has changed and if yes log new LGR info to s390dbf
*/
void lgr_info_log(void)
{
static DEFINE_SPINLOCK(lgr_info_lock);
unsigned long flags;
if (!spin_trylock_irqsave(&lgr_info_lock, flags))
return;
lgr_info_get(&lgr_info_cur);
if (memcmp(&lgr_info_last, &lgr_info_cur, sizeof(lgr_info_cur)) != 0) {
debug_event(lgr_dbf, 1, &lgr_info_cur, sizeof(lgr_info_cur));
lgr_info_last = lgr_info_cur;
}
spin_unlock_irqrestore(&lgr_info_lock, flags);
}
EXPORT_SYMBOL_GPL(lgr_info_log);
static void lgr_timer_set(void);
/*
* LGR timer callback
*/
static void lgr_timer_fn(unsigned long ignored)
{
lgr_info_log();
lgr_timer_set();
}
static struct timer_list lgr_timer =
TIMER_DEFERRED_INITIALIZER(lgr_timer_fn, 0, 0);
/*
* Setup next LGR timer
*/
static void lgr_timer_set(void)
{
mod_timer(&lgr_timer, jiffies + LGR_TIMER_INTERVAL_SECS * HZ);
}
/*
* Initialize LGR: Add s390dbf, write initial lgr_info and setup timer
*/
static int __init lgr_init(void)
{
lgr_page = (void *) __get_free_pages(GFP_KERNEL, 0);
if (!lgr_page)
return -ENOMEM;
lgr_dbf = debug_register("lgr", 1, 1, sizeof(struct lgr_info));
if (!lgr_dbf) {
free_page((unsigned long) lgr_page);
return -ENOMEM;
}
debug_register_view(lgr_dbf, &debug_hex_ascii_view);
lgr_info_get(&lgr_info_last);
debug_event(lgr_dbf, 1, &lgr_info_last, sizeof(lgr_info_last));
lgr_timer_set();
return 0;
}
module_init(lgr_init);
......@@ -14,6 +14,7 @@
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/ftrace.h>
#include <linux/debug_locks.h>
#include <asm/cio.h>
#include <asm/setup.h>
#include <asm/pgtable.h>
......@@ -48,51 +49,22 @@ static void add_elf_notes(int cpu)
memset(ptr, 0, sizeof(struct elf_note));
}
/*
* Store status of next available physical CPU
*/
static int store_status_next(int start_cpu, int this_cpu)
{
struct save_area *sa = (void *) 4608 + store_prefix();
int cpu, rc;
for (cpu = start_cpu; cpu < 65536; cpu++) {
if (cpu == this_cpu)
continue;
do {
rc = raw_sigp(cpu, sigp_stop_and_store_status);
} while (rc == sigp_busy);
if (rc != sigp_order_code_accepted)
continue;
if (sa->pref_reg)
return cpu;
}
return -1;
}
/*
* Initialize CPU ELF notes
*/
void setup_regs(void)
{
unsigned long sa = S390_lowcore.prefixreg_save_area + SAVE_AREA_BASE;
int cpu, this_cpu, phys_cpu = 0, first = 1;
int cpu, this_cpu;
this_cpu = stap();
if (!S390_lowcore.prefixreg_save_area)
first = 0;
this_cpu = smp_find_processor_id(stap());
add_elf_notes(this_cpu);
for_each_online_cpu(cpu) {
if (first) {
add_elf_notes(cpu);
first = 0;
if (cpu == this_cpu)
continue;
if (smp_store_status(cpu))
continue;
}
phys_cpu = store_status_next(phys_cpu, this_cpu);
if (phys_cpu == -1)
break;
add_elf_notes(cpu);
phys_cpu++;
}
/* Copy dump CPU store status info to absolute zero */
memcpy((void *) SAVE_AREA_BASE, (void *) sa, sizeof(struct save_area));
......@@ -238,10 +210,14 @@ static void __machine_kexec(void *data)
struct kimage *image = data;
pfault_fini();
if (image->type == KEXEC_TYPE_CRASH)
tracing_off();
debug_locks_off();
if (image->type == KEXEC_TYPE_CRASH) {
lgr_info_log();
s390_reset_system(__do_machine_kdump, data);
else
} else {
s390_reset_system(__do_machine_kexec, data);
}
disabled_wait((unsigned long) __builtin_return_address(0));
}
......@@ -255,5 +231,5 @@ void machine_kexec(struct kimage *image)
return;
tracer_disable();
smp_send_stop();
smp_switch_to_ipl_cpu(__machine_kexec, image);
smp_call_ipl_cpu(__machine_kexec, image);
}
......@@ -254,8 +254,6 @@ void notrace s390_do_machine_check(struct pt_regs *regs)
int umode;
nmi_enter();
s390_idle_check(regs, S390_lowcore.mcck_clock,
S390_lowcore.mcck_enter_timer);
kstat_cpu(smp_processor_id()).irqs[NMI_NMI]++;
mci = (struct mci *) &S390_lowcore.mcck_interruption_code;
mcck = &__get_cpu_var(cpu_mcck);
......
/*
* OS info memory interface
*
* Copyright IBM Corp. 2012
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#define KMSG_COMPONENT "os_info"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/crash_dump.h>
#include <linux/kernel.h>
#include <asm/checksum.h>
#include <asm/lowcore.h>
#include <asm/system.h>
#include <asm/os_info.h>
/*
* OS info structure has to be page aligned
*/
static struct os_info os_info __page_aligned_data;
/*
* Compute checksum over OS info structure
*/
u32 os_info_csum(struct os_info *os_info)
{
int size = sizeof(*os_info) - offsetof(struct os_info, version_major);
return csum_partial(&os_info->version_major, size, 0);
}
/*
* Add crashkernel info to OS info and update checksum
*/
void os_info_crashkernel_add(unsigned long base, unsigned long size)
{
os_info.crashkernel_addr = (u64)(unsigned long)base;
os_info.crashkernel_size = (u64)(unsigned long)size;
os_info.csum = os_info_csum(&os_info);
}
/*
* Add OS info entry and update checksum
*/
void os_info_entry_add(int nr, void *ptr, u64 size)
{
os_info.entry[nr].addr = (u64)(unsigned long)ptr;
os_info.entry[nr].size = size;
os_info.entry[nr].csum = csum_partial(ptr, size, 0);
os_info.csum = os_info_csum(&os_info);
}
/*
* Initialize OS info struture and set lowcore pointer
*/
void __init os_info_init(void)
{
void *ptr = &os_info;
os_info.version_major = OS_INFO_VERSION_MAJOR;
os_info.version_minor = OS_INFO_VERSION_MINOR;
os_info.magic = OS_INFO_MAGIC;
os_info.csum = os_info_csum(&os_info);
copy_to_absolute_zero(&S390_lowcore.os_info, &ptr, sizeof(ptr));
}
#ifdef CONFIG_CRASH_DUMP
static struct os_info *os_info_old;
/*
* Allocate and copy OS info entry from oldmem
*/
static void os_info_old_alloc(int nr, int align)
{
unsigned long addr, size = 0;
char *buf, *buf_align, *msg;
u32 csum;
addr = os_info_old->entry[nr].addr;
if (!addr) {
msg = "not available";
goto fail;
}
size = os_info_old->entry[nr].size;
buf = kmalloc(size + align - 1, GFP_KERNEL);
if (!buf) {
msg = "alloc failed";
goto fail;
}
buf_align = PTR_ALIGN(buf, align);
if (copy_from_oldmem(buf_align, (void *) addr, size)) {
msg = "copy failed";
goto fail_free;
}
csum = csum_partial(buf_align, size, 0);
if (csum != os_info_old->entry[nr].csum) {
msg = "checksum failed";
goto fail_free;
}
os_info_old->entry[nr].addr = (u64)(unsigned long)buf_align;
msg = "copied";
goto out;
fail_free:
kfree(buf);
fail:
os_info_old->entry[nr].addr = 0;
out:
pr_info("entry %i: %s (addr=0x%lx size=%lu)\n",
nr, msg, addr, size);
}
/*
* Initialize os info and os info entries from oldmem
*/
static void os_info_old_init(void)
{
static int os_info_init;
unsigned long addr;
if (os_info_init)
return;
if (!OLDMEM_BASE)
goto fail;
if (copy_from_oldmem(&addr, &S390_lowcore.os_info, sizeof(addr)))
goto fail;
if (addr == 0 || addr % PAGE_SIZE)
goto fail;
os_info_old = kzalloc(sizeof(*os_info_old), GFP_KERNEL);
if (!os_info_old)
goto fail;
if (copy_from_oldmem(os_info_old, (void *) addr, sizeof(*os_info_old)))
goto fail_free;
if (os_info_old->magic != OS_INFO_MAGIC)
goto fail_free;
if (os_info_old->csum != os_info_csum(os_info_old))
goto fail_free;
if (os_info_old->version_major > OS_INFO_VERSION_MAJOR)
goto fail_free;
os_info_old_alloc(OS_INFO_VMCOREINFO, 1);
os_info_old_alloc(OS_INFO_REIPL_BLOCK, 1);
os_info_old_alloc(OS_INFO_INIT_FN, PAGE_SIZE);
pr_info("crashkernel: addr=0x%lx size=%lu\n",
(unsigned long) os_info_old->crashkernel_addr,
(unsigned long) os_info_old->crashkernel_size);
os_info_init = 1;
return;
fail_free:
kfree(os_info_old);
fail:
os_info_init = 1;
os_info_old = NULL;
}
/*
* Return pointer to os infor entry and its size
*/
void *os_info_old_entry(int nr, unsigned long *size)
{
os_info_old_init();
if (!os_info_old)
return NULL;
if (!os_info_old->entry[nr].addr)
return NULL;
*size = (unsigned long) os_info_old->entry[nr].size;
return (void *)(unsigned long)os_info_old->entry[nr].addr;
}
#endif
......@@ -77,13 +77,8 @@ static void default_idle(void)
local_irq_enable();
return;
}
trace_hardirqs_on();
/* Don't trace preempt off for idle. */
stop_critical_timings();
/* Stop virtual timer and halt the cpu. */
/* Halt the cpu and keep track of cpu time accounting. */
vtime_stop_cpu();
/* Reenable preemption tracer. */
start_critical_timings();
}
void cpu_idle(void)
......
......@@ -2,7 +2,7 @@
* arch/s390/kernel/setup.c
*
* S390 version
* Copyright (C) IBM Corp. 1999,2010
* Copyright (C) IBM Corp. 1999,2012
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
......@@ -62,6 +62,8 @@
#include <asm/ebcdic.h>
#include <asm/kvm_virtio.h>
#include <asm/diag.h>
#include <asm/os_info.h>
#include "entry.h"
long psw_kernel_bits = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
PSW_MASK_EA | PSW_MASK_BA;
......@@ -351,8 +353,9 @@ static void setup_addressing_mode(void)
}
}
static void __init
setup_lowcore(void)
void *restart_stack __attribute__((__section__(".data")));
static void __init setup_lowcore(void)
{
struct _lowcore *lc;
......@@ -363,7 +366,7 @@ setup_lowcore(void)
lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
lc->restart_psw.mask = psw_kernel_bits;
lc->restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
lc->external_new_psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_MCHECK;
lc->external_new_psw.addr =
......@@ -412,6 +415,24 @@ setup_lowcore(void)
lc->last_update_timer = S390_lowcore.last_update_timer;
lc->last_update_clock = S390_lowcore.last_update_clock;
lc->ftrace_func = S390_lowcore.ftrace_func;
restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
restart_stack += ASYNC_SIZE;
/*
* Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
* restart data to the absolute zero lowcore. This is necesary if
* PSW restart is done on an offline CPU that has lowcore zero.
*/
lc->restart_stack = (unsigned long) restart_stack;
lc->restart_fn = (unsigned long) do_restart;
lc->restart_data = 0;
lc->restart_source = -1UL;
memcpy(&S390_lowcore.restart_stack, &lc->restart_stack,
4*sizeof(unsigned long));
copy_to_absolute_zero(&S390_lowcore.restart_psw,
&lc->restart_psw, sizeof(psw_t));
set_prefix((u32)(unsigned long) lc);
lowcore_ptr[0] = lc;
}
......@@ -572,27 +593,6 @@ static void __init setup_memory_end(void)
}
}
void *restart_stack __attribute__((__section__(".data")));
/*
* Setup new PSW and allocate stack for PSW restart interrupt
*/
static void __init setup_restart_psw(void)
{
psw_t psw;
restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
restart_stack += ASYNC_SIZE;
/*
* Setup restart PSW for absolute zero lowcore. This is necesary
* if PSW restart is done on an offline CPU that has lowcore zero
*/
psw.mask = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_EA | PSW_MASK_BA;
psw.addr = PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
copy_to_absolute_zero(&S390_lowcore.restart_psw, &psw, sizeof(psw));
}
static void __init setup_vmcoreinfo(void)
{
#ifdef CONFIG_KEXEC
......@@ -747,7 +747,7 @@ static void __init reserve_crashkernel(void)
{
#ifdef CONFIG_CRASH_DUMP
unsigned long long crash_base, crash_size;
char *msg;
char *msg = NULL;
int rc;
rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
......@@ -779,11 +779,11 @@ static void __init reserve_crashkernel(void)
pr_info("Reserving %lluMB of memory at %lluMB "
"for crashkernel (System RAM: %luMB)\n",
crash_size >> 20, crash_base >> 20, memory_end >> 20);
os_info_crashkernel_add(crash_base, crash_size);
#endif
}
static void __init
setup_memory(void)
static void __init setup_memory(void)
{
unsigned long bootmap_size;
unsigned long start_pfn, end_pfn;
......@@ -1014,8 +1014,7 @@ static void __init setup_hwcaps(void)
* was printed.
*/
void __init
setup_arch(char **cmdline_p)
void __init setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
......@@ -1060,6 +1059,7 @@ setup_arch(char **cmdline_p)
parse_early_param();
os_info_init();
setup_ipl();
setup_memory_end();
setup_addressing_mode();
......@@ -1068,7 +1068,6 @@ setup_arch(char **cmdline_p)
setup_memory();
setup_resources();
setup_vmcoreinfo();
setup_restart_psw();
setup_lowcore();
cpu_init();
......
......@@ -384,7 +384,6 @@ static int handle_signal(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset,
struct pt_regs *regs)
{
sigset_t blocked;
int ret;
/* Set up the stack frame */
......@@ -394,10 +393,7 @@ static int handle_signal(unsigned long sig, struct k_sigaction *ka,
ret = setup_frame(sig, ka, oldset, regs);
if (ret)
return ret;
sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
if (!(ka->sa.sa_flags & SA_NODEFER))
sigaddset(&blocked, sig);
set_current_blocked(&blocked);
block_sigmask(ka, sig);
return 0;
}
......
/*
* arch/s390/kernel/smp.c
* SMP related functions
*
* Copyright IBM Corp. 1999, 2009
* Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
* Heiko Carstens (heiko.carstens@de.ibm.com)
* Copyright IBM Corp. 1999,2012
* Author(s): Denis Joseph Barrow,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
* Heiko Carstens <heiko.carstens@de.ibm.com>,
*
* based on other smp stuff by
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
* (c) 1998 Ingo Molnar
*
* We work with logical cpu numbering everywhere we can. The only
* functions using the real cpu address (got from STAP) are the sigp
* functions. For all other functions we use the identity mapping.
* That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
* used e.g. to find the idle task belonging to a logical cpu. Every array
* in the kernel is sorted by the logical cpu number and not by the physical
* one which is causing all the confusion with __cpu_logical_map and
* cpu_number_map in other architectures.
* The code outside of smp.c uses logical cpu numbers, only smp.c does
* the translation of logical to physical cpu ids. All new code that
* operates on physical cpu numbers needs to go into smp.c.
*/
#define KMSG_COMPONENT "cpu"
......@@ -31,198 +26,433 @@
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/irqflags.h>
#include <linux/cpu.h>
#include <linux/timex.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/crash_dump.h>
#include <asm/asm-offsets.h>
#include <asm/ipl.h>
#include <asm/setup.h>
#include <asm/sigp.h>
#include <asm/pgalloc.h>
#include <asm/irq.h>
#include <asm/cpcmd.h>
#include <asm/tlbflush.h>
#include <asm/timer.h>
#include <asm/lowcore.h>
#include <asm/sclp.h>
#include <asm/cputime.h>
#include <asm/vdso.h>
#include <asm/cpu.h>
#include <asm/debug.h>
#include <asm/os_info.h>
#include "entry.h"
/* logical cpu to cpu address */
unsigned short __cpu_logical_map[NR_CPUS];
enum {
sigp_sense = 1,
sigp_external_call = 2,
sigp_emergency_signal = 3,
sigp_start = 4,
sigp_stop = 5,
sigp_restart = 6,
sigp_stop_and_store_status = 9,
sigp_initial_cpu_reset = 11,
sigp_cpu_reset = 12,
sigp_set_prefix = 13,
sigp_store_status_at_address = 14,
sigp_store_extended_status_at_address = 15,
sigp_set_architecture = 18,
sigp_conditional_emergency_signal = 19,
sigp_sense_running = 21,
};
static struct task_struct *current_set[NR_CPUS];
enum {
sigp_order_code_accepted = 0,
sigp_status_stored = 1,
sigp_busy = 2,
sigp_not_operational = 3,
};
static u8 smp_cpu_type;
static int smp_use_sigp_detection;
enum {
ec_schedule = 0,
ec_call_function,
ec_call_function_single,
ec_stop_cpu,
};
enum s390_cpu_state {
enum {
CPU_STATE_STANDBY,
CPU_STATE_CONFIGURED,
};
struct pcpu {
struct cpu cpu;
struct task_struct *idle; /* idle process for the cpu */
struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
unsigned long async_stack; /* async stack for the cpu */
unsigned long panic_stack; /* panic stack for the cpu */
unsigned long ec_mask; /* bit mask for ec_xxx functions */
int state; /* physical cpu state */
u32 status; /* last status received via sigp */
u16 address; /* physical cpu address */
};
static u8 boot_cpu_type;
static u16 boot_cpu_address;
static struct pcpu pcpu_devices[NR_CPUS];
DEFINE_MUTEX(smp_cpu_state_mutex);
static int smp_cpu_state[NR_CPUS];
static DEFINE_PER_CPU(struct cpu, cpu_devices);
/*
* Signal processor helper functions.
*/
static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
{
register unsigned int reg1 asm ("1") = parm;
int cc;
static void smp_ext_bitcall(int, int);
asm volatile(
" sigp %1,%2,0(%3)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
if (status && cc == 1)
*status = reg1;
return cc;
}
static int raw_cpu_stopped(int cpu)
static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
{
u32 status;
int cc;
switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
case sigp_status_stored:
/* Check for stopped and check stop state */
if (status & 0x50)
return 1;
break;
default:
break;
while (1) {
cc = __pcpu_sigp(addr, order, parm, status);
if (cc != sigp_busy)
return cc;
cpu_relax();
}
return 0;
}
static inline int cpu_stopped(int cpu)
static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
{
int cc, retry;
for (retry = 0; ; retry++) {
cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
if (cc != sigp_busy)
break;
if (retry >= 3)
udelay(10);
}
return cc;
}
static inline int pcpu_stopped(struct pcpu *pcpu)
{
if (__pcpu_sigp(pcpu->address, sigp_sense,
0, &pcpu->status) != sigp_status_stored)
return 0;
/* Check for stopped and check stop state */
return !!(pcpu->status & 0x50);
}
static inline int pcpu_running(struct pcpu *pcpu)
{
return raw_cpu_stopped(cpu_logical_map(cpu));
if (__pcpu_sigp(pcpu->address, sigp_sense_running,
0, &pcpu->status) != sigp_status_stored)
return 1;
/* Check for running status */
return !(pcpu->status & 0x400);
}
/*
* Ensure that PSW restart is done on an online CPU
* Find struct pcpu by cpu address.
*/
void smp_restart_with_online_cpu(void)
static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
{
int cpu;
for_each_online_cpu(cpu) {
if (stap() == __cpu_logical_map[cpu]) {
/* We are online: Enable DAT again and return */
__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
return;
}
for_each_cpu(cpu, mask)
if (pcpu_devices[cpu].address == address)
return pcpu_devices + cpu;
return NULL;
}
static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
{
int order;
set_bit(ec_bit, &pcpu->ec_mask);
order = pcpu_running(pcpu) ?
sigp_external_call : sigp_emergency_signal;
pcpu_sigp_retry(pcpu, order, 0);
}
static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
{
struct _lowcore *lc;
if (pcpu != &pcpu_devices[0]) {
pcpu->lowcore = (struct _lowcore *)
__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
pcpu->panic_stack = __get_free_page(GFP_KERNEL);
if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
goto out;
}
/* We are not online: Do PSW restart on an online CPU */
while (sigp(cpu, sigp_restart) == sigp_busy)
cpu_relax();
/* And stop ourself */
while (raw_sigp(stap(), sigp_stop) == sigp_busy)
cpu_relax();
for (;;);
lc = pcpu->lowcore;
memcpy(lc, &S390_lowcore, 512);
memset((char *) lc + 512, 0, sizeof(*lc) - 512);
lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
lc->cpu_nr = cpu;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
if (!lc->extended_save_area_addr)
goto out;
}
#else
if (vdso_alloc_per_cpu(lc))
goto out;
#endif
lowcore_ptr[cpu] = lc;
pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
return 0;
out:
if (pcpu != &pcpu_devices[0]) {
free_page(pcpu->panic_stack);
free_pages(pcpu->async_stack, ASYNC_ORDER);
free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
}
return -ENOMEM;
}
void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
static void pcpu_free_lowcore(struct pcpu *pcpu)
{
struct _lowcore *lc, *current_lc;
struct stack_frame *sf;
struct pt_regs *regs;
unsigned long sp;
if (smp_processor_id() == 0)
func(data);
__load_psw_mask(PSW_DEFAULT_KEY | PSW_MASK_BASE |
PSW_MASK_EA | PSW_MASK_BA);
/* Disable lowcore protection */
__ctl_clear_bit(0, 28);
current_lc = lowcore_ptr[smp_processor_id()];
lc = lowcore_ptr[0];
if (!lc)
lc = current_lc;
lc->restart_psw.mask =
PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_EA | PSW_MASK_BA;
lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
if (!cpu_online(0))
smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
cpu_relax();
sp = lc->panic_stack;
sp -= sizeof(struct pt_regs);
regs = (struct pt_regs *) sp;
memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
regs->psw = current_lc->psw_save_area;
sp -= STACK_FRAME_OVERHEAD;
sf = (struct stack_frame *) sp;
sf->back_chain = 0;
smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
lowcore_ptr[pcpu - pcpu_devices] = NULL;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
struct _lowcore *lc = pcpu->lowcore;
free_page((unsigned long) lc->extended_save_area_addr);
lc->extended_save_area_addr = 0;
}
#else
vdso_free_per_cpu(pcpu->lowcore);
#endif
if (pcpu != &pcpu_devices[0]) {
free_page(pcpu->panic_stack);
free_pages(pcpu->async_stack, ASYNC_ORDER);
free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
}
}
static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
{
struct _lowcore *lc = pcpu->lowcore;
atomic_inc(&init_mm.context.attach_count);
lc->cpu_nr = cpu;
lc->percpu_offset = __per_cpu_offset[cpu];
lc->kernel_asce = S390_lowcore.kernel_asce;
lc->machine_flags = S390_lowcore.machine_flags;
lc->ftrace_func = S390_lowcore.ftrace_func;
lc->user_timer = lc->system_timer = lc->steal_timer = 0;
__ctl_store(lc->cregs_save_area, 0, 15);
save_access_regs((unsigned int *) lc->access_regs_save_area);
memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
MAX_FACILITY_BIT/8);
}
static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
{
struct _lowcore *lc = pcpu->lowcore;
struct thread_info *ti = task_thread_info(tsk);
lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
lc->thread_info = (unsigned long) task_thread_info(tsk);
lc->current_task = (unsigned long) tsk;
lc->user_timer = ti->user_timer;
lc->system_timer = ti->system_timer;
lc->steal_timer = 0;
}
static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
{
struct _lowcore *lc = pcpu->lowcore;
lc->restart_stack = lc->kernel_stack;
lc->restart_fn = (unsigned long) func;
lc->restart_data = (unsigned long) data;
lc->restart_source = -1UL;
pcpu_sigp_retry(pcpu, sigp_restart, 0);
}
/*
* Call function via PSW restart on pcpu and stop the current cpu.
*/
static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
void *data, unsigned long stack)
{
struct _lowcore *lc = pcpu->lowcore;
unsigned short this_cpu;
__load_psw_mask(psw_kernel_bits);
this_cpu = stap();
if (pcpu->address == this_cpu)
func(data); /* should not return */
/* Stop target cpu (if func returns this stops the current cpu). */
pcpu_sigp_retry(pcpu, sigp_stop, 0);
/* Restart func on the target cpu and stop the current cpu. */
lc->restart_stack = stack;
lc->restart_fn = (unsigned long) func;
lc->restart_data = (unsigned long) data;
lc->restart_source = (unsigned long) this_cpu;
asm volatile(
"0: sigp 0,%0,6 # sigp restart to target cpu\n"
" brc 2,0b # busy, try again\n"
"1: sigp 0,%1,5 # sigp stop to current cpu\n"
" brc 2,1b # busy, try again\n"
: : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc");
for (;;) ;
}
/*
* Call function on an online CPU.
*/
void smp_call_online_cpu(void (*func)(void *), void *data)
{
struct pcpu *pcpu;
/* Use the current cpu if it is online. */
pcpu = pcpu_find_address(cpu_online_mask, stap());
if (!pcpu)
/* Use the first online cpu. */
pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
}
/*
* Call function on the ipl CPU.
*/
void smp_call_ipl_cpu(void (*func)(void *), void *data)
{
pcpu_delegate(&pcpu_devices[0], func, data,
pcpu_devices->panic_stack + PAGE_SIZE);
}
int smp_find_processor_id(u16 address)
{
int cpu;
for_each_present_cpu(cpu)
if (pcpu_devices[cpu].address == address)
return cpu;
return -1;
}
int smp_vcpu_scheduled(int cpu)
{
return pcpu_running(pcpu_devices + cpu);
}
void smp_yield(void)
{
if (MACHINE_HAS_DIAG44)
asm volatile("diag 0,0,0x44");
}
static void smp_stop_cpu(void)
void smp_yield_cpu(int cpu)
{
while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
if (MACHINE_HAS_DIAG9C)
asm volatile("diag %0,0,0x9c"
: : "d" (pcpu_devices[cpu].address));
else if (MACHINE_HAS_DIAG44)
asm volatile("diag 0,0,0x44");
}
/*
* Send cpus emergency shutdown signal. This gives the cpus the
* opportunity to complete outstanding interrupts.
*/
void smp_emergency_stop(cpumask_t *cpumask)
{
u64 end;
int cpu;
end = get_clock() + (1000000UL << 12);
for_each_cpu(cpu, cpumask) {
struct pcpu *pcpu = pcpu_devices + cpu;
set_bit(ec_stop_cpu, &pcpu->ec_mask);
while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
0, NULL) == sigp_busy &&
get_clock() < end)
cpu_relax();
}
while (get_clock() < end) {
for_each_cpu(cpu, cpumask)
if (pcpu_stopped(pcpu_devices + cpu))
cpumask_clear_cpu(cpu, cpumask);
if (cpumask_empty(cpumask))
break;
cpu_relax();
}
}
/*
* Stop all cpus but the current one.
*/
void smp_send_stop(void)
{
cpumask_t cpumask;
int cpu;
u64 end;
/* Disable all interrupts/machine checks */
__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
trace_hardirqs_off();
debug_set_critical();
cpumask_copy(&cpumask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &cpumask);
if (oops_in_progress) {
/*
* Give the other cpus the opportunity to complete
* outstanding interrupts before stopping them.
*/
end = get_clock() + (1000000UL << 12);
for_each_cpu(cpu, &cpumask) {
set_bit(ec_stop_cpu, (unsigned long *)
&lowcore_ptr[cpu]->ext_call_fast);
while (sigp(cpu, sigp_emergency_signal) == sigp_busy &&
get_clock() < end)
cpu_relax();
}
while (get_clock() < end) {
for_each_cpu(cpu, &cpumask)
if (cpu_stopped(cpu))
cpumask_clear_cpu(cpu, &cpumask);
if (cpumask_empty(&cpumask))
break;
cpu_relax();
}
}
if (oops_in_progress)
smp_emergency_stop(&cpumask);
/* stop all processors */
for_each_cpu(cpu, &cpumask) {
while (sigp(cpu, sigp_stop) == sigp_busy)
cpu_relax();
while (!cpu_stopped(cpu))
struct pcpu *pcpu = pcpu_devices + cpu;
pcpu_sigp_retry(pcpu, sigp_stop, 0);
while (!pcpu_stopped(pcpu))
cpu_relax();
}
}
/*
* Stop the current cpu.
*/
void smp_stop_cpu(void)
{
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
for (;;) ;
}
/*
* This is the main routine where commands issued by other
* cpus are handled.
*/
static void do_ext_call_interrupt(unsigned int ext_int_code,
static void do_ext_call_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
unsigned long bits;
int cpu;
if ((ext_int_code & 0xffff) == 0x1202)
kstat_cpu(smp_processor_id()).irqs[EXTINT_EXC]++;
cpu = smp_processor_id();
if (ext_code.code == 0x1202)
kstat_cpu(cpu).irqs[EXTINT_EXC]++;
else
kstat_cpu(smp_processor_id()).irqs[EXTINT_EMS]++;
kstat_cpu(cpu).irqs[EXTINT_EMS]++;
/*
* handle bit signal external calls
*/
bits = xchg(&S390_lowcore.ext_call_fast, 0);
bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
if (test_bit(ec_stop_cpu, &bits))
smp_stop_cpu();
......@@ -238,38 +468,17 @@ static void do_ext_call_interrupt(unsigned int ext_int_code,
}
/*
* Send an external call sigp to another cpu and return without waiting
* for its completion.
*/
static void smp_ext_bitcall(int cpu, int sig)
{
int order;
/*
* Set signaling bit in lowcore of target cpu and kick it
*/
set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
while (1) {
order = smp_vcpu_scheduled(cpu) ?
sigp_external_call : sigp_emergency_signal;
if (sigp(cpu, order) != sigp_busy)
break;
udelay(10);
}
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
for_each_cpu(cpu, mask)
smp_ext_bitcall(cpu, ec_call_function);
pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_ext_bitcall(cpu, ec_call_function_single);
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
}
#ifndef CONFIG_64BIT
......@@ -295,15 +504,16 @@ EXPORT_SYMBOL(smp_ptlb_all);
*/
void smp_send_reschedule(int cpu)
{
smp_ext_bitcall(cpu, ec_schedule);
pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
}
/*
* parameter area for the set/clear control bit callbacks
*/
struct ec_creg_mask_parms {
unsigned long orvals[16];
unsigned long andvals[16];
unsigned long orval;
unsigned long andval;
int cr;
};
/*
......@@ -313,11 +523,9 @@ static void smp_ctl_bit_callback(void *info)
{
struct ec_creg_mask_parms *pp = info;
unsigned long cregs[16];
int i;
__ctl_store(cregs, 0, 15);
for (i = 0; i <= 15; i++)
cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
__ctl_load(cregs, 0, 15);
}
......@@ -326,11 +534,8 @@ static void smp_ctl_bit_callback(void *info)
*/
void smp_ctl_set_bit(int cr, int bit)
{
struct ec_creg_mask_parms parms;
struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
memset(&parms.orvals, 0, sizeof(parms.orvals));
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
parms.orvals[cr] = 1UL << bit;
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
}
EXPORT_SYMBOL(smp_ctl_set_bit);
......@@ -340,220 +545,178 @@ EXPORT_SYMBOL(smp_ctl_set_bit);
*/
void smp_ctl_clear_bit(int cr, int bit)
{
struct ec_creg_mask_parms parms;
struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
memset(&parms.orvals, 0, sizeof(parms.orvals));
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
parms.andvals[cr] = ~(1UL << bit);
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
}
EXPORT_SYMBOL(smp_ctl_clear_bit);
#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
static void __init smp_get_save_area(int cpu, u16 address)
{
if (ipl_info.type != IPL_TYPE_FCP_DUMP && !OLDMEM_BASE)
return;
void *lc = pcpu_devices[0].lowcore;
struct save_area *save_area;
if (is_kdump_kernel())
return;
if (!OLDMEM_BASE && (address == boot_cpu_address ||
ipl_info.type != IPL_TYPE_FCP_DUMP))
return;
if (cpu >= NR_CPUS) {
pr_warning("CPU %i exceeds the maximum %i and is excluded from "
"the dump\n", cpu, NR_CPUS - 1);
pr_warning("CPU %i exceeds the maximum %i and is excluded "
"from the dump\n", cpu, NR_CPUS - 1);
return;
}
zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
cpu_relax();
memcpy_real(zfcpdump_save_areas[cpu],
(void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
sizeof(struct save_area));
save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
if (!save_area)
panic("could not allocate memory for save area\n");
zfcpdump_save_areas[cpu] = save_area;
#ifdef CONFIG_CRASH_DUMP
if (address == boot_cpu_address) {
/* Copy the registers of the boot cpu. */
copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
SAVE_AREA_BASE - PAGE_SIZE, 0);
return;
}
#endif
/* Get the registers of a non-boot cpu. */
__pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
}
struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
#else
static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
#endif /* CONFIG_ZFCPDUMP */
static int cpu_known(int cpu_id)
int smp_store_status(int cpu)
{
int cpu;
struct pcpu *pcpu;
for_each_present_cpu(cpu) {
if (__cpu_logical_map[cpu] == cpu_id)
return 1;
}
pcpu = pcpu_devices + cpu;
if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
0, NULL) != sigp_order_code_accepted)
return -EIO;
return 0;
}
static int smp_rescan_cpus_sigp(cpumask_t avail)
{
int cpu_id, logical_cpu;
#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
logical_cpu = cpumask_first(&avail);
if (logical_cpu >= nr_cpu_ids)
return 0;
for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
if (cpu_known(cpu_id))
continue;
__cpu_logical_map[logical_cpu] = cpu_id;
cpu_set_polarization(logical_cpu, POLARIZATION_UNKNOWN);
if (!cpu_stopped(logical_cpu))
continue;
set_cpu_present(logical_cpu, true);
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
logical_cpu = cpumask_next(logical_cpu, &avail);
if (logical_cpu >= nr_cpu_ids)
break;
}
return 0;
}
static inline void smp_get_save_area(int cpu, u16 address) { }
static int smp_rescan_cpus_sclp(cpumask_t avail)
#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
static struct sclp_cpu_info *smp_get_cpu_info(void)
{
static int use_sigp_detection;
struct sclp_cpu_info *info;
int cpu_id, logical_cpu, cpu;
int rc;
logical_cpu = cpumask_first(&avail);
if (logical_cpu >= nr_cpu_ids)
return 0;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
rc = sclp_get_cpu_info(info);
if (rc)
goto out;
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
continue;
cpu_id = info->cpu[cpu].address;
if (cpu_known(cpu_id))
continue;
__cpu_logical_map[logical_cpu] = cpu_id;
cpu_set_polarization(logical_cpu, POLARIZATION_UNKNOWN);
set_cpu_present(logical_cpu, true);
if (cpu >= info->configured)
smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
else
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
logical_cpu = cpumask_next(logical_cpu, &avail);
if (logical_cpu >= nr_cpu_ids)
break;
int address;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
use_sigp_detection = 1;
for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
sigp_not_operational)
continue;
info->cpu[info->configured].address = address;
info->configured++;
}
info->combined = info->configured;
}
out:
kfree(info);
return rc;
return info;
}
static int __smp_rescan_cpus(void)
static int __devinit smp_add_present_cpu(int cpu);
static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
int sysfs_add)
{
struct pcpu *pcpu;
cpumask_t avail;
int cpu, nr, i;
nr = 0;
cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
if (smp_use_sigp_detection)
return smp_rescan_cpus_sigp(avail);
else
return smp_rescan_cpus_sclp(avail);
cpu = cpumask_first(&avail);
for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
continue;
if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
continue;
pcpu = pcpu_devices + cpu;
pcpu->address = info->cpu[i].address;
pcpu->state = (cpu >= info->configured) ?
CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
set_cpu_present(cpu, true);
if (sysfs_add && smp_add_present_cpu(cpu) != 0)
set_cpu_present(cpu, false);
else
nr++;
cpu = cpumask_next(cpu, &avail);
}
return nr;
}
static void __init smp_detect_cpus(void)
{
unsigned int cpu, c_cpus, s_cpus;
struct sclp_cpu_info *info;
u16 boot_cpu_addr, cpu_addr;
c_cpus = 1;
s_cpus = 0;
boot_cpu_addr = __cpu_logical_map[0];
info = kmalloc(sizeof(*info), GFP_KERNEL);
info = smp_get_cpu_info();
if (!info)
panic("smp_detect_cpus failed to allocate memory\n");
#ifdef CONFIG_CRASH_DUMP
if (OLDMEM_BASE && !is_kdump_kernel()) {
struct save_area *save_area;
save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
if (!save_area)
panic("could not allocate memory for save area\n");
copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
0x200, 0);
zfcpdump_save_areas[0] = save_area;
}
#endif
/* Use sigp detection algorithm if sclp doesn't work. */
if (sclp_get_cpu_info(info)) {
smp_use_sigp_detection = 1;
for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
if (cpu == boot_cpu_addr)
continue;
if (!raw_cpu_stopped(cpu))
continue;
smp_get_save_area(c_cpus, cpu);
c_cpus++;
}
goto out;
}
if (info->has_cpu_type) {
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->cpu[cpu].address == boot_cpu_addr) {
smp_cpu_type = info->cpu[cpu].type;
break;
}
if (info->cpu[cpu].address != boot_cpu_address)
continue;
/* The boot cpu dictates the cpu type. */
boot_cpu_type = info->cpu[cpu].type;
break;
}
}
c_cpus = s_cpus = 0;
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
continue;
cpu_addr = info->cpu[cpu].address;
if (cpu_addr == boot_cpu_addr)
continue;
if (!raw_cpu_stopped(cpu_addr)) {
if (cpu < info->configured) {
smp_get_save_area(c_cpus, info->cpu[cpu].address);
c_cpus++;
} else
s_cpus++;
continue;
}
smp_get_save_area(c_cpus, cpu_addr);
c_cpus++;
}
out:
kfree(info);
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
get_online_cpus();
__smp_rescan_cpus();
__smp_rescan_cpus(info, 0);
put_online_cpus();
kfree(info);
}
/*
* Activate a secondary processor.
*/
int __cpuinit start_secondary(void *cpuvoid)
static void __cpuinit smp_start_secondary(void *cpuvoid)
{
S390_lowcore.last_update_clock = get_clock();
S390_lowcore.restart_stack = (unsigned long) restart_stack;
S390_lowcore.restart_fn = (unsigned long) do_restart;
S390_lowcore.restart_data = 0;
S390_lowcore.restart_source = -1UL;
restore_access_regs(S390_lowcore.access_regs_save_area);
__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
cpu_init();
preempt_disable();
init_cpu_timer();
init_cpu_vtimer();
pfault_init();
notify_cpu_starting(smp_processor_id());
ipi_call_lock();
set_cpu_online(smp_processor_id(), true);
ipi_call_unlock();
__ctl_clear_bit(0, 28); /* Disable lowcore protection */
S390_lowcore.restart_psw.mask =
PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_EA | PSW_MASK_BA;
S390_lowcore.restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
__ctl_set_bit(0, 28); /* Enable lowcore protection */
local_irq_enable();
/* cpu_idle will call schedule for us */
cpu_idle();
return 0;
}
struct create_idle {
......@@ -572,82 +735,20 @@ static void __cpuinit smp_fork_idle(struct work_struct *work)
complete(&c_idle->done);
}
static int __cpuinit smp_alloc_lowcore(int cpu)
{
unsigned long async_stack, panic_stack;
struct _lowcore *lowcore;
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
if (!lowcore)
return -ENOMEM;
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
panic_stack = __get_free_page(GFP_KERNEL);
if (!panic_stack || !async_stack)
goto out;
memcpy(lowcore, &S390_lowcore, 512);
memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
lowcore->async_stack = async_stack + ASYNC_SIZE;
lowcore->panic_stack = panic_stack + PAGE_SIZE;
lowcore->restart_psw.mask =
PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_EA | PSW_MASK_BA;
lowcore->restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
if (user_mode != HOME_SPACE_MODE)
lowcore->restart_psw.mask |= PSW_ASC_HOME;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
unsigned long save_area;
save_area = get_zeroed_page(GFP_KERNEL);
if (!save_area)
goto out;
lowcore->extended_save_area_addr = (u32) save_area;
}
#else
if (vdso_alloc_per_cpu(cpu, lowcore))
goto out;
#endif
lowcore_ptr[cpu] = lowcore;
return 0;
out:
free_page(panic_stack);
free_pages(async_stack, ASYNC_ORDER);
free_pages((unsigned long) lowcore, LC_ORDER);
return -ENOMEM;
}
static void smp_free_lowcore(int cpu)
{
struct _lowcore *lowcore;
lowcore = lowcore_ptr[cpu];
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
free_page((unsigned long) lowcore->extended_save_area_addr);
#else
vdso_free_per_cpu(cpu, lowcore);
#endif
free_page(lowcore->panic_stack - PAGE_SIZE);
free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
free_pages((unsigned long) lowcore, LC_ORDER);
lowcore_ptr[cpu] = NULL;
}
/* Upping and downing of CPUs */
int __cpuinit __cpu_up(unsigned int cpu)
{
struct _lowcore *cpu_lowcore;
struct create_idle c_idle;
struct task_struct *idle;
struct stack_frame *sf;
u32 lowcore;
int ccode;
struct pcpu *pcpu;
int rc;
if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
pcpu = pcpu_devices + cpu;
if (pcpu->state != CPU_STATE_CONFIGURED)
return -EIO;
if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
sigp_order_code_accepted)
return -EIO;
idle = current_set[cpu];
if (!idle) {
if (!pcpu->idle) {
c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
c_idle.cpu = cpu;
......@@ -655,68 +756,28 @@ int __cpuinit __cpu_up(unsigned int cpu)
wait_for_completion(&c_idle.done);
if (IS_ERR(c_idle.idle))
return PTR_ERR(c_idle.idle);
idle = c_idle.idle;
current_set[cpu] = c_idle.idle;
pcpu->idle = c_idle.idle;
}
init_idle(idle, cpu);
if (smp_alloc_lowcore(cpu))
return -ENOMEM;
do {
ccode = sigp(cpu, sigp_initial_cpu_reset);
if (ccode == sigp_busy)
udelay(10);
if (ccode == sigp_not_operational)
goto err_out;
} while (ccode == sigp_busy);
lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
udelay(10);
cpu_lowcore = lowcore_ptr[cpu];
cpu_lowcore->kernel_stack = (unsigned long)
task_stack_page(idle) + THREAD_SIZE;
cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
- sizeof(struct pt_regs)
- sizeof(struct stack_frame));
memset(sf, 0, sizeof(struct stack_frame));
sf->gprs[9] = (unsigned long) sf;
cpu_lowcore->gpregs_save_area[15] = (unsigned long) sf;
__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
atomic_inc(&init_mm.context.attach_count);
asm volatile(
" stam 0,15,0(%0)"
: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
cpu_lowcore->current_task = (unsigned long) idle;
cpu_lowcore->cpu_nr = cpu;
cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
MAX_FACILITY_BIT/8);
eieio();
while (sigp(cpu, sigp_restart) == sigp_busy)
udelay(10);
init_idle(pcpu->idle, cpu);
rc = pcpu_alloc_lowcore(pcpu, cpu);
if (rc)
return rc;
pcpu_prepare_secondary(pcpu, cpu);
pcpu_attach_task(pcpu, pcpu->idle);
pcpu_start_fn(pcpu, smp_start_secondary, NULL);
while (!cpu_online(cpu))
cpu_relax();
return 0;
err_out:
smp_free_lowcore(cpu);
return -EIO;
}
static int __init setup_possible_cpus(char *s)
{
int pcpus, cpu;
int max, cpu;
pcpus = simple_strtoul(s, NULL, 0);
if (kstrtoint(s, 0, &max) < 0)
return 0;
init_cpu_possible(cpumask_of(0));
for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
set_cpu_possible(cpu, true);
return 0;
}
......@@ -726,113 +787,79 @@ early_param("possible_cpus", setup_possible_cpus);
int __cpu_disable(void)
{
struct ec_creg_mask_parms cr_parms;
int cpu = smp_processor_id();
set_cpu_online(cpu, false);
unsigned long cregs[16];
/* Disable pfault pseudo page faults on this cpu. */
set_cpu_online(smp_processor_id(), false);
/* Disable pseudo page faults on this cpu. */
pfault_fini();
memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
/* disable all external interrupts */
cr_parms.orvals[0] = 0;
cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
1 << 10 | 1 << 9 | 1 << 6 | 1 << 5 |
1 << 4);
/* disable all I/O interrupts */
cr_parms.orvals[6] = 0;
cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
/* disable most machine checks */
cr_parms.orvals[14] = 0;
cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
1 << 25 | 1 << 24);
smp_ctl_bit_callback(&cr_parms);
/* Disable interrupt sources via control register. */
__ctl_store(cregs, 0, 15);
cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
__ctl_load(cregs, 0, 15);
return 0;
}
void __cpu_die(unsigned int cpu)
{
struct pcpu *pcpu;
/* Wait until target cpu is down */
while (!cpu_stopped(cpu))
pcpu = pcpu_devices + cpu;
while (!pcpu_stopped(pcpu))
cpu_relax();
while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
udelay(10);
smp_free_lowcore(cpu);
pcpu_free_lowcore(pcpu);
atomic_dec(&init_mm.context.attach_count);
}
void __noreturn cpu_die(void)
{
idle_task_exit();
while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
cpu_relax();
for (;;);
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
for (;;) ;
}
#endif /* CONFIG_HOTPLUG_CPU */
void __init smp_prepare_cpus(unsigned int max_cpus)
static void smp_call_os_info_init_fn(void)
{
#ifndef CONFIG_64BIT
unsigned long save_area = 0;
#endif
unsigned long async_stack, panic_stack;
struct _lowcore *lowcore;
int (*init_fn)(void);
unsigned long size;
smp_detect_cpus();
init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size);
if (!init_fn)
return;
init_fn();
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
/* request the 0x1201 emergency signal external interrupt */
if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
panic("Couldn't request external interrupt 0x1201");
/* request the 0x1202 external call external interrupt */
if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
panic("Couldn't request external interrupt 0x1202");
/* Reallocate current lowcore, but keep its contents. */
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
panic_stack = __get_free_page(GFP_KERNEL);
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
BUG_ON(!lowcore || !panic_stack || !async_stack);
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
save_area = get_zeroed_page(GFP_KERNEL);
#endif
local_irq_disable();
local_mcck_disable();
lowcore_ptr[smp_processor_id()] = lowcore;
*lowcore = S390_lowcore;
lowcore->panic_stack = panic_stack + PAGE_SIZE;
lowcore->async_stack = async_stack + ASYNC_SIZE;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
lowcore->extended_save_area_addr = (u32) save_area;
#endif
set_prefix((u32)(unsigned long) lowcore);
local_mcck_enable();
local_irq_enable();
#ifdef CONFIG_64BIT
if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
BUG();
#endif
smp_call_os_info_init_fn();
smp_detect_cpus();
}
void __init smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != 0);
current_thread_info()->cpu = 0;
set_cpu_present(0, true);
set_cpu_online(0, true);
struct pcpu *pcpu = pcpu_devices;
boot_cpu_address = stap();
pcpu->idle = current;
pcpu->state = CPU_STATE_CONFIGURED;
pcpu->address = boot_cpu_address;
pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
S390_lowcore.percpu_offset = __per_cpu_offset[0];
current_set[0] = current;
smp_cpu_state[0] = CPU_STATE_CONFIGURED;
cpu_set_polarization(0, POLARIZATION_UNKNOWN);
set_cpu_present(0, true);
set_cpu_online(0, true);
}
void __init smp_cpus_done(unsigned int max_cpus)
......@@ -842,7 +869,6 @@ void __init smp_cpus_done(unsigned int max_cpus)
void __init smp_setup_processor_id(void)
{
S390_lowcore.cpu_nr = 0;
__cpu_logical_map[0] = stap();
}
/*
......@@ -858,56 +884,57 @@ int setup_profiling_timer(unsigned int multiplier)
#ifdef CONFIG_HOTPLUG_CPU
static ssize_t cpu_configure_show(struct device *dev,
struct device_attribute *attr, char *buf)
struct device_attribute *attr, char *buf)
{
ssize_t count;
mutex_lock(&smp_cpu_state_mutex);
count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
mutex_unlock(&smp_cpu_state_mutex);
return count;
}
static ssize_t cpu_configure_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
struct device_attribute *attr,
const char *buf, size_t count)
{
int cpu = dev->id;
int val, rc;
struct pcpu *pcpu;
int cpu, val, rc;
char delim;
if (sscanf(buf, "%d %c", &val, &delim) != 1)
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
get_online_cpus();
mutex_lock(&smp_cpu_state_mutex);
rc = -EBUSY;
/* disallow configuration changes of online cpus and cpu 0 */
cpu = dev->id;
if (cpu_online(cpu) || cpu == 0)
goto out;
pcpu = pcpu_devices + cpu;
rc = 0;
switch (val) {
case 0:
if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
if (!rc) {
smp_cpu_state[cpu] = CPU_STATE_STANDBY;
cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
topology_expect_change();
}
}
if (pcpu->state != CPU_STATE_CONFIGURED)
break;
rc = sclp_cpu_deconfigure(pcpu->address);
if (rc)
break;
pcpu->state = CPU_STATE_STANDBY;
cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
topology_expect_change();
break;
case 1:
if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
if (!rc) {
smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
topology_expect_change();
}
}
if (pcpu->state != CPU_STATE_STANDBY)
break;
rc = sclp_cpu_configure(pcpu->address);
if (rc)
break;
pcpu->state = CPU_STATE_CONFIGURED;
cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
topology_expect_change();
break;
default:
break;
......@@ -923,7 +950,7 @@ static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
static ssize_t show_cpu_address(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
}
static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
......@@ -955,22 +982,16 @@ static DEVICE_ATTR(capability, 0444, show_capability, NULL);
static ssize_t show_idle_count(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct s390_idle_data *idle;
struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
unsigned long long idle_count;
unsigned int sequence;
idle = &per_cpu(s390_idle, dev->id);
repeat:
sequence = idle->sequence;
smp_rmb();
if (sequence & 1)
goto repeat;
idle_count = idle->idle_count;
if (idle->idle_enter)
idle_count++;
smp_rmb();
if (idle->sequence != sequence)
goto repeat;
do {
sequence = ACCESS_ONCE(idle->sequence);
idle_count = ACCESS_ONCE(idle->idle_count);
if (ACCESS_ONCE(idle->idle_enter))
idle_count++;
} while ((sequence & 1) || (idle->sequence != sequence));
return sprintf(buf, "%llu\n", idle_count);
}
static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
......@@ -978,24 +999,18 @@ static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
static ssize_t show_idle_time(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct s390_idle_data *idle;
unsigned long long now, idle_time, idle_enter;
struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
unsigned long long now, idle_time, idle_enter, idle_exit;
unsigned int sequence;
idle = &per_cpu(s390_idle, dev->id);
now = get_clock();
repeat:
sequence = idle->sequence;
smp_rmb();
if (sequence & 1)
goto repeat;
idle_time = idle->idle_time;
idle_enter = idle->idle_enter;
if (idle_enter != 0ULL && idle_enter < now)
idle_time += now - idle_enter;
smp_rmb();
if (idle->sequence != sequence)
goto repeat;
do {
now = get_clock();
sequence = ACCESS_ONCE(idle->sequence);
idle_time = ACCESS_ONCE(idle->idle_time);
idle_enter = ACCESS_ONCE(idle->idle_enter);
idle_exit = ACCESS_ONCE(idle->idle_exit);
} while ((sequence & 1) || (idle->sequence != sequence));
idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
return sprintf(buf, "%llu\n", idle_time >> 12);
}
static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
......@@ -1015,7 +1030,7 @@ static int __cpuinit smp_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned int)(long)hcpu;
struct cpu *c = &per_cpu(cpu_devices, cpu);
struct cpu *c = &pcpu_devices[cpu].cpu;
struct device *s = &c->dev;
struct s390_idle_data *idle;
int err = 0;
......@@ -1041,7 +1056,7 @@ static struct notifier_block __cpuinitdata smp_cpu_nb = {
static int __devinit smp_add_present_cpu(int cpu)
{
struct cpu *c = &per_cpu(cpu_devices, cpu);
struct cpu *c = &pcpu_devices[cpu].cpu;
struct device *s = &c->dev;
int rc;
......@@ -1079,29 +1094,21 @@ static int __devinit smp_add_present_cpu(int cpu)
int __ref smp_rescan_cpus(void)
{
cpumask_t newcpus;
int cpu;
int rc;
struct sclp_cpu_info *info;
int nr;
info = smp_get_cpu_info();
if (!info)
return -ENOMEM;
get_online_cpus();
mutex_lock(&smp_cpu_state_mutex);
cpumask_copy(&newcpus, cpu_present_mask);
rc = __smp_rescan_cpus();
if (rc)
goto out;
cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
for_each_cpu(cpu, &newcpus) {
rc = smp_add_present_cpu(cpu);
if (rc)
set_cpu_present(cpu, false);
}
rc = 0;
out:
nr = __smp_rescan_cpus(info, 1);
mutex_unlock(&smp_cpu_state_mutex);
put_online_cpus();
if (!cpumask_empty(&newcpus))
kfree(info);
if (nr)
topology_schedule_update();
return rc;
return 0;
}
static ssize_t __ref rescan_store(struct device *dev,
......
/*
* 31-bit switch cpu code
*
* Copyright IBM Corp. 2009
*
*/
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/ptrace.h>
# smp_switch_to_cpu switches to destination cpu and executes the passed function
# Parameter: %r2 - function to call
# %r3 - function parameter
# %r4 - stack poiner
# %r5 - current cpu
# %r6 - destination cpu
.section .text
ENTRY(smp_switch_to_cpu)
stm %r6,%r15,__SF_GPRS(%r15)
lr %r1,%r15
ahi %r15,-STACK_FRAME_OVERHEAD
st %r1,__SF_BACKCHAIN(%r15)
basr %r13,0
0: la %r1,.gprregs_addr-0b(%r13)
l %r1,0(%r1)
stm %r0,%r15,0(%r1)
1: sigp %r0,%r6,__SIGP_RESTART /* start destination CPU */
brc 2,1b /* busy, try again */
2: sigp %r0,%r5,__SIGP_STOP /* stop current CPU */
brc 2,2b /* busy, try again */
3: j 3b
ENTRY(smp_restart_cpu)
basr %r13,0
0: la %r1,.gprregs_addr-0b(%r13)
l %r1,0(%r1)
lm %r0,%r15,0(%r1)
1: sigp %r0,%r5,__SIGP_SENSE /* Wait for calling CPU */
brc 10,1b /* busy, accepted (status 0), running */
tmll %r0,0x40 /* Test if calling CPU is stopped */
jz 1b
ltr %r4,%r4 /* New stack ? */
jz 1f
lr %r15,%r4
1: lr %r14,%r2 /* r14: Function to call */
lr %r2,%r3 /* r2 : Parameter for function*/
basr %r14,%r14 /* Call function */
.gprregs_addr:
.long .gprregs
.section .data,"aw",@progbits
.gprregs:
.rept 16
.long 0
.endr
/*
* 64-bit switch cpu code
*
* Copyright IBM Corp. 2009
*
*/
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/ptrace.h>
# smp_switch_to_cpu switches to destination cpu and executes the passed function
# Parameter: %r2 - function to call
# %r3 - function parameter
# %r4 - stack poiner
# %r5 - current cpu
# %r6 - destination cpu
.section .text
ENTRY(smp_switch_to_cpu)
stmg %r6,%r15,__SF_GPRS(%r15)
lgr %r1,%r15
aghi %r15,-STACK_FRAME_OVERHEAD
stg %r1,__SF_BACKCHAIN(%r15)
larl %r1,.gprregs
stmg %r0,%r15,0(%r1)
1: sigp %r0,%r6,__SIGP_RESTART /* start destination CPU */
brc 2,1b /* busy, try again */
2: sigp %r0,%r5,__SIGP_STOP /* stop current CPU */
brc 2,2b /* busy, try again */
3: j 3b
ENTRY(smp_restart_cpu)
larl %r1,.gprregs
lmg %r0,%r15,0(%r1)
1: sigp %r0,%r5,__SIGP_SENSE /* Wait for calling CPU */
brc 10,1b /* busy, accepted (status 0), running */
tmll %r0,0x40 /* Test if calling CPU is stopped */
jz 1b
ltgr %r4,%r4 /* New stack ? */
jz 1f
lgr %r15,%r4
1: lgr %r14,%r2 /* r14: Function to call */
lgr %r2,%r3 /* r2 : Parameter for function*/
basr %r14,%r14 /* Call function */
.section .data,"aw",@progbits
.gprregs:
.rept 16
.quad 0
.endr
......@@ -42,7 +42,7 @@ ENTRY(swsusp_arch_suspend)
lghi %r1,0x1000
/* Save CPU address */
stap __LC_CPU_ADDRESS(%r0)
stap __LC_EXT_CPU_ADDR(%r0)
/* Store registers */
mvc 0x318(4,%r1),__SF_EMPTY(%r15) /* move prefix to lowcore */
......@@ -173,15 +173,15 @@ pgm_check_entry:
larl %r1,.Lresume_cpu /* Resume CPU address: r2 */
stap 0(%r1)
llgh %r2,0(%r1)
llgh %r1,__LC_CPU_ADDRESS(%r0) /* Suspend CPU address: r1 */
llgh %r1,__LC_EXT_CPU_ADDR(%r0) /* Suspend CPU address: r1 */
cgr %r1,%r2
je restore_registers /* r1 = r2 -> nothing to do */
larl %r4,.Lrestart_suspend_psw /* Set new restart PSW */
mvc __LC_RST_NEW_PSW(16,%r0),0(%r4)
3:
sigp %r9,%r1,__SIGP_INITIAL_CPU_RESET
brc 8,4f /* accepted */
brc 2,3b /* busy, try again */
sigp %r9,%r1,11 /* sigp initial cpu reset */
brc 8,4f /* accepted */
brc 2,3b /* busy, try again */
/* Suspend CPU not available -> panic */
larl %r15,init_thread_union
......@@ -196,10 +196,10 @@ pgm_check_entry:
lpsw 0(%r3)
4:
/* Switch to suspend CPU */
sigp %r9,%r1,__SIGP_RESTART /* start suspend CPU */
sigp %r9,%r1,6 /* sigp restart to suspend CPU */
brc 2,4b /* busy, try again */
5:
sigp %r9,%r2,__SIGP_STOP /* stop resume (current) CPU */
sigp %r9,%r2,5 /* sigp stop to current resume CPU */
brc 2,5b /* busy, try again */
6: j 6b
......@@ -207,7 +207,7 @@ restart_suspend:
larl %r1,.Lresume_cpu
llgh %r2,0(%r1)
7:
sigp %r9,%r2,__SIGP_SENSE /* Wait for resume CPU */
sigp %r9,%r2,1 /* sigp sense, wait for resume CPU */
brc 8,7b /* accepted, status 0, still running */
brc 2,7b /* busy, try again */
tmll %r9,0x40 /* Test if resume CPU is stopped */
......@@ -257,6 +257,9 @@ restore_registers:
lghi %r2,0
brasl %r14,arch_set_page_states
/* Log potential guest relocation */
brasl %r14,lgr_info_log
/* Reinitialize the channel subsystem */
brasl %r14,channel_subsystem_reinit
......
......@@ -165,7 +165,7 @@ void init_cpu_timer(void)
__ctl_set_bit(0, 4);
}
static void clock_comparator_interrupt(unsigned int ext_int_code,
static void clock_comparator_interrupt(struct ext_code ext_code,
unsigned int param32,
unsigned long param64)
{
......@@ -177,7 +177,7 @@ static void clock_comparator_interrupt(unsigned int ext_int_code,
static void etr_timing_alert(struct etr_irq_parm *);
static void stp_timing_alert(struct stp_irq_parm *);
static void timing_alert_interrupt(unsigned int ext_int_code,
static void timing_alert_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
......
......@@ -79,12 +79,12 @@ static struct mask_info *add_cpus_to_mask(struct topology_cpu *tl_cpu,
cpu < TOPOLOGY_CPU_BITS;
cpu = find_next_bit(&tl_cpu->mask[0], TOPOLOGY_CPU_BITS, cpu + 1))
{
unsigned int rcpu, lcpu;
unsigned int rcpu;
int lcpu;
rcpu = TOPOLOGY_CPU_BITS - 1 - cpu + tl_cpu->origin;
for_each_present_cpu(lcpu) {
if (cpu_logical_map(lcpu) != rcpu)
continue;
lcpu = smp_find_processor_id(rcpu);
if (lcpu >= 0) {
cpumask_set_cpu(lcpu, &book->mask);
cpu_book_id[lcpu] = book->id;
cpumask_set_cpu(lcpu, &core->mask);
......
......@@ -41,6 +41,7 @@
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/debug.h>
#include <asm/ipl.h>
#include "entry.h"
void (*pgm_check_table[128])(struct pt_regs *regs);
......@@ -144,8 +145,8 @@ void show_stack(struct task_struct *task, unsigned long *sp)
for (i = 0; i < kstack_depth_to_print; i++) {
if (((addr_t) stack & (THREAD_SIZE-1)) == 0)
break;
if (i && ((i * sizeof (long) % 32) == 0))
printk("\n ");
if ((i * sizeof(long) % 32) == 0)
printk("%s ", i == 0 ? "" : "\n");
printk(LONG, *stack++);
}
printk("\n");
......@@ -239,6 +240,7 @@ void die(struct pt_regs *regs, const char *str)
static int die_counter;
oops_enter();
lgr_info_log();
debug_stop_all();
console_verbose();
spin_lock_irq(&die_lock);
......
......@@ -88,19 +88,12 @@ static void vdso_init_data(struct vdso_data *vd)
}
#ifdef CONFIG_64BIT
/*
* Setup per cpu vdso data page.
*/
static void vdso_init_per_cpu_data(int cpu, struct vdso_per_cpu_data *vpcd)
{
}
/*
* Allocate/free per cpu vdso data.
*/
#define SEGMENT_ORDER 2
int vdso_alloc_per_cpu(int cpu, struct _lowcore *lowcore)
int vdso_alloc_per_cpu(struct _lowcore *lowcore)
{
unsigned long segment_table, page_table, page_frame;
u32 *psal, *aste;
......@@ -139,7 +132,6 @@ int vdso_alloc_per_cpu(int cpu, struct _lowcore *lowcore)
aste[4] = (u32)(addr_t) psal;
lowcore->vdso_per_cpu_data = page_frame;
vdso_init_per_cpu_data(cpu, (struct vdso_per_cpu_data *) page_frame);
return 0;
out:
......@@ -149,7 +141,7 @@ int vdso_alloc_per_cpu(int cpu, struct _lowcore *lowcore)
return -ENOMEM;
}
void vdso_free_per_cpu(int cpu, struct _lowcore *lowcore)
void vdso_free_per_cpu(struct _lowcore *lowcore)
{
unsigned long segment_table, page_table, page_frame;
u32 *psal, *aste;
......@@ -168,19 +160,15 @@ void vdso_free_per_cpu(int cpu, struct _lowcore *lowcore)
free_pages(segment_table, SEGMENT_ORDER);
}
static void __vdso_init_cr5(void *dummy)
static void vdso_init_cr5(void)
{
unsigned long cr5;
if (user_mode == HOME_SPACE_MODE || !vdso_enabled)
return;
cr5 = offsetof(struct _lowcore, paste);
__ctl_load(cr5, 5, 5);
}
static void vdso_init_cr5(void)
{
if (user_mode != HOME_SPACE_MODE && vdso_enabled)
on_each_cpu(__vdso_init_cr5, NULL, 1);
}
#endif /* CONFIG_64BIT */
/*
......@@ -322,10 +310,8 @@ static int __init vdso_init(void)
}
vdso64_pagelist[vdso64_pages - 1] = virt_to_page(vdso_data);
vdso64_pagelist[vdso64_pages] = NULL;
#ifndef CONFIG_SMP
if (vdso_alloc_per_cpu(0, &S390_lowcore))
if (vdso_alloc_per_cpu(&S390_lowcore))
BUG();
#endif
vdso_init_cr5();
#endif /* CONFIG_64BIT */
......@@ -335,7 +321,7 @@ static int __init vdso_init(void)
return 0;
}
arch_initcall(vdso_init);
early_initcall(vdso_init);
int in_gate_area_no_mm(unsigned long addr)
{
......
......@@ -26,6 +26,7 @@
#include <asm/irq_regs.h>
#include <asm/cputime.h>
#include <asm/irq.h>
#include "entry.h"
static DEFINE_PER_CPU(struct vtimer_queue, virt_cpu_timer);
......@@ -123,153 +124,53 @@ void account_system_vtime(struct task_struct *tsk)
}
EXPORT_SYMBOL_GPL(account_system_vtime);
void __kprobes vtime_start_cpu(__u64 int_clock, __u64 enter_timer)
void __kprobes vtime_stop_cpu(void)
{
struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
__u64 idle_time, expires;
unsigned long long idle_time;
unsigned long psw_mask;
if (idle->idle_enter == 0ULL)
return;
trace_hardirqs_on();
/* Don't trace preempt off for idle. */
stop_critical_timings();
/* Account time spent with enabled wait psw loaded as idle time. */
idle_time = int_clock - idle->idle_enter;
account_idle_time(idle_time);
S390_lowcore.steal_timer +=
idle->idle_enter - S390_lowcore.last_update_clock;
S390_lowcore.last_update_clock = int_clock;
/* Account system time spent going idle. */
S390_lowcore.system_timer += S390_lowcore.last_update_timer - vq->idle;
S390_lowcore.last_update_timer = enter_timer;
/* Restart vtime CPU timer */
if (vq->do_spt) {
/* Program old expire value but first save progress. */
expires = vq->idle - enter_timer;
expires += get_vtimer();
set_vtimer(expires);
} else {
/* Don't account the CPU timer delta while the cpu was idle. */
vq->elapsed -= vq->idle - enter_timer;
}
/* Wait for external, I/O or machine check interrupt. */
psw_mask = psw_kernel_bits | PSW_MASK_WAIT | PSW_MASK_DAT |
PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
idle->nohz_delay = 0;
/* Call the assembler magic in entry.S */
psw_idle(idle, vq, psw_mask, !list_empty(&vq->list));
/* Reenable preemption tracer. */
start_critical_timings();
/* Account time spent with enabled wait psw loaded as idle time. */
idle->sequence++;
smp_wmb();
idle_time = idle->idle_exit - idle->idle_enter;
idle->idle_time += idle_time;
idle->idle_enter = 0ULL;
idle->idle_enter = idle->idle_exit = 0ULL;
idle->idle_count++;
account_idle_time(idle_time);
smp_wmb();
idle->sequence++;
}
void __kprobes vtime_stop_cpu(void)
{
struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
psw_t psw;
/* Wait for external, I/O or machine check interrupt. */
psw.mask = psw_kernel_bits | PSW_MASK_WAIT |
PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
idle->nohz_delay = 0;
/* Check if the CPU timer needs to be reprogrammed. */
if (vq->do_spt) {
__u64 vmax = VTIMER_MAX_SLICE;
/*
* The inline assembly is equivalent to
* vq->idle = get_cpu_timer();
* set_cpu_timer(VTIMER_MAX_SLICE);
* idle->idle_enter = get_clock();
* __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
* PSW_MASK_DAT | PSW_MASK_IO |
* PSW_MASK_EXT | PSW_MASK_MCHECK);
* The difference is that the inline assembly makes sure that
* the last three instruction are stpt, stck and lpsw in that
* order. This is done to increase the precision.
*/
asm volatile(
#ifndef CONFIG_64BIT
" basr 1,0\n"
"0: ahi 1,1f-0b\n"
" st 1,4(%2)\n"
#else /* CONFIG_64BIT */
" larl 1,1f\n"
" stg 1,8(%2)\n"
#endif /* CONFIG_64BIT */
" stpt 0(%4)\n"
" spt 0(%5)\n"
" stck 0(%3)\n"
#ifndef CONFIG_64BIT
" lpsw 0(%2)\n"
#else /* CONFIG_64BIT */
" lpswe 0(%2)\n"
#endif /* CONFIG_64BIT */
"1:"
: "=m" (idle->idle_enter), "=m" (vq->idle)
: "a" (&psw), "a" (&idle->idle_enter),
"a" (&vq->idle), "a" (&vmax), "m" (vmax), "m" (psw)
: "memory", "cc", "1");
} else {
/*
* The inline assembly is equivalent to
* vq->idle = get_cpu_timer();
* idle->idle_enter = get_clock();
* __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
* PSW_MASK_DAT | PSW_MASK_IO |
* PSW_MASK_EXT | PSW_MASK_MCHECK);
* The difference is that the inline assembly makes sure that
* the last three instruction are stpt, stck and lpsw in that
* order. This is done to increase the precision.
*/
asm volatile(
#ifndef CONFIG_64BIT
" basr 1,0\n"
"0: ahi 1,1f-0b\n"
" st 1,4(%2)\n"
#else /* CONFIG_64BIT */
" larl 1,1f\n"
" stg 1,8(%2)\n"
#endif /* CONFIG_64BIT */
" stpt 0(%4)\n"
" stck 0(%3)\n"
#ifndef CONFIG_64BIT
" lpsw 0(%2)\n"
#else /* CONFIG_64BIT */
" lpswe 0(%2)\n"
#endif /* CONFIG_64BIT */
"1:"
: "=m" (idle->idle_enter), "=m" (vq->idle)
: "a" (&psw), "a" (&idle->idle_enter),
"a" (&vq->idle), "m" (psw)
: "memory", "cc", "1");
}
}
cputime64_t s390_get_idle_time(int cpu)
{
struct s390_idle_data *idle;
unsigned long long now, idle_time, idle_enter;
struct s390_idle_data *idle = &per_cpu(s390_idle, cpu);
unsigned long long now, idle_enter, idle_exit;
unsigned int sequence;
idle = &per_cpu(s390_idle, cpu);
now = get_clock();
repeat:
sequence = idle->sequence;
smp_rmb();
if (sequence & 1)
goto repeat;
idle_time = 0;
idle_enter = idle->idle_enter;
if (idle_enter != 0ULL && idle_enter < now)
idle_time = now - idle_enter;
smp_rmb();
if (idle->sequence != sequence)
goto repeat;
return idle_time;
do {
now = get_clock();
sequence = ACCESS_ONCE(idle->sequence);
idle_enter = ACCESS_ONCE(idle->idle_enter);
idle_exit = ACCESS_ONCE(idle->idle_exit);
} while ((sequence & 1) || (idle->sequence != sequence));
return idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
}
/*
......@@ -319,7 +220,7 @@ static void do_callbacks(struct list_head *cb_list)
/*
* Handler for the virtual CPU timer.
*/
static void do_cpu_timer_interrupt(unsigned int ext_int_code,
static void do_cpu_timer_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct vtimer_queue *vq;
......@@ -346,7 +247,6 @@ static void do_cpu_timer_interrupt(unsigned int ext_int_code,
}
spin_unlock(&vq->lock);
vq->do_spt = list_empty(&cb_list);
do_callbacks(&cb_list);
/* next event is first in list */
......@@ -355,8 +255,7 @@ static void do_cpu_timer_interrupt(unsigned int ext_int_code,
if (!list_empty(&vq->list)) {
event = list_first_entry(&vq->list, struct vtimer_list, entry);
next = event->expires;
} else
vq->do_spt = 0;
}
spin_unlock(&vq->lock);
/*
* To improve precision add the time spent by the
......@@ -570,6 +469,9 @@ void init_cpu_vtimer(void)
/* enable cpu timer interrupts */
__ctl_set_bit(0,10);
/* set initial cpu timer */
set_vtimer(0x7fffffffffffffffULL);
}
static int __cpuinit s390_nohz_notify(struct notifier_block *self,
......
......@@ -134,7 +134,7 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
if (rc == -EFAULT)
exception = 1;
rc = put_guest_u16(vcpu, __LC_CPU_ADDRESS, inti->emerg.code);
rc = put_guest_u16(vcpu, __LC_EXT_CPU_ADDR, inti->emerg.code);
if (rc == -EFAULT)
exception = 1;
......@@ -156,7 +156,7 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
if (rc == -EFAULT)
exception = 1;
rc = put_guest_u16(vcpu, __LC_CPU_ADDRESS, inti->extcall.code);
rc = put_guest_u16(vcpu, __LC_EXT_CPU_ADDR, inti->extcall.code);
if (rc == -EFAULT)
exception = 1;
......@@ -202,7 +202,7 @@ static void __do_deliver_interrupt(struct kvm_vcpu *vcpu,
if (rc == -EFAULT)
exception = 1;
rc = put_guest_u16(vcpu, __LC_CPU_ADDRESS, 0x0d00);
rc = put_guest_u16(vcpu, __LC_EXT_CPU_ADDR, 0x0d00);
if (rc == -EFAULT)
exception = 1;
......
......@@ -13,6 +13,7 @@
#include <linux/irqflags.h>
#include <linux/interrupt.h>
#include <asm/div64.h>
#include <asm/timer.h>
void __delay(unsigned long loops)
{
......@@ -28,36 +29,33 @@ void __delay(unsigned long loops)
static void __udelay_disabled(unsigned long long usecs)
{
unsigned long mask, cr0, cr0_saved;
u64 clock_saved;
u64 end;
unsigned long cr0, cr6, new;
u64 clock_saved, end;
mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_WAIT |
PSW_MASK_EXT | PSW_MASK_MCHECK;
end = get_clock() + (usecs << 12);
clock_saved = local_tick_disable();
__ctl_store(cr0_saved, 0, 0);
cr0 = (cr0_saved & 0xffff00e0) | 0x00000800;
__ctl_load(cr0 , 0, 0);
__ctl_store(cr0, 0, 0);
__ctl_store(cr6, 6, 6);
new = (cr0 & 0xffff00e0) | 0x00000800;
__ctl_load(new , 0, 0);
new = 0;
__ctl_load(new, 6, 6);
lockdep_off();
do {
set_clock_comparator(end);
trace_hardirqs_on();
__load_psw_mask(mask);
vtime_stop_cpu();
local_irq_disable();
} while (get_clock() < end);
lockdep_on();
__ctl_load(cr0_saved, 0, 0);
__ctl_load(cr0, 0, 0);
__ctl_load(cr6, 6, 6);
local_tick_enable(clock_saved);
}
static void __udelay_enabled(unsigned long long usecs)
{
unsigned long mask;
u64 clock_saved;
u64 end;
u64 clock_saved, end;
mask = psw_kernel_bits | PSW_MASK_WAIT | PSW_MASK_EXT | PSW_MASK_IO;
end = get_clock() + (usecs << 12);
do {
clock_saved = 0;
......@@ -65,8 +63,7 @@ static void __udelay_enabled(unsigned long long usecs)
clock_saved = local_tick_disable();
set_clock_comparator(end);
}
trace_hardirqs_on();
__load_psw_mask(mask);
vtime_stop_cpu();
local_irq_disable();
if (clock_saved)
local_tick_enable(clock_saved);
......
......@@ -10,6 +10,7 @@
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <asm/io.h>
int spin_retry = 1000;
......@@ -24,21 +25,6 @@ static int __init spin_retry_setup(char *str)
}
__setup("spin_retry=", spin_retry_setup);
static inline void _raw_yield(void)
{
if (MACHINE_HAS_DIAG44)
asm volatile("diag 0,0,0x44");
}
static inline void _raw_yield_cpu(int cpu)
{
if (MACHINE_HAS_DIAG9C)
asm volatile("diag %0,0,0x9c"
: : "d" (cpu_logical_map(cpu)));
else
_raw_yield();
}
void arch_spin_lock_wait(arch_spinlock_t *lp)
{
int count = spin_retry;
......@@ -60,7 +46,7 @@ void arch_spin_lock_wait(arch_spinlock_t *lp)
}
owner = lp->owner_cpu;
if (owner)
_raw_yield_cpu(~owner);
smp_yield_cpu(~owner);
if (_raw_compare_and_swap(&lp->owner_cpu, 0, cpu) == 0)
return;
}
......@@ -91,7 +77,7 @@ void arch_spin_lock_wait_flags(arch_spinlock_t *lp, unsigned long flags)
}
owner = lp->owner_cpu;
if (owner)
_raw_yield_cpu(~owner);
smp_yield_cpu(~owner);
local_irq_disable();
if (_raw_compare_and_swap(&lp->owner_cpu, 0, cpu) == 0)
return;
......@@ -121,7 +107,7 @@ void arch_spin_relax(arch_spinlock_t *lock)
if (cpu != 0) {
if (MACHINE_IS_VM || MACHINE_IS_KVM ||
!smp_vcpu_scheduled(~cpu))
_raw_yield_cpu(~cpu);
smp_yield_cpu(~cpu);
}
}
EXPORT_SYMBOL(arch_spin_relax);
......@@ -133,7 +119,7 @@ void _raw_read_lock_wait(arch_rwlock_t *rw)
while (1) {
if (count-- <= 0) {
_raw_yield();
smp_yield();
count = spin_retry;
}
if (!arch_read_can_lock(rw))
......@@ -153,7 +139,7 @@ void _raw_read_lock_wait_flags(arch_rwlock_t *rw, unsigned long flags)
local_irq_restore(flags);
while (1) {
if (count-- <= 0) {
_raw_yield();
smp_yield();
count = spin_retry;
}
if (!arch_read_can_lock(rw))
......@@ -188,7 +174,7 @@ void _raw_write_lock_wait(arch_rwlock_t *rw)
while (1) {
if (count-- <= 0) {
_raw_yield();
smp_yield();
count = spin_retry;
}
if (!arch_write_can_lock(rw))
......@@ -206,7 +192,7 @@ void _raw_write_lock_wait_flags(arch_rwlock_t *rw, unsigned long flags)
local_irq_restore(flags);
while (1) {
if (count-- <= 0) {
_raw_yield();
smp_yield();
count = spin_retry;
}
if (!arch_write_can_lock(rw))
......
......@@ -532,7 +532,7 @@ void pfault_fini(void)
static DEFINE_SPINLOCK(pfault_lock);
static LIST_HEAD(pfault_list);
static void pfault_interrupt(unsigned int ext_int_code,
static void pfault_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct task_struct *tsk;
......@@ -545,7 +545,7 @@ static void pfault_interrupt(unsigned int ext_int_code,
* in the 'cpu address' field associated with the
* external interrupt.
*/
subcode = ext_int_code >> 16;
subcode = ext_code.subcode;
if ((subcode & 0xff00) != __SUBCODE_MASK)
return;
kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
......
......@@ -233,8 +233,8 @@ static inline unsigned long *trailer_entry_ptr(unsigned long v)
}
/* prototypes for external interrupt handler and worker */
static void hws_ext_handler(unsigned int ext_int_code,
unsigned int param32, unsigned long param64);
static void hws_ext_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64);
static void worker(struct work_struct *work);
......@@ -673,7 +673,7 @@ int hwsampler_activate(unsigned int cpu)
return rc;
}
static void hws_ext_handler(unsigned int ext_int_code,
static void hws_ext_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct hws_cpu_buffer *cb;
......
......@@ -64,7 +64,6 @@ config CRYPTO_DEV_GEODE
config ZCRYPT
tristate "Support for PCI-attached cryptographic adapters"
depends on S390
select ZCRYPT_MONOLITHIC if ZCRYPT="y"
select HW_RANDOM
help
Select this option if you want to use a PCI-attached cryptographic
......@@ -77,14 +76,6 @@ config ZCRYPT
+ Crypto Express3 Coprocessor (CEX3C)
+ Crypto Express3 Accelerator (CEX3A)
config ZCRYPT_MONOLITHIC
bool "Monolithic zcrypt module"
depends on ZCRYPT
help
Select this option if you want to have a single module z90crypt,
that contains all parts of the crypto device driver (ap bus,
request router and all the card drivers).
config CRYPTO_SHA1_S390
tristate "SHA1 digest algorithm"
depends on S390
......
......@@ -640,6 +640,10 @@ void dasd_enable_device(struct dasd_device *device)
dasd_set_target_state(device, DASD_STATE_NEW);
/* Now wait for the devices to come up. */
wait_event(dasd_init_waitq, _wait_for_device(device));
dasd_reload_device(device);
if (device->discipline->kick_validate)
device->discipline->kick_validate(device);
}
/*
......
......@@ -229,7 +229,7 @@ dasd_diag_term_IO(struct dasd_ccw_req * cqr)
}
/* Handle external interruption. */
static void dasd_ext_handler(unsigned int ext_int_code,
static void dasd_ext_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct dasd_ccw_req *cqr, *next;
......@@ -239,7 +239,7 @@ static void dasd_ext_handler(unsigned int ext_int_code,
addr_t ip;
int rc;
switch (ext_int_code >> 24) {
switch (ext_code.subcode >> 8) {
case DASD_DIAG_CODE_31BIT:
ip = (addr_t) param32;
break;
......@@ -280,7 +280,7 @@ static void dasd_ext_handler(unsigned int ext_int_code,
cqr->stopclk = get_clock();
expires = 0;
if ((ext_int_code & 0xff0000) == 0) {
if ((ext_code.subcode & 0xff) == 0) {
cqr->status = DASD_CQR_SUCCESS;
/* Start first request on queue if possible -> fast_io. */
if (!list_empty(&device->ccw_queue)) {
......@@ -296,7 +296,7 @@ static void dasd_ext_handler(unsigned int ext_int_code,
cqr->status = DASD_CQR_QUEUED;
DBF_DEV_EVENT(DBF_DEBUG, device, "interrupt status for "
"request %p was %d (%d retries left)", cqr,
(ext_int_code >> 16) & 0xff, cqr->retries);
ext_code.subcode & 0xff, cqr->retries);
dasd_diag_erp(device);
}
......
......@@ -1564,6 +1564,12 @@ static void dasd_eckd_do_validate_server(struct work_struct *work)
static void dasd_eckd_kick_validate_server(struct dasd_device *device)
{
dasd_get_device(device);
/* exit if device not online or in offline processing */
if (test_bit(DASD_FLAG_OFFLINE, &device->flags) ||
device->state < DASD_STATE_ONLINE) {
dasd_put_device(device);
return;
}
/* queue call to do_validate_server to the kernel event daemon. */
schedule_work(&device->kick_validate);
}
......@@ -1993,6 +1999,7 @@ static int dasd_eckd_ready_to_online(struct dasd_device *device)
static int dasd_eckd_online_to_ready(struct dasd_device *device)
{
cancel_work_sync(&device->reload_device);
cancel_work_sync(&device->kick_validate);
return dasd_alias_remove_device(device);
};
......@@ -2263,6 +2270,7 @@ static void dasd_eckd_check_for_device_change(struct dasd_device *device,
* and only if not suspended
*/
if (!device->block && private->lcu &&
device->state == DASD_STATE_ONLINE &&
!test_bit(DASD_FLAG_OFFLINE, &device->flags) &&
!test_bit(DASD_FLAG_SUSPENDED, &device->flags)) {
/*
......
......@@ -393,7 +393,7 @@ __sclp_find_req(u32 sccb)
/* Handler for external interruption. Perform request post-processing.
* Prepare read event data request if necessary. Start processing of next
* request on queue. */
static void sclp_interrupt_handler(unsigned int ext_int_code,
static void sclp_interrupt_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct sclp_req *req;
......@@ -818,7 +818,7 @@ EXPORT_SYMBOL(sclp_reactivate);
/* Handler for external interruption used during initialization. Modify
* request state to done. */
static void sclp_check_handler(unsigned int ext_int_code,
static void sclp_check_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
u32 finished_sccb;
......
......@@ -15,7 +15,6 @@
#include <linux/reboot.h>
#include <linux/atomic.h>
#include <asm/ptrace.h>
#include <asm/sigp.h>
#include <asm/smp.h>
#include "sclp.h"
......
......@@ -8,6 +8,7 @@
#define KMSG_COMPONENT "sclp_sdias"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/completion.h>
#include <linux/sched.h>
#include <asm/sclp.h>
#include <asm/debug.h>
......@@ -62,15 +63,29 @@ struct sdias_sccb {
} __attribute__((packed));
static struct sdias_sccb sccb __attribute__((aligned(4096)));
static struct sdias_evbuf sdias_evbuf;
static int sclp_req_done;
static wait_queue_head_t sdias_wq;
static DECLARE_COMPLETION(evbuf_accepted);
static DECLARE_COMPLETION(evbuf_done);
static DEFINE_MUTEX(sdias_mutex);
/*
* Called by SCLP base when read event data has been completed (async mode only)
*/
static void sclp_sdias_receiver_fn(struct evbuf_header *evbuf)
{
memcpy(&sdias_evbuf, evbuf,
min_t(unsigned long, sizeof(sdias_evbuf), evbuf->length));
complete(&evbuf_done);
TRACE("sclp_sdias_receiver_fn done\n");
}
/*
* Called by SCLP base when sdias event has been accepted
*/
static void sdias_callback(struct sclp_req *request, void *data)
{
sclp_req_done = 1;
wake_up(&sdias_wq); /* Inform caller, that request is complete */
complete(&evbuf_accepted);
TRACE("callback done\n");
}
......@@ -80,7 +95,6 @@ static int sdias_sclp_send(struct sclp_req *req)
int rc;
for (retries = SDIAS_RETRIES; retries; retries--) {
sclp_req_done = 0;
TRACE("add request\n");
rc = sclp_add_request(req);
if (rc) {
......@@ -91,16 +105,31 @@ static int sdias_sclp_send(struct sclp_req *req)
continue;
}
/* initiated, wait for completion of service call */
wait_event(sdias_wq, (sclp_req_done == 1));
wait_for_completion(&evbuf_accepted);
if (req->status == SCLP_REQ_FAILED) {
TRACE("sclp request failed\n");
rc = -EIO;
continue;
}
/* if not accepted, retry */
if (!(sccb.evbuf.hdr.flags & 0x80)) {
TRACE("sclp request failed: flags=%x\n",
sccb.evbuf.hdr.flags);
continue;
}
/*
* for the sync interface the response is in the initial sccb
*/
if (!sclp_sdias_register.receiver_fn) {
memcpy(&sdias_evbuf, &sccb.evbuf, sizeof(sdias_evbuf));
TRACE("sync request done\n");
return 0;
}
/* otherwise we wait for completion */
wait_for_completion(&evbuf_done);
TRACE("request done\n");
break;
return 0;
}
return rc;
return -EIO;
}
/*
......@@ -140,13 +169,12 @@ int sclp_sdias_blk_count(void)
goto out;
}
switch (sccb.evbuf.event_status) {
switch (sdias_evbuf.event_status) {
case 0:
rc = sccb.evbuf.blk_cnt;
rc = sdias_evbuf.blk_cnt;
break;
default:
pr_err("SCLP error: %x\n",
sccb.evbuf.event_status);
pr_err("SCLP error: %x\n", sdias_evbuf.event_status);
rc = -EIO;
goto out;
}
......@@ -211,18 +239,18 @@ int sclp_sdias_copy(void *dest, int start_blk, int nr_blks)
goto out;
}
switch (sccb.evbuf.event_status) {
switch (sdias_evbuf.event_status) {
case EVSTATE_ALL_STORED:
TRACE("all stored\n");
case EVSTATE_PART_STORED:
TRACE("part stored: %i\n", sccb.evbuf.blk_cnt);
TRACE("part stored: %i\n", sdias_evbuf.blk_cnt);
break;
case EVSTATE_NO_DATA:
TRACE("no data\n");
default:
pr_err("Error from SCLP while copying hsa. "
"Event status = %x\n",
sccb.evbuf.event_status);
sdias_evbuf.event_status);
rc = -EIO;
}
out:
......@@ -230,19 +258,50 @@ int sclp_sdias_copy(void *dest, int start_blk, int nr_blks)
return rc;
}
int __init sclp_sdias_init(void)
static int __init sclp_sdias_register_check(void)
{
int rc;
rc = sclp_register(&sclp_sdias_register);
if (rc)
return rc;
if (sclp_sdias_blk_count() == 0) {
sclp_unregister(&sclp_sdias_register);
return -ENODEV;
}
return 0;
}
static int __init sclp_sdias_init_sync(void)
{
TRACE("Try synchronous mode\n");
sclp_sdias_register.receive_mask = 0;
sclp_sdias_register.receiver_fn = NULL;
return sclp_sdias_register_check();
}
static int __init sclp_sdias_init_async(void)
{
TRACE("Try asynchronous mode\n");
sclp_sdias_register.receive_mask = EVTYP_SDIAS_MASK;
sclp_sdias_register.receiver_fn = sclp_sdias_receiver_fn;
return sclp_sdias_register_check();
}
int __init sclp_sdias_init(void)
{
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return 0;
sdias_dbf = debug_register("dump_sdias", 4, 1, 4 * sizeof(long));
debug_register_view(sdias_dbf, &debug_sprintf_view);
debug_set_level(sdias_dbf, 6);
rc = sclp_register(&sclp_sdias_register);
if (rc)
return rc;
init_waitqueue_head(&sdias_wq);
if (sclp_sdias_init_sync() == 0)
goto out;
if (sclp_sdias_init_async() == 0)
goto out;
TRACE("init failed\n");
return -ENODEV;
out:
TRACE("init done\n");
return 0;
}
......
......@@ -21,7 +21,6 @@
#include <asm/ipl.h>
#include <asm/sclp.h>
#include <asm/setup.h>
#include <asm/sigp.h>
#include <asm/uaccess.h>
#include <asm/debug.h>
#include <asm/processor.h>
......
......@@ -601,8 +601,6 @@ void __irq_entry do_IRQ(struct pt_regs *regs)
struct pt_regs *old_regs;
old_regs = set_irq_regs(regs);
s390_idle_check(regs, S390_lowcore.int_clock,
S390_lowcore.async_enter_timer);
irq_enter();
__this_cpu_write(s390_idle.nohz_delay, 1);
if (S390_lowcore.int_clock >= S390_lowcore.clock_comparator)
......
......@@ -18,6 +18,7 @@
#include <linux/atomic.h>
#include <asm/debug.h>
#include <asm/qdio.h>
#include <asm/ipl.h>
#include "cio.h"
#include "css.h"
......@@ -1093,6 +1094,11 @@ static void qdio_handle_activate_check(struct ccw_device *cdev,
q->nr, q->first_to_kick, count, irq_ptr->int_parm);
no_handler:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
/*
* In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen.
* Therefore we call the LGR detection function here.
*/
lgr_info_log();
}
static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat,
......
......@@ -2,16 +2,6 @@
# S/390 crypto devices
#
ifdef CONFIG_ZCRYPT_MONOLITHIC
z90crypt-objs := zcrypt_mono.o ap_bus.o zcrypt_api.o \
zcrypt_pcica.o zcrypt_pcicc.o zcrypt_pcixcc.o zcrypt_cex2a.o
obj-$(CONFIG_ZCRYPT) += z90crypt.o
else
ap-objs := ap_bus.o
obj-$(CONFIG_ZCRYPT) += ap.o zcrypt_api.o zcrypt_pcicc.o zcrypt_pcixcc.o
obj-$(CONFIG_ZCRYPT) += zcrypt_pcica.o zcrypt_cex2a.o
endif
......@@ -1862,7 +1862,5 @@ void ap_module_exit(void)
}
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(ap_module_init);
module_exit(ap_module_exit);
#endif
......@@ -1220,7 +1220,5 @@ void zcrypt_api_exit(void)
misc_deregister(&zcrypt_misc_device);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(zcrypt_api_init);
module_exit(zcrypt_api_exit);
#endif
......@@ -63,13 +63,11 @@ static struct ap_device_id zcrypt_cex2a_ids[] = {
{ /* end of list */ },
};
#ifndef CONFIG_ZCRYPT_MONOLITHIC
MODULE_DEVICE_TABLE(ap, zcrypt_cex2a_ids);
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("CEX2A Cryptographic Coprocessor device driver, "
"Copyright 2001, 2006 IBM Corporation");
MODULE_LICENSE("GPL");
#endif
static int zcrypt_cex2a_probe(struct ap_device *ap_dev);
static void zcrypt_cex2a_remove(struct ap_device *ap_dev);
......@@ -496,7 +494,5 @@ void __exit zcrypt_cex2a_exit(void)
ap_driver_unregister(&zcrypt_cex2a_driver);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(zcrypt_cex2a_init);
module_exit(zcrypt_cex2a_exit);
#endif
/*
* linux/drivers/s390/crypto/zcrypt_mono.c
*
* zcrypt 2.1.0
*
* Copyright (C) 2001, 2006 IBM Corporation
* Author(s): Robert Burroughs
* Eric Rossman (edrossma@us.ibm.com)
*
* Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
* Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/compat.h>
#include <linux/atomic.h>
#include <asm/uaccess.h>
#include "ap_bus.h"
#include "zcrypt_api.h"
#include "zcrypt_pcica.h"
#include "zcrypt_pcicc.h"
#include "zcrypt_pcixcc.h"
#include "zcrypt_cex2a.h"
/**
* The module initialization code.
*/
static int __init zcrypt_init(void)
{
int rc;
rc = ap_module_init();
if (rc)
goto out;
rc = zcrypt_api_init();
if (rc)
goto out_ap;
rc = zcrypt_pcica_init();
if (rc)
goto out_api;
rc = zcrypt_pcicc_init();
if (rc)
goto out_pcica;
rc = zcrypt_pcixcc_init();
if (rc)
goto out_pcicc;
rc = zcrypt_cex2a_init();
if (rc)
goto out_pcixcc;
return 0;
out_pcixcc:
zcrypt_pcixcc_exit();
out_pcicc:
zcrypt_pcicc_exit();
out_pcica:
zcrypt_pcica_exit();
out_api:
zcrypt_api_exit();
out_ap:
ap_module_exit();
out:
return rc;
}
/**
* The module termination code.
*/
static void __exit zcrypt_exit(void)
{
zcrypt_cex2a_exit();
zcrypt_pcixcc_exit();
zcrypt_pcicc_exit();
zcrypt_pcica_exit();
zcrypt_api_exit();
ap_module_exit();
}
module_init(zcrypt_init);
module_exit(zcrypt_exit);
......@@ -53,13 +53,11 @@ static struct ap_device_id zcrypt_pcica_ids[] = {
{ /* end of list */ },
};
#ifndef CONFIG_ZCRYPT_MONOLITHIC
MODULE_DEVICE_TABLE(ap, zcrypt_pcica_ids);
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("PCICA Cryptographic Coprocessor device driver, "
"Copyright 2001, 2006 IBM Corporation");
MODULE_LICENSE("GPL");
#endif
static int zcrypt_pcica_probe(struct ap_device *ap_dev);
static void zcrypt_pcica_remove(struct ap_device *ap_dev);
......@@ -408,7 +406,5 @@ void zcrypt_pcica_exit(void)
ap_driver_unregister(&zcrypt_pcica_driver);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(zcrypt_pcica_init);
module_exit(zcrypt_pcica_exit);
#endif
......@@ -65,13 +65,11 @@ static struct ap_device_id zcrypt_pcicc_ids[] = {
{ /* end of list */ },
};
#ifndef CONFIG_ZCRYPT_MONOLITHIC
MODULE_DEVICE_TABLE(ap, zcrypt_pcicc_ids);
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("PCICC Cryptographic Coprocessor device driver, "
"Copyright 2001, 2006 IBM Corporation");
MODULE_LICENSE("GPL");
#endif
static int zcrypt_pcicc_probe(struct ap_device *ap_dev);
static void zcrypt_pcicc_remove(struct ap_device *ap_dev);
......@@ -614,7 +612,5 @@ void zcrypt_pcicc_exit(void)
ap_driver_unregister(&zcrypt_pcicc_driver);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(zcrypt_pcicc_init);
module_exit(zcrypt_pcicc_exit);
#endif
......@@ -75,13 +75,11 @@ static struct ap_device_id zcrypt_pcixcc_ids[] = {
{ /* end of list */ },
};
#ifndef CONFIG_ZCRYPT_MONOLITHIC
MODULE_DEVICE_TABLE(ap, zcrypt_pcixcc_ids);
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("PCIXCC Cryptographic Coprocessor device driver, "
"Copyright 2001, 2006 IBM Corporation");
MODULE_LICENSE("GPL");
#endif
static int zcrypt_pcixcc_probe(struct ap_device *ap_dev);
static void zcrypt_pcixcc_remove(struct ap_device *ap_dev);
......@@ -1121,7 +1119,5 @@ void zcrypt_pcixcc_exit(void)
ap_driver_unregister(&zcrypt_pcixcc_driver);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(zcrypt_pcixcc_init);
module_exit(zcrypt_pcixcc_exit);
#endif
......@@ -380,15 +380,13 @@ static void hotplug_devices(struct work_struct *dummy)
/*
* we emulate the request_irq behaviour on top of s390 extints
*/
static void kvm_extint_handler(unsigned int ext_int_code,
static void kvm_extint_handler(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct virtqueue *vq;
u16 subcode;
u32 param;
subcode = ext_int_code >> 16;
if ((subcode & 0xff00) != VIRTIO_SUBCODE_64)
if ((ext_code.subcode & 0xff00) != VIRTIO_SUBCODE_64)
return;
kstat_cpu(smp_processor_id()).irqs[EXTINT_VRT]++;
......
......@@ -1800,7 +1800,7 @@ static void iucv_work_fn(struct work_struct *work)
* Handles external interrupts coming in from CP.
* Places the interrupt buffer on a queue and schedules iucv_tasklet_fn().
*/
static void iucv_external_interrupt(unsigned int ext_int_code,
static void iucv_external_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
struct iucv_irq_data *p;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment