Commit dda6a7a3 authored by David S. Miller's avatar David S. Miller

Merge branch 'ipv6-defrag-rbtree'

Peter Oskolkov says:

====================
net: IP defrag: use rbtrees in IPv6 defragmentation

Currently, IPv6 defragmentation code drops non-last fragments that
are smaller than 1280 bytes: see
commit 0ed4229b ("ipv6: defrag: drop non-last frags smaller than min mtu")

This behavior is not specified in IPv6 RFCs and appears to break compatibility
with some IPv6 implementations, as reported here:
https://www.spinics.net/lists/netdev/msg543846.html

This patchset contains four patches:
- patch 1 moves rbtree-related code from IPv4 to files shared b/w
IPv4/IPv6
- patch 2 changes IPv6 defragmenation code to use rbtrees for defrag
queue
- patch 3 changes nf_conntrack IPv6 defragmentation code to use rbtrees
- patch 4 changes ip_defrag selftest to test changes made in the
previous three patches.

Along the way, the 1280-byte restrictions are removed.

I plan to introduce similar changes to 6lowpan defragmentation code
once I figure out how to test it.
====================
Reviewed-by: default avatarEric Dumazet <edumazet@google.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents ccaceadc 4c351048
...@@ -77,8 +77,8 @@ struct inet_frag_queue { ...@@ -77,8 +77,8 @@ struct inet_frag_queue {
struct timer_list timer; struct timer_list timer;
spinlock_t lock; spinlock_t lock;
refcount_t refcnt; refcount_t refcnt;
struct sk_buff *fragments; /* Used in IPv6. */ struct sk_buff *fragments; /* used in 6lopwpan IPv6. */
struct rb_root rb_fragments; /* Used in IPv4. */ struct rb_root rb_fragments; /* Used in IPv4/IPv6. */
struct sk_buff *fragments_tail; struct sk_buff *fragments_tail;
struct sk_buff *last_run_head; struct sk_buff *last_run_head;
ktime_t stamp; ktime_t stamp;
...@@ -153,4 +153,16 @@ static inline void add_frag_mem_limit(struct netns_frags *nf, long val) ...@@ -153,4 +153,16 @@ static inline void add_frag_mem_limit(struct netns_frags *nf, long val)
extern const u8 ip_frag_ecn_table[16]; extern const u8 ip_frag_ecn_table[16];
/* Return values of inet_frag_queue_insert() */
#define IPFRAG_OK 0
#define IPFRAG_DUP 1
#define IPFRAG_OVERLAP 2
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
int offset, int end);
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
struct sk_buff *parent);
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
void *reasm_data);
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q);
#endif #endif
...@@ -82,8 +82,15 @@ ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) ...@@ -82,8 +82,15 @@ ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq)
__IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
/* Don't send error if the first segment did not arrive. */ /* Don't send error if the first segment did not arrive. */
head = fq->q.fragments; if (!(fq->q.flags & INET_FRAG_FIRST_IN))
if (!(fq->q.flags & INET_FRAG_FIRST_IN) || !head) goto out;
/* sk_buff::dev and sk_buff::rbnode are unionized. So we
* pull the head out of the tree in order to be able to
* deal with head->dev.
*/
head = inet_frag_pull_head(&fq->q);
if (!head)
goto out; goto out;
head->dev = dev; head->dev = dev;
......
...@@ -25,6 +25,62 @@ ...@@ -25,6 +25,62 @@
#include <net/sock.h> #include <net/sock.h>
#include <net/inet_frag.h> #include <net/inet_frag.h>
#include <net/inet_ecn.h> #include <net/inet_ecn.h>
#include <net/ip.h>
#include <net/ipv6.h>
/* Use skb->cb to track consecutive/adjacent fragments coming at
* the end of the queue. Nodes in the rb-tree queue will
* contain "runs" of one or more adjacent fragments.
*
* Invariants:
* - next_frag is NULL at the tail of a "run";
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
*/
struct ipfrag_skb_cb {
union {
struct inet_skb_parm h4;
struct inet6_skb_parm h6;
};
struct sk_buff *next_frag;
int frag_run_len;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
static void fragcb_clear(struct sk_buff *skb)
{
RB_CLEAR_NODE(&skb->rbnode);
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(skb)->frag_run_len = skb->len;
}
/* Append skb to the last "run". */
static void fragrun_append_to_last(struct inet_frag_queue *q,
struct sk_buff *skb)
{
fragcb_clear(skb);
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
FRAG_CB(q->fragments_tail)->next_frag = skb;
q->fragments_tail = skb;
}
/* Create a new "run" with the skb. */
static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
fragcb_clear(skb);
if (q->last_run_head)
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
&q->last_run_head->rbnode.rb_right);
else
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
q->fragments_tail = skb;
q->last_run_head = skb;
}
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
* Value : 0xff if frame should be dropped. * Value : 0xff if frame should be dropped.
...@@ -123,6 +179,28 @@ static void inet_frag_destroy_rcu(struct rcu_head *head) ...@@ -123,6 +179,28 @@ static void inet_frag_destroy_rcu(struct rcu_head *head)
kmem_cache_free(f->frags_cachep, q); kmem_cache_free(f->frags_cachep, q);
} }
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
unsigned int sum = 0;
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
p = rb_next(p);
rb_erase(&skb->rbnode, root);
while (skb) {
struct sk_buff *next = FRAG_CB(skb)->next_frag;
sum += skb->truesize;
kfree_skb(skb);
skb = next;
}
}
return sum;
}
EXPORT_SYMBOL(inet_frag_rbtree_purge);
void inet_frag_destroy(struct inet_frag_queue *q) void inet_frag_destroy(struct inet_frag_queue *q)
{ {
struct sk_buff *fp; struct sk_buff *fp;
...@@ -224,3 +302,218 @@ struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key) ...@@ -224,3 +302,218 @@ struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
return fq; return fq;
} }
EXPORT_SYMBOL(inet_frag_find); EXPORT_SYMBOL(inet_frag_find);
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
int offset, int end)
{
struct sk_buff *last = q->fragments_tail;
/* RFC5722, Section 4, amended by Errata ID : 3089
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments) MUST be silently discarded.
*
* Duplicates, however, should be ignored (i.e. skb dropped, but the
* queue/fragments kept for later reassembly).
*/
if (!last)
fragrun_create(q, skb); /* First fragment. */
else if (last->ip_defrag_offset + last->len < end) {
/* This is the common case: skb goes to the end. */
/* Detect and discard overlaps. */
if (offset < last->ip_defrag_offset + last->len)
return IPFRAG_OVERLAP;
if (offset == last->ip_defrag_offset + last->len)
fragrun_append_to_last(q, skb);
else
fragrun_create(q, skb);
} else {
/* Binary search. Note that skb can become the first fragment,
* but not the last (covered above).
*/
struct rb_node **rbn, *parent;
rbn = &q->rb_fragments.rb_node;
do {
struct sk_buff *curr;
int curr_run_end;
parent = *rbn;
curr = rb_to_skb(parent);
curr_run_end = curr->ip_defrag_offset +
FRAG_CB(curr)->frag_run_len;
if (end <= curr->ip_defrag_offset)
rbn = &parent->rb_left;
else if (offset >= curr_run_end)
rbn = &parent->rb_right;
else if (offset >= curr->ip_defrag_offset &&
end <= curr_run_end)
return IPFRAG_DUP;
else
return IPFRAG_OVERLAP;
} while (*rbn);
/* Here we have parent properly set, and rbn pointing to
* one of its NULL left/right children. Insert skb.
*/
fragcb_clear(skb);
rb_link_node(&skb->rbnode, parent, rbn);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
}
skb->ip_defrag_offset = offset;
return IPFRAG_OK;
}
EXPORT_SYMBOL(inet_frag_queue_insert);
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
struct sk_buff *parent)
{
struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
struct sk_buff **nextp;
int delta;
if (head != skb) {
fp = skb_clone(skb, GFP_ATOMIC);
if (!fp)
return NULL;
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
if (RB_EMPTY_NODE(&skb->rbnode))
FRAG_CB(parent)->next_frag = fp;
else
rb_replace_node(&skb->rbnode, &fp->rbnode,
&q->rb_fragments);
if (q->fragments_tail == skb)
q->fragments_tail = fp;
skb_morph(skb, head);
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
rb_replace_node(&head->rbnode, &skb->rbnode,
&q->rb_fragments);
consume_skb(head);
head = skb;
}
WARN_ON(head->ip_defrag_offset != 0);
delta = -head->truesize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
return NULL;
delta += head->truesize;
if (delta)
add_frag_mem_limit(q->net, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments.
*/
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (!clone)
return NULL;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->data_len = head->data_len - plen;
clone->len = clone->data_len;
head->truesize += clone->truesize;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(q->net, clone->truesize);
skb_shinfo(head)->frag_list = clone;
nextp = &clone->next;
} else {
nextp = &skb_shinfo(head)->frag_list;
}
return nextp;
}
EXPORT_SYMBOL(inet_frag_reasm_prepare);
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
void *reasm_data)
{
struct sk_buff **nextp = (struct sk_buff **)reasm_data;
struct rb_node *rbn;
struct sk_buff *fp;
skb_push(head, head->data - skb_network_header(head));
/* Traverse the tree in order, to build frag_list. */
fp = FRAG_CB(head)->next_frag;
rbn = rb_next(&head->rbnode);
rb_erase(&head->rbnode, &q->rb_fragments);
while (rbn || fp) {
/* fp points to the next sk_buff in the current run;
* rbn points to the next run.
*/
/* Go through the current run. */
while (fp) {
*nextp = fp;
nextp = &fp->next;
fp->prev = NULL;
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
fp->sk = NULL;
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
fp = FRAG_CB(fp)->next_frag;
}
/* Move to the next run. */
if (rbn) {
struct rb_node *rbnext = rb_next(rbn);
fp = rb_to_skb(rbn);
rb_erase(rbn, &q->rb_fragments);
rbn = rbnext;
}
}
sub_frag_mem_limit(q->net, head->truesize);
*nextp = NULL;
skb_mark_not_on_list(head);
head->prev = NULL;
head->tstamp = q->stamp;
}
EXPORT_SYMBOL(inet_frag_reasm_finish);
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
{
struct sk_buff *head;
if (q->fragments) {
head = q->fragments;
q->fragments = head->next;
} else {
struct sk_buff *skb;
head = skb_rb_first(&q->rb_fragments);
if (!head)
return NULL;
skb = FRAG_CB(head)->next_frag;
if (skb)
rb_replace_node(&head->rbnode, &skb->rbnode,
&q->rb_fragments);
else
rb_erase(&head->rbnode, &q->rb_fragments);
memset(&head->rbnode, 0, sizeof(head->rbnode));
barrier();
}
if (head == q->fragments_tail)
q->fragments_tail = NULL;
sub_frag_mem_limit(q->net, head->truesize);
return head;
}
EXPORT_SYMBOL(inet_frag_pull_head);
...@@ -57,57 +57,6 @@ ...@@ -57,57 +57,6 @@
*/ */
static const char ip_frag_cache_name[] = "ip4-frags"; static const char ip_frag_cache_name[] = "ip4-frags";
/* Use skb->cb to track consecutive/adjacent fragments coming at
* the end of the queue. Nodes in the rb-tree queue will
* contain "runs" of one or more adjacent fragments.
*
* Invariants:
* - next_frag is NULL at the tail of a "run";
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
*/
struct ipfrag_skb_cb {
struct inet_skb_parm h;
struct sk_buff *next_frag;
int frag_run_len;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
static void ip4_frag_init_run(struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(skb)->frag_run_len = skb->len;
}
/* Append skb to the last "run". */
static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
struct sk_buff *skb)
{
RB_CLEAR_NODE(&skb->rbnode);
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
FRAG_CB(q->fragments_tail)->next_frag = skb;
q->fragments_tail = skb;
}
/* Create a new "run" with the skb. */
static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
{
if (q->last_run_head)
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
&q->last_run_head->rbnode.rb_right);
else
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
ip4_frag_init_run(skb);
q->fragments_tail = skb;
q->last_run_head = skb;
}
/* Describe an entry in the "incomplete datagrams" queue. */ /* Describe an entry in the "incomplete datagrams" queue. */
struct ipq { struct ipq {
struct inet_frag_queue q; struct inet_frag_queue q;
...@@ -212,27 +161,9 @@ static void ip_expire(struct timer_list *t) ...@@ -212,27 +161,9 @@ static void ip_expire(struct timer_list *t)
* pull the head out of the tree in order to be able to * pull the head out of the tree in order to be able to
* deal with head->dev. * deal with head->dev.
*/ */
if (qp->q.fragments) { head = inet_frag_pull_head(&qp->q);
head = qp->q.fragments;
qp->q.fragments = head->next;
} else {
head = skb_rb_first(&qp->q.rb_fragments);
if (!head) if (!head)
goto out; goto out;
if (FRAG_CB(head)->next_frag)
rb_replace_node(&head->rbnode,
&FRAG_CB(head)->next_frag->rbnode,
&qp->q.rb_fragments);
else
rb_erase(&head->rbnode, &qp->q.rb_fragments);
memset(&head->rbnode, 0, sizeof(head->rbnode));
barrier();
}
if (head == qp->q.fragments_tail)
qp->q.fragments_tail = NULL;
sub_frag_mem_limit(qp->q.net, head->truesize);
head->dev = dev_get_by_index_rcu(net, qp->iif); head->dev = dev_get_by_index_rcu(net, qp->iif);
if (!head->dev) if (!head->dev)
goto out; goto out;
...@@ -344,12 +275,10 @@ static int ip_frag_reinit(struct ipq *qp) ...@@ -344,12 +275,10 @@ static int ip_frag_reinit(struct ipq *qp)
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{ {
struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct rb_node **rbn, *parent; int ihl, end, flags, offset;
struct sk_buff *skb1, *prev_tail; struct sk_buff *prev_tail;
int ihl, end, skb1_run_end;
struct net_device *dev; struct net_device *dev;
unsigned int fragsize; unsigned int fragsize;
int flags, offset;
int err = -ENOENT; int err = -ENOENT;
u8 ecn; u8 ecn;
...@@ -413,62 +342,13 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) ...@@ -413,62 +342,13 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
/* Makes sure compiler wont do silly aliasing games */ /* Makes sure compiler wont do silly aliasing games */
barrier(); barrier();
/* RFC5722, Section 4, amended by Errata ID : 3089
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments) MUST be silently discarded.
*
* We do the same here for IPv4 (and increment an snmp counter) but
* we do not want to drop the whole queue in response to a duplicate
* fragment.
*/
err = -EINVAL;
/* Find out where to put this fragment. */
prev_tail = qp->q.fragments_tail; prev_tail = qp->q.fragments_tail;
if (!prev_tail) err = inet_frag_queue_insert(&qp->q, skb, offset, end);
ip4_frag_create_run(&qp->q, skb); /* First fragment. */ if (err)
else if (prev_tail->ip_defrag_offset + prev_tail->len < end) { goto insert_error;
/* This is the common case: skb goes to the end. */
/* Detect and discard overlaps. */
if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
goto overlap;
if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
ip4_frag_append_to_last_run(&qp->q, skb);
else
ip4_frag_create_run(&qp->q, skb);
} else {
/* Binary search. Note that skb can become the first fragment,
* but not the last (covered above).
*/
rbn = &qp->q.rb_fragments.rb_node;
do {
parent = *rbn;
skb1 = rb_to_skb(parent);
skb1_run_end = skb1->ip_defrag_offset +
FRAG_CB(skb1)->frag_run_len;
if (end <= skb1->ip_defrag_offset)
rbn = &parent->rb_left;
else if (offset >= skb1_run_end)
rbn = &parent->rb_right;
else if (offset >= skb1->ip_defrag_offset &&
end <= skb1_run_end)
goto err; /* No new data, potential duplicate */
else
goto overlap; /* Found an overlap */
} while (*rbn);
/* Here we have parent properly set, and rbn pointing to
* one of its NULL left/right children. Insert skb.
*/
ip4_frag_init_run(skb);
rb_link_node(&skb->rbnode, parent, rbn);
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
}
if (dev) if (dev)
qp->iif = dev->ifindex; qp->iif = dev->ifindex;
skb->ip_defrag_offset = offset;
qp->q.stamp = skb->tstamp; qp->q.stamp = skb->tstamp;
qp->q.meat += skb->len; qp->q.meat += skb->len;
...@@ -501,10 +381,16 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) ...@@ -501,10 +381,16 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
skb_dst_drop(skb); skb_dst_drop(skb);
return -EINPROGRESS; return -EINPROGRESS;
overlap: insert_error:
if (err == IPFRAG_DUP) {
kfree_skb(skb);
return -EINVAL;
}
err = -EINVAL;
__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS); __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
discard_qp: discard_qp:
inet_frag_kill(&qp->q); inet_frag_kill(&qp->q);
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
err: err:
kfree_skb(skb); kfree_skb(skb);
return err; return err;
...@@ -516,13 +402,8 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, ...@@ -516,13 +402,8 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
{ {
struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct iphdr *iph; struct iphdr *iph;
struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments); void *reasm_data;
struct sk_buff **nextp; /* To build frag_list. */ int len, err;
struct rb_node *rbn;
int len;
int ihlen;
int delta;
int err;
u8 ecn; u8 ecn;
ipq_kill(qp); ipq_kill(qp);
...@@ -532,117 +413,23 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, ...@@ -532,117 +413,23 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
err = -EINVAL; err = -EINVAL;
goto out_fail; goto out_fail;
} }
/* Make the one we just received the head. */ /* Make the one we just received the head. */
if (head != skb) { reasm_data = inet_frag_reasm_prepare(&qp->q, skb, prev_tail);
fp = skb_clone(skb, GFP_ATOMIC); if (!reasm_data)
if (!fp)
goto out_nomem; goto out_nomem;
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
if (RB_EMPTY_NODE(&skb->rbnode))
FRAG_CB(prev_tail)->next_frag = fp;
else
rb_replace_node(&skb->rbnode, &fp->rbnode,
&qp->q.rb_fragments);
if (qp->q.fragments_tail == skb)
qp->q.fragments_tail = fp;
skb_morph(skb, head);
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
rb_replace_node(&head->rbnode, &skb->rbnode,
&qp->q.rb_fragments);
consume_skb(head);
head = skb;
}
WARN_ON(head->ip_defrag_offset != 0);
/* Allocate a new buffer for the datagram. */
ihlen = ip_hdrlen(head);
len = ihlen + qp->q.len;
len = ip_hdrlen(skb) + qp->q.len;
err = -E2BIG; err = -E2BIG;
if (len > 65535) if (len > 65535)
goto out_oversize; goto out_oversize;
delta = - head->truesize; inet_frag_reasm_finish(&qp->q, skb, reasm_data);
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
goto out_nomem;
delta += head->truesize;
if (delta)
add_frag_mem_limit(qp->q.net, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (!clone)
goto out_nomem;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->len = clone->data_len = head->data_len - plen;
head->truesize += clone->truesize;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(qp->q.net, clone->truesize);
skb_shinfo(head)->frag_list = clone;
nextp = &clone->next;
} else {
nextp = &skb_shinfo(head)->frag_list;
}
skb_push(head, head->data - skb_network_header(head));
/* Traverse the tree in order, to build frag_list. */ skb->dev = dev;
fp = FRAG_CB(head)->next_frag; IPCB(skb)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
rbn = rb_next(&head->rbnode);
rb_erase(&head->rbnode, &qp->q.rb_fragments);
while (rbn || fp) {
/* fp points to the next sk_buff in the current run;
* rbn points to the next run.
*/
/* Go through the current run. */
while (fp) {
*nextp = fp;
nextp = &fp->next;
fp->prev = NULL;
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
fp->sk = NULL;
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
fp = FRAG_CB(fp)->next_frag;
}
/* Move to the next run. */
if (rbn) {
struct rb_node *rbnext = rb_next(rbn);
fp = rb_to_skb(rbn);
rb_erase(rbn, &qp->q.rb_fragments);
rbn = rbnext;
}
}
sub_frag_mem_limit(qp->q.net, head->truesize);
*nextp = NULL;
skb_mark_not_on_list(head);
head->prev = NULL;
head->dev = dev;
head->tstamp = qp->q.stamp;
IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
iph = ip_hdr(head); iph = ip_hdr(skb);
iph->tot_len = htons(len); iph->tot_len = htons(len);
iph->tos |= ecn; iph->tos |= ecn;
...@@ -655,7 +442,7 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, ...@@ -655,7 +442,7 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
* from one very small df-fragment and one large non-df frag. * from one very small df-fragment and one large non-df frag.
*/ */
if (qp->max_df_size == qp->q.max_size) { if (qp->max_df_size == qp->q.max_size) {
IPCB(head)->flags |= IPSKB_FRAG_PMTU; IPCB(skb)->flags |= IPSKB_FRAG_PMTU;
iph->frag_off = htons(IP_DF); iph->frag_off = htons(IP_DF);
} else { } else {
iph->frag_off = 0; iph->frag_off = 0;
...@@ -753,28 +540,6 @@ struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) ...@@ -753,28 +540,6 @@ struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
} }
EXPORT_SYMBOL(ip_check_defrag); EXPORT_SYMBOL(ip_check_defrag);
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
unsigned int sum = 0;
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
p = rb_next(p);
rb_erase(&skb->rbnode, root);
while (skb) {
struct sk_buff *next = FRAG_CB(skb)->next_frag;
sum += skb->truesize;
kfree_skb(skb);
skb = next;
}
}
return sum;
}
EXPORT_SYMBOL(inet_frag_rbtree_purge);
#ifdef CONFIG_SYSCTL #ifdef CONFIG_SYSCTL
static int dist_min; static int dist_min;
......
...@@ -136,6 +136,9 @@ static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net) ...@@ -136,6 +136,9 @@ static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
} }
#endif #endif
static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev);
static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
{ {
return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK); return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK);
...@@ -177,9 +180,10 @@ static struct frag_queue *fq_find(struct net *net, __be32 id, u32 user, ...@@ -177,9 +180,10 @@ static struct frag_queue *fq_find(struct net *net, __be32 id, u32 user,
static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb, static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
const struct frag_hdr *fhdr, int nhoff) const struct frag_hdr *fhdr, int nhoff)
{ {
struct sk_buff *prev, *next;
unsigned int payload_len; unsigned int payload_len;
int offset, end; struct net_device *dev;
struct sk_buff *prev;
int offset, end, err;
u8 ecn; u8 ecn;
if (fq->q.flags & INET_FRAG_COMPLETE) { if (fq->q.flags & INET_FRAG_COMPLETE) {
...@@ -254,55 +258,18 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -254,55 +258,18 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
goto err; goto err;
} }
/* Find out which fragments are in front and at the back of us /* Note : skb->rbnode and skb->dev share the same location. */
* in the chain of fragments so far. We must know where to put dev = skb->dev;
* this fragment, right?
*/
prev = fq->q.fragments_tail;
if (!prev || prev->ip_defrag_offset < offset) {
next = NULL;
goto found;
}
prev = NULL;
for (next = fq->q.fragments; next != NULL; next = next->next) {
if (next->ip_defrag_offset >= offset)
break; /* bingo! */
prev = next;
}
found:
/* RFC5722, Section 4:
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments, including those not yet received) MUST be silently
* discarded.
*/
/* Check for overlap with preceding fragment. */
if (prev &&
(prev->ip_defrag_offset + prev->len) > offset)
goto discard_fq;
/* Look for overlap with succeeding segment. */
if (next && next->ip_defrag_offset < end)
goto discard_fq;
/* Note : skb->ip_defrag_offset and skb->dev share the same location */
if (skb->dev)
fq->iif = skb->dev->ifindex;
/* Makes sure compiler wont do silly aliasing games */ /* Makes sure compiler wont do silly aliasing games */
barrier(); barrier();
skb->ip_defrag_offset = offset;
prev = fq->q.fragments_tail;
/* Insert this fragment in the chain of fragments. */ err = inet_frag_queue_insert(&fq->q, skb, offset, end);
skb->next = next; if (err)
if (!next) goto insert_error;
fq->q.fragments_tail = skb;
if (prev) if (dev)
prev->next = skb; fq->iif = dev->ifindex;
else
fq->q.fragments = skb;
fq->q.stamp = skb->tstamp; fq->q.stamp = skb->tstamp;
fq->q.meat += skb->len; fq->q.meat += skb->len;
...@@ -319,11 +286,25 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -319,11 +286,25 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
fq->q.flags |= INET_FRAG_FIRST_IN; fq->q.flags |= INET_FRAG_FIRST_IN;
} }
return 0; if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
fq->q.meat == fq->q.len) {
unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL;
err = nf_ct_frag6_reasm(fq, skb, prev, dev);
skb->_skb_refdst = orefdst;
return err;
}
discard_fq: skb_dst_drop(skb);
return -EINPROGRESS;
insert_error:
if (err == IPFRAG_DUP)
goto err;
inet_frag_kill(&fq->q); inet_frag_kill(&fq->q);
err: err:
skb_dst_drop(skb);
return -EINVAL; return -EINVAL;
} }
...@@ -333,147 +314,67 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -333,147 +314,67 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
* It is called with locked fq, and caller must check that * It is called with locked fq, and caller must check that
* queue is eligible for reassembly i.e. it is not COMPLETE, * queue is eligible for reassembly i.e. it is not COMPLETE,
* the last and the first frames arrived and all the bits are here. * the last and the first frames arrived and all the bits are here.
*
* returns true if *prev skb has been transformed into the reassembled
* skb, false otherwise.
*/ */
static bool static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *prev, struct net_device *dev) struct sk_buff *prev_tail, struct net_device *dev)
{ {
struct sk_buff *fp, *head = fq->q.fragments; void *reasm_data;
int payload_len, delta; int payload_len;
u8 ecn; u8 ecn;
inet_frag_kill(&fq->q); inet_frag_kill(&fq->q);
WARN_ON(head == NULL);
WARN_ON(head->ip_defrag_offset != 0);
ecn = ip_frag_ecn_table[fq->ecn]; ecn = ip_frag_ecn_table[fq->ecn];
if (unlikely(ecn == 0xff)) if (unlikely(ecn == 0xff))
return false; goto err;
reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail);
if (!reasm_data)
goto err;
/* Unfragmented part is taken from the first segment. */ payload_len = ((skb->data - skb_network_header(skb)) -
payload_len = ((head->data - skb_network_header(head)) -
sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct ipv6hdr) + fq->q.len -
sizeof(struct frag_hdr)); sizeof(struct frag_hdr));
if (payload_len > IPV6_MAXPLEN) { if (payload_len > IPV6_MAXPLEN) {
net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n", net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n",
payload_len); payload_len);
return false; goto err;
}
delta = - head->truesize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
return false;
delta += head->truesize;
if (delta)
add_frag_mem_limit(fq->q.net, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (clone == NULL)
return false;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(fq->q.net, clone->truesize);
}
/* morph head into last received skb: prev.
*
* This allows callers of ipv6 conntrack defrag to continue
* to use the last skb(frag) passed into the reasm engine.
* The last skb frag 'silently' turns into the full reassembled skb.
*
* Since prev is also part of q->fragments we have to clone it first.
*/
if (head != prev) {
struct sk_buff *iter;
fp = skb_clone(prev, GFP_ATOMIC);
if (!fp)
return false;
fp->next = prev->next;
iter = head;
while (iter) {
if (iter->next == prev) {
iter->next = fp;
break;
}
iter = iter->next;
}
skb_morph(prev, head);
prev->next = head->next;
consume_skb(head);
head = prev;
} }
/* We have to remove fragment header from datagram and to relocate /* We have to remove fragment header from datagram and to relocate
* header in order to calculate ICV correctly. */ * header in order to calculate ICV correctly. */
skb_network_header(head)[fq->nhoffset] = skb_transport_header(head)[0]; skb_network_header(skb)[fq->nhoffset] = skb_transport_header(skb)[0];
memmove(head->head + sizeof(struct frag_hdr), head->head, memmove(skb->head + sizeof(struct frag_hdr), skb->head,
(head->data - head->head) - sizeof(struct frag_hdr)); (skb->data - skb->head) - sizeof(struct frag_hdr));
head->mac_header += sizeof(struct frag_hdr); skb->mac_header += sizeof(struct frag_hdr);
head->network_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr);
skb_shinfo(head)->frag_list = head->next; skb_reset_transport_header(skb);
skb_reset_transport_header(head);
skb_push(head, head->data - skb_network_header(head));
for (fp = head->next; fp; fp = fp->next) {
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
fp->sk = NULL;
}
sub_frag_mem_limit(fq->q.net, head->truesize);
head->ignore_df = 1; inet_frag_reasm_finish(&fq->q, skb, reasm_data);
skb_mark_not_on_list(head);
head->dev = dev; skb->ignore_df = 1;
head->tstamp = fq->q.stamp; skb->dev = dev;
ipv6_hdr(head)->payload_len = htons(payload_len); ipv6_hdr(skb)->payload_len = htons(payload_len);
ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn); ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn);
IP6CB(head)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size; IP6CB(skb)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size;
/* Yes, and fold redundant checksum back. 8) */ /* Yes, and fold redundant checksum back. 8) */
if (head->ip_summed == CHECKSUM_COMPLETE) if (skb->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_partial(skb_network_header(head), skb->csum = csum_partial(skb_network_header(skb),
skb_network_header_len(head), skb_network_header_len(skb),
head->csum); skb->csum);
fq->q.fragments = NULL; fq->q.fragments = NULL;
fq->q.rb_fragments = RB_ROOT; fq->q.rb_fragments = RB_ROOT;
fq->q.fragments_tail = NULL; fq->q.fragments_tail = NULL;
fq->q.last_run_head = NULL;
return 0;
return true; err:
inet_frag_kill(&fq->q);
return -EINVAL;
} }
/* /*
...@@ -542,7 +443,6 @@ find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff) ...@@ -542,7 +443,6 @@ find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user) int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
{ {
u16 savethdr = skb->transport_header; u16 savethdr = skb->transport_header;
struct net_device *dev = skb->dev;
int fhoff, nhoff, ret; int fhoff, nhoff, ret;
struct frag_hdr *fhdr; struct frag_hdr *fhdr;
struct frag_queue *fq; struct frag_queue *fq;
...@@ -565,10 +465,6 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user) ...@@ -565,10 +465,6 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
hdr = ipv6_hdr(skb); hdr = ipv6_hdr(skb);
fhdr = (struct frag_hdr *)skb_transport_header(skb); fhdr = (struct frag_hdr *)skb_transport_header(skb);
if (skb->len - skb_network_offset(skb) < IPV6_MIN_MTU &&
fhdr->frag_off & htons(IP6_MF))
return -EINVAL;
skb_orphan(skb); skb_orphan(skb);
fq = fq_find(net, fhdr->identification, user, hdr, fq = fq_find(net, fhdr->identification, user, hdr,
skb->dev ? skb->dev->ifindex : 0); skb->dev ? skb->dev->ifindex : 0);
...@@ -580,31 +476,17 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user) ...@@ -580,31 +476,17 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
spin_lock_bh(&fq->q.lock); spin_lock_bh(&fq->q.lock);
ret = nf_ct_frag6_queue(fq, skb, fhdr, nhoff); ret = nf_ct_frag6_queue(fq, skb, fhdr, nhoff);
if (ret < 0) {
if (ret == -EPROTO) { if (ret == -EPROTO) {
skb->transport_header = savethdr; skb->transport_header = savethdr;
ret = 0; ret = 0;
} }
goto out_unlock;
}
/* after queue has assumed skb ownership, only 0 or -EINPROGRESS /* after queue has assumed skb ownership, only 0 or -EINPROGRESS
* must be returned. * must be returned.
*/ */
if (ret)
ret = -EINPROGRESS; ret = -EINPROGRESS;
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
fq->q.meat == fq->q.len) {
unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL;
if (nf_ct_frag6_reasm(fq, skb, dev))
ret = 0;
skb->_skb_refdst = orefdst;
} else {
skb_dst_drop(skb);
}
out_unlock:
spin_unlock_bh(&fq->q.lock); spin_unlock_bh(&fq->q.lock);
inet_frag_put(&fq->q); inet_frag_put(&fq->q);
return ret; return ret;
......
...@@ -69,8 +69,8 @@ static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) ...@@ -69,8 +69,8 @@ static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
static struct inet_frags ip6_frags; static struct inet_frags ip6_frags;
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb,
struct net_device *dev); struct sk_buff *prev_tail, struct net_device *dev);
static void ip6_frag_expire(struct timer_list *t) static void ip6_frag_expire(struct timer_list *t)
{ {
...@@ -111,21 +111,26 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -111,21 +111,26 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
struct frag_hdr *fhdr, int nhoff, struct frag_hdr *fhdr, int nhoff,
u32 *prob_offset) u32 *prob_offset)
{ {
struct sk_buff *prev, *next;
struct net_device *dev;
int offset, end, fragsize;
struct net *net = dev_net(skb_dst(skb)->dev); struct net *net = dev_net(skb_dst(skb)->dev);
int offset, end, fragsize;
struct sk_buff *prev_tail;
struct net_device *dev;
int err = -ENOENT;
u8 ecn; u8 ecn;
if (fq->q.flags & INET_FRAG_COMPLETE) if (fq->q.flags & INET_FRAG_COMPLETE)
goto err; goto err;
err = -EINVAL;
offset = ntohs(fhdr->frag_off) & ~0x7; offset = ntohs(fhdr->frag_off) & ~0x7;
end = offset + (ntohs(ipv6_hdr(skb)->payload_len) - end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1))); ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
if ((unsigned int)end > IPV6_MAXPLEN) { if ((unsigned int)end > IPV6_MAXPLEN) {
*prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb); *prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb);
/* note that if prob_offset is set, the skb is freed elsewhere,
* we do not free it here.
*/
return -1; return -1;
} }
...@@ -170,62 +175,27 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -170,62 +175,27 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
if (end == offset) if (end == offset)
goto discard_fq; goto discard_fq;
err = -ENOMEM;
/* Point into the IP datagram 'data' part. */ /* Point into the IP datagram 'data' part. */
if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
goto discard_fq; goto discard_fq;
if (pskb_trim_rcsum(skb, end - offset)) err = pskb_trim_rcsum(skb, end - offset);
goto discard_fq; if (err)
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = fq->q.fragments_tail;
if (!prev || prev->ip_defrag_offset < offset) {
next = NULL;
goto found;
}
prev = NULL;
for (next = fq->q.fragments; next != NULL; next = next->next) {
if (next->ip_defrag_offset >= offset)
break; /* bingo! */
prev = next;
}
found:
/* RFC5722, Section 4, amended by Errata ID : 3089
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments) MUST be silently discarded.
*/
/* Check for overlap with preceding fragment. */
if (prev &&
(prev->ip_defrag_offset + prev->len) > offset)
goto discard_fq;
/* Look for overlap with succeeding segment. */
if (next && next->ip_defrag_offset < end)
goto discard_fq; goto discard_fq;
/* Note : skb->ip_defrag_offset and skb->sk share the same location */ /* Note : skb->rbnode and skb->dev share the same location. */
dev = skb->dev; dev = skb->dev;
if (dev)
fq->iif = dev->ifindex;
/* Makes sure compiler wont do silly aliasing games */ /* Makes sure compiler wont do silly aliasing games */
barrier(); barrier();
skb->ip_defrag_offset = offset;
/* Insert this fragment in the chain of fragments. */ prev_tail = fq->q.fragments_tail;
skb->next = next; err = inet_frag_queue_insert(&fq->q, skb, offset, end);
if (!next) if (err)
fq->q.fragments_tail = skb; goto insert_error;
if (prev)
prev->next = skb; if (dev)
else fq->iif = dev->ifindex;
fq->q.fragments = skb;
fq->q.stamp = skb->tstamp; fq->q.stamp = skb->tstamp;
fq->q.meat += skb->len; fq->q.meat += skb->len;
...@@ -246,44 +216,48 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, ...@@ -246,44 +216,48 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
fq->q.meat == fq->q.len) { fq->q.meat == fq->q.len) {
int res;
unsigned long orefdst = skb->_skb_refdst; unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL; skb->_skb_refdst = 0UL;
res = ip6_frag_reasm(fq, prev, dev); err = ip6_frag_reasm(fq, skb, prev_tail, dev);
skb->_skb_refdst = orefdst; skb->_skb_refdst = orefdst;
return res; return err;
} }
skb_dst_drop(skb); skb_dst_drop(skb);
return -1; return -EINPROGRESS;
insert_error:
if (err == IPFRAG_DUP) {
kfree_skb(skb);
return -EINVAL;
}
err = -EINVAL;
__IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_REASM_OVERLAPS);
discard_fq: discard_fq:
inet_frag_kill(&fq->q); inet_frag_kill(&fq->q);
err:
__IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_REASMFAILS); IPSTATS_MIB_REASMFAILS);
err:
kfree_skb(skb); kfree_skb(skb);
return -1; return err;
} }
/* /*
* Check if this packet is complete. * Check if this packet is complete.
* Returns NULL on failure by any reason, and pointer
* to current nexthdr field in reassembled frame.
* *
* It is called with locked fq, and caller must check that * It is called with locked fq, and caller must check that
* queue is eligible for reassembly i.e. it is not COMPLETE, * queue is eligible for reassembly i.e. it is not COMPLETE,
* the last and the first frames arrived and all the bits are here. * the last and the first frames arrived and all the bits are here.
*/ */
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb,
struct net_device *dev) struct sk_buff *prev_tail, struct net_device *dev)
{ {
struct net *net = container_of(fq->q.net, struct net, ipv6.frags); struct net *net = container_of(fq->q.net, struct net, ipv6.frags);
struct sk_buff *fp, *head = fq->q.fragments;
int payload_len, delta;
unsigned int nhoff; unsigned int nhoff;
int sum_truesize; void *reasm_data;
int payload_len;
u8 ecn; u8 ecn;
inet_frag_kill(&fq->q); inet_frag_kill(&fq->q);
...@@ -292,121 +266,40 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, ...@@ -292,121 +266,40 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
if (unlikely(ecn == 0xff)) if (unlikely(ecn == 0xff))
goto out_fail; goto out_fail;
/* Make the one we just received the head. */ reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail);
if (prev) { if (!reasm_data)
head = prev->next;
fp = skb_clone(head, GFP_ATOMIC);
if (!fp)
goto out_oom; goto out_oom;
fp->next = head->next; payload_len = ((skb->data - skb_network_header(skb)) -
if (!fp->next)
fq->q.fragments_tail = fp;
prev->next = fp;
skb_morph(head, fq->q.fragments);
head->next = fq->q.fragments->next;
consume_skb(fq->q.fragments);
fq->q.fragments = head;
}
WARN_ON(head == NULL);
WARN_ON(head->ip_defrag_offset != 0);
/* Unfragmented part is taken from the first segment. */
payload_len = ((head->data - skb_network_header(head)) -
sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct ipv6hdr) + fq->q.len -
sizeof(struct frag_hdr)); sizeof(struct frag_hdr));
if (payload_len > IPV6_MAXPLEN) if (payload_len > IPV6_MAXPLEN)
goto out_oversize; goto out_oversize;
delta = - head->truesize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
goto out_oom;
delta += head->truesize;
if (delta)
add_frag_mem_limit(fq->q.net, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (!clone)
goto out_oom;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(fq->q.net, clone->truesize);
}
/* We have to remove fragment header from datagram and to relocate /* We have to remove fragment header from datagram and to relocate
* header in order to calculate ICV correctly. */ * header in order to calculate ICV correctly. */
nhoff = fq->nhoffset; nhoff = fq->nhoffset;
skb_network_header(head)[nhoff] = skb_transport_header(head)[0]; skb_network_header(skb)[nhoff] = skb_transport_header(skb)[0];
memmove(head->head + sizeof(struct frag_hdr), head->head, memmove(skb->head + sizeof(struct frag_hdr), skb->head,
(head->data - head->head) - sizeof(struct frag_hdr)); (skb->data - skb->head) - sizeof(struct frag_hdr));
if (skb_mac_header_was_set(head)) if (skb_mac_header_was_set(skb))
head->mac_header += sizeof(struct frag_hdr); skb->mac_header += sizeof(struct frag_hdr);
head->network_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr);
skb_reset_transport_header(head); skb_reset_transport_header(skb);
skb_push(head, head->data - skb_network_header(head));
inet_frag_reasm_finish(&fq->q, skb, reasm_data);
sum_truesize = head->truesize;
for (fp = head->next; fp;) {
bool headstolen;
int delta;
struct sk_buff *next = fp->next;
sum_truesize += fp->truesize;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
kfree_skb_partial(fp, headstolen);
} else {
fp->sk = NULL;
if (!skb_shinfo(head)->frag_list)
skb_shinfo(head)->frag_list = fp;
head->data_len += fp->len;
head->len += fp->len;
head->truesize += fp->truesize;
}
fp = next;
}
sub_frag_mem_limit(fq->q.net, sum_truesize);
skb_mark_not_on_list(head); skb->dev = dev;
head->dev = dev; ipv6_hdr(skb)->payload_len = htons(payload_len);
head->tstamp = fq->q.stamp; ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn);
ipv6_hdr(head)->payload_len = htons(payload_len); IP6CB(skb)->nhoff = nhoff;
ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn); IP6CB(skb)->flags |= IP6SKB_FRAGMENTED;
IP6CB(head)->nhoff = nhoff; IP6CB(skb)->frag_max_size = fq->q.max_size;
IP6CB(head)->flags |= IP6SKB_FRAGMENTED;
IP6CB(head)->frag_max_size = fq->q.max_size;
/* Yes, and fold redundant checksum back. 8) */ /* Yes, and fold redundant checksum back. 8) */
skb_postpush_rcsum(head, skb_network_header(head), skb_postpush_rcsum(skb, skb_network_header(skb),
skb_network_header_len(head)); skb_network_header_len(skb));
rcu_read_lock(); rcu_read_lock();
__IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
...@@ -414,6 +307,7 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev, ...@@ -414,6 +307,7 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
fq->q.fragments = NULL; fq->q.fragments = NULL;
fq->q.rb_fragments = RB_ROOT; fq->q.rb_fragments = RB_ROOT;
fq->q.fragments_tail = NULL; fq->q.fragments_tail = NULL;
fq->q.last_run_head = NULL;
return 1; return 1;
out_oversize: out_oversize:
...@@ -464,10 +358,6 @@ static int ipv6_frag_rcv(struct sk_buff *skb) ...@@ -464,10 +358,6 @@ static int ipv6_frag_rcv(struct sk_buff *skb)
return 1; return 1;
} }
if (skb->len - skb_network_offset(skb) < IPV6_MIN_MTU &&
fhdr->frag_off & htons(IP6_MF))
goto fail_hdr;
iif = skb->dev ? skb->dev->ifindex : 0; iif = skb->dev ? skb->dev->ifindex : 0;
fq = fq_find(net, fhdr->identification, hdr, iif); fq = fq_find(net, fhdr->identification, hdr, iif);
if (fq) { if (fq) {
...@@ -485,6 +375,7 @@ static int ipv6_frag_rcv(struct sk_buff *skb) ...@@ -485,6 +375,7 @@ static int ipv6_frag_rcv(struct sk_buff *skb)
if (prob_offset) { if (prob_offset) {
__IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev),
IPSTATS_MIB_INHDRERRORS); IPSTATS_MIB_INHDRERRORS);
/* icmpv6_param_prob() calls kfree_skb(skb) */
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset); icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset);
} }
return ret; return ret;
......
...@@ -20,6 +20,7 @@ static bool cfg_do_ipv4; ...@@ -20,6 +20,7 @@ static bool cfg_do_ipv4;
static bool cfg_do_ipv6; static bool cfg_do_ipv6;
static bool cfg_verbose; static bool cfg_verbose;
static bool cfg_overlap; static bool cfg_overlap;
static bool cfg_permissive;
static unsigned short cfg_port = 9000; static unsigned short cfg_port = 9000;
const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) }; const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) };
...@@ -35,7 +36,7 @@ const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT; ...@@ -35,7 +36,7 @@ const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT;
static int payload_len; static int payload_len;
static int max_frag_len; static int max_frag_len;
#define MSG_LEN_MAX 60000 /* Max UDP payload length. */ #define MSG_LEN_MAX 10000 /* Max UDP payload length. */
#define IP4_MF (1u << 13) /* IPv4 MF flag. */ #define IP4_MF (1u << 13) /* IPv4 MF flag. */
#define IP6_MF (1) /* IPv6 MF flag. */ #define IP6_MF (1) /* IPv6 MF flag. */
...@@ -59,13 +60,14 @@ static void recv_validate_udp(int fd_udp) ...@@ -59,13 +60,14 @@ static void recv_validate_udp(int fd_udp)
msg_counter++; msg_counter++;
if (cfg_overlap) { if (cfg_overlap) {
if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN))
return; /* OK */
if (!cfg_permissive) {
if (ret != -1) if (ret != -1)
error(1, 0, "recv: expected timeout; got %d", error(1, 0, "recv: expected timeout; got %d",
(int)ret); (int)ret);
if (errno != ETIMEDOUT && errno != EAGAIN) error(1, errno, "recv: expected timeout: %d", errno);
error(1, errno, "recv: expected timeout: %d", }
errno);
return; /* OK */
} }
if (ret == -1) if (ret == -1)
...@@ -203,7 +205,6 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr, ...@@ -203,7 +205,6 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
{ {
struct ip *iphdr = (struct ip *)ip_frame; struct ip *iphdr = (struct ip *)ip_frame;
struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame; struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
const bool ipv4 = !ipv6;
int res; int res;
int offset; int offset;
int frag_len; int frag_len;
...@@ -251,7 +252,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr, ...@@ -251,7 +252,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
} }
/* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */ /* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */
if (ipv4 && !cfg_overlap && (rand() % 100 < 20) && if (!cfg_overlap && (rand() % 100 < 20) &&
(payload_len > 9 * max_frag_len)) { (payload_len > 9 * max_frag_len)) {
offset = 6 * max_frag_len; offset = 6 * max_frag_len;
while (offset < (UDP_HLEN + payload_len)) { while (offset < (UDP_HLEN + payload_len)) {
...@@ -276,41 +277,38 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr, ...@@ -276,41 +277,38 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
while (offset < (UDP_HLEN + payload_len)) { while (offset < (UDP_HLEN + payload_len)) {
send_fragment(fd_raw, addr, alen, offset, ipv6); send_fragment(fd_raw, addr, alen, offset, ipv6);
/* IPv4 ignores duplicates, so randomly send a duplicate. */ /* IPv4 ignores duplicates, so randomly send a duplicate. */
if (ipv4 && (1 == rand() % 100)) if (rand() % 100 == 1)
send_fragment(fd_raw, addr, alen, offset, ipv6); send_fragment(fd_raw, addr, alen, offset, ipv6);
offset += 2 * max_frag_len; offset += 2 * max_frag_len;
} }
if (cfg_overlap) { if (cfg_overlap) {
/* Send an extra random fragment. */ /* Send an extra random fragment.
if (ipv6) { *
struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); * Duplicates and some fragments completely inside
/* sendto() returns EINVAL if offset + frag_len is too small. */
offset = rand() % (UDP_HLEN + payload_len - 1);
frag_len = max_frag_len + rand() % 256;
/* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
frag_len &= ~0x7;
fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
ip6hdr->ip6_plen = htons(frag_len);
frag_len += IP6_HLEN;
} else {
/* In IPv4, duplicates and some fragments completely inside
* previously sent fragments are dropped/ignored. So * previously sent fragments are dropped/ignored. So
* random offset and frag_len can result in a dropped * random offset and frag_len can result in a dropped
* fragment instead of a dropped queue/packet. So we * fragment instead of a dropped queue/packet. Thus we
* hard-code offset and frag_len. * hard-code offset and frag_len.
*
* See ade446403bfb ("net: ipv4: do not handle duplicate
* fragments as overlapping").
*/ */
if (max_frag_len * 4 < payload_len || max_frag_len < 16) { if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
/* not enough payload to play with random offset and frag_len. */ /* not enough payload for random offset and frag_len. */
offset = 8; offset = 8;
frag_len = IP4_HLEN + UDP_HLEN + max_frag_len; frag_len = UDP_HLEN + max_frag_len;
} else { } else {
offset = rand() % (payload_len / 2); offset = rand() % (payload_len / 2);
frag_len = 2 * max_frag_len + 1 + rand() % 256; frag_len = 2 * max_frag_len + 1 + rand() % 256;
} }
if (ipv6) {
struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
/* sendto() returns EINVAL if offset + frag_len is too small. */
/* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
frag_len &= ~0x7;
fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
ip6hdr->ip6_plen = htons(frag_len);
frag_len += IP6_HLEN;
} else {
frag_len += IP4_HLEN;
iphdr->ip_off = htons(offset / 8 | IP4_MF); iphdr->ip_off = htons(offset / 8 | IP4_MF);
iphdr->ip_len = htons(frag_len); iphdr->ip_len = htons(frag_len);
} }
...@@ -327,7 +325,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr, ...@@ -327,7 +325,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
while (offset < (UDP_HLEN + payload_len)) { while (offset < (UDP_HLEN + payload_len)) {
send_fragment(fd_raw, addr, alen, offset, ipv6); send_fragment(fd_raw, addr, alen, offset, ipv6);
/* IPv4 ignores duplicates, so randomly send a duplicate. */ /* IPv4 ignores duplicates, so randomly send a duplicate. */
if (ipv4 && (1 == rand() % 100)) if (rand() % 100 == 1)
send_fragment(fd_raw, addr, alen, offset, ipv6); send_fragment(fd_raw, addr, alen, offset, ipv6);
offset += 2 * max_frag_len; offset += 2 * max_frag_len;
} }
...@@ -342,7 +340,7 @@ static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6) ...@@ -342,7 +340,7 @@ static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6)
*/ */
struct timeval tv = { .tv_sec = 1, .tv_usec = 10 }; struct timeval tv = { .tv_sec = 1, .tv_usec = 10 };
int idx; int idx;
int min_frag_len = ipv6 ? 1280 : 8; int min_frag_len = 8;
/* Initialize the payload. */ /* Initialize the payload. */
for (idx = 0; idx < MSG_LEN_MAX; ++idx) for (idx = 0; idx < MSG_LEN_MAX; ++idx)
...@@ -434,7 +432,7 @@ static void parse_opts(int argc, char **argv) ...@@ -434,7 +432,7 @@ static void parse_opts(int argc, char **argv)
{ {
int c; int c;
while ((c = getopt(argc, argv, "46ov")) != -1) { while ((c = getopt(argc, argv, "46opv")) != -1) {
switch (c) { switch (c) {
case '4': case '4':
cfg_do_ipv4 = true; cfg_do_ipv4 = true;
...@@ -445,6 +443,9 @@ static void parse_opts(int argc, char **argv) ...@@ -445,6 +443,9 @@ static void parse_opts(int argc, char **argv)
case 'o': case 'o':
cfg_overlap = true; cfg_overlap = true;
break; break;
case 'p':
cfg_permissive = true;
break;
case 'v': case 'v':
cfg_verbose = true; cfg_verbose = true;
break; break;
......
...@@ -20,6 +20,10 @@ setup() { ...@@ -20,6 +20,10 @@ setup() {
ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_low_thresh=7000000 >/dev/null 2>&1 ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_low_thresh=7000000 >/dev/null 2>&1
ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_time=1 >/dev/null 2>&1 ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_time=1 >/dev/null 2>&1
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_high_thresh=9000000 >/dev/null 2>&1
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_low_thresh=7000000 >/dev/null 2>&1
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_timeout=1 >/dev/null 2>&1
# DST cache can get full with a lot of frags, with GC not keeping up with the test. # DST cache can get full with a lot of frags, with GC not keeping up with the test.
ip netns exec "${NETNS}" sysctl -w net.ipv6.route.max_size=65536 >/dev/null 2>&1 ip netns exec "${NETNS}" sysctl -w net.ipv6.route.max_size=65536 >/dev/null 2>&1
} }
...@@ -43,4 +47,16 @@ ip netns exec "${NETNS}" ./ip_defrag -6 ...@@ -43,4 +47,16 @@ ip netns exec "${NETNS}" ./ip_defrag -6
echo "ipv6 defrag with overlaps" echo "ipv6 defrag with overlaps"
ip netns exec "${NETNS}" ./ip_defrag -6o ip netns exec "${NETNS}" ./ip_defrag -6o
# insert an nf_conntrack rule so that the codepath in nf_conntrack_reasm.c taken
ip netns exec "${NETNS}" ip6tables -A INPUT -m conntrack --ctstate INVALID -j ACCEPT
echo "ipv6 nf_conntrack defrag"
ip netns exec "${NETNS}" ./ip_defrag -6
echo "ipv6 nf_conntrack defrag with overlaps"
# netfilter will drop some invalid packets, so we run the test in
# permissive mode: i.e. pass the test if the packet is correctly assembled
# even if we sent an overlap
ip netns exec "${NETNS}" ./ip_defrag -6op
echo "all tests done" echo "all tests done"
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment