Commit de881df9 authored by Aravind Ramesh's avatar Aravind Ramesh Committed by Jaegeuk Kim

f2fs: support zone capacity less than zone size

NVMe Zoned Namespace devices can have zone-capacity less than zone-size.
Zone-capacity indicates the maximum number of sectors that are usable in
a zone beginning from the first sector of the zone. This makes the sectors
sectors after the zone-capacity till zone-size to be unusable.
This patch set tracks zone-size and zone-capacity in zoned devices and
calculate the usable blocks per segment and usable segments per section.

If zone-capacity is less than zone-size mark only those segments which
start before zone-capacity as free segments. All segments at and beyond
zone-capacity are treated as permanently used segments. In cases where
zone-capacity does not align with segment size the last segment will start
before zone-capacity and end beyond the zone-capacity of the zone. For
such spanning segments only sectors within the zone-capacity are used.

During writes and GC manage the usable segments in a section and usable
blocks per segment. Segments which are beyond zone-capacity are never
allocated, and do not need to be garbage collected, only the segments
which are before zone-capacity needs to garbage collected.
For spanning segments based on the number of usable blocks in that
segment, write to blocks only up to zone-capacity.

Zone-capacity is device specific and cannot be configured by the user.
Since NVMe ZNS device zones are sequentially write only, a block device
with conventional zones or any normal block device is needed along with
the ZNS device for the metadata operations of F2fs.

A typical nvme-cli output of a zoned device shows zone start and capacity
and write pointer as below:

SLBA: 0x0     WP: 0x0     Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ
SLBA: 0x20000 WP: 0x20000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ
SLBA: 0x40000 WP: 0x40000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ

Here zone size is 64MB, capacity is 49MB, WP is at zone start as the zones
are in EMPTY state. For each zone, only zone start + 49MB is usable area,
any lba/sector after 49MB cannot be read or written to, the drive will fail
any attempts to read/write. So, the second zone starts at 64MB and is
usable till 113MB (64 + 49) and the range between 113 and 128MB is
again unusable. The next zone starts at 128MB, and so on.
Signed-off-by: default avatarAravind Ramesh <aravind.ramesh@wdc.com>
Signed-off-by: default avatarDamien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: default avatarNiklas Cassel <niklas.cassel@wdc.com>
Reviewed-by: default avatarChao Yu <yuchao0@huawei.com>
Signed-off-by: default avatarJaegeuk Kim <jaegeuk@kernel.org>
parent 581cb3a2
...@@ -772,3 +772,18 @@ Compress metadata layout:: ...@@ -772,3 +772,18 @@ Compress metadata layout::
+-------------+-------------+----------+----------------------------+ +-------------+-------------+----------+----------------------------+
| data length | data chksum | reserved | compressed data | | data length | data chksum | reserved | compressed data |
+-------------+-------------+----------+----------------------------+ +-------------+-------------+----------+----------------------------+
NVMe Zoned Namespace devices
----------------------------
- ZNS defines a per-zone capacity which can be equal or less than the
zone-size. Zone-capacity is the number of usable blocks in the zone.
F2fs checks if zone-capacity is less than zone-size, if it is, then any
segment which starts after the zone-capacity is marked as not-free in
the free segment bitmap at initial mount time. These segments are marked
as permanently used so they are not allocated for writes and
consequently are not needed to be garbage collected. In case the
zone-capacity is not aligned to default segment size(2MB), then a segment
can start before the zone-capacity and span across zone-capacity boundary.
Such spanning segments are also considered as usable segments. All blocks
past the zone-capacity are considered unusable in these segments.
...@@ -1209,6 +1209,7 @@ struct f2fs_dev_info { ...@@ -1209,6 +1209,7 @@ struct f2fs_dev_info {
#ifdef CONFIG_BLK_DEV_ZONED #ifdef CONFIG_BLK_DEV_ZONED
unsigned int nr_blkz; /* Total number of zones */ unsigned int nr_blkz; /* Total number of zones */
unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
#endif #endif
}; };
...@@ -3378,6 +3379,10 @@ void f2fs_destroy_segment_manager_caches(void); ...@@ -3378,6 +3379,10 @@ void f2fs_destroy_segment_manager_caches(void);
int f2fs_rw_hint_to_seg_type(enum rw_hint hint); int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
enum page_type type, enum temp_type temp); enum page_type type, enum temp_type temp);
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno);
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno);
/* /*
* checkpoint.c * checkpoint.c
......
...@@ -266,13 +266,14 @@ static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) ...@@ -266,13 +266,14 @@ static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
unsigned char age = 0; unsigned char age = 0;
unsigned char u; unsigned char u;
unsigned int i; unsigned int i;
unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
for (i = 0; i < sbi->segs_per_sec; i++) for (i = 0; i < usable_segs_per_sec; i++)
mtime += get_seg_entry(sbi, start + i)->mtime; mtime += get_seg_entry(sbi, start + i)->mtime;
vblocks = get_valid_blocks(sbi, segno, true); vblocks = get_valid_blocks(sbi, segno, true);
mtime = div_u64(mtime, sbi->segs_per_sec); mtime = div_u64(mtime, usable_segs_per_sec);
vblocks = div_u64(vblocks, sbi->segs_per_sec); vblocks = div_u64(vblocks, usable_segs_per_sec);
u = (vblocks * 100) >> sbi->log_blocks_per_seg; u = (vblocks * 100) >> sbi->log_blocks_per_seg;
...@@ -536,6 +537,7 @@ static int gc_node_segment(struct f2fs_sb_info *sbi, ...@@ -536,6 +537,7 @@ static int gc_node_segment(struct f2fs_sb_info *sbi,
int phase = 0; int phase = 0;
bool fggc = (gc_type == FG_GC); bool fggc = (gc_type == FG_GC);
int submitted = 0; int submitted = 0;
unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
start_addr = START_BLOCK(sbi, segno); start_addr = START_BLOCK(sbi, segno);
...@@ -545,7 +547,7 @@ static int gc_node_segment(struct f2fs_sb_info *sbi, ...@@ -545,7 +547,7 @@ static int gc_node_segment(struct f2fs_sb_info *sbi,
if (fggc && phase == 2) if (fggc && phase == 2)
atomic_inc(&sbi->wb_sync_req[NODE]); atomic_inc(&sbi->wb_sync_req[NODE]);
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { for (off = 0; off < usable_blks_in_seg; off++, entry++) {
nid_t nid = le32_to_cpu(entry->nid); nid_t nid = le32_to_cpu(entry->nid);
struct page *node_page; struct page *node_page;
struct node_info ni; struct node_info ni;
...@@ -1033,13 +1035,14 @@ static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, ...@@ -1033,13 +1035,14 @@ static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
int off; int off;
int phase = 0; int phase = 0;
int submitted = 0; int submitted = 0;
unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
start_addr = START_BLOCK(sbi, segno); start_addr = START_BLOCK(sbi, segno);
next_step: next_step:
entry = sum; entry = sum;
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { for (off = 0; off < usable_blks_in_seg; off++, entry++) {
struct page *data_page; struct page *data_page;
struct inode *inode; struct inode *inode;
struct node_info dni; /* dnode info for the data */ struct node_info dni; /* dnode info for the data */
...@@ -1204,6 +1207,15 @@ static int do_garbage_collect(struct f2fs_sb_info *sbi, ...@@ -1204,6 +1207,15 @@ static int do_garbage_collect(struct f2fs_sb_info *sbi,
if (__is_large_section(sbi)) if (__is_large_section(sbi))
end_segno = rounddown(end_segno, sbi->segs_per_sec); end_segno = rounddown(end_segno, sbi->segs_per_sec);
/*
* zone-capacity can be less than zone-size in zoned devices,
* resulting in less than expected usable segments in the zone,
* calculate the end segno in the zone which can be garbage collected
*/
if (f2fs_sb_has_blkzoned(sbi))
end_segno -= sbi->segs_per_sec -
f2fs_usable_segs_in_sec(sbi, segno);
/* readahead multi ssa blocks those have contiguous address */ /* readahead multi ssa blocks those have contiguous address */
if (__is_large_section(sbi)) if (__is_large_section(sbi))
f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
...@@ -1356,7 +1368,8 @@ int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, ...@@ -1356,7 +1368,8 @@ int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
goto stop; goto stop;
seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) if (gc_type == FG_GC &&
seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
sec_freed++; sec_freed++;
total_freed += seg_freed; total_freed += seg_freed;
......
...@@ -44,13 +44,49 @@ struct gc_inode_list { ...@@ -44,13 +44,49 @@ struct gc_inode_list {
/* /*
* inline functions * inline functions
*/ */
/*
* On a Zoned device zone-capacity can be less than zone-size and if
* zone-capacity is not aligned to f2fs segment size(2MB), then the segment
* starting just before zone-capacity has some blocks spanning across the
* zone-capacity, these blocks are not usable.
* Such spanning segments can be in free list so calculate the sum of usable
* blocks in currently free segments including normal and spanning segments.
*/
static inline block_t free_segs_blk_count_zoned(struct f2fs_sb_info *sbi)
{
block_t free_seg_blks = 0;
struct free_segmap_info *free_i = FREE_I(sbi);
int j;
spin_lock(&free_i->segmap_lock);
for (j = 0; j < MAIN_SEGS(sbi); j++)
if (!test_bit(j, free_i->free_segmap))
free_seg_blks += f2fs_usable_blks_in_seg(sbi, j);
spin_unlock(&free_i->segmap_lock);
return free_seg_blks;
}
static inline block_t free_segs_blk_count(struct f2fs_sb_info *sbi)
{
if (f2fs_sb_has_blkzoned(sbi))
return free_segs_blk_count_zoned(sbi);
return free_segments(sbi) << sbi->log_blocks_per_seg;
}
static inline block_t free_user_blocks(struct f2fs_sb_info *sbi) static inline block_t free_user_blocks(struct f2fs_sb_info *sbi)
{ {
if (free_segments(sbi) < overprovision_segments(sbi)) block_t free_blks, ovp_blks;
free_blks = free_segs_blk_count(sbi);
ovp_blks = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
if (free_blks < ovp_blks)
return 0; return 0;
else
return (free_segments(sbi) - overprovision_segments(sbi)) return free_blks - ovp_blks;
<< sbi->log_blocks_per_seg;
} }
static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi) static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi)
......
...@@ -859,20 +859,22 @@ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) ...@@ -859,20 +859,22 @@ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
{ {
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned short valid_blocks, ckpt_valid_blocks; unsigned short valid_blocks, ckpt_valid_blocks;
unsigned int usable_blocks;
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
return; return;
usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
mutex_lock(&dirty_i->seglist_lock); mutex_lock(&dirty_i->seglist_lock);
valid_blocks = get_valid_blocks(sbi, segno, false); valid_blocks = get_valid_blocks(sbi, segno, false);
ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
ckpt_valid_blocks == sbi->blocks_per_seg)) { ckpt_valid_blocks == usable_blocks)) {
__locate_dirty_segment(sbi, segno, PRE); __locate_dirty_segment(sbi, segno, PRE);
__remove_dirty_segment(sbi, segno, DIRTY); __remove_dirty_segment(sbi, segno, DIRTY);
} else if (valid_blocks < sbi->blocks_per_seg) { } else if (valid_blocks < usable_blocks) {
__locate_dirty_segment(sbi, segno, DIRTY); __locate_dirty_segment(sbi, segno, DIRTY);
} else { } else {
/* Recovery routine with SSR needs this */ /* Recovery routine with SSR needs this */
...@@ -915,9 +917,11 @@ block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) ...@@ -915,9 +917,11 @@ block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
se = get_seg_entry(sbi, segno); se = get_seg_entry(sbi, segno);
if (IS_NODESEG(se->type)) if (IS_NODESEG(se->type))
holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
se->valid_blocks;
else else
holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
se->valid_blocks;
} }
mutex_unlock(&dirty_i->seglist_lock); mutex_unlock(&dirty_i->seglist_lock);
...@@ -2167,7 +2171,7 @@ static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) ...@@ -2167,7 +2171,7 @@ static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
f2fs_bug_on(sbi, (new_vblocks < 0 || f2fs_bug_on(sbi, (new_vblocks < 0 ||
(new_vblocks > sbi->blocks_per_seg))); (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
se->valid_blocks = new_vblocks; se->valid_blocks = new_vblocks;
se->mtime = get_mtime(sbi, false); se->mtime = get_mtime(sbi, false);
...@@ -2933,9 +2937,9 @@ int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) ...@@ -2933,9 +2937,9 @@ int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
{ {
struct curseg_info *curseg = CURSEG_I(sbi, type); struct curseg_info *curseg = CURSEG_I(sbi, type);
if (curseg->next_blkoff < sbi->blocks_per_seg)
return true; return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
return false; curseg->segno);
} }
int f2fs_rw_hint_to_seg_type(enum rw_hint hint) int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
...@@ -4294,9 +4298,12 @@ static void init_free_segmap(struct f2fs_sb_info *sbi) ...@@ -4294,9 +4298,12 @@ static void init_free_segmap(struct f2fs_sb_info *sbi)
{ {
unsigned int start; unsigned int start;
int type; int type;
struct seg_entry *sentry;
for (start = 0; start < MAIN_SEGS(sbi); start++) { for (start = 0; start < MAIN_SEGS(sbi); start++) {
struct seg_entry *sentry = get_seg_entry(sbi, start); if (f2fs_usable_blks_in_seg(sbi, start) == 0)
continue;
sentry = get_seg_entry(sbi, start);
if (!sentry->valid_blocks) if (!sentry->valid_blocks)
__set_free(sbi, start); __set_free(sbi, start);
else else
...@@ -4316,7 +4323,7 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi) ...@@ -4316,7 +4323,7 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi)
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
struct free_segmap_info *free_i = FREE_I(sbi); struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int segno = 0, offset = 0, secno; unsigned int segno = 0, offset = 0, secno;
block_t valid_blocks; block_t valid_blocks, usable_blks_in_seg;
block_t blks_per_sec = BLKS_PER_SEC(sbi); block_t blks_per_sec = BLKS_PER_SEC(sbi);
while (1) { while (1) {
...@@ -4326,9 +4333,10 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi) ...@@ -4326,9 +4333,10 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi)
break; break;
offset = segno + 1; offset = segno + 1;
valid_blocks = get_valid_blocks(sbi, segno, false); valid_blocks = get_valid_blocks(sbi, segno, false);
if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
if (valid_blocks == usable_blks_in_seg || !valid_blocks)
continue; continue;
if (valid_blocks > sbi->blocks_per_seg) { if (valid_blocks > usable_blks_in_seg) {
f2fs_bug_on(sbi, 1); f2fs_bug_on(sbi, 1);
continue; continue;
} }
...@@ -4678,6 +4686,101 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) ...@@ -4678,6 +4686,101 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
return 0; return 0;
} }
static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
unsigned int dev_idx)
{
if (!bdev_is_zoned(FDEV(dev_idx).bdev))
return true;
return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
}
/* Return the zone index in the given device */
static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
int dev_idx)
{
block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
sbi->log_blocks_per_blkz;
}
/*
* Return the usable segments in a section based on the zone's
* corresponding zone capacity. Zone is equal to a section.
*/
static inline unsigned int f2fs_usable_zone_segs_in_sec(
struct f2fs_sb_info *sbi, unsigned int segno)
{
unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
/* Conventional zone's capacity is always equal to zone size */
if (is_conv_zone(sbi, zone_idx, dev_idx))
return sbi->segs_per_sec;
/*
* If the zone_capacity_blocks array is NULL, then zone capacity
* is equal to the zone size for all zones
*/
if (!FDEV(dev_idx).zone_capacity_blocks)
return sbi->segs_per_sec;
/* Get the segment count beyond zone capacity block */
unusable_segs_in_sec = (sbi->blocks_per_blkz -
FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
sbi->log_blocks_per_seg;
return sbi->segs_per_sec - unusable_segs_in_sec;
}
/*
* Return the number of usable blocks in a segment. The number of blocks
* returned is always equal to the number of blocks in a segment for
* segments fully contained within a sequential zone capacity or a
* conventional zone. For segments partially contained in a sequential
* zone capacity, the number of usable blocks up to the zone capacity
* is returned. 0 is returned in all other cases.
*/
static inline unsigned int f2fs_usable_zone_blks_in_seg(
struct f2fs_sb_info *sbi, unsigned int segno)
{
block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
unsigned int zone_idx, dev_idx, secno;
secno = GET_SEC_FROM_SEG(sbi, segno);
seg_start = START_BLOCK(sbi, segno);
dev_idx = f2fs_target_device_index(sbi, seg_start);
zone_idx = get_zone_idx(sbi, secno, dev_idx);
/*
* Conventional zone's capacity is always equal to zone size,
* so, blocks per segment is unchanged.
*/
if (is_conv_zone(sbi, zone_idx, dev_idx))
return sbi->blocks_per_seg;
if (!FDEV(dev_idx).zone_capacity_blocks)
return sbi->blocks_per_seg;
sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
sec_cap_blkaddr = sec_start_blkaddr +
FDEV(dev_idx).zone_capacity_blocks[zone_idx];
/*
* If segment starts before zone capacity and spans beyond
* zone capacity, then usable blocks are from seg start to
* zone capacity. If the segment starts after the zone capacity,
* then there are no usable blocks.
*/
if (seg_start >= sec_cap_blkaddr)
return 0;
if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
return sec_cap_blkaddr - seg_start;
return sbi->blocks_per_seg;
}
#else #else
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
{ {
...@@ -4688,7 +4791,36 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) ...@@ -4688,7 +4791,36 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
{ {
return 0; return 0;
} }
static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return 0;
}
static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return 0;
}
#endif #endif
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno)
{
if (f2fs_sb_has_blkzoned(sbi))
return f2fs_usable_zone_blks_in_seg(sbi, segno);
return sbi->blocks_per_seg;
}
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno)
{
if (f2fs_sb_has_blkzoned(sbi))
return f2fs_usable_zone_segs_in_sec(sbi, segno);
return sbi->segs_per_sec;
}
/* /*
* Update min, max modified time for cost-benefit GC algorithm * Update min, max modified time for cost-benefit GC algorithm
......
...@@ -411,6 +411,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) ...@@ -411,6 +411,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
unsigned int next; unsigned int next;
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
spin_lock(&free_i->segmap_lock); spin_lock(&free_i->segmap_lock);
clear_bit(segno, free_i->free_segmap); clear_bit(segno, free_i->free_segmap);
...@@ -418,7 +419,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) ...@@ -418,7 +419,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
next = find_next_bit(free_i->free_segmap, next = find_next_bit(free_i->free_segmap,
start_segno + sbi->segs_per_sec, start_segno); start_segno + sbi->segs_per_sec, start_segno);
if (next >= start_segno + sbi->segs_per_sec) { if (next >= start_segno + usable_segs) {
clear_bit(secno, free_i->free_secmap); clear_bit(secno, free_i->free_secmap);
free_i->free_sections++; free_i->free_sections++;
} }
...@@ -444,6 +445,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi, ...@@ -444,6 +445,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
unsigned int next; unsigned int next;
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
spin_lock(&free_i->segmap_lock); spin_lock(&free_i->segmap_lock);
if (test_and_clear_bit(segno, free_i->free_segmap)) { if (test_and_clear_bit(segno, free_i->free_segmap)) {
...@@ -453,7 +455,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi, ...@@ -453,7 +455,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
goto skip_free; goto skip_free;
next = find_next_bit(free_i->free_segmap, next = find_next_bit(free_i->free_segmap,
start_segno + sbi->segs_per_sec, start_segno); start_segno + sbi->segs_per_sec, start_segno);
if (next >= start_segno + sbi->segs_per_sec) { if (next >= start_segno + usable_segs) {
if (test_and_clear_bit(secno, free_i->free_secmap)) if (test_and_clear_bit(secno, free_i->free_secmap))
free_i->free_sections++; free_i->free_sections++;
} }
...@@ -546,8 +548,8 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) ...@@ -546,8 +548,8 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
/* check current node segment */ /* check current node segment */
for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
segno = CURSEG_I(sbi, i)->segno; segno = CURSEG_I(sbi, i)->segno;
left_blocks = sbi->blocks_per_seg - left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
get_seg_entry(sbi, segno)->ckpt_valid_blocks; get_seg_entry(sbi, segno)->ckpt_valid_blocks;
if (node_blocks > left_blocks) if (node_blocks > left_blocks)
return false; return false;
...@@ -555,7 +557,7 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) ...@@ -555,7 +557,7 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
/* check current data segment */ /* check current data segment */
segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
left_blocks = sbi->blocks_per_seg - left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
get_seg_entry(sbi, segno)->ckpt_valid_blocks; get_seg_entry(sbi, segno)->ckpt_valid_blocks;
if (dent_blocks > left_blocks) if (dent_blocks > left_blocks)
return false; return false;
...@@ -677,21 +679,22 @@ static inline int check_block_count(struct f2fs_sb_info *sbi, ...@@ -677,21 +679,22 @@ static inline int check_block_count(struct f2fs_sb_info *sbi,
bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
int valid_blocks = 0; int valid_blocks = 0;
int cur_pos = 0, next_pos; int cur_pos = 0, next_pos;
unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
/* check bitmap with valid block count */ /* check bitmap with valid block count */
do { do {
if (is_valid) { if (is_valid) {
next_pos = find_next_zero_bit_le(&raw_sit->valid_map, next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
sbi->blocks_per_seg, usable_blks_per_seg,
cur_pos); cur_pos);
valid_blocks += next_pos - cur_pos; valid_blocks += next_pos - cur_pos;
} else } else
next_pos = find_next_bit_le(&raw_sit->valid_map, next_pos = find_next_bit_le(&raw_sit->valid_map,
sbi->blocks_per_seg, usable_blks_per_seg,
cur_pos); cur_pos);
cur_pos = next_pos; cur_pos = next_pos;
is_valid = !is_valid; is_valid = !is_valid;
} while (cur_pos < sbi->blocks_per_seg); } while (cur_pos < usable_blks_per_seg);
if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
...@@ -700,8 +703,13 @@ static inline int check_block_count(struct f2fs_sb_info *sbi, ...@@ -700,8 +703,13 @@ static inline int check_block_count(struct f2fs_sb_info *sbi,
return -EFSCORRUPTED; return -EFSCORRUPTED;
} }
if (usable_blks_per_seg < sbi->blocks_per_seg)
f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
sbi->blocks_per_seg,
usable_blks_per_seg) != sbi->blocks_per_seg);
/* check segment usage, and check boundary of a given segment number */ /* check segment usage, and check boundary of a given segment number */
if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
|| segno > TOTAL_SEGS(sbi) - 1)) { || segno > TOTAL_SEGS(sbi) - 1)) {
f2fs_err(sbi, "Wrong valid blocks %d or segno %u", f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
GET_SIT_VBLOCKS(raw_sit), segno); GET_SIT_VBLOCKS(raw_sit), segno);
......
...@@ -1184,6 +1184,7 @@ static void destroy_device_list(struct f2fs_sb_info *sbi) ...@@ -1184,6 +1184,7 @@ static void destroy_device_list(struct f2fs_sb_info *sbi)
blkdev_put(FDEV(i).bdev, FMODE_EXCL); blkdev_put(FDEV(i).bdev, FMODE_EXCL);
#ifdef CONFIG_BLK_DEV_ZONED #ifdef CONFIG_BLK_DEV_ZONED
kvfree(FDEV(i).blkz_seq); kvfree(FDEV(i).blkz_seq);
kfree(FDEV(i).zone_capacity_blocks);
#endif #endif
} }
kvfree(sbi->devs); kvfree(sbi->devs);
...@@ -3088,13 +3089,26 @@ static int init_percpu_info(struct f2fs_sb_info *sbi) ...@@ -3088,13 +3089,26 @@ static int init_percpu_info(struct f2fs_sb_info *sbi)
} }
#ifdef CONFIG_BLK_DEV_ZONED #ifdef CONFIG_BLK_DEV_ZONED
struct f2fs_report_zones_args {
struct f2fs_dev_info *dev;
bool zone_cap_mismatch;
};
static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
void *data) void *data)
{ {
struct f2fs_dev_info *dev = data; struct f2fs_report_zones_args *rz_args = data;
if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
return 0;
set_bit(idx, rz_args->dev->blkz_seq);
rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
F2FS_LOG_SECTORS_PER_BLOCK;
if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
rz_args->zone_cap_mismatch = true;
if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
set_bit(idx, dev->blkz_seq);
return 0; return 0;
} }
...@@ -3102,6 +3116,7 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) ...@@ -3102,6 +3116,7 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
{ {
struct block_device *bdev = FDEV(devi).bdev; struct block_device *bdev = FDEV(devi).bdev;
sector_t nr_sectors = bdev->bd_part->nr_sects; sector_t nr_sectors = bdev->bd_part->nr_sects;
struct f2fs_report_zones_args rep_zone_arg;
int ret; int ret;
if (!f2fs_sb_has_blkzoned(sbi)) if (!f2fs_sb_has_blkzoned(sbi))
...@@ -3127,12 +3142,26 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) ...@@ -3127,12 +3142,26 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
if (!FDEV(devi).blkz_seq) if (!FDEV(devi).blkz_seq)
return -ENOMEM; return -ENOMEM;
/* Get block zones type */ /* Get block zones type and zone-capacity */
FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
FDEV(devi).nr_blkz * sizeof(block_t),
GFP_KERNEL);
if (!FDEV(devi).zone_capacity_blocks)
return -ENOMEM;
rep_zone_arg.dev = &FDEV(devi);
rep_zone_arg.zone_cap_mismatch = false;
ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
&FDEV(devi)); &rep_zone_arg);
if (ret < 0) if (ret < 0)
return ret; return ret;
if (!rep_zone_arg.zone_cap_mismatch) {
kfree(FDEV(devi).zone_capacity_blocks);
FDEV(devi).zone_capacity_blocks = NULL;
}
return 0; return 0;
} }
#endif #endif
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment