Commit e0c7d767 authored by David Woodhouse's avatar David Woodhouse

[MTD NAND] Indent all of drivers/mtd/nand/*.c.

It was just too painful to deal with.
Signed-off-by: default avatarDavid Woodhouse <dwmw2@infradead.org>
parent 6943f8af
......@@ -38,7 +38,7 @@
*/
static struct mtd_info *au1550_mtd = NULL;
static void __iomem *p_nand;
static int nand_width = 1; /* default x8*/
static int nand_width = 1; /* default x8 */
/*
* Define partitions for flash device
......@@ -47,13 +47,11 @@ static const struct mtd_partition partition_info[] = {
{
.name = "NAND FS 0",
.offset = 0,
.size = 8*1024*1024
},
.size = 8 * 1024 * 1024},
{
.name = "NAND FS 1",
.offset = MTDPART_OFS_APPEND,
.size = MTDPART_SIZ_FULL
}
.size = MTDPART_SIZ_FULL}
};
/**
......@@ -157,7 +155,7 @@ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
writeb(buf[i], this->IO_ADDR_W);
au_sync();
}
......@@ -176,7 +174,7 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
buf[i] = readb(this->IO_ADDR_R);
au_sync();
}
......@@ -195,7 +193,7 @@ static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
if (buf[i] != readb(this->IO_ADDR_R))
return -EFAULT;
au_sync();
......@@ -219,7 +217,7 @@ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
writew(p[i], this->IO_ADDR_W);
au_sync();
}
......@@ -241,7 +239,7 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
p[i] = readw(this->IO_ADDR_R);
au_sync();
}
......@@ -262,7 +260,7 @@ static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
if (p[i] != readw(this->IO_ADDR_R))
return -EFAULT;
au_sync();
......@@ -275,27 +273,35 @@ static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
{
register struct nand_chip *this = mtd->priv;
switch(cmd){
switch (cmd) {
case NAND_CTL_SETCLE:
this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;
break;
case NAND_CTL_CLRCLE:
this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
break;
case NAND_CTL_SETCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_CMD; break;
case NAND_CTL_CLRCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; break;
case NAND_CTL_SETALE:
this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;
break;
case NAND_CTL_SETALE: this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; break;
case NAND_CTL_CLRALE:
this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
/* FIXME: Nobody knows why this is neccecary,
/* FIXME: Nobody knows why this is necessary,
* but it works only that way */
udelay(1);
break;
case NAND_CTL_SETNCE:
/* assert (force assert) chip enable */
au_writel((1<<(4+NAND_CS)) , MEM_STNDCTL); break;
au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);
break;
case NAND_CTL_CLRNCE:
/* deassert chip enable */
au_writel(0, MEM_STNDCTL); break;
au_writel(0, MEM_STNDCTL);
break;
}
......@@ -315,7 +321,7 @@ int au1550_device_ready(struct mtd_info *mtd)
/*
* Main initialization routine
*/
int __init au1xxx_nand_init (void)
int __init au1xxx_nand_init(void)
{
struct nand_chip *this;
u16 boot_swapboot = 0; /* default value */
......@@ -324,36 +330,33 @@ int __init au1xxx_nand_init (void)
u32 nand_phys;
/* Allocate memory for MTD device structure and private data */
au1550_mtd = kmalloc (sizeof(struct mtd_info) +
sizeof (struct nand_chip), GFP_KERNEL);
au1550_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!au1550_mtd) {
printk ("Unable to allocate NAND MTD dev structure.\n");
printk("Unable to allocate NAND MTD dev structure.\n");
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&au1550_mtd[1]);
this = (struct nand_chip *)(&au1550_mtd[1]);
/* Initialize structures */
memset((char *) au1550_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(au1550_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
au1550_mtd->priv = this;
/* disable interrupts */
au_writel(au_readl(MEM_STNDCTL) & ~(1<<8), MEM_STNDCTL);
au_writel(au_readl(MEM_STNDCTL) & ~(1 << 8), MEM_STNDCTL);
/* disable NAND boot */
au_writel(au_readl(MEM_STNDCTL) & ~(1<<0), MEM_STNDCTL);
au_writel(au_readl(MEM_STNDCTL) & ~(1 << 0), MEM_STNDCTL);
#ifdef CONFIG_MIPS_PB1550
/* set gpio206 high */
au_writel(au_readl(GPIO2_DIR) & ~(1<<6), GPIO2_DIR);
au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR);
boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) |
((bcsr->status >> 6) & 0x1);
boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr->status >> 6) & 0x1);
switch (boot_swapboot) {
case 0:
case 2:
......@@ -424,14 +427,13 @@ int __init au1xxx_nand_init (void)
/* make controller and MTD agree */
if (NAND_CS == 0)
nand_width = au_readl(MEM_STCFG0) & (1<<22);
nand_width = au_readl(MEM_STCFG0) & (1 << 22);
if (NAND_CS == 1)
nand_width = au_readl(MEM_STCFG1) & (1<<22);
nand_width = au_readl(MEM_STCFG1) & (1 << 22);
if (NAND_CS == 2)
nand_width = au_readl(MEM_STCFG2) & (1<<22);
nand_width = au_readl(MEM_STCFG2) & (1 << 22);
if (NAND_CS == 3)
nand_width = au_readl(MEM_STCFG3) & (1<<22);
nand_width = au_readl(MEM_STCFG3) & (1 << 22);
/* Set address of hardware control function */
this->hwcontrol = au1550_hwcontrol;
......@@ -454,7 +456,7 @@ int __init au1xxx_nand_init (void)
this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
/* Scan to find existence of the device */
if (nand_scan (au1550_mtd, 1)) {
if (nand_scan(au1550_mtd, 1)) {
retval = -ENXIO;
goto outio;
}
......@@ -465,10 +467,10 @@ int __init au1xxx_nand_init (void)
return 0;
outio:
iounmap ((void *)p_nand);
iounmap((void *)p_nand);
outmem:
kfree (au1550_mtd);
kfree(au1550_mtd);
return retval;
}
......@@ -478,19 +480,20 @@ module_init(au1xxx_nand_init);
* Clean up routine
*/
#ifdef MODULE
static void __exit au1550_cleanup (void)
static void __exit au1550_cleanup(void)
{
struct nand_chip *this = (struct nand_chip *) &au1550_mtd[1];
struct nand_chip *this = (struct nand_chip *)&au1550_mtd[1];
/* Release resources, unregister device */
nand_release (au1550_mtd);
nand_release(au1550_mtd);
/* Free the MTD device structure */
kfree (au1550_mtd);
kfree(au1550_mtd);
/* Unmap */
iounmap ((void *)p_nand);
iounmap((void *)p_nand);
}
module_exit(au1550_cleanup);
#endif
......
......@@ -47,7 +47,7 @@ static int autcpu12_io_base = CS89712_VIRT_BASE;
static int autcpu12_fio_pbase = AUTCPU12_PHYS_SMC;
static int autcpu12_fio_ctrl = AUTCPU12_SMC_SELECT_OFFSET;
static int autcpu12_pedr = AUTCPU12_SMC_PORT_OFFSET;
static void __iomem * autcpu12_fio_base;
static void __iomem *autcpu12_fio_base;
/*
* Define partitions for flash devices
......@@ -95,10 +95,10 @@ static struct mtd_partition partition_info128k[] = {
/*
* hardware specific access to control-lines
*/
static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch(cmd){
switch (cmd) {
case NAND_CTL_SETCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) |= AUTCPU12_SMC_CLE; break;
case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) &= ~AUTCPU12_SMC_CLE; break;
......@@ -117,41 +117,40 @@ static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd)
int autcpu12_device_ready(struct mtd_info *mtd)
{
return ( (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) & AUTCPU12_SMC_RDY) ? 1 : 0;
return ((*(volatile unsigned char *)(autcpu12_io_base + autcpu12_pedr)) & AUTCPU12_SMC_RDY) ? 1 : 0;
}
/*
* Main initialization routine
*/
int __init autcpu12_init (void)
int __init autcpu12_init(void)
{
struct nand_chip *this;
int err = 0;
/* Allocate memory for MTD device structure and private data */
autcpu12_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
autcpu12_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!autcpu12_mtd) {
printk ("Unable to allocate AUTCPU12 NAND MTD device structure.\n");
printk("Unable to allocate AUTCPU12 NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
/* map physical adress */
autcpu12_fio_base = ioremap(autcpu12_fio_pbase,SZ_1K);
if(!autcpu12_fio_base){
autcpu12_fio_base = ioremap(autcpu12_fio_pbase, SZ_1K);
if (!autcpu12_fio_base) {
printk("Ioremap autcpu12 SmartMedia Card failed\n");
err = -EIO;
goto out_mtd;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&autcpu12_mtd[1]);
this = (struct nand_chip *)(&autcpu12_mtd[1]);
/* Initialize structures */
memset((char *) autcpu12_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(autcpu12_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
autcpu12_mtd->priv = this;
......@@ -172,30 +171,29 @@ int __init autcpu12_init (void)
this->options = NAND_USE_FLASH_BBT;
/* Scan to find existance of the device */
if (nand_scan (autcpu12_mtd, 1)) {
if (nand_scan(autcpu12_mtd, 1)) {
err = -ENXIO;
goto out_ior;
}
/* Register the partitions */
switch(autcpu12_mtd->size){
switch (autcpu12_mtd->size) {
case SZ_16M: add_mtd_partitions(autcpu12_mtd, partition_info16k, NUM_PARTITIONS16K); break;
case SZ_32M: add_mtd_partitions(autcpu12_mtd, partition_info32k, NUM_PARTITIONS32K); break;
case SZ_64M: add_mtd_partitions(autcpu12_mtd, partition_info64k, NUM_PARTITIONS64K); break;
case SZ_128M: add_mtd_partitions(autcpu12_mtd, partition_info128k, NUM_PARTITIONS128K); break;
default: {
printk ("Unsupported SmartMedia device\n");
default:
printk("Unsupported SmartMedia device\n");
err = -ENXIO;
goto out_ior;
}
}
goto out;
out_ior:
out_ior:
iounmap((void *)autcpu12_fio_base);
out_mtd:
kfree (autcpu12_mtd);
out:
out_mtd:
kfree(autcpu12_mtd);
out:
return err;
}
......@@ -205,17 +203,18 @@ module_init(autcpu12_init);
* Clean up routine
*/
#ifdef MODULE
static void __exit autcpu12_cleanup (void)
static void __exit autcpu12_cleanup(void)
{
/* Release resources, unregister device */
nand_release (autcpu12_mtd);
nand_release(autcpu12_mtd);
/* unmap physical adress */
iounmap((void *)autcpu12_fio_base);
/* Free the MTD device structure */
kfree (autcpu12_mtd);
kfree(autcpu12_mtd);
}
module_exit(autcpu12_cleanup);
#endif
......
......@@ -128,7 +128,7 @@ static void cs553x_write_byte(struct mtd_info *mtd, u_char byte)
udelay(1);
i--;
}
writeb(byte, this->IO_ADDR_W+0x801);
writeb(byte, this->IO_ADDR_W + 0x801);
}
static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd)
......@@ -137,7 +137,7 @@ static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd)
void __iomem *mmio_base = this->IO_ADDR_R;
unsigned char ctl;
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
ctl = CS_NAND_CTL_CLE;
break;
......@@ -160,7 +160,6 @@ static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd)
writeb(ctl, mmio_base + MM_NAND_CTL);
}
static int cs553x_device_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
......@@ -170,7 +169,6 @@ static int cs553x_device_ready(struct mtd_info *mtd)
return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY);
}
static void cs_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *this = mtd->priv;
......@@ -209,7 +207,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
}
/* Allocate memory for MTD device structure and private data */
new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), GFP_KERNEL);
new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!new_mtd) {
printk(KERN_WARNING "Unable to allocate CS553X NAND MTD device structure.\n");
err = -ENOMEM;
......@@ -217,7 +215,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
}
/* Get pointer to private data */
this = (struct nand_chip *) (&new_mtd[1]);
this = (struct nand_chip *)(&new_mtd[1]);
/* Initialize structures */
memset(new_mtd, 0, sizeof(struct mtd_info));
......@@ -286,8 +284,8 @@ int __init cs553x_init(void)
return -ENXIO;
}
for (i=0; i<NR_CS553X_CONTROLLERS; i++) {
rdmsrl(MSR_DIVIL_LBAR_FLSH0+i, val);
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val);
if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND))
err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF);
......@@ -295,7 +293,7 @@ int __init cs553x_init(void)
/* Register all devices together here. This means we can easily hack it to
do mtdconcat etc. if we want to. */
for (i=0; i<NR_CS553X_CONTROLLERS; i++) {
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
if (cs553x_mtd[i]) {
add_mtd_device(cs553x_mtd[i]);
......@@ -306,13 +304,14 @@ int __init cs553x_init(void)
return err;
}
module_init(cs553x_init);
static void __exit cs553x_cleanup (void)
static void __exit cs553x_cleanup(void)
{
int i;
for (i=0; i<NR_CS553X_CONTROLLERS; i++) {
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
struct mtd_info *mtd = cs553x_mtd[i];
struct nand_chip *this;
void __iomem *mmio_base;
......@@ -324,7 +323,7 @@ static void __exit cs553x_cleanup (void)
mmio_base = this->IO_ADDR_R;
/* Release resources, unregister device */
nand_release (cs553x_mtd[i]);
nand_release(cs553x_mtd[i]);
cs553x_mtd[i] = NULL;
/* unmap physical adress */
......@@ -334,6 +333,7 @@ static void __exit cs553x_cleanup (void)
kfree(mtd);
}
}
module_exit(cs553x_cleanup);
MODULE_LICENSE("GPL");
......
......@@ -61,7 +61,7 @@ static unsigned long __initdata doc_locations[] = {
0xff000000,
#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
0xff000000,
##else
#else
#warning Unknown architecture for DiskOnChip. No default probe locations defined
#endif
0xffffffff };
......@@ -84,6 +84,7 @@ struct doc_priv {
/* This is the syndrome computed by the HW ecc generator upon reading an empty
page, one with all 0xff for data and stored ecc code. */
static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
/* This is the ecc value computed by the HW ecc generator upon writing an empty
page, one with all 0xff for data. */
static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
......@@ -97,25 +98,25 @@ static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
static void doc200x_select_chip(struct mtd_info *mtd, int chip);
static int debug=0;
static int debug = 0;
module_param(debug, int, 0);
static int try_dword=1;
static int try_dword = 1;
module_param(try_dword, int, 0);
static int no_ecc_failures=0;
static int no_ecc_failures = 0;
module_param(no_ecc_failures, int, 0);
static int no_autopart=0;
static int no_autopart = 0;
module_param(no_autopart, int, 0);
static int show_firmware_partition=0;
static int show_firmware_partition = 0;
module_param(show_firmware_partition, int, 0);
#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
static int inftl_bbt_write=1;
static int inftl_bbt_write = 1;
#else
static int inftl_bbt_write=0;
static int inftl_bbt_write = 0;
#endif
module_param(inftl_bbt_write, int, 0);
......@@ -123,7 +124,6 @@ static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDR
module_param(doc_config_location, ulong, 0);
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
/* Sector size for HW ECC */
#define SECTOR_SIZE 512
/* The sector bytes are packed into NB_DATA 10 bit words */
......@@ -147,7 +147,7 @@ static struct rs_control *rs_decoder;
* some comments, improved a minor bit and converted it to make use
* of the generic Reed-Solomon libary. tglx
*/
static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
{
int i, j, nerr, errpos[8];
uint8_t parity;
......@@ -168,11 +168,11 @@ static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
* s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
* where x = alpha^(FCR + i)
*/
for(j = 1; j < NROOTS; j++) {
if(ds[j] == 0)
for (j = 1; j < NROOTS; j++) {
if (ds[j] == 0)
continue;
tmp = rs->index_of[ds[j]];
for(i = 0; i < NROOTS; i++)
for (i = 0; i < NROOTS; i++)
s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
}
......@@ -193,7 +193,7 @@ static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
* but they are given by the design of the de/encoder circuit
* in the DoC ASIC's.
*/
for(i = 0;i < nerr; i++) {
for (i = 0; i < nerr; i++) {
int index, bitpos, pos = 1015 - errpos[i];
uint8_t val;
if (pos >= NB_DATA && pos < 1019)
......@@ -205,8 +205,7 @@ static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
can be modified since pos is even */
index = (pos >> 3) ^ 1;
bitpos = pos & 7;
if ((index >= 0 && index < SECTOR_SIZE) ||
index == (SECTOR_SIZE + 1)) {
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
val = (uint8_t) (errval[i] >> (2 + bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
......@@ -216,9 +215,8 @@ static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
bitpos = (bitpos + 10) & 7;
if (bitpos == 0)
bitpos = 8;
if ((index >= 0 && index < SECTOR_SIZE) ||
index == (SECTOR_SIZE + 1)) {
val = (uint8_t)(errval[i] << (8 - bitpos));
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
val = (uint8_t) (errval[i] << (8 - bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
data[index] ^= val;
......@@ -253,7 +251,8 @@ static int _DoC_WaitReady(struct doc_priv *doc)
void __iomem *docptr = doc->virtadr;
unsigned long timeo = jiffies + (HZ * 10);
if(debug) printk("_DoC_WaitReady...\n");
if (debug)
printk("_DoC_WaitReady...\n");
/* Out-of-line routine to wait for chip response */
if (DoC_is_MillenniumPlus(doc)) {
while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
......@@ -298,7 +297,8 @@ static inline int DoC_WaitReady(struct doc_priv *doc)
DoC_Delay(doc, 2);
}
if(debug) printk("DoC_WaitReady OK\n");
if (debug)
printk("DoC_WaitReady OK\n");
return ret;
}
......@@ -308,7 +308,8 @@ static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
if(debug)printk("write_byte %02x\n", datum);
if (debug)
printk("write_byte %02x\n", datum);
WriteDOC(datum, docptr, CDSNSlowIO);
WriteDOC(datum, docptr, 2k_CDSN_IO);
}
......@@ -323,71 +324,72 @@ static u_char doc2000_read_byte(struct mtd_info *mtd)
ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(doc, 2);
ret = ReadDOC(docptr, 2k_CDSN_IO);
if (debug) printk("read_byte returns %02x\n", ret);
if (debug)
printk("read_byte returns %02x\n", ret);
return ret;
}
static void doc2000_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("writebuf of %d bytes: ", len);
for (i=0; i < len; i++) {
if (debug)
printk("writebuf of %d bytes: ", len);
for (i = 0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug) printk("\n");
if (debug)
printk("\n");
}
static void doc2000_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("readbuf of %d bytes: ", len);
if (debug)
printk("readbuf of %d bytes: ", len);
for (i=0; i < len; i++) {
for (i = 0; i < len; i++) {
buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
}
}
static void doc2000_readbuf_dword(struct mtd_info *mtd,
u_char *buf, int len)
static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug) printk("readbuf_dword of %d bytes: ", len);
if (debug)
printk("readbuf_dword of %d bytes: ", len);
if (unlikely((((unsigned long)buf)|len) & 3)) {
for (i=0; i < len; i++) {
*(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
if (unlikely((((unsigned long)buf) | len) & 3)) {
for (i = 0; i < len; i++) {
*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
}
} else {
for (i=0; i < len; i+=4) {
*(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
for (i = 0; i < len; i += 4) {
*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
}
}
}
static int doc2000_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
for (i=0; i < len; i++)
for (i = 0; i < len; i++)
if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
return -EFAULT;
return 0;
......@@ -503,22 +505,20 @@ static u_char doc2001_read_byte(struct mtd_info *mtd)
return ReadDOC(docptr, LastDataRead);
}
static void doc2001_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
for (i=0; i < len; i++)
for (i = 0; i < len; i++)
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
/* Terminate write pipeline */
WriteDOC(0x00, docptr, WritePipeTerm);
}
static void doc2001_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -528,15 +528,14 @@ static void doc2001_readbuf(struct mtd_info *mtd,
/* Start read pipeline */
ReadDOC(docptr, ReadPipeInit);
for (i=0; i < len-1; i++)
for (i = 0; i < len - 1; i++)
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
/* Terminate read pipeline */
buf[i] = ReadDOC(docptr, LastDataRead);
}
static int doc2001_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -546,7 +545,7 @@ static int doc2001_verifybuf(struct mtd_info *mtd,
/* Start read pipeline */
ReadDOC(docptr, ReadPipeInit);
for (i=0; i < len-1; i++)
for (i = 0; i < len - 1; i++)
if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
ReadDOC(docptr, LastDataRead);
return i;
......@@ -566,81 +565,84 @@ static u_char doc2001plus_read_byte(struct mtd_info *mtd)
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
ret = ReadDOC(docptr, Mplus_LastDataRead);
if (debug) printk("read_byte returns %02x\n", ret);
if (debug)
printk("read_byte returns %02x\n", ret);
return ret;
}
static void doc2001plus_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("writebuf of %d bytes: ", len);
for (i=0; i < len; i++) {
if (debug)
printk("writebuf of %d bytes: ", len);
for (i = 0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug) printk("\n");
if (debug)
printk("\n");
}
static void doc2001plus_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("readbuf of %d bytes: ", len);
if (debug)
printk("readbuf of %d bytes: ", len);
/* Start read pipeline */
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
for (i=0; i < len-2; i++) {
for (i = 0; i < len - 2; i++) {
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
/* Terminate read pipeline */
buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len-2]);
buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
printk("%02x ", buf[len - 2]);
buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len-1]);
if (debug) printk("\n");
printk("%02x ", buf[len - 1]);
if (debug)
printk("\n");
}
static int doc2001plus_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("verifybuf of %d bytes: ", len);
if (debug)
printk("verifybuf of %d bytes: ", len);
/* Start read pipeline */
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
for (i=0; i < len-2; i++)
for (i = 0; i < len - 2; i++)
if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
ReadDOC(docptr, Mplus_LastDataRead);
ReadDOC(docptr, Mplus_LastDataRead);
return i;
}
if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
return len-2;
if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
return len-1;
if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
return len - 2;
if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
return len - 1;
return 0;
}
......@@ -651,7 +653,8 @@ static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
void __iomem *docptr = doc->virtadr;
int floor = 0;
if(debug)printk("select chip (%d)\n", chip);
if (debug)
printk("select chip (%d)\n", chip);
if (chip == -1) {
/* Disable flash internally */
......@@ -677,7 +680,8 @@ static void doc200x_select_chip(struct mtd_info *mtd, int chip)
void __iomem *docptr = doc->virtadr;
int floor = 0;
if(debug)printk("select chip (%d)\n", chip);
if (debug)
printk("select chip (%d)\n", chip);
if (chip == -1)
return;
......@@ -703,7 +707,7 @@ static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETNCE:
doc->CDSNControl |= CDSN_CTRL_CE;
break;
......@@ -729,13 +733,14 @@ static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
doc->CDSNControl &= ~CDSN_CTRL_WP;
break;
}
if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
if (debug)
printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
/* 11.4.3 -- 4 NOPs after CSDNControl write */
DoC_Delay(doc, 4);
}
static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -782,18 +787,19 @@ static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int col
WriteDOC(column, docptr, Mplus_FlashAddress);
}
if (page_addr != -1) {
WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
/* One more address cycle for higher density devices */
if (this->chipsize & 0x0c000000) {
WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
printk("high density\n");
}
}
WriteDOC(0, docptr, Mplus_WritePipeTerm);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
/* deassert ALE */
if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_READID)
WriteDOC(0, docptr, Mplus_FlashControl);
}
......@@ -817,7 +823,7 @@ static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int col
WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
while ( !(this->read_byte(mtd) & 0x40));
while (!(this->read_byte(mtd) & 0x40)) ;
return;
/* This applies to read commands */
......@@ -827,16 +833,16 @@ static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int col
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
udelay(this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
ndelay(100);
/* wait until command is processed */
while (!this->dev_ready(mtd));
while (!this->dev_ready(mtd)) ;
}
static int doc200x_dev_ready(struct mtd_info *mtd)
......@@ -849,23 +855,25 @@ static int doc200x_dev_ready(struct mtd_info *mtd)
/* 11.4.2 -- must NOP four times before checking FR/B# */
DoC_Delay(doc, 4);
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
if(debug)
if (debug)
printk("not ready\n");
return 0;
}
if (debug)printk("was ready\n");
if (debug)
printk("was ready\n");
return 1;
} else {
/* 11.4.2 -- must NOP four times before checking FR/B# */
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
if(debug)
if (debug)
printk("not ready\n");
return 0;
}
/* 11.4.2 -- Must NOP twice if it's ready */
DoC_Delay(doc, 2);
if (debug)printk("was ready\n");
if (debug)
printk("was ready\n");
return 1;
}
}
......@@ -884,7 +892,7 @@ static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch(mode) {
switch (mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
......@@ -903,7 +911,7 @@ static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch(mode) {
switch (mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
......@@ -916,8 +924,7 @@ static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
}
/* This code is only called on write */
static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
unsigned char *ecc_code)
static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -961,7 +968,8 @@ static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
often. It could be optimized away by examining the data in
the writebuf routine, and remembering the result. */
for (i = 0; i < 512; i++) {
if (dat[i] == 0xff) continue;
if (dat[i] == 0xff)
continue;
emptymatch = 0;
break;
}
......@@ -969,7 +977,8 @@ static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
/* If emptymatch still =1, we do have an all-0xff data buffer.
Return all-0xff ecc value instead of the computed one, so
it'll look just like a freshly-erased page. */
if (emptymatch) memset(ecc_code, 0xff, 6);
if (emptymatch)
memset(ecc_code, 0xff, 6);
#endif
return 0;
}
......@@ -1012,7 +1021,8 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_
all-0xff data and stored ecc block. Check the stored ecc. */
if (emptymatch) {
for (i = 0; i < 6; i++) {
if (read_ecc[i] == 0xff) continue;
if (read_ecc[i] == 0xff)
continue;
emptymatch = 0;
break;
}
......@@ -1023,7 +1033,8 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_
often. It could be optimized away by examining the data in
the readbuf routine, and remembering the result. */
for (i = 0; i < 512; i++) {
if (dat[i] == 0xff) continue;
if (dat[i] == 0xff)
continue;
emptymatch = 0;
break;
}
......@@ -1032,7 +1043,8 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_
erased block, in which case the ECC will not come out right.
We'll suppress the error and tell the caller everything's
OK. Because it is. */
if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
if (!emptymatch)
ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
if (ret > 0)
printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
}
......@@ -1063,7 +1075,7 @@ static struct nand_oobinfo doc200x_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 4, 5},
.oobfree = { {8, 8}, {6, 2} }
.oobfree = {{8, 8}, {6, 2}}
};
/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
......@@ -1072,8 +1084,7 @@ static struct nand_oobinfo doc200x_oobinfo = {
either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
header. The page #s of the found media headers are placed in mh0_page and
mh1_page in the DOC private structure. */
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
const char *id, int findmirror)
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -1083,16 +1094,18 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
if (retlen != mtd->oobblock) continue;
if (retlen != mtd->oobblock)
continue;
if (ret) {
printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
offs);
printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
}
if (memcmp(buf, id, 6)) continue;
if (memcmp(buf, id, 6))
continue;
printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
if (doc->mh0_page == -1) {
doc->mh0_page = offs >> this->page_shift;
if (!findmirror) return 1;
if (!findmirror)
return 1;
continue;
}
doc->mh1_page = offs >> this->page_shift;
......@@ -1114,8 +1127,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
return 1;
}
static inline int __init nftl_partscan(struct mtd_info *mtd,
struct mtd_partition *parts)
static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -1132,8 +1144,9 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
return 0;
}
if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
mh = (struct NFTLMediaHeader *) buf;
if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
goto out;
mh = (struct NFTLMediaHeader *)buf;
mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
......@@ -1211,14 +1224,13 @@ static inline int __init nftl_partscan(struct mtd_info *mtd,
}
ret = numparts;
out:
out:
kfree(buf);
return ret;
}
/* This is a stripped-down copy of the code in inftlmount.c */
static inline int __init inftl_partscan(struct mtd_info *mtd,
struct mtd_partition *parts)
static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
......@@ -1241,9 +1253,10 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
return 0;
}
if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
if (!find_media_headers(mtd, buf, "BNAND", 0))
goto out;
doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
mh = (struct INFTLMediaHeader *) buf;
mh = (struct INFTLMediaHeader *)buf;
mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
......@@ -1319,8 +1332,10 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
parts[numparts].offset = ip->firstUnit << vshift;
parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
numparts++;
if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
if (ip->flags & INFTL_LAST) break;
if (ip->lastUnit > lastvunit)
lastvunit = ip->lastUnit;
if (ip->flags & INFTL_LAST)
break;
}
lastvunit++;
if ((lastvunit << vshift) < end) {
......@@ -1330,7 +1345,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd,
numparts++;
}
ret = numparts;
out:
out:
kfree(buf);
return ret;
}
......@@ -1342,11 +1357,12 @@ static int __init nftl_scan_bbt(struct mtd_info *mtd)
struct doc_priv *doc = this->priv;
struct mtd_partition parts[2];
memset((char *) parts, 0, sizeof(parts));
memset((char *)parts, 0, sizeof(parts));
/* On NFTL, we have to find the media headers before we can read the
BBTs, since they're stored in the media header eraseblocks. */
numparts = nftl_partscan(mtd, parts);
if (!numparts) return -EIO;
if (!numparts)
return -EIO;
this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
NAND_BBT_VERSION;
......@@ -1393,8 +1409,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
this->bbt_td->pages[0] = 2;
this->bbt_md = NULL;
} else {
this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
NAND_BBT_VERSION;
this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_td->options |= NAND_BBT_WRITE;
this->bbt_td->offs = 8;
......@@ -1404,8 +1419,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
this->bbt_td->reserved_block_code = 0x01;
this->bbt_td->pattern = "MSYS_BBT";
this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
NAND_BBT_VERSION;
this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_md->options |= NAND_BBT_WRITE;
this->bbt_md->offs = 8;
......@@ -1420,12 +1434,13 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
At least as nand_bbt.c is currently written. */
if ((ret = nand_scan_bbt(mtd, NULL)))
return ret;
memset((char *) parts, 0, sizeof(parts));
memset((char *)parts, 0, sizeof(parts));
numparts = inftl_partscan(mtd, parts);
/* At least for now, require the INFTL Media Header. We could probably
do without it for non-INFTL use, since all it gives us is
autopartitioning, but I want to give it more thought. */
if (!numparts) return -EIO;
if (!numparts)
return -EIO;
add_mtd_device(mtd);
#ifdef CONFIG_MTD_PARTITIONS
if (!no_autopart)
......@@ -1535,20 +1550,16 @@ static int __init doc_probe(unsigned long physadr)
save_control = ReadDOC(virtadr, DOCControl);
/* Reset the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
/* Enable the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
ChipID = ReadDOC(virtadr, ChipID);
switch(ChipID) {
switch (ChipID) {
case DOC_ChipID_Doc2k:
reg = DoC_2k_ECCStatus;
break;
......@@ -1564,15 +1575,13 @@ static int __init doc_probe(unsigned long physadr)
ReadDOC(virtadr, Mplus_Power);
/* Reset the Millennium Plus ASIC */
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
DOC_MODE_BDECT;
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
mdelay(1);
/* Enable the Millennium Plus ASIC */
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
DOC_MODE_BDECT;
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
mdelay(1);
......@@ -1642,9 +1651,7 @@ static int __init doc_probe(unsigned long physadr)
printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
len = sizeof(struct mtd_info) +
sizeof(struct nand_chip) +
sizeof(struct doc_priv) +
(2 * sizeof(struct nand_bbt_descr));
sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
mtd = kmalloc(len, GFP_KERNEL);
if (!mtd) {
printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
......@@ -1707,11 +1714,11 @@ static int __init doc_probe(unsigned long physadr)
doclist = mtd;
return 0;
notfound:
notfound:
/* Put back the contents of the DOCControl register, in case it's not
actually a DiskOnChip. */
WriteDOC(save_control, virtadr, DOCControl);
fail:
fail:
iounmap(virtadr);
return ret;
}
......@@ -1748,7 +1755,7 @@ static int __init init_nanddoc(void)
*/
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!rs_decoder) {
printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
return -ENOMEM;
}
......@@ -1758,7 +1765,7 @@ static int __init init_nanddoc(void)
if (ret < 0)
goto outerr;
} else {
for (i=0; (doc_locations[i] != 0xffffffff); i++) {
for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
doc_probe(doc_locations[i]);
}
}
......@@ -1770,7 +1777,7 @@ static int __init init_nanddoc(void)
goto outerr;
}
return 0;
outerr:
outerr:
free_rs(rs_decoder);
return ret;
}
......
......@@ -54,29 +54,29 @@ static struct mtd_info *ep7312_mtd = NULL;
*/
static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE;
static void __iomem * ep7312_pxdr = (void __iomem *) EP7312_PXDR;
static void __iomem * ep7312_pxddr = (void __iomem *) EP7312_PXDDR;
static void __iomem *ep7312_pxdr = (void __iomem *)EP7312_PXDR;
static void __iomem *ep7312_pxddr = (void __iomem *)EP7312_PXDDR;
#ifdef CONFIG_MTD_PARTITIONS
/*
* Define static partitions for flash device
*/
static struct mtd_partition partition_info[] = {
{ .name = "EP7312 Nand Flash",
{.name = "EP7312 Nand Flash",
.offset = 0,
.size = 8*1024*1024 }
.size = 8 * 1024 * 1024}
};
#define NUM_PARTITIONS 1
#endif
/*
* hardware specific access to control-lines
*/
static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
clps_writeb(clps_readb(ep7312_pxdr) | 0x10, ep7312_pxdr);
......@@ -108,6 +108,7 @@ static int ep7312_device_ready(struct mtd_info *mtd)
{
return 1;
}
#ifdef CONFIG_MTD_PARTITIONS
const char *part_probes[] = { "cmdlinepart", NULL };
#endif
......@@ -115,18 +116,16 @@ const char *part_probes[] = { "cmdlinepart", NULL };
/*
* Main initialization routine
*/
static int __init ep7312_init (void)
static int __init ep7312_init(void)
{
struct nand_chip *this;
const char *part_type = 0;
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = 0;
void __iomem * ep7312_fio_base;
void __iomem *ep7312_fio_base;
/* Allocate memory for MTD device structure and private data */
ep7312_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip),
GFP_KERNEL);
ep7312_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!ep7312_mtd) {
printk("Unable to allocate EDB7312 NAND MTD device structure.\n");
return -ENOMEM;
......@@ -134,18 +133,18 @@ static int __init ep7312_init (void)
/* map physical adress */
ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K);
if(!ep7312_fio_base) {
if (!ep7312_fio_base) {
printk("ioremap EDB7312 NAND flash failed\n");
kfree(ep7312_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&ep7312_mtd[1]);
this = (struct nand_chip *)(&ep7312_mtd[1]);
/* Initialize structures */
memset((char *) ep7312_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(ep7312_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
ep7312_mtd->priv = this;
......@@ -165,16 +164,14 @@ static int __init ep7312_init (void)
this->chip_delay = 15;
/* Scan to find existence of the device */
if (nand_scan (ep7312_mtd, 1)) {
if (nand_scan(ep7312_mtd, 1)) {
iounmap((void *)ep7312_fio_base);
kfree (ep7312_mtd);
kfree(ep7312_mtd);
return -ENXIO;
}
#ifdef CONFIG_MTD_PARTITIONS
ep7312_mtd->name = "edb7312-nand";
mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes,
&mtd_parts, 0);
mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes, &mtd_parts, 0);
if (mtd_parts_nb > 0)
part_type = "command line";
else
......@@ -193,24 +190,26 @@ static int __init ep7312_init (void)
/* Return happy */
return 0;
}
module_init(ep7312_init);
/*
* Clean up routine
*/
static void __exit ep7312_cleanup (void)
static void __exit ep7312_cleanup(void)
{
struct nand_chip *this = (struct nand_chip *) &ep7312_mtd[1];
struct nand_chip *this = (struct nand_chip *)&ep7312_mtd[1];
/* Release resources, unregister device */
nand_release (ap7312_mtd);
nand_release(ap7312_mtd);
/* Free internal data buffer */
kfree (this->data_buf);
kfree(this->data_buf);
/* Free the MTD device structure */
kfree (ep7312_mtd);
kfree(ep7312_mtd);
}
module_exit(ep7312_cleanup);
MODULE_LICENSE("GPL");
......
......@@ -45,23 +45,23 @@ static struct mtd_info *h1910_nand_mtd = NULL;
* Define static partitions for flash device
*/
static struct mtd_partition partition_info[] = {
{ name: "h1910 NAND Flash",
offset: 0,
size: 16*1024*1024 }
{name:"h1910 NAND Flash",
offset:0,
size:16 * 1024 * 1024}
};
#define NUM_PARTITIONS 1
#endif
/*
* hardware specific access to control-lines
*/
static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip* this = (struct nand_chip *) (mtd->priv);
struct nand_chip *this = (struct nand_chip *)(mtd->priv);
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
this->IO_ADDR_R |= (1 << 2);
......@@ -101,7 +101,7 @@ static int h1910_device_ready(struct mtd_info *mtd)
/*
* Main initialization routine
*/
static int __init h1910_init (void)
static int __init h1910_init(void)
{
struct nand_chip *this;
const char *part_type = 0;
......@@ -119,21 +119,19 @@ static int __init h1910_init (void)
}
/* Allocate memory for MTD device structure and private data */
h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip),
GFP_KERNEL);
h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!h1910_nand_mtd) {
printk("Unable to allocate h1910 NAND MTD device structure.\n");
iounmap ((void *) nandaddr);
iounmap((void *)nandaddr);
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&h1910_nand_mtd[1]);
this = (struct nand_chip *)(&h1910_nand_mtd[1]);
/* Initialize structures */
memset((char *) h1910_nand_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(h1910_nand_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
h1910_nand_mtd->priv = this;
......@@ -154,23 +152,20 @@ static int __init h1910_init (void)
this->options = NAND_NO_AUTOINCR;
/* Scan to find existence of the device */
if (nand_scan (h1910_nand_mtd, 1)) {
if (nand_scan(h1910_nand_mtd, 1)) {
printk(KERN_NOTICE "No NAND device - returning -ENXIO\n");
kfree (h1910_nand_mtd);
iounmap ((void *) nandaddr);
kfree(h1910_nand_mtd);
iounmap((void *)nandaddr);
return -ENXIO;
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts,
"h1910-nand");
mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts, "h1910-nand");
if (mtd_parts_nb > 0)
part_type = "command line";
else
mtd_parts_nb = 0;
#endif
if (mtd_parts_nb == 0)
{
if (mtd_parts_nb == 0) {
mtd_parts = partition_info;
mtd_parts_nb = NUM_PARTITIONS;
part_type = "static";
......@@ -183,24 +178,26 @@ static int __init h1910_init (void)
/* Return happy */
return 0;
}
module_init(h1910_init);
/*
* Clean up routine
*/
static void __exit h1910_cleanup (void)
static void __exit h1910_cleanup(void)
{
struct nand_chip *this = (struct nand_chip *) &h1910_nand_mtd[1];
struct nand_chip *this = (struct nand_chip *)&h1910_nand_mtd[1];
/* Release resources, unregister device */
nand_release (h1910_nand_mtd);
nand_release(h1910_nand_mtd);
/* Release io resource */
iounmap ((void *) this->IO_ADDR_W);
iounmap((void *)this->IO_ADDR_W);
/* Free the MTD device structure */
kfree (h1910_nand_mtd);
kfree(h1910_nand_mtd);
}
module_exit(h1910_cleanup);
MODULE_LICENSE("GPL");
......
......@@ -92,14 +92,14 @@ static struct nand_oobinfo nand_oob_8 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = { {3, 2}, {6, 2} }
.oobfree = {{3, 2}, {6, 2}}
};
static struct nand_oobinfo nand_oob_16 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = { {8, 8} }
.oobfree = {{8, 8}}
};
static struct nand_oobinfo nand_oob_64 = {
......@@ -109,7 +109,7 @@ static struct nand_oobinfo nand_oob_64 = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = { {2, 38} }
.oobfree = {{2, 38}}
};
/* This is used for padding purposes in nand_write_oob */
......@@ -131,32 +131,32 @@ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t * retlen);
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync (struct mtd_info *mtd);
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf,
struct nand_oobinfo *oobsel);
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync(struct mtd_info *mtd);
/* Some internal functions */
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, u_char * oob_buf,
struct nand_oobinfo *oobsel, int mode);
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
#else
#define nand_verify_pages(...) (0)
#endif
static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state);
/**
* nand_release_device - [GENERIC] release chip
......@@ -164,7 +164,7 @@ static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int ne
*
* Deselect, release chip lock and wake up anyone waiting on the device
*/
static void nand_release_device (struct mtd_info *mtd)
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
......@@ -276,7 +276,7 @@ static void nand_write_word(struct mtd_info *mtd, u16 word)
static void nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
switch(chip) {
switch (chip) {
case -1:
this->hwcontrol(mtd, NAND_CTL_CLRNCE);
break;
......@@ -302,7 +302,7 @@ static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
writeb(buf[i], this->IO_ADDR_W);
}
......@@ -319,7 +319,7 @@ static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
buf[i] = readb(this->IO_ADDR_R);
}
......@@ -336,7 +336,7 @@ static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
if (buf[i] != readb(this->IO_ADDR_R))
return -EFAULT;
......@@ -358,7 +358,7 @@ static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
writew(p[i], this->IO_ADDR_W);
}
......@@ -378,7 +378,7 @@ static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
p[i] = readw(this->IO_ADDR_R);
}
......@@ -397,7 +397,7 @@ static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
u16 *p = (u16 *) buf;
len >>= 1;
for (i=0; i<len; i++)
for (i = 0; i < len; i++)
if (p[i] != readw(this->IO_ADDR_R))
return -EFAULT;
......@@ -423,22 +423,22 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
chipnr = (int)(ofs >> this->chip_shift);
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_READING);
nand_get_device(this, mtd, FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
} else
page = (int) ofs;
page = (int)ofs;
if (this->options & NAND_BUSWIDTH_16) {
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
bad = cpu_to_le16(this->read_word(mtd));
if (this->badblockpos & 0x1)
bad >>= 8;
if ((bad & 0xFF) != 0xff)
res = 1;
} else {
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
if (this->read_byte(mtd) != 0xff)
res = 1;
}
......@@ -462,22 +462,22 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
u_char buf[2] = {0, 0};
u_char buf[2] = { 0, 0 };
size_t retlen;
int block;
/* Get block number */
block = ((int) ofs) >> this->bbt_erase_shift;
block = ((int)ofs) >> this->bbt_erase_shift;
if (this->bbt)
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Do we have a flash based bad block table ? */
if (this->options & NAND_USE_FLASH_BBT)
return nand_update_bbt (mtd, ofs);
return nand_update_bbt(mtd, ofs);
/* We write two bytes, so we dont have to mess with 16 bit access */
ofs += mtd->oobsize + (this->badblockpos & ~0x01);
return nand_write_oob (mtd, ofs , 2, &retlen, buf);
return nand_write_oob(mtd, ofs, 2, &retlen, buf);
}
/**
......@@ -487,11 +487,11 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
*
* The function expects, that the device is already selected
*/
static int nand_check_wp (struct mtd_info *mtd)
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
}
......@@ -505,7 +505,7 @@ static int nand_check_wp (struct mtd_info *mtd)
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
struct nand_chip *this = mtd->priv;
......@@ -513,7 +513,7 @@ static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, i
return this->block_bad(mtd, ofs, getchip);
/* Return info from the table */
return nand_isbad_bbt (mtd, ofs, allowbbt);
return nand_isbad_bbt(mtd, ofs, allowbbt);
}
DEFINE_LED_TRIGGER(nand_led_trigger);
......@@ -547,7 +547,7 @@ static void nand_wait_ready(struct mtd_info *mtd)
* Send command to NAND device. This function is used for small page
* devices (256/512 Bytes per page)
*/
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
static void nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
......@@ -588,11 +588,11 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
this->write_byte(mtd, column);
}
if (page_addr != -1) {
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
/* One more address cycle for devices > 32MiB */
if (this->chipsize > (32 << 20))
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0x0f));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
......@@ -618,7 +618,7 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
return;
/* This applies to read commands */
......@@ -628,13 +628,13 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
udelay(this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
ndelay(100);
nand_wait_ready(mtd);
}
......@@ -647,11 +647,11 @@ static void nand_command (struct mtd_info *mtd, unsigned command, int column, in
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This is the version for the new large page devices
* We dont have the seperate regions as we have in the small page devices.
* We dont have the separate regions as we have in the small page devices.
* We must emulate NAND_CMD_READOOB to keep the code compatible.
*
*/
static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
......@@ -661,7 +661,6 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
command = NAND_CMD_READ0;
}
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/* Write out the command to the device. */
......@@ -681,11 +680,11 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
this->write_byte(mtd, column >> 8);
}
if (page_addr != -1) {
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
/* One more address cycle for devices > 128MiB */
if (this->chipsize > (128 << 20))
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0xff));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
......@@ -724,7 +723,7 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
return;
case NAND_CMD_READ0:
......@@ -743,14 +742,14 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
udelay(this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
ndelay(100);
nand_wait_ready(mtd);
}
......@@ -763,16 +762,16 @@ static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column,
*
* Get the device and lock it for exclusive access
*/
static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
{
struct nand_chip *active;
spinlock_t *lock;
wait_queue_head_t *wq;
DECLARE_WAITQUEUE (wait, current);
DECLARE_WAITQUEUE(wait, current);
lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
wq = (this->controller) ? &this->controller->wq : &this->wq;
retry:
retry:
active = this;
spin_lock(lock);
......@@ -826,12 +825,12 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
ndelay(100);
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
/* Check, if we were interrupted */
......@@ -849,7 +848,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
}
led_trigger_event(nand_led_trigger, LED_OFF);
status = (int) this->read_byte(mtd);
status = (int)this->read_byte(mtd);
return status;
}
......@@ -868,7 +867,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
*
* Cached programming is not supported yet.
*/
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page,
u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
{
int i, status;
......@@ -882,13 +881,13 @@ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int pa
cached = 0;
/* Send command to begin auto page programming */
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
this->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
/* Write out complete page of data, take care of eccmode */
switch (eccmode) {
/* No ecc, write all */
case NAND_ECC_NONE:
printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
printk(KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
......@@ -928,11 +927,11 @@ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int pa
this->write_buf(mtd, oob_buf, mtd->oobsize);
/* Send command to actually program the data */
this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
this->cmdfunc(mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
if (!cached) {
/* call wait ready function */
status = this->waitfunc (mtd, this, FL_WRITING);
status = this->waitfunc(mtd, this, FL_WRITING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
......@@ -941,12 +940,12 @@ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int pa
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
} else {
/* FIXME: Implement cached programming ! */
/* wait until cache is ready*/
/* wait until cache is ready */
// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
}
return 0;
......@@ -972,7 +971,7 @@ static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int pa
* the error later when the ECC page check fails, but we would rather catch
* it early in the page write stage. Better to write no data than invalid data.
*/
static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
{
int i, j, datidx = 0, oobofs = 0, res = -EIO;
......@@ -983,13 +982,13 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
/* Send command to read back the first page */
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
this->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for(;;) {
for (;;) {
for (j = 0; j < eccsteps; j++) {
/* Loop through and verify the data */
if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
datidx += mtd->eccsize;
......@@ -997,7 +996,7 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
if (!hweccbytes)
continue;
if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
oobofs += hweccbytes;
......@@ -1008,7 +1007,7 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
*/
if (oobmode) {
if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
} else {
......@@ -1020,10 +1019,9 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
for (i = 0; i < ecccnt; i++) {
int idx = oobsel->eccpos[i];
if (oobdata[idx] != oob_buf[oobofs + idx] ) {
DEBUG (MTD_DEBUG_LEVEL0,
"%s: Failed ECC write "
"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
if (oobdata[idx] != oob_buf[oobofs + idx]) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n",
__FUNCTION__, page, i);
goto out;
}
}
......@@ -1041,7 +1039,7 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
* ready for the next command.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
......@@ -1049,17 +1047,16 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
if (!numpages)
return 0;
/* Check, if the chip supports auto page increment */
if (!NAND_CANAUTOINCR(this))
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
}
/*
* Terminate the read command. We come here in case of an error
* So we must issue a reset command.
*/
out:
this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
out:
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
return res;
}
#endif
......@@ -1075,12 +1072,11 @@ static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
* and flags = 0xff
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
}
/**
* nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
......@@ -1093,8 +1089,8 @@ static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * re
*
* This function simply calls nand_do_read_ecc with flags = 0xff
*/
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel)
{
/* use userspace supplied oobinfo, if zero */
if (oobsel == NULL)
......@@ -1102,7 +1098,6 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
}
/**
* nand_do_read_ecc - [MTD Interface] Read data with ECC
* @mtd: MTD device structure
......@@ -1119,9 +1114,8 @@ static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
*
* NAND read with ECC
*/
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf,
struct nand_oobinfo *oobsel, int flags)
int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel, int flags)
{
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
......@@ -1137,19 +1131,18 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
int compareecc = 1;
int oobreadlen;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
DEBUG(MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
if (flags & NAND_GET_DEVICE)
nand_get_device (this, mtd, FL_READING);
nand_get_device(this, mtd, FL_READING);
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
......@@ -1163,7 +1156,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
this->select_chip(mtd, chipnr);
/* First we calculate the starting page */
realpage = (int) (from >> this->page_shift);
realpage = (int)(from >> this->page_shift);
page = realpage & this->pagemask;
/* Get raw starting column */
......@@ -1201,13 +1194,13 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
if (realpage == this->pagebuf && !oob_buf) {
/* aligned read ? */
if (aligned)
memcpy (data_poi, this->data_buf, end);
memcpy(data_poi, this->data_buf, end);
goto readdata;
}
/* Check, if we must send the read command */
if (sndcmd) {
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
sndcmd = 0;
}
......@@ -1219,10 +1212,12 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
eccsteps = this->eccsteps;
switch (eccmode) {
case NAND_ECC_NONE: { /* No ECC, Read in a page */
case NAND_ECC_NONE:{
/* No ECC, Read in a page */
static unsigned long lastwhinge = 0;
if ((lastwhinge / HZ) != (jiffies / HZ)) {
printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
printk(KERN_WARNING
"Reading data from NAND FLASH without ECC is not recommended\n");
lastwhinge = jiffies;
}
this->read_buf(mtd, data_poi, end);
......@@ -1231,12 +1226,12 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
this->read_buf(mtd, data_poi, end);
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc)
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
break;
default:
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) {
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, &data_poi[datidx], ecc);
......@@ -1252,7 +1247,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
* does the error correction on the fly */
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: "
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
ecc_failed++;
}
......@@ -1274,7 +1269,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
for (j = 0; j < oobsel->eccbytes; j++)
ecc_code[j] = oob_data[oob_config[j]];
/* correct data, if neccecary */
/* correct data, if necessary */
for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
......@@ -1291,7 +1286,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
}
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
}
......@@ -1300,7 +1295,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
/* check, if we have a fs supplied oob-buffer */
if (oob_buf) {
/* without autoplace. Legacy mode used by YAFFS1 */
switch(oobsel->useecc) {
switch (oobsel->useecc) {
case MTD_NANDECC_AUTOPLACE:
case MTD_NANDECC_AUTOPL_USR:
/* Walk through the autoplace chunks */
......@@ -1313,7 +1308,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
break;
case MTD_NANDECC_PLACE:
/* YAFFS1 legacy mode */
oob_data += this->eccsteps * sizeof (int);
oob_data += this->eccsteps * sizeof(int);
default:
oob_data += mtd->oobsize;
}
......@@ -1333,7 +1328,7 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
......@@ -1382,13 +1377,13 @@ int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
*
* NAND read out-of-band data from the spare area
*/
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
int i, col, page, chipnr;
struct nand_chip *this = mtd->priv;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
/* Shift to get page */
page = (int)(from >> this->page_shift);
......@@ -1402,19 +1397,19 @@ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd , FL_READING);
nand_get_device(this, mtd, FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, col, page & this->pagemask);
/*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
......@@ -1444,7 +1439,7 @@ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
......@@ -1453,7 +1448,7 @@ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
/* For subsequent page reads set offset to 0 */
this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
}
}
}
......@@ -1476,11 +1471,11 @@ static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t
*
* Read raw data including oob into buffer
*/
int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
{
struct nand_chip *this = mtd->priv;
int page = (int) (from >> this->page_shift);
int chip = (int) (from >> this->chip_shift);
int page = (int)(from >> this->page_shift);
int chip = (int)(from >> this->chip_shift);
int sndcmd = 1;
int cnt = 0;
int pagesize = mtd->oobblock + mtd->oobsize;
......@@ -1488,31 +1483,31 @@ int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len,
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd , FL_READING);
nand_get_device(this, mtd, FL_READING);
this->select_chip (mtd, chip);
this->select_chip(mtd, chip);
/* Add requested oob length */
len += ooblen;
while (len) {
if (sndcmd)
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READ0, 0, page & this->pagemask);
sndcmd = 0;
this->read_buf (mtd, &buf[cnt], pagesize);
this->read_buf(mtd, &buf[cnt], pagesize);
len -= pagesize;
cnt += pagesize;
page++;
if (!this->dev_ready)
udelay (this->chip_delay);
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
......@@ -1526,7 +1521,6 @@ int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len,
return 0;
}
/**
* nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
* @mtd: MTD device structure
......@@ -1550,7 +1544,7 @@ int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len,
* forces the 0xff fill before using the buffer again.
*
*/
static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
static u_char *nand_prepare_oobbuf(struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
int autoplace, int numpages)
{
struct nand_chip *this = mtd->priv;
......@@ -1562,8 +1556,7 @@ static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct
/* Check, if the buffer must be filled with ff again */
if (this->oobdirty) {
memset (this->oob_buf, 0xff,
mtd->oobsize << (this->phys_erase_shift - this->page_shift));
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
this->oobdirty = 0;
}
......@@ -1578,7 +1571,7 @@ static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct
for (i = 0, len = 0; len < mtd->oobavail; i++) {
int to = ofs + oobsel->oobfree[i][0];
int num = oobsel->oobfree[i][1];
memcpy (&this->oob_buf[to], fsbuf, num);
memcpy(&this->oob_buf[to], fsbuf, num);
len += num;
fsbuf += num;
}
......@@ -1600,9 +1593,9 @@ static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct
* This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
*
*/
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
{
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
return (nand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL));
}
/**
......@@ -1617,8 +1610,9 @@ static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * ret
*
* NAND write with ECC
*/
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf,
struct nand_oobinfo *oobsel)
{
int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
int autoplace = 0, numpages, totalpages;
......@@ -1626,25 +1620,25 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
u_char *oobbuf, *bufstart;
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
DEBUG(MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow write past end of device */
if ((to + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED (to) || NOTALIGNED(len)) {
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
if (NOTALIGNED(to) || NOTALIGNED(len)) {
printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_WRITING);
nand_get_device(this, mtd, FL_WRITING);
/* Calculate chipnr */
chipnr = (int)(to >> this->chip_shift);
......@@ -1669,7 +1663,7 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
/* Setup variables and oob buffer */
totalpages = len >> this->page_shift;
page = (int) (to >> this->page_shift);
page = (int)(to >> this->page_shift);
/* Invalidate the page cache, if we write to the cached page */
if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
this->pagebuf = -1;
......@@ -1678,22 +1672,22 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
page &= this->pagemask;
startpage = page;
/* Calc number of pages we can write in one go */
numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
bufstart = (u_char *)buf;
numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages);
oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
bufstart = (u_char *) buf;
/* Loop until all data is written */
while (written < len) {
this->data_poi = (u_char*) &buf[written];
this->data_poi = (u_char *) &buf[written];
/* Write one page. If this is the last page to write
* or the last page in this block, then use the
* real pageprogram command, else select cached programming
* if supported by the chip.
*/
ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
ret = nand_write_page(mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
if (ret) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
goto out;
}
/* Next oob page */
......@@ -1710,14 +1704,13 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
* if verify is ok, we have to setup the oob buffer for
* the next pages.
*/
if (!(page & (ppblock - 1))){
if (!(page & (ppblock - 1))) {
int ofs;
this->data_poi = bufstart;
ret = nand_verify_pages (mtd, this, startpage,
page - startpage,
ret = nand_verify_pages(mtd, this, startpage, page - startpage,
oobbuf, oobsel, chipnr, (eccbuf != NULL));
if (ret) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
goto out;
}
*retlen = written;
......@@ -1726,11 +1719,10 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
if (eccbuf)
eccbuf += (page - startpage) * ofs;
totalpages -= page - startpage;
numpages = min (totalpages, ppblock);
numpages = min(totalpages, ppblock);
page &= this->pagemask;
startpage = page;
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
autoplace, numpages);
oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
oob = 0;
/* Check, if we cross a chip boundary */
if (!page) {
......@@ -1741,23 +1733,21 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
}
}
/* Verify the remaining pages */
cmp:
cmp:
this->data_poi = bufstart;
ret = nand_verify_pages (mtd, this, startpage, totalpages,
oobbuf, oobsel, chipnr, (eccbuf != NULL));
ret = nand_verify_pages(mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL));
if (!ret)
*retlen = written;
else
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
out:
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
return ret;
}
/**
* nand_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
......@@ -1768,16 +1758,16 @@ static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
*
* NAND write out-of-band
*/
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
{
int column, page, status, ret = -EIO, chipnr;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
/* Shift to get page */
page = (int) (to >> this->page_shift);
chipnr = (int) (to >> this->chip_shift);
page = (int)(to >> this->page_shift);
chipnr = (int)(to >> this->chip_shift);
/* Mask to get column */
column = to & (mtd->oobsize - 1);
......@@ -1787,12 +1777,12 @@ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t *
/* Do not allow write past end of page */
if ((column + len) > mtd->oobsize) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_WRITING);
nand_get_device(this, mtd, FL_WRITING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
......@@ -1814,27 +1804,27 @@ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t *
if (NAND_MUST_PAD(this)) {
/* Write out desired data */
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
/* prepad 0xff for partial programming */
this->write_buf(mtd, ffchars, column);
/* write data */
this->write_buf(mtd, buf, len);
/* postpad 0xff for partial programming */
this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
this->write_buf(mtd, ffchars, mtd->oobsize - (len + column));
} else {
/* Write out desired data */
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
/* write data */
this->write_buf(mtd, buf, len);
}
/* Send command to program the OOB data */
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = this->waitfunc (mtd, this, FL_WRITING);
status = this->waitfunc(mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
......@@ -1843,23 +1833,22 @@ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t *
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
this->cmdfunc(mtd, NAND_CMD_READOOB, column, page & this->pagemask);
if (this->verify_buf(mtd, buf, len)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
#endif
ret = 0;
out:
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
return ret;
}
/**
* nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
* @mtd: MTD device structure
......@@ -1870,10 +1859,10 @@ static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t *
*
* NAND write with kvec. This just calls the ecc function
*/
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t * retlen)
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t *retlen)
{
return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
return (nand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL));
}
/**
......@@ -1888,8 +1877,8 @@ static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned
*
* NAND write with iovec with ecc
*/
static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
{
int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
int oob, numpages, autoplace = 0, startpage;
......@@ -1903,28 +1892,27 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
/* Calculate total length of data */
total_len = 0;
for (i = 0; i < count; i++)
total_len += (int) vecs[i].iov_len;
total_len += (int)vecs[i].iov_len;
DEBUG (MTD_DEBUG_LEVEL3,
"nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
DEBUG(MTD_DEBUG_LEVEL3, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int)to, (unsigned int)total_len, count);
/* Do not allow write past end of page */
if ((to + total_len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
if (NOTALIGNED(to) || NOTALIGNED(total_len)) {
printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_WRITING);
nand_get_device(this, mtd, FL_WRITING);
/* Get the current chip-nr */
chipnr = (int) (to >> this->chip_shift);
chipnr = (int)(to >> this->chip_shift);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
......@@ -1945,7 +1933,7 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
autoplace = 1;
/* Setup start page */
page = (int) (to >> this->page_shift);
page = (int)(to >> this->page_shift);
/* Invalidate the page cache, if we write to the cached page */
if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
this->pagebuf = -1;
......@@ -1963,9 +1951,9 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
* out of this iov in one go */
numpages = (vecs->iov_len - len) >> this->page_shift;
/* Do not cross block boundaries */
numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
bufstart = (u_char *)vecs->iov_base;
numpages = min(ppblock - (startpage & (ppblock - 1)), numpages);
oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
bufstart = (u_char *) vecs->iov_base;
bufstart += len;
this->data_poi = bufstart;
oob = 0;
......@@ -1974,7 +1962,7 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
* then use the real pageprogram command, else select
* cached programming if supported by the chip.
*/
ret = nand_write_page (mtd, this, page & this->pagemask,
ret = nand_write_page(mtd, this, page & this->pagemask,
&oobbuf[oob], oobsel, i != numpages);
if (ret)
goto out;
......@@ -1984,7 +1972,7 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
page++;
}
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
if (len >= (int)vecs->iov_len) {
vecs++;
len = 0;
count--;
......@@ -1998,7 +1986,7 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
if (vecs->iov_base != NULL && vecs->iov_len)
this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
if (len >= (int)vecs->iov_len) {
vecs++;
len = 0;
count--;
......@@ -2008,16 +1996,15 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
this->data_poi = this->data_buf;
bufstart = this->data_poi;
numpages = 1;
oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
ret = nand_write_page (mtd, this, page & this->pagemask,
oobbuf, oobsel, 0);
oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
ret = nand_write_page(mtd, this, page & this->pagemask, oobbuf, oobsel, 0);
if (ret)
goto out;
page++;
}
this->data_poi = bufstart;
ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
ret = nand_verify_pages(mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
if (ret)
goto out;
......@@ -2035,7 +2022,7 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
}
}
ret = 0;
out:
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
......@@ -2050,12 +2037,12 @@ static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsig
*
* Standard erase command for NAND chips
*/
static void single_erase_cmd (struct mtd_info *mtd, int page)
static void single_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *this = mtd->priv;
/* Send commands to erase a block */
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
......@@ -2066,15 +2053,15 @@ static void single_erase_cmd (struct mtd_info *mtd, int page)
* AND multi block erase command function
* Erase 4 consecutive blocks
*/
static void multi_erase_cmd (struct mtd_info *mtd, int page)
static void multi_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *this = mtd->priv;
/* Send commands to erase a block */
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
......@@ -2084,9 +2071,9 @@ static void multi_erase_cmd (struct mtd_info *mtd, int page)
*
* Erase one ore more blocks
*/
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand (mtd, instr, 0);
return nand_erase_nand(mtd, instr, 0);
}
#define BBT_PAGE_MASK 0xffffff3f
......@@ -2098,7 +2085,7 @@ static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
*
* Erase one ore more blocks
*/
int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
{
int page, len, status, pages_per_block, ret, chipnr;
struct nand_chip *this = mtd->priv;
......@@ -2107,35 +2094,34 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
/* It is used to see if the current page is in the same */
/* 256 block group and the same bank as the bbt. */
DEBUG (MTD_DEBUG_LEVEL3,
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len);
/* Start address must align on block boundary */
if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
return -EINVAL;
}
/* Length must align on block boundary */
if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
return -EINVAL;
}
/* Do not allow erase past end of device */
if ((instr->len + instr->addr) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
return -EINVAL;
}
instr->fail_addr = 0xffffffff;
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_ERASING);
nand_get_device(this, mtd, FL_ERASING);
/* Shift to get first page */
page = (int) (instr->addr >> this->page_shift);
chipnr = (int) (instr->addr >> this->chip_shift);
page = (int)(instr->addr >> this->page_shift);
chipnr = (int)(instr->addr >> this->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
......@@ -2146,7 +2132,7 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
/* Check the WP bit */
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
......@@ -2166,7 +2152,7 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
while (len) {
/* Check if we have a bad block, we do not erase bad blocks ! */
if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
printk(KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
......@@ -2176,9 +2162,9 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
this->pagebuf = -1;
this->erase_cmd (mtd, page & this->pagemask);
this->erase_cmd(mtd, page & this->pagemask);
status = this->waitfunc (mtd, this, FL_ERASING);
status = this->waitfunc(mtd, this, FL_ERASING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
......@@ -2187,7 +2173,7 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
/* See if block erase succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = (page << this->page_shift);
goto erase_exit;
......@@ -2221,7 +2207,7 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
}
instr->state = MTD_ERASE_DONE;
erase_exit:
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Do call back function */
......@@ -2236,9 +2222,9 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
for (chipnr = 0; chipnr < this->numchips; chipnr++) {
if (rewrite_bbt[chipnr]) {
/* update the BBT for chip */
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
nand_update_bbt (mtd, rewrite_bbt[chipnr]);
nand_update_bbt(mtd, rewrite_bbt[chipnr]);
}
}
}
......@@ -2253,31 +2239,30 @@ int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbb
*
* Sync is actually a wait for chip ready function
*/
static void nand_sync (struct mtd_info *mtd)
static void nand_sync(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_SYNCING);
nand_get_device(this, mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device (mtd);
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
/* Check for invalid offset */
if (ofs > mtd->size)
return -EINVAL;
return nand_block_checkbad (mtd, ofs, 1, 0);
return nand_block_checkbad(mtd, ofs, 1, 0);
}
/**
......@@ -2285,7 +2270,7 @@ static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
int ret;
......@@ -2308,7 +2293,7 @@ static int nand_suspend(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return nand_get_device (this, mtd, FL_PM_SUSPENDED);
return nand_get_device(this, mtd, FL_PM_SUSPENDED);
}
/**
......@@ -2322,12 +2307,10 @@ static void nand_resume(struct mtd_info *mtd)
if (this->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
printk(KERN_ERR "resume() called for the chip which is not "
"in suspended state\n");
printk(KERN_ERR "resume() called for the chip which is not in suspended state\n");
}
/**
* nand_scan - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
......@@ -2340,12 +2323,12 @@ static void nand_resume(struct mtd_info *mtd)
* they are not provided by the board driver
*
*/
int nand_scan (struct mtd_info *mtd, int maxchips)
int nand_scan(struct mtd_info *mtd, int maxchips)
{
int i, nand_maf_id, nand_dev_id, busw, maf_id;
struct nand_chip *this = mtd->priv;
/* Get buswidth to select the correct functions*/
/* Get buswidth to select the correct functions */
busw = this->options & NAND_BUSWIDTH_16;
/* check for proper chip_delay setup, set 20us if not */
......@@ -2387,7 +2370,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
this->select_chip(mtd, 0);
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
nand_maf_id = this->read_byte(mtd);
......@@ -2399,7 +2382,8 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
if (nand_dev_id != nand_flash_ids[i].id)
continue;
if (!mtd->name) mtd->name = nand_flash_ids[i].name;
if (!mtd->name)
mtd->name = nand_flash_ids[i].name;
this->chipsize = nand_flash_ids[i].chipsize << 20;
/* New devices have all the information in additional id bytes */
......@@ -2439,13 +2423,12 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
/* Check, if buswidth is correct. Hardware drivers should set
* this correct ! */
if (busw != (this->options & NAND_BUSWIDTH_16)) {
printk (KERN_INFO "NAND device: Manufacturer ID:"
printk(KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name , mtd->name);
printk (KERN_WARNING
nand_manuf_ids[maf_id].name, mtd->name);
printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
busw ? 16 : 8);
(this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8);
this->select_chip(mtd, -1);
return 1;
}
......@@ -2456,13 +2439,12 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
this->chip_shift = ffs(this->chipsize) - 1;
/* Set the bad block position */
this->badblockpos = mtd->oobblock > 512 ?
NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
this->badblockpos = mtd->oobblock > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
/* Get chip options, preserve non chip based options */
this->options &= ~NAND_CHIPOPTIONS_MSK;
this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
/* Set this as a default. Board drivers can override it, if neccecary */
/* Set this as a default. Board drivers can override it, if necessary */
this->options |= NAND_NO_AUTOINCR;
/* Check if this is a not a samsung device. Do not clear the options
* for chips which are not having an extended id.
......@@ -2480,23 +2462,23 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
this->cmdfunc = nand_command_lp;
printk (KERN_INFO "NAND device: Manufacturer ID:"
printk(KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
nand_manuf_ids[maf_id].name, nand_flash_ids[i].name);
break;
}
if (!nand_flash_ids[i].name) {
printk (KERN_WARNING "No NAND device found!!!\n");
printk(KERN_WARNING "No NAND device found!!!\n");
this->select_chip(mtd, -1);
return 1;
}
for (i=1; i < maxchips; i++) {
for (i = 1; i < maxchips; i++) {
this->select_chip(mtd, i);
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != this->read_byte(mtd) ||
......@@ -2506,13 +2488,13 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
if (i > 1)
printk(KERN_INFO "%d NAND chips detected\n", i);
/* Allocate buffers, if neccecary */
/* Allocate buffers, if necessary */
if (!this->oob_buf) {
size_t len;
len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
this->oob_buf = kmalloc (len, GFP_KERNEL);
this->oob_buf = kmalloc(len, GFP_KERNEL);
if (!this->oob_buf) {
printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
printk(KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
return -ENOMEM;
}
this->options |= NAND_OOBBUF_ALLOC;
......@@ -2521,11 +2503,11 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
if (!this->data_buf) {
size_t len;
len = mtd->oobblock + mtd->oobsize;
this->data_buf = kmalloc (len, GFP_KERNEL);
this->data_buf = kmalloc(len, GFP_KERNEL);
if (!this->data_buf) {
if (this->options & NAND_OOBBUF_ALLOC)
kfree (this->oob_buf);
printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
kfree(this->oob_buf);
printk(KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
return -ENOMEM;
}
this->options |= NAND_DATABUF_ALLOC;
......@@ -2555,8 +2537,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
this->autooob = &nand_oob_64;
break;
default:
printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
mtd->oobsize);
printk(KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize);
BUG();
}
}
......@@ -2591,7 +2572,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
case NAND_ECC_HW6_512:
case NAND_ECC_HW8_512:
if (mtd->oobblock == 256) {
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
printk(KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
......@@ -2603,7 +2584,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
break;
case NAND_ECC_NONE:
printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
this->eccmode = NAND_ECC_NONE;
break;
......@@ -2613,7 +2594,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
......@@ -2631,7 +2612,7 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
case NAND_ECC_HW3_256:
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
break;
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
printk(KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
BUG();
}
......@@ -2659,8 +2640,8 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
/* Initialize state, waitqueue and spinlock */
this->state = FL_READY;
init_waitqueue_head (&this->wq);
spin_lock_init (&this->chip_lock);
init_waitqueue_head(&this->wq);
spin_lock_init(&this->chip_lock);
/* De-select the device */
this->select_chip(mtd, -1);
......@@ -2702,37 +2683,36 @@ int nand_scan (struct mtd_info *mtd, int maxchips)
return 0;
/* Build bad block table */
return this->scan_bbt (mtd);
return this->scan_bbt(mtd);
}
/**
* nand_release - [NAND Interface] Free resources held by the NAND device
* @mtd: MTD device structure
*/
void nand_release (struct mtd_info *mtd)
void nand_release(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_PARTITIONS
/* Deregister partitions */
del_mtd_partitions (mtd);
del_mtd_partitions(mtd);
#endif
/* Deregister the device */
del_mtd_device (mtd);
del_mtd_device(mtd);
/* Free bad block table memory */
kfree (this->bbt);
kfree(this->bbt);
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_OOBBUF_ALLOC)
kfree (this->oob_buf);
kfree(this->oob_buf);
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_DATABUF_ALLOC)
kfree (this->data_buf);
kfree(this->data_buf);
}
EXPORT_SYMBOL_GPL (nand_scan);
EXPORT_SYMBOL_GPL (nand_release);
EXPORT_SYMBOL_GPL(nand_scan);
EXPORT_SYMBOL_GPL(nand_release);
static int __init nand_base_init(void)
{
......@@ -2748,6 +2728,6 @@ static void __exit nand_base_exit(void)
module_init(nand_base_init);
module_exit(nand_base_exit);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION ("Generic NAND flash driver code");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");
......@@ -48,7 +48,7 @@
*
* Following assumptions are made:
* - bbts start at a page boundary, if autolocated on a block boundary
* - the space neccecary for a bbt in FLASH does not exceed a block boundary
* - the space necessary for a bbt in FLASH does not exceed a block boundary
*
*/
......@@ -75,7 +75,7 @@
* pattern area contain 0xff
*
*/
static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
{
int i, end = 0;
uint8_t *p = buf;
......@@ -116,7 +116,7 @@ static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_des
* no optional empty check
*
*/
static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
{
int i;
uint8_t *p = buf;
......@@ -142,7 +142,7 @@ static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
* Read the bad block table starting from page.
*
*/
static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
int bits, int offs, int reserved_block_code)
{
int res, i, j, act = 0;
......@@ -152,17 +152,17 @@ static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
uint8_t msk = (uint8_t) ((1 << bits) - 1);
totlen = (num * bits) >> 3;
from = ((loff_t)page) << this->page_shift;
from = ((loff_t) page) << this->page_shift;
while (totlen) {
len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
len = min(totlen, (size_t) (1 << this->bbt_erase_shift));
res = mtd->read_ecc(mtd, from, len, &retlen, buf, NULL, this->autooob);
if (res < 0) {
if (retlen != len) {
printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
printk(KERN_INFO "nand_bbt: Error reading bad block table\n");
return res;
}
printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
printk(KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
}
/* Analyse data */
......@@ -172,16 +172,15 @@ static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
uint8_t tmp = (dat >> j) & msk;
if (tmp == msk)
continue;
if (reserved_block_code &&
(tmp == reserved_block_code)) {
printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
if (reserved_block_code && (tmp == reserved_block_code)) {
printk(KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
continue;
}
/* Leave it for now, if its matured we can move this
* message to MTD_DEBUG_LEVEL0 */
printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
printk(KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
/* Factory marked bad or worn out ? */
if (tmp == 0)
......@@ -207,7 +206,7 @@ static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
* Read the bad block table for all chips starting at a given page
* We assume that the bbt bits are in consecutive order.
*/
static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
{
struct nand_chip *this = mtd->priv;
int res = 0, i;
......@@ -242,23 +241,22 @@ static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_des
* We assume that the bbt bits are in consecutive order.
*
*/
static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
struct nand_bbt_descr *md)
static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md)
{
struct nand_chip *this = mtd->priv;
/* Read the primary version, if available */
if (td->options & NAND_BBT_VERSION) {
nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
nand_read_raw(mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
td->version[0] = buf[mtd->oobblock + td->veroffs];
printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
}
/* Read the mirror version, if available */
if (md && (md->options & NAND_BBT_VERSION)) {
nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
nand_read_raw(mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
md->version[0] = buf[mtd->oobblock + md->veroffs];
printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
}
return 1;
......@@ -275,7 +273,7 @@ static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_de
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
{
struct nand_chip *this = mtd->priv;
int i, j, numblocks, len, scanlen;
......@@ -283,7 +281,7 @@ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
loff_t from;
size_t readlen, ooblen;
printk (KERN_INFO "Scanning device for bad blocks\n");
printk(KERN_INFO "Scanning device for bad blocks\n");
if (bd->options & NAND_BBT_SCANALLPAGES)
len = 1 << (this->bbt_erase_shift - this->page_shift);
......@@ -313,7 +311,7 @@ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
from = 0;
} else {
if (chip >= this->numchips) {
printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
printk(KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
chip + 1, this->numchips);
return -EINVAL;
}
......@@ -327,7 +325,7 @@ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
int ret;
if (bd->options & NAND_BBT_SCANEMPTY)
if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
if ((ret = nand_read_raw(mtd, buf, from, readlen, ooblen)))
return ret;
for (j = 0; j < len; j++) {
......@@ -336,22 +334,21 @@ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
/* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);
if (ret)
return ret;
if (check_short_pattern (buf, bd)) {
if (check_short_pattern(buf, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
printk(KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int)from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
if (check_pattern(&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
printk(KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int)from);
break;
}
}
......@@ -374,12 +371,12 @@ static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
* block.
* If the option NAND_BBT_PERCHIP is given, each chip is searched
* for a bbt, which contains the bad block information of this chip.
* This is neccecary to provide support for certain DOC devices.
* This is necessary to provide support for certain DOC devices.
*
* The bbt ident pattern resides in the oob area of the first page
* in a block.
*/
static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
{
struct nand_chip *this = mtd->priv;
int i, chips;
......@@ -389,7 +386,7 @@ static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
/* Search direction top -> down ? */
if (td->options & NAND_BBT_LASTBLOCK) {
startblock = (mtd->size >> this->bbt_erase_shift) -1;
startblock = (mtd->size >> this->bbt_erase_shift) - 1;
dir = -1;
} else {
startblock = 0;
......@@ -417,7 +414,7 @@ static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
for (block = 0; block < td->maxblocks; block++) {
int actblock = startblock + dir * block;
/* Read first page */
nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);
nand_read_raw(mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);
if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
if (td->options & NAND_BBT_VERSION) {
......@@ -431,9 +428,10 @@ static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
/* Check, if we found a bbt for each requested chip */
for (i = 0; i < chips; i++) {
if (td->pages[i] == -1)
printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
printk(KERN_WARNING "Bad block table not found for chip %d\n", i);
else
printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
printk(KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i],
td->version[i]);
}
return 0;
}
......@@ -447,21 +445,19 @@ static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
*
* Search and read the bad block table(s)
*/
static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,
struct nand_bbt_descr *td, struct nand_bbt_descr *md)
static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md)
{
/* Search the primary table */
search_bbt (mtd, buf, td);
search_bbt(mtd, buf, td);
/* Search the mirror table */
if (md)
search_bbt (mtd, buf, md);
search_bbt(mtd, buf, md);
/* Force result check */
return 1;
}
/**
* write_bbt - [GENERIC] (Re)write the bad block table
*
......@@ -474,7 +470,7 @@ static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,
* (Re)write the bad block table
*
*/
static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
{
struct nand_chip *this = mtd->priv;
......@@ -492,7 +488,7 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
rcode = 0xff;
/* Write bad block table per chip rather than per device ? */
if (td->options & NAND_BBT_PERCHIP) {
numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
/* Full device write or specific chip ? */
if (chipsel == -1) {
nrchips = this->numchips;
......@@ -501,7 +497,7 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
chip = chipsel;
}
} else {
numblocks = (int) (mtd->size >> this->bbt_erase_shift);
numblocks = (int)(mtd->size >> this->bbt_erase_shift);
nrchips = 1;
}
......@@ -540,9 +536,9 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
if (!md || md->pages[chip] != page)
goto write;
}
printk (KERN_ERR "No space left to write bad block table\n");
printk(KERN_ERR "No space left to write bad block table\n");
return -ENOSPC;
write:
write:
/* Set up shift count and masks for the flash table */
bits = td->options & NAND_BBT_NRBITS_MSK;
......@@ -558,7 +554,7 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
to = ((loff_t) page) << this->page_shift;
memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
memcpy(&oobinfo, this->autooob, sizeof(oobinfo));
oobinfo.useecc = MTD_NANDECC_PLACEONLY;
/* Must we save the block contents ? */
......@@ -566,21 +562,22 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
/* Make it block aligned */
to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
len = 1 << this->bbt_erase_shift;
res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
res = mtd->read_ecc(mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
if (res < 0) {
if (retlen != len) {
printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
printk(KERN_INFO
"nand_bbt: Error reading block for writing the bad block table\n");
return res;
}
printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
printk(KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
}
/* Calc the byte offset in the buffer */
pageoffs = page - (int)(to >> this->page_shift);
offs = pageoffs << this->page_shift;
/* Preset the bbt area with 0xff */
memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
memset(&buf[offs], 0xff, (size_t) (numblocks >> sft));
/* Preset the bbt's oob area with 0xff */
memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
memset(&buf[len + pageoffs * mtd->oobsize], 0xff,
((len >> this->page_shift) - pageoffs) * mtd->oobsize);
if (td->options & NAND_BBT_VERSION) {
buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
......@@ -589,22 +586,22 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
/* Calc length */
len = (size_t) (numblocks >> sft);
/* Make it page aligned ! */
len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
len = (len + (mtd->oobblock - 1)) & ~(mtd->oobblock - 1);
/* Preset the buffer with 0xff */
memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
memset(buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
offs = 0;
/* Pattern is located in oob area of first page */
memcpy (&buf[len + td->offs], td->pattern, td->len);
memcpy(&buf[len + td->offs], td->pattern, td->len);
if (td->options & NAND_BBT_VERSION) {
buf[len + td->veroffs] = td->version[chip];
}
}
/* walk through the memory table */
for (i = 0; i < numblocks; ) {
for (i = 0; i < numblocks;) {
uint8_t dat;
dat = this->bbt[bbtoffs + (i >> 2)];
for (j = 0; j < 4; j++ , i++) {
for (j = 0; j < 4; j++, i++) {
int sftcnt = (i << (3 - sft)) & sftmsk;
/* Do not store the reserved bbt blocks ! */
buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
......@@ -612,23 +609,23 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
}
}
memset (&einfo, 0, sizeof (einfo));
memset(&einfo, 0, sizeof(einfo));
einfo.mtd = mtd;
einfo.addr = (unsigned long) to;
einfo.addr = (unsigned long)to;
einfo.len = 1 << this->bbt_erase_shift;
res = nand_erase_nand (mtd, &einfo, 1);
res = nand_erase_nand(mtd, &einfo, 1);
if (res < 0) {
printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
printk(KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
return res;
}
res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
res = mtd->write_ecc(mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
if (res < 0) {
printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
printk(KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
return res;
}
printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",
(unsigned int) to, td->version[chip]);
printk(KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",
(unsigned int)to, td->version[chip]);
/* Mark it as used */
td->pages[chip] = page;
......@@ -644,27 +641,27 @@ static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
* The function creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
*/
static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
bd->options &= ~NAND_BBT_SCANEMPTY;
return create_bbt (mtd, this->data_buf, bd, -1);
return create_bbt(mtd, this->data_buf, bd, -1);
}
/**
* check_create - [GENERIC] create and write bbt(s) if neccecary
* check_create - [GENERIC] create and write bbt(s) if necessary
* @mtd: MTD device structure
* @buf: temporary buffer
* @bd: descriptor for the good/bad block search pattern
*
* The function checks the results of the previous call to read_bbt
* and creates / updates the bbt(s) if neccecary
* Creation is neccecary if no bbt was found for the chip/device
* Update is neccecary if one of the tables is missing or the
* and creates / updates the bbt(s) if necessary
* Creation is necessary if no bbt was found for the chip/device
* Update is necessary if one of the tables is missing or the
* version nr. of one table is less than the other
*/
static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
{
int i, chips, writeops, chipsel, res;
struct nand_chip *this = mtd->priv;
......@@ -732,35 +729,35 @@ static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_des
rd = td;
goto writecheck;
}
create:
create:
/* Create the bad block table by scanning the device ? */
if (!(td->options & NAND_BBT_CREATE))
continue;
/* Create the table in memory by scanning the chip(s) */
create_bbt (mtd, buf, bd, chipsel);
create_bbt(mtd, buf, bd, chipsel);
td->version[i] = 1;
if (md)
md->version[i] = 1;
writecheck:
writecheck:
/* read back first ? */
if (rd)
read_abs_bbt (mtd, buf, rd, chipsel);
read_abs_bbt(mtd, buf, rd, chipsel);
/* If they weren't versioned, read both. */
if (rd2)
read_abs_bbt (mtd, buf, rd2, chipsel);
read_abs_bbt(mtd, buf, rd2, chipsel);
/* Write the bad block table to the device ? */
if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
res = write_bbt (mtd, buf, td, md, chipsel);
res = write_bbt(mtd, buf, td, md, chipsel);
if (res < 0)
return res;
}
/* Write the mirror bad block table to the device ? */
if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
res = write_bbt (mtd, buf, md, td, chipsel);
res = write_bbt(mtd, buf, md, td, chipsel);
if (res < 0)
return res;
}
......@@ -777,7 +774,7 @@ static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_des
* accidental erasures / writes. The regions are identified by
* the mark 0x02.
*/
static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
{
struct nand_chip *this = mtd->priv;
int i, j, chips, block, nrblocks, update;
......@@ -795,7 +792,8 @@ static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
for (i = 0; i < chips; i++) {
if ((td->options & NAND_BBT_ABSPAGE) ||
!(td->options & NAND_BBT_WRITE)) {
if (td->pages[i] == -1) continue;
if (td->pages[i] == -1)
continue;
block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
block <<= 1;
oldval = this->bbt[(block >> 3)];
......@@ -815,7 +813,8 @@ static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
oldval = this->bbt[(block >> 3)];
newval = oldval | (0x2 << (block & 0x06));
this->bbt[(block >> 3)] = newval;
if (oldval != newval) update = 1;
if (oldval != newval)
update = 1;
block += 2;
}
/* If we want reserved blocks to be recorded to flash, and some
......@@ -840,7 +839,7 @@ static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
* by calling the nand_free_bbt function.
*
*/
int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
int len, res = 0;
......@@ -850,21 +849,21 @@ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
len = mtd->size >> (this->bbt_erase_shift + 2);
/* Allocate memory (2bit per block) */
this->bbt = kmalloc (len, GFP_KERNEL);
this->bbt = kmalloc(len, GFP_KERNEL);
if (!this->bbt) {
printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
printk(KERN_ERR "nand_scan_bbt: Out of memory\n");
return -ENOMEM;
}
/* Clear the memory bad block table */
memset (this->bbt, 0x00, len);
memset(this->bbt, 0x00, len);
/* If no primary table decriptor is given, scan the device
* to build a memory based bad block table
*/
if (!td) {
if ((res = nand_memory_bbt(mtd, bd))) {
printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
kfree (this->bbt);
printk(KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
kfree(this->bbt);
this->bbt = NULL;
}
return res;
......@@ -875,33 +874,32 @@ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
len += (len >> this->page_shift) * mtd->oobsize;
buf = vmalloc(len);
if (!buf) {
printk (KERN_ERR "nand_bbt: Out of memory\n");
kfree (this->bbt);
printk(KERN_ERR "nand_bbt: Out of memory\n");
kfree(this->bbt);
this->bbt = NULL;
return -ENOMEM;
}
/* Is the bbt at a given page ? */
if (td->options & NAND_BBT_ABSPAGE) {
res = read_abs_bbts (mtd, buf, td, md);
res = read_abs_bbts(mtd, buf, td, md);
} else {
/* Search the bad block table using a pattern in oob */
res = search_read_bbts (mtd, buf, td, md);
res = search_read_bbts(mtd, buf, td, md);
}
if (res)
res = check_create (mtd, buf, bd);
res = check_create(mtd, buf, bd);
/* Prevent the bbt regions from erasing / writing */
mark_bbt_region (mtd, td);
mark_bbt_region(mtd, td);
if (md)
mark_bbt_region (mtd, md);
mark_bbt_region(mtd, md);
vfree (buf);
vfree(buf);
return res;
}
/**
* nand_update_bbt - [NAND Interface] update bad block table(s)
* @mtd: MTD device structure
......@@ -909,7 +907,7 @@ int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
*
* The function updates the bad block table(s)
*/
int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
{
struct nand_chip *this = mtd->priv;
int len, res = 0, writeops = 0;
......@@ -925,9 +923,9 @@ int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
/* Allocate a temporary buffer for one eraseblock incl. oob */
len = (1 << this->bbt_erase_shift);
len += (len >> this->page_shift) * mtd->oobsize;
buf = kmalloc (len, GFP_KERNEL);
buf = kmalloc(len, GFP_KERNEL);
if (!buf) {
printk (KERN_ERR "nand_update_bbt: Out of memory\n");
printk(KERN_ERR "nand_update_bbt: Out of memory\n");
return -ENOMEM;
}
......@@ -935,7 +933,7 @@ int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
/* Do we have a bbt per chip ? */
if (td->options & NAND_BBT_PERCHIP) {
chip = (int) (offs >> this->chip_shift);
chip = (int)(offs >> this->chip_shift);
chipsel = chip;
} else {
chip = 0;
......@@ -948,17 +946,17 @@ int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
/* Write the bad block table to the device ? */
if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
res = write_bbt (mtd, buf, td, md, chipsel);
res = write_bbt(mtd, buf, td, md, chipsel);
if (res < 0)
goto out;
}
/* Write the mirror bad block table to the device ? */
if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
res = write_bbt (mtd, buf, md, td, chipsel);
res = write_bbt(mtd, buf, md, td, chipsel);
}
out:
kfree (buf);
out:
kfree(buf);
return res;
}
......@@ -1036,7 +1034,7 @@ static struct nand_bbt_descr bbt_mirror_descr = {
* support for the device and calls the nand_scan_bbt function
*
*/
int nand_default_bbt (struct mtd_info *mtd)
int nand_default_bbt(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
......@@ -1054,10 +1052,9 @@ int nand_default_bbt (struct mtd_info *mtd)
this->bbt_md = &bbt_mirror_descr;
}
this->options |= NAND_USE_FLASH_BBT;
return nand_scan_bbt (mtd, &agand_flashbased);
return nand_scan_bbt(mtd, &agand_flashbased);
}
/* Is a flash based bad block table requested ? */
if (this->options & NAND_USE_FLASH_BBT) {
/* Use the default pattern descriptors */
......@@ -1066,8 +1063,7 @@ int nand_default_bbt (struct mtd_info *mtd)
this->bbt_md = &bbt_mirror_descr;
}
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > 512) ?
&largepage_flashbased : &smallpage_flashbased;
this->badblock_pattern = (mtd->oobblock > 512) ? &largepage_flashbased : &smallpage_flashbased;
}
} else {
this->bbt_td = NULL;
......@@ -1077,7 +1073,7 @@ int nand_default_bbt (struct mtd_info *mtd)
&largepage_memorybased : &smallpage_memorybased;
}
}
return nand_scan_bbt (mtd, this->badblock_pattern);
return nand_scan_bbt(mtd, this->badblock_pattern);
}
/**
......@@ -1087,26 +1083,29 @@ int nand_default_bbt (struct mtd_info *mtd)
* @allowbbt: allow access to bad block table region
*
*/
int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
{
struct nand_chip *this = mtd->priv;
int block;
uint8_t res;
/* Get block number * 2 */
block = (int) (offs >> (this->bbt_erase_shift - 1));
block = (int)(offs >> (this->bbt_erase_shift - 1));
res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
DEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
(unsigned int)offs, block >> 1, res);
switch ((int)res) {
case 0x00: return 0;
case 0x01: return 1;
case 0x02: return allowbbt ? 0 : 1;
case 0x00:
return 0;
case 0x01:
return 1;
case 0x02:
return allowbbt ? 0 : 1;
}
return 1;
}
EXPORT_SYMBOL (nand_scan_bbt);
EXPORT_SYMBOL (nand_default_bbt);
EXPORT_SYMBOL(nand_scan_bbt);
EXPORT_SYMBOL(nand_default_bbt);
......@@ -62,7 +62,6 @@ static const u_char nand_ecc_precalc_table[] = {
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
};
/**
* nand_trans_result - [GENERIC] create non-inverted ECC
* @reg2: line parity reg 2
......@@ -71,8 +70,7 @@ static const u_char nand_ecc_precalc_table[] = {
*
* Creates non-inverted ECC code from line parity
*/
static void nand_trans_result(u_char reg2, u_char reg3,
u_char *ecc_code)
static void nand_trans_result(u_char reg2, u_char reg3, u_char *ecc_code)
{
u_char a, b, i, tmp1, tmp2;
......@@ -124,7 +122,7 @@ int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code
ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
/* Build up column parity */
for(j = 0; j < 256; j++) {
for (j = 0; j < 256; j++) {
/* Get CP0 - CP5 from table */
idx = nand_ecc_precalc_table[dat[j]];
......@@ -168,8 +166,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
if ((d1 | d2 | d3) == 0) {
/* No errors */
return 0;
}
else {
} else {
a = (d1 ^ (d1 >> 1)) & 0x55;
b = (d2 ^ (d2 >> 1)) & 0x55;
c = (d3 ^ (d3 >> 1)) & 0x54;
......@@ -179,14 +176,14 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
c = 0x80;
add = 0;
a = 0x80;
for (i=0; i<4; i++) {
for (i = 0; i < 4; i++) {
if (d1 & c)
add |= a;
c >>= 2;
a >>= 1;
}
c = 0x80;
for (i=0; i<4; i++) {
for (i = 0; i < 4; i++) {
if (d2 & c)
add |= a;
c >>= 2;
......@@ -195,7 +192,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
bit = 0;
b = 0x04;
c = 0x80;
for (i=0; i<3; i++) {
for (i = 0; i < 3; i++) {
if (d3 & c)
bit |= b;
c >>= 2;
......@@ -206,8 +203,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
a ^= (b << bit);
dat[add] = a;
return 1;
}
else {
} else {
i = 0;
while (d1) {
if (d1 & 0x01)
......@@ -230,8 +226,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_cha
read_ecc[1] = calc_ecc[1];
read_ecc[2] = calc_ecc[2];
return 2;
}
else {
} else {
/* Uncorrectable Error */
return -1;
}
......
......@@ -129,9 +129,9 @@ struct nand_manufacturers nand_manuf_ids[] = {
{0x0, "Unknown"}
};
EXPORT_SYMBOL (nand_manuf_ids);
EXPORT_SYMBOL (nand_flash_ids);
EXPORT_SYMBOL(nand_manuf_ids);
EXPORT_SYMBOL(nand_flash_ids);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION ("Nand device & manufacturer ID's");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Nand device & manufacturer IDs");
......@@ -71,8 +71,8 @@ static unsigned long ppchameleonevb_fio_pbase = CFG_NAND1_PADDR;
module_param(ppchameleon_fio_pbase, ulong, 0);
module_param(ppchameleonevb_fio_pbase, ulong, 0);
#else
__setup("ppchameleon_fio_pbase=",ppchameleon_fio_pbase);
__setup("ppchameleonevb_fio_pbase=",ppchameleonevb_fio_pbase);
__setup("ppchameleon_fio_pbase=", ppchameleon_fio_pbase);
__setup("ppchameleonevb_fio_pbase=", ppchameleonevb_fio_pbase);
#endif
#ifdef CONFIG_MTD_PARTITIONS
......@@ -80,37 +80,37 @@ __setup("ppchameleonevb_fio_pbase=",ppchameleonevb_fio_pbase);
* Define static partitions for flash devices
*/
static struct mtd_partition partition_info_hi[] = {
{ name: "PPChameleon HI Nand Flash",
offset: 0,
size: 128*1024*1024 }
{ .name = "PPChameleon HI Nand Flash",
offset = 0,
.size = 128 * 1024 * 1024
}
};
static struct mtd_partition partition_info_me[] = {
{ name: "PPChameleon ME Nand Flash",
offset: 0,
size: 32*1024*1024 }
{ .name = "PPChameleon ME Nand Flash",
.offset = 0,
.size = 32 * 1024 * 1024
}
};
static struct mtd_partition partition_info_evb[] = {
{ name: "PPChameleonEVB Nand Flash",
offset: 0,
size: 32*1024*1024 }
{ .name = "PPChameleonEVB Nand Flash",
.offset = 0,
.size = 32 * 1024 * 1024
}
};
#define NUM_PARTITIONS 1
extern int parse_cmdline_partitions(struct mtd_info *master,
struct mtd_partition **pparts,
const char *mtd_id);
extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, const char *mtd_id);
#endif
/*
* hardware specific access to control-lines
*/
static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd)
{
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR);
......@@ -135,7 +135,7 @@ static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd)
static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd)
{
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR);
......@@ -164,14 +164,14 @@ static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd)
*/
static int ppchameleon_device_ready(struct mtd_info *minfo)
{
if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_RB_GPIO_PIN)
if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_RB_GPIO_PIN)
return 1;
return 0;
}
static int ppchameleonevb_device_ready(struct mtd_info *minfo)
{
if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN)
if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN)
return 1;
return 0;
}
......@@ -185,7 +185,7 @@ const char *part_probes_evb[] = { "cmdlinepart", NULL };
/*
* Main initialization routine
*/
static int __init ppchameleonevb_init (void)
static int __init ppchameleonevb_init(void)
{
struct nand_chip *this;
const char *part_type = 0;
......@@ -194,13 +194,11 @@ static int __init ppchameleonevb_init (void)
void __iomem *ppchameleon_fio_base;
void __iomem *ppchameleonevb_fio_base;
/*********************************
* Processor module NAND (if any) *
*********************************/
/* Allocate memory for MTD device structure and private data */
ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip), GFP_KERNEL);
ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!ppchameleon_mtd) {
printk("Unable to allocate PPChameleon NAND MTD device structure.\n");
return -ENOMEM;
......@@ -208,18 +206,18 @@ static int __init ppchameleonevb_init (void)
/* map physical address */
ppchameleon_fio_base = ioremap(ppchameleon_fio_pbase, SZ_4M);
if(!ppchameleon_fio_base) {
if (!ppchameleon_fio_base) {
printk("ioremap PPChameleon NAND flash failed\n");
kfree(ppchameleon_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&ppchameleon_mtd[1]);
this = (struct nand_chip *)(&ppchameleon_mtd[1]);
/* Initialize structures */
memset((char *) ppchameleon_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(ppchameleon_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
ppchameleon_mtd->priv = this;
......@@ -233,18 +231,20 @@ static int __init ppchameleonevb_init (void)
R/B GPIO_04
*/
/* output select */
out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xC0FFFFFF);
out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xC0FFFFFF);
/* three-state select */
out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xC0FFFFFF);
out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xC0FFFFFF);
/* enable output driver */
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN);
out_be32((volatile unsigned *)GPIO0_TCR,
in_be32((volatile unsigned *)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN);
#ifdef USE_READY_BUSY_PIN
/* three-state select */
out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFF3FFFFF);
out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFF3FFFFF);
/* high-impedecence */
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_RB_GPIO_PIN));
out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_RB_GPIO_PIN));
/* input select */
out_be32((volatile unsigned*)GPIO0_ISR1H, (in_be32((volatile unsigned*)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000);
out_be32((volatile unsigned *)GPIO0_ISR1H,
(in_be32((volatile unsigned *)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000);
#endif
/* insert callbacks */
......@@ -259,12 +259,11 @@ static int __init ppchameleonevb_init (void)
this->eccmode = NAND_ECC_SOFT;
/* Scan to find existence of the device (it could not be mounted) */
if (nand_scan (ppchameleon_mtd, 1)) {
if (nand_scan(ppchameleon_mtd, 1)) {
iounmap((void *)ppchameleon_fio_base);
kfree (ppchameleon_mtd);
kfree(ppchameleon_mtd);
goto nand_evb_init;
}
#ifndef USE_READY_BUSY_PIN
/* Adjust delay if necessary */
if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
......@@ -279,8 +278,7 @@ static int __init ppchameleonevb_init (void)
else
mtd_parts_nb = 0;
#endif
if (mtd_parts_nb == 0)
{
if (mtd_parts_nb == 0) {
if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
mtd_parts = partition_info_me;
else
......@@ -293,13 +291,12 @@ static int __init ppchameleonevb_init (void)
printk(KERN_NOTICE "Using %s partition definition\n", part_type);
add_mtd_partitions(ppchameleon_mtd, mtd_parts, mtd_parts_nb);
nand_evb_init:
nand_evb_init:
/****************************
* EVB NAND (always present) *
****************************/
/* Allocate memory for MTD device structure and private data */
ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip), GFP_KERNEL);
ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!ppchameleonevb_mtd) {
printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n");
return -ENOMEM;
......@@ -307,18 +304,18 @@ static int __init ppchameleonevb_init (void)
/* map physical address */
ppchameleonevb_fio_base = ioremap(ppchameleonevb_fio_pbase, SZ_4M);
if(!ppchameleonevb_fio_base) {
if (!ppchameleonevb_fio_base) {
printk("ioremap PPChameleonEVB NAND flash failed\n");
kfree(ppchameleonevb_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&ppchameleonevb_mtd[1]);
this = (struct nand_chip *)(&ppchameleonevb_mtd[1]);
/* Initialize structures */
memset((char *) ppchameleonevb_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(ppchameleonevb_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
ppchameleonevb_mtd->priv = this;
......@@ -332,21 +329,22 @@ static int __init ppchameleonevb_init (void)
R/B GPIO_31
*/
/* output select */
out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xFFFFFFF0);
out_be32((volatile unsigned*)GPIO0_OSRL, in_be32((volatile unsigned*)GPIO0_OSRL) & 0x3FFFFFFF);
out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xFFFFFFF0);
out_be32((volatile unsigned *)GPIO0_OSRL, in_be32((volatile unsigned *)GPIO0_OSRL) & 0x3FFFFFFF);
/* three-state select */
out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFFFFFFF0);
out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0x3FFFFFFF);
out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFFFFFFF0);
out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0x3FFFFFFF);
/* enable output driver */
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN |
out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN |
NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN);
#ifdef USE_READY_BUSY_PIN
/* three-state select */
out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0xFFFFFFFC);
out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0xFFFFFFFC);
/* high-impedecence */
out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN));
out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN));
/* input select */
out_be32((volatile unsigned*)GPIO0_ISR1L, (in_be32((volatile unsigned*)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001);
out_be32((volatile unsigned *)GPIO0_ISR1L,
(in_be32((volatile unsigned *)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001);
#endif
/* insert callbacks */
......@@ -362,12 +360,11 @@ static int __init ppchameleonevb_init (void)
this->eccmode = NAND_ECC_SOFT;
/* Scan to find existence of the device */
if (nand_scan (ppchameleonevb_mtd, 1)) {
if (nand_scan(ppchameleonevb_mtd, 1)) {
iounmap((void *)ppchameleonevb_fio_base);
kfree (ppchameleonevb_mtd);
kfree(ppchameleonevb_mtd);
return -ENXIO;
}
#ifdef CONFIG_MTD_PARTITIONS
ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME;
mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0);
......@@ -376,8 +373,7 @@ static int __init ppchameleonevb_init (void)
else
mtd_parts_nb = 0;
#endif
if (mtd_parts_nb == 0)
{
if (mtd_parts_nb == 0) {
mtd_parts = partition_info_evb;
mtd_parts_nb = NUM_PARTITIONS;
part_type = "static";
......@@ -390,18 +386,19 @@ static int __init ppchameleonevb_init (void)
/* Return happy */
return 0;
}
module_init(ppchameleonevb_init);
/*
* Clean up routine
*/
static void __exit ppchameleonevb_cleanup (void)
static void __exit ppchameleonevb_cleanup(void)
{
struct nand_chip *this;
/* Release resources, unregister device(s) */
nand_release (ppchameleon_mtd);
nand_release (ppchameleonevb_mtd);
nand_release(ppchameleon_mtd);
nand_release(ppchameleonevb_mtd);
/* Release iomaps */
this = (struct nand_chip *) &ppchameleon_mtd[1];
......
......@@ -100,9 +100,9 @@ static const struct mtd_partition partition_info[] = {
{
.name = "Renesas flash partition 1",
.offset = 0,
.size = MTDPART_SIZ_FULL
},
.size = MTDPART_SIZ_FULL},
};
#define NUM_PARTITIONS 1
/*
......@@ -111,8 +111,8 @@ static const struct mtd_partition partition_info[] = {
* NAND_BBT_CREATE and/or NAND_BBT_WRITE
*
*/
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
......@@ -134,8 +134,6 @@ static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
.pattern = mirror_pattern
};
#ifdef RTC_FROM4_HWECC
/* the Reed Solomon control structure */
......@@ -152,7 +150,7 @@ static struct nand_oobinfo rtc_from4_nand_oobinfo = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31},
.oobfree = { {32, 32} }
.oobfree = {{32, 32}}
};
/* Aargh. I missed the reversed bit order, when I
......@@ -198,8 +196,6 @@ static uint8_t revbits[256] = {
#endif
/*
* rtc_from4_hwcontrol - hardware specific access to control-lines
* @mtd: MTD device structure
......@@ -214,9 +210,9 @@ static uint8_t revbits[256] = {
*/
static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip* this = (struct nand_chip *) (mtd->priv);
struct nand_chip *this = (struct nand_chip *)(mtd->priv);
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
......@@ -240,7 +236,6 @@ static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
}
}
/*
* rtc_from4_nand_select_chip - hardware specific chip select
* @mtd: MTD device structure
......@@ -257,7 +252,7 @@ static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
switch(chip) {
switch (chip) {
case 0: /* select slot 3 chip */
this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
......@@ -271,7 +266,6 @@ static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
}
}
/*
* rtc_from4_nand_device_ready - hardware specific ready/busy check
* @mtd: MTD device structure
......@@ -290,7 +284,6 @@ static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
}
/*
* deplete - code to perform device recovery in case there was a power loss
* @mtd: MTD device structure
......@@ -309,21 +302,20 @@ static void deplete(struct mtd_info *mtd, int chip)
struct nand_chip *this = mtd->priv;
/* wait until device is ready */
while (!this->dev_ready(mtd));
while (!this->dev_ready(mtd)) ;
this->select_chip(mtd, chip);
/* Send the commands for device recovery, phase 1 */
this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
/* Send the commands for device recovery, phase 2 */
this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
}
#ifdef RTC_FROM4_HWECC
/*
* rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
......@@ -335,27 +327,24 @@ static void deplete(struct mtd_info *mtd, int chip)
*/
static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
{
volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
unsigned short status;
switch (mode) {
case NAND_ECC_READ :
status = RTC_FROM4_RS_ECC_CTL_CLR
| RTC_FROM4_RS_ECC_CTL_FD_E;
case NAND_ECC_READ:
status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
*rs_ecc_ctl = status;
break;
case NAND_ECC_READSYN :
case NAND_ECC_READSYN:
status = 0x00;
*rs_ecc_ctl = status;
break;
case NAND_ECC_WRITE :
status = RTC_FROM4_RS_ECC_CTL_CLR
| RTC_FROM4_RS_ECC_CTL_GEN
| RTC_FROM4_RS_ECC_CTL_FD_E;
case NAND_ECC_WRITE:
status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
*rs_ecc_ctl = status;
break;
......@@ -367,7 +356,6 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
}
/*
* rtc_from4_calculate_ecc - hardware specific code to read ECC code
* @mtd: MTD device structure
......@@ -383,7 +371,7 @@ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
*/
static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
unsigned short value;
int i;
......@@ -395,7 +383,6 @@ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_c
ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
}
/*
* rtc_from4_correct_data - hardware specific code to correct data using ECC code
* @mtd: MTD device structure
......@@ -430,17 +417,12 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
}
/* convert into 6 10bit syndrome fields */
par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
(((uint16_t)ecc[1] << 8) & 0x300)];
par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
(((uint16_t)ecc[2] << 6) & 0x3c0)];
par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) |
(((uint16_t)ecc[3] << 4) & 0x3f0)];
par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) |
(((uint16_t)ecc[4] << 2) & 0x3fc)];
par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) |
(((uint16_t)ecc[6] << 8) & 0x300)];
par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0);
par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
/* Convert to computable syndrome */
for (i = 0; i < 6; i++) {
......@@ -453,16 +435,14 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
syn[i] = rs_decoder->index_of[syn[i]];
}
/* Let the library code do its magic.*/
res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL);
/* Let the library code do its magic. */
res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
if (res > 0) {
DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
"ECC corrected %d errors on read\n", res);
DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
}
return res;
}
/**
* rtc_from4_errstat - perform additional error status checks
* @mtd: MTD device structure
......@@ -480,44 +460,44 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha
*/
static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page)
{
int er_stat=0;
int er_stat = 0;
int rtn, retlen;
size_t len;
uint8_t *buf;
int i;
this->cmdfunc (mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
if (state == FL_ERASING) {
for (i=0; i<4; i++) {
if (status & 1<<(i+1)) {
this->cmdfunc (mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1);
for (i = 0; i < 4; i++) {
if (status & 1 << (i + 1)) {
this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1);
rtn = this->read_byte(mtd);
this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
er_stat |= 1<<(i+1); /* err_ecc_not_avail */
er_stat |= 1 << (i + 1); /* err_ecc_not_avail */
}
}
}
} else if (state == FL_WRITING) {
/* single bank write logic */
this->cmdfunc (mtd, NAND_CMD_STATUS_ERROR, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
rtn = this->read_byte(mtd);
this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
er_stat |= 1<<1; /* err_ecc_not_avail */
er_stat |= 1 << 1; /* err_ecc_not_avail */
} else {
len = mtd->oobblock;
buf = kmalloc (len, GFP_KERNEL);
buf = kmalloc(len, GFP_KERNEL);
if (!buf) {
printk (KERN_ERR "rtc_from4_errstat: Out of memory!\n");
printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
er_stat = 1; /* if we can't check, assume failed */
} else {
/* recovery read */
/* page read */
rtn = nand_do_read_ecc (mtd, page, len, &retlen, buf, NULL, this->autooob, 1);
rtn = nand_do_read_ecc(mtd, page, len, &retlen, buf, NULL, this->autooob, 1);
if (rtn) { /* if read failed or > 1-bit error corrected */
er_stat |= 1<<1; /* ECC read failed */
er_stat |= 1 << 1; /* ECC read failed */
}
kfree(buf);
}
......@@ -533,30 +513,28 @@ static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int s
}
#endif
/*
* Main initialization routine
*/
int __init rtc_from4_init (void)
int __init rtc_from4_init(void)
{
struct nand_chip *this;
unsigned short bcr1, bcr2, wcr2;
int i;
/* Allocate memory for MTD device structure and private data */
rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!rtc_from4_mtd) {
printk ("Unable to allocate Renesas NAND MTD device structure.\n");
printk("Unable to allocate Renesas NAND MTD device structure.\n");
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&rtc_from4_mtd[1]);
this = (struct nand_chip *)(&rtc_from4_mtd[1]);
/* Initialize structures */
memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
rtc_from4_mtd->priv = this;
......@@ -617,7 +595,7 @@ int __init rtc_from4_init (void)
}
/* Perform 'device recovery' for each chip in case there was a power loss. */
for (i=0; i < this->numchips; i++) {
for (i = 0; i < this->numchips; i++) {
deplete(rtc_from4_mtd, i);
}
......@@ -643,7 +621,7 @@ int __init rtc_from4_init (void)
*/
rs_decoder = init_rs(10, 0x409, 0, 1, 6);
if (!rs_decoder) {
printk (KERN_ERR "Could not create a RS decoder\n");
printk(KERN_ERR "Could not create a RS decoder\n");
nand_release(rtc_from4_mtd);
kfree(rtc_from4_mtd);
return -ENOMEM;
......@@ -652,20 +630,20 @@ int __init rtc_from4_init (void)
/* Return happy */
return 0;
}
module_init(rtc_from4_init);
module_init(rtc_from4_init);
/*
* Clean up routine
*/
#ifdef MODULE
static void __exit rtc_from4_cleanup (void)
static void __exit rtc_from4_cleanup(void)
{
/* Release resource, unregister partitions */
nand_release(rtc_from4_mtd);
/* Free the MTD device structure */
kfree (rtc_from4_mtd);
kfree(rtc_from4_mtd);
#ifdef RTC_FROM4_HWECC
/* Free the reed solomon resources */
......@@ -674,10 +652,10 @@ static void __exit rtc_from4_cleanup (void)
}
#endif
}
module_exit(rtc_from4_cleanup);
#endif
MODULE_LICENSE("GPL");
MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
......@@ -79,8 +79,8 @@ static int hardware_ecc = 0;
static struct nand_oobinfo nand_hw_eccoob = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 3,
.eccpos = {0, 1, 2 },
.oobfree = { {8, 8} }
.eccpos = {0, 1, 2},
.oobfree = {{8, 8}}
};
/* controller and mtd information */
......@@ -149,8 +149,7 @@ static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
pr_debug("result %d from %ld, %d\n", result, clk, wanted);
if (result > max) {
printk("%d ns is too big for current clock rate %ld\n",
wanted, clk);
printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
return -1;
}
......@@ -164,8 +163,7 @@ static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
/* controller setup */
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
struct platform_device *pdev)
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, struct platform_device *pdev)
{
struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
unsigned long clkrate = clk_get_rate(info->clk);
......@@ -193,19 +191,17 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
}
printk(KERN_INFO PFX "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
tacls, to_ns(tacls, clkrate),
twrph0, to_ns(twrph0, clkrate),
twrph1, to_ns(twrph1, clkrate));
tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
if (!info->is_s3c2440) {
cfg = S3C2410_NFCONF_EN;
cfg |= S3C2410_NFCONF_TACLS(tacls-1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
} else {
cfg = S3C2440_NFCONF_TACLS(tacls-1);
cfg |= S3C2440_NFCONF_TWRPH0(twrph0-1);
cfg |= S3C2440_NFCONF_TWRPH1(twrph1-1);
cfg = S3C2440_NFCONF_TACLS(tacls - 1);
cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
}
pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
......@@ -229,7 +225,7 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
info = nmtd->info;
bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);
reg = info->regs + ((info->is_s3c2440) ? S3C2440_NFCONT : S3C2410_NFCONF);
cur = readl(reg);
......@@ -243,7 +239,7 @@ static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
if (info->platform != NULL) {
if (info->platform->select_chip != NULL)
(info->platform->select_chip)(nmtd->set, chip);
(info->platform->select_chip) (nmtd->set, chip);
}
cur &= ~bit;
......@@ -330,22 +326,16 @@ static int s3c2410_nand_devready(struct mtd_info *mtd)
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
}
/* ECC handling functions */
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
mtd, dat, read_ecc, calc_ecc);
pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n", mtd, dat, read_ecc, calc_ecc);
pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
read_ecc[0], read_ecc[1], read_ecc[2],
calc_ecc[0], calc_ecc[1], calc_ecc[2]);
read_ecc[0], read_ecc[1], read_ecc[2], calc_ecc[0], calc_ecc[1], calc_ecc[2]);
if (read_ecc[0] == calc_ecc[0] &&
read_ecc[1] == calc_ecc[1] &&
read_ecc[2] == calc_ecc[2])
if (read_ecc[0] == calc_ecc[0] && read_ecc[1] == calc_ecc[1] && read_ecc[2] == calc_ecc[2])
return 0;
/* we curently have no method for correcting the error */
......@@ -378,8 +368,7 @@ static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
}
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_code)
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
......@@ -387,15 +376,12 @@ static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
ecc_code[0], ecc_code[1], ecc_code[2]);
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
return 0;
}
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_code)
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
......@@ -404,13 +390,11 @@ static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd,
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
ecc_code[0], ecc_code[1], ecc_code[2]);
pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
return 0;
}
/* over-ride the standard functions for a little more speed. We can
* use read/write block to move the data buffers to/from the controller
*/
......@@ -421,8 +405,7 @@ static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
readsb(this->IO_ADDR_R, buf, len);
}
static void s3c2410_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
writesb(this->IO_ADDR_W, buf, len);
......@@ -488,9 +471,7 @@ static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
return add_mtd_device(&mtd->mtd);
if (set->nr_partitions > 0 && set->partitions != NULL) {
return add_mtd_partitions(&mtd->mtd,
set->partitions,
set->nr_partitions);
return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
}
return add_mtd_device(&mtd->mtd);
......@@ -654,13 +635,11 @@ static int s3c24xx_nand_probe(struct platform_device *pdev, int is_s3c2440)
nmtd = info->mtds;
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
pr_debug("initialising set %d (%p, info %p)\n",
setno, nmtd, info);
pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
s3c2410_nand_init_chip(info, nmtd, sets);
nmtd->scan_res = nand_scan(&nmtd->mtd,
(sets) ? sets->nr_chips : 1);
nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);
if (nmtd->scan_res == 0) {
s3c2410_nand_add_partition(info, nmtd, sets);
......
......@@ -46,7 +46,6 @@ static int sharpsl_phys_base = 0x0C000000;
#define FLCLE (1 << 1)
#define FLCE0 (1 << 0)
/*
* MTD structure for SharpSL
*/
......@@ -71,16 +70,15 @@ static struct mtd_partition sharpsl_nand_default_partition_info[] = {
},
{
.name = "Home Filesystem",
.offset = MTDPART_OFS_APPEND ,
.size = MTDPART_SIZ_FULL ,
.offset = MTDPART_OFS_APPEND,
.size = MTDPART_SIZ_FULL,
},
};
/*
* hardware specific access to control-lines
*/
static void
sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd)
static void sharpsl_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch (cmd) {
case NAND_CTL_SETCLE:
......@@ -98,10 +96,10 @@ sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd)
break;
case NAND_CTL_SETNCE:
writeb(readb(FLASHCTL) & ~(FLCE0|FLCE1), FLASHCTL);
writeb(readb(FLASHCTL) & ~(FLCE0 | FLCE1), FLASHCTL);
break;
case NAND_CTL_CLRNCE:
writeb(readb(FLASHCTL) | (FLCE0|FLCE1), FLASHCTL);
writeb(readb(FLASHCTL) | (FLCE0 | FLCE1), FLASHCTL);
break;
}
}
......@@ -129,24 +127,20 @@ static struct nand_oobinfo akita_oobinfo = {
0x5, 0x1, 0x2, 0x3, 0x6, 0x7, 0x15, 0x11,
0x12, 0x13, 0x16, 0x17, 0x25, 0x21, 0x22, 0x23,
0x26, 0x27, 0x35, 0x31, 0x32, 0x33, 0x36, 0x37},
.oobfree = { {0x08, 0x09} }
.oobfree = {{0x08, 0x09}}
};
static int
sharpsl_nand_dev_ready(struct mtd_info* mtd)
static int sharpsl_nand_dev_ready(struct mtd_info *mtd)
{
return !((readb(FLASHCTL) & FLRYBY) == 0);
}
static void
sharpsl_nand_enable_hwecc(struct mtd_info* mtd, int mode)
static void sharpsl_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
writeb(0 ,ECCCLRR);
writeb(0, ECCCLRR);
}
static int
sharpsl_nand_calculate_ecc(struct mtd_info* mtd, const u_char* dat,
u_char* ecc_code)
static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, u_char * ecc_code)
{
ecc_code[0] = ~readb(ECCLPUB);
ecc_code[1] = ~readb(ECCLPLB);
......@@ -154,44 +148,40 @@ sharpsl_nand_calculate_ecc(struct mtd_info* mtd, const u_char* dat,
return readb(ECCCNTR) != 0;
}
#ifdef CONFIG_MTD_PARTITIONS
const char *part_probes[] = { "cmdlinepart", NULL };
#endif
/*
* Main initialization routine
*/
int __init
sharpsl_nand_init(void)
int __init sharpsl_nand_init(void)
{
struct nand_chip *this;
struct mtd_partition* sharpsl_partition_info;
struct mtd_partition *sharpsl_partition_info;
int err = 0;
/* Allocate memory for MTD device structure and private data */
sharpsl_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
GFP_KERNEL);
sharpsl_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!sharpsl_mtd) {
printk ("Unable to allocate SharpSL NAND MTD device structure.\n");
printk("Unable to allocate SharpSL NAND MTD device structure.\n");
return -ENOMEM;
}
/* map physical adress */
sharpsl_io_base = ioremap(sharpsl_phys_base, 0x1000);
if(!sharpsl_io_base){
if (!sharpsl_io_base) {
printk("ioremap to access Sharp SL NAND chip failed\n");
kfree(sharpsl_mtd);
return -EIO;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&sharpsl_mtd[1]);
this = (struct nand_chip *)(&sharpsl_mtd[1]);
/* Initialize structures */
memset((char *) sharpsl_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(sharpsl_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
sharpsl_mtd->priv = this;
......@@ -221,7 +211,7 @@ sharpsl_nand_init(void)
this->correct_data = nand_correct_data;
/* Scan to find existence of the device */
err=nand_scan(sharpsl_mtd,1);
err = nand_scan(sharpsl_mtd, 1);
if (err) {
iounmap(sharpsl_io_base);
kfree(sharpsl_mtd);
......@@ -230,24 +220,23 @@ sharpsl_nand_init(void)
/* Register the partitions */
sharpsl_mtd->name = "sharpsl-nand";
nr_partitions = parse_mtd_partitions(sharpsl_mtd, part_probes,
&sharpsl_partition_info, 0);
nr_partitions = parse_mtd_partitions(sharpsl_mtd, part_probes, &sharpsl_partition_info, 0);
if (nr_partitions <= 0) {
nr_partitions = DEFAULT_NUM_PARTITIONS;
sharpsl_partition_info = sharpsl_nand_default_partition_info;
if (machine_is_poodle()) {
sharpsl_partition_info[1].size=22 * 1024 * 1024;
sharpsl_partition_info[1].size = 22 * 1024 * 1024;
} else if (machine_is_corgi() || machine_is_shepherd()) {
sharpsl_partition_info[1].size=25 * 1024 * 1024;
sharpsl_partition_info[1].size = 25 * 1024 * 1024;
} else if (machine_is_husky()) {
sharpsl_partition_info[1].size=53 * 1024 * 1024;
sharpsl_partition_info[1].size = 53 * 1024 * 1024;
} else if (machine_is_spitz()) {
sharpsl_partition_info[1].size=5 * 1024 * 1024;
sharpsl_partition_info[1].size = 5 * 1024 * 1024;
} else if (machine_is_akita()) {
sharpsl_partition_info[1].size=58 * 1024 * 1024;
sharpsl_partition_info[1].size = 58 * 1024 * 1024;
} else if (machine_is_borzoi()) {
sharpsl_partition_info[1].size=32 * 1024 * 1024;
sharpsl_partition_info[1].size = 32 * 1024 * 1024;
}
}
......@@ -261,6 +250,7 @@ sharpsl_nand_init(void)
/* Return happy */
return 0;
}
module_init(sharpsl_nand_init);
/*
......@@ -269,7 +259,7 @@ module_init(sharpsl_nand_init);
#ifdef MODULE
static void __exit sharpsl_nand_cleanup(void)
{
struct nand_chip *this = (struct nand_chip *) &sharpsl_mtd[1];
struct nand_chip *this = (struct nand_chip *)&sharpsl_mtd[1];
/* Release resources, unregister device */
nand_release(sharpsl_mtd);
......@@ -279,6 +269,7 @@ static void __exit sharpsl_nand_cleanup(void)
/* Free the MTD device structure */
kfree(sharpsl_mtd);
}
module_exit(sharpsl_nand_cleanup);
#endif
......
......@@ -71,23 +71,21 @@ static const struct mtd_partition partition_info[] = {
{
.name = "SPIA flash partition 1",
.offset = 0,
.size = 2*1024*1024
},
.size = 2 * 1024 * 1024},
{
.name = "SPIA flash partition 2",
.offset = 2*1024*1024,
.size = 6*1024*1024
}
.offset = 2 * 1024 * 1024,
.size = 6 * 1024 * 1024}
};
#define NUM_PARTITIONS 2
#define NUM_PARTITIONS 2
/*
* hardware specific access to control-lines
*/
static void spia_hwcontrol(struct mtd_info *mtd, int cmd){
switch(cmd){
static void spia_hwcontrol(struct mtd_info *mtd, int cmd)
{
switch (cmd) {
case NAND_CTL_SETCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x01; break;
case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x01; break;
......@@ -103,24 +101,23 @@ static void spia_hwcontrol(struct mtd_info *mtd, int cmd){
/*
* Main initialization routine
*/
int __init spia_init (void)
int __init spia_init(void)
{
struct nand_chip *this;
/* Allocate memory for MTD device structure and private data */
spia_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
spia_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!spia_mtd) {
printk ("Unable to allocate SPIA NAND MTD device structure.\n");
printk("Unable to allocate SPIA NAND MTD device structure.\n");
return -ENOMEM;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&spia_mtd[1]);
this = (struct nand_chip *)(&spia_mtd[1]);
/* Initialize structures */
memset((char *) spia_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(spia_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
spia_mtd->priv = this;
......@@ -129,19 +126,19 @@ int __init spia_init (void)
* Set GPIO Port E control register so that the pins are configured
* to be outputs for controlling the NAND flash.
*/
(*(volatile unsigned char *) (spia_io_base + spia_peddr)) = 0x07;
(*(volatile unsigned char *)(spia_io_base + spia_peddr)) = 0x07;
/* Set address of NAND IO lines */
this->IO_ADDR_R = (void __iomem *) spia_fio_base;
this->IO_ADDR_W = (void __iomem *) spia_fio_base;
this->IO_ADDR_R = (void __iomem *)spia_fio_base;
this->IO_ADDR_W = (void __iomem *)spia_fio_base;
/* Set address of hardware control function */
this->hwcontrol = spia_hwcontrol;
/* 15 us command delay time */
this->chip_delay = 15;
/* Scan to find existence of the device */
if (nand_scan (spia_mtd, 1)) {
kfree (spia_mtd);
if (nand_scan(spia_mtd, 1)) {
kfree(spia_mtd);
return -ENXIO;
}
......@@ -151,20 +148,22 @@ int __init spia_init (void)
/* Return happy */
return 0;
}
module_init(spia_init);
/*
* Clean up routine
*/
#ifdef MODULE
static void __exit spia_cleanup (void)
static void __exit spia_cleanup(void)
{
/* Release resources, unregister device */
nand_release (spia_mtd);
nand_release(spia_mtd);
/* Free the MTD device structure */
kfree (spia_mtd);
kfree(spia_mtd);
}
module_exit(spia_cleanup);
#endif
......
......@@ -99,8 +99,7 @@ static void toto_hwcontrol(struct mtd_info *mtd, int cmd)
{
udelay(1); /* hopefully enough time for tc make proceding write to clear */
switch(cmd){
switch (cmd) {
case NAND_CTL_SETCLE: T_NAND_CTL_SETCLE(cmd); break;
case NAND_CTL_CLRCLE: T_NAND_CTL_CLRCLE(cmd); break;
......@@ -116,26 +115,25 @@ static void toto_hwcontrol(struct mtd_info *mtd, int cmd)
/*
* Main initialization routine
*/
int __init toto_init (void)
int __init toto_init(void)
{
struct nand_chip *this;
int err = 0;
/* Allocate memory for MTD device structure and private data */
toto_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
GFP_KERNEL);
toto_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!toto_mtd) {
printk (KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n");
printk(KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
/* Get pointer to private data */
this = (struct nand_chip *) (&toto_mtd[1]);
this = (struct nand_chip *)(&toto_mtd[1]);
/* Initialize structures */
memset((char *) toto_mtd, 0, sizeof(struct mtd_info));
memset((char *) this, 0, sizeof(struct nand_chip));
memset(toto_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
toto_mtd->priv = this;
......@@ -150,32 +148,36 @@ int __init toto_init (void)
this->eccmode = NAND_ECC_SOFT;
/* Scan to find existance of the device */
if (nand_scan (toto_mtd, 1)) {
if (nand_scan(toto_mtd, 1)) {
err = -ENXIO;
goto out_mtd;
}
/* Register the partitions */
switch(toto_mtd->size){
case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break;
case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break;
default: {
printk (KERN_WARNING "Unsupported Nand device\n");
switch (toto_mtd->size) {
case SZ_64M:
add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M);
break;
case SZ_32M:
add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M);
break;
default:{
printk(KERN_WARNING "Unsupported Nand device\n");
err = -ENXIO;
goto out_buf;
}
}
gpioreserve(NAND_MASK); /* claim our gpios */
archflashwp(0,0); /* open up flash for writing */
archflashwp(0, 0); /* open up flash for writing */
goto out;
out_buf:
kfree (this->data_buf);
out_mtd:
kfree (toto_mtd);
out:
out_buf:
kfree(this->data_buf);
out_mtd:
kfree(toto_mtd);
out:
return err;
}
......@@ -184,20 +186,21 @@ module_init(toto_init);
/*
* Clean up routine
*/
static void __exit toto_cleanup (void)
static void __exit toto_cleanup(void)
{
/* Release resources, unregister device */
nand_release (toto_mtd);
nand_release(toto_mtd);
/* Free the MTD device structure */
kfree (toto_mtd);
kfree(toto_mtd);
/* stop flash writes */
archflashwp(0,1);
archflashwp(0, 1);
/* release gpios to system */
gpiorelease(NAND_MASK);
}
module_exit(toto_cleanup);
MODULE_LICENSE("GPL");
......
......@@ -88,7 +88,7 @@ static void ts7250_hwcontrol(struct mtd_info *mtd, int cmd)
{
unsigned long ctrl = TS72XX_NAND_CONTROL_VIRT_BASE;
switch(cmd) {
switch (cmd) {
case NAND_CTL_SETCLE:
__raw_writeb(__raw_readb(ctrl) | 0x2, ctrl);
break;
......@@ -132,8 +132,7 @@ static int __init ts7250_init(void)
return -ENXIO;
/* Allocate memory for MTD device structure and private data */
ts7250_mtd = kmalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip), GFP_KERNEL);
ts7250_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!ts7250_mtd) {
printk("Unable to allocate TS7250 NAND MTD device structure.\n");
return -ENOMEM;
......@@ -163,11 +162,9 @@ static int __init ts7250_init(void)
kfree(ts7250_mtd);
return -ENXIO;
}
#ifdef CONFIG_MTD_PARTITIONS
ts7250_mtd->name = "ts7250-nand";
mtd_parts_nb = parse_mtd_partitions(ts7250_mtd, part_probes,
&mtd_parts, 0);
mtd_parts_nb = parse_mtd_partitions(ts7250_mtd, part_probes, &mtd_parts, 0);
if (mtd_parts_nb > 0)
part_type = "command line";
else
......@@ -188,6 +185,7 @@ static int __init ts7250_init(void)
/* Return happy */
return 0;
}
module_init(ts7250_init);
/*
......@@ -201,6 +199,7 @@ static void __exit ts7250_cleanup(void)
/* Free the MTD device structure */
kfree(ts7250_mtd);
}
module_exit(ts7250_cleanup);
MODULE_LICENSE("GPL");
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment