Commit e0ce8a72 authored by Sebastian Haas's avatar Sebastian Haas Committed by Greg Kroah-Hartman

Staging: add cpc-usb driver to the staging tree

This is a CPC CAN USB driver.

Just some comments:
cpcusb.h and cpc-usb_drv.c: Essential driver source code
sja2m16c_2.c: Helper for converting bitrate timings
cpc.h: Structures and definition needed to communicate with the device

From: Sebastian Haas <haas@ems-wuensche.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 6456f0b7
/*
* CPC-USB CAN Interface Kernel Driver
*
* Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/completion.h>
#include <asm/uaccess.h>
#include <linux/usb.h>
#include <linux/version.h>
/* usb_kill_urb has been introduced in kernel version 2.6.8 (RC2) */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8))
#define usb_kill_urb usb_unlink_urb
#endif
#ifdef CONFIG_PROC_FS
# include <linux/proc_fs.h>
#endif
#include "cpc.h"
#include "cpc_int.h"
#include "cpcusb.h"
#include "sja2m16c.h"
/* Version Information */
#define DRIVER_AUTHOR "Sebastian Haas <haas@ems-wuensche.com>"
#define DRIVER_DESC "CPC-USB Driver for Linux Kernel 2.6"
#define DRIVER_VERSION CPC_DRIVER_VERSION " (CDKL v" CDKL_VERSION ")"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
/* Define these values to match your devices */
#define USB_CPCUSB_VENDOR_ID 0x12D6
#define USB_CPCUSB_M16C_PRODUCT_ID 0x0888
#define USB_CPCUSB_LPC2119_PRODUCT_ID 0x0444
#ifndef CONFIG_PROC_FS
#error "PROCFS needed"
#endif
#define CPC_USB_PROC_DIR CPC_PROC_DIR "cpc-usb"
static struct proc_dir_entry *procDir = NULL;
static struct proc_dir_entry *procEntry = NULL;
/* Module parameters */
static int debug = 0;
module_param(debug, int, S_IRUGO);
/* table of devices that work with this driver */
static struct usb_device_id cpcusb_table[] = {
{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_M16C_PRODUCT_ID)},
{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_LPC2119_PRODUCT_ID)},
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, cpcusb_table);
/* use to prevent kernel panic if driver is unloaded
* while a programm has still open the device
*/
DECLARE_WAIT_QUEUE_HEAD(rmmodWq);
atomic_t useCount;
static CPC_USB_T *CPCUSB_Table[CPC_USB_CARD_CNT] = { 0 };
static unsigned int CPCUsbCnt = 0;
/* prevent races between open() and disconnect() */
static DECLARE_MUTEX(disconnect_sem);
/* local function prototypes */
static ssize_t cpcusb_read(struct file *file, char *buffer, size_t count,
loff_t * ppos);
static ssize_t cpcusb_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos);
static unsigned int cpcusb_poll(struct file *file, poll_table * wait);
static int cpcusb_open(struct inode *inode, struct file *file);
static int cpcusb_release(struct inode *inode, struct file *file);
static int cpcusb_probe(struct usb_interface *interface,
const struct usb_device_id *id);
static void cpcusb_disconnect(struct usb_interface *interface);
static void cpcusb_read_bulk_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
);
static void cpcusb_write_bulk_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
);
static void cpcusb_read_interrupt_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
);
static int cpcusb_setup_intrep(CPC_USB_T * card);
static struct file_operations cpcusb_fops = {
/*
* The owner field is part of the module-locking
* mechanism. The idea is that the kernel knows
* which module to increment the use-counter of
* BEFORE it calls the device's open() function.
* This also means that the kernel can decrement
* the use-counter again before calling release()
* or should the open() function fail.
*/
.owner = THIS_MODULE,
.read = cpcusb_read,
.write = cpcusb_write,
.poll = cpcusb_poll,
.open = cpcusb_open,
.release = cpcusb_release,
};
/*
* usb class driver info in order to get a minor number from the usb core,
* and to have the device registered with devfs and the driver core
*/
static struct usb_class_driver cpcusb_class = {
.name = "usb/cpc_usb%d",
.fops = &cpcusb_fops,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14))
.mode =
S_IFCHR | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH |
S_IWOTH,
#endif
.minor_base = CPC_USB_BASE_MNR,
};
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver cpcusb_driver = {
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,14))
.owner = THIS_MODULE,
#endif
.name = "cpc-usb",
.probe = cpcusb_probe,
.disconnect = cpcusb_disconnect,
.id_table = cpcusb_table,
};
static int cpcusb_create_info_output(char *buf)
{
int i = 0, j;
for (j = 0; j < CPC_USB_CARD_CNT; j++) {
if (CPCUSB_Table[j]) {
CPC_USB_T *card = CPCUSB_Table[j];
CPC_CHAN_T *chan = card->chan;
/* MINOR CHANNELNO BUSNO SLOTNO */
i += sprintf(&buf[i], "%d %s\n", chan->minor,
card->serialNumber);
}
}
return i;
}
static int cpcusb_proc_read_info(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = cpcusb_create_info_output(page);
if (len <= off + count)
*eof = 1;
*start = page + off;
len -= off;
if (len > count)
len = count;
if (len < 0)
len = 0;
return len;
}
/*
* Remove CPC-USB and cleanup
*/
static inline void cpcusb_delete(CPC_USB_T * card)
{
if (card) {
if (card->chan) {
if (card->chan->buf)
vfree(card->chan->buf);
if (card->chan->CPCWait_q)
kfree(card->chan->CPCWait_q);
kfree(card->chan);
}
CPCUSB_Table[card->idx] = NULL;
kfree(card);
}
}
/*
* setup the interrupt IN endpoint of a specific CPC-USB device
*/
static int cpcusb_setup_intrep(CPC_USB_T * card)
{
int retval = 0;
struct usb_endpoint_descriptor *ep;
ep = &card->interface->altsetting[0].endpoint[card->num_intr_in].desc;
card->intr_in_buffer[0] = 0;
card->free_slots = 15; /* initial size */
/* setup the urb */
usb_fill_int_urb(card->intr_in_urb, card->udev,
usb_rcvintpipe(card->udev, card->num_intr_in),
card->intr_in_buffer,
sizeof(card->intr_in_buffer),
cpcusb_read_interrupt_callback,
card,
ep->bInterval);
card->intr_in_urb->status = 0; /* needed! */
/* submit the urb */
retval = usb_submit_urb(card->intr_in_urb, GFP_KERNEL);
if (retval) {
err("%s - failed submitting intr urb, error %d", __FUNCTION__, retval);
}
return retval;
}
static int cpcusb_open(struct inode *inode, struct file *file)
{
CPC_USB_T *card = NULL;
struct usb_interface *interface;
int subminor;
int j, retval = 0;
subminor = iminor(inode);
/* prevent disconnects */
down(&disconnect_sem);
interface = usb_find_interface(&cpcusb_driver, subminor);
if (!interface) {
err("%s - error, can't find device for minor %d",
__FUNCTION__, subminor);
retval = CPC_ERR_NO_INTERFACE_PRESENT;
goto exit_no_device;
}
card = usb_get_intfdata(interface);
if (!card) {
retval = CPC_ERR_NO_INTERFACE_PRESENT;
goto exit_no_device;
}
/* lock this device */
down(&card->sem);
/* increment our usage count for the driver */
if (card->open) {
dbg("device already opened");
retval = CPC_ERR_CHANNEL_ALREADY_OPEN;
goto exit_on_error;
}
/* save our object in the file's private structure */
file->private_data = card;
for (j = 0; j < CPC_USB_URB_CNT; j++) {
usb_fill_bulk_urb(card->urbs[j].urb, card->udev,
usb_rcvbulkpipe(card->udev, card->num_bulk_in),
card->urbs[j].buffer, card->urbs[j].size,
cpcusb_read_bulk_callback, card);
retval = usb_submit_urb(card->urbs[j].urb, GFP_KERNEL);
if (retval) {
err("%s - failed submitting read urb, error %d",
__FUNCTION__, retval);
retval = CPC_ERR_TRANSMISSION_FAILED;
goto exit_on_error;
}
}
info("%s - %d URB's submitted", __FUNCTION__, j);
ResetBuffer(card->chan);
cpcusb_setup_intrep(card);
card->open = 1;
atomic_inc(&useCount);
exit_on_error:
/* unlock this device */
up(&card->sem);
exit_no_device:
up(&disconnect_sem);
return retval;
}
static unsigned int cpcusb_poll(struct file *file, poll_table * wait)
{
CPC_USB_T *card = (CPC_USB_T *) file->private_data;
unsigned int retval = 0;
if (!card) {
err("%s - device object lost", __FUNCTION__);
return -EIO;
}
poll_wait(file, card->chan->CPCWait_q, wait);
if (IsBufferNotEmpty(card->chan) || !(card->present))
retval |= (POLLIN | POLLRDNORM);
if (card->free_slots)
retval |= (POLLOUT | POLLWRNORM);
return retval;
}
static int cpcusb_release(struct inode *inode, struct file *file)
{
CPC_USB_T *card = (CPC_USB_T *) file->private_data;
int j, retval = 0;
if (card == NULL) {
dbg("%s - object is NULL", __FUNCTION__);
return CPC_ERR_NO_INTERFACE_PRESENT;
}
/* lock our device */
down(&card->sem);
if (!card->open) {
dbg("%s - device not opened", __FUNCTION__);
retval = CPC_ERR_NO_INTERFACE_PRESENT;
goto exit_not_opened;
}
/* if device wasn't unplugged kill all urbs */
if (card->present) {
/* kill read urbs */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
usb_kill_urb(card->urbs[j].urb);
}
/* kill irq urb */
usb_kill_urb(card->intr_in_urb);
/* kill write urbs */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
if (atomic_read(&card->wrUrbs[j].busy)) {
usb_kill_urb(card->wrUrbs[j].urb);
wait_for_completion(&card->wrUrbs[j].finished);
}
}
}
atomic_dec(&useCount);
/* last process detached */
if (atomic_read(&useCount) == 0) {
wake_up(&rmmodWq);
}
if (!card->present && card->open) {
/* the device was unplugged before the file was released */
up(&card->sem);
cpcusb_delete(card);
return 0;
}
card->open = 0;
exit_not_opened:
up(&card->sem);
return 0;
}
static ssize_t cpcusb_read(struct file *file, char *buffer, size_t count,
loff_t * ppos)
{
CPC_USB_T *card = (CPC_USB_T *) file->private_data;
CPC_CHAN_T *chan;
int retval = 0;
if (count < sizeof(CPC_MSG_T))
return CPC_ERR_UNKNOWN;
/* check if can read from the given address */
if (!access_ok(VERIFY_WRITE, buffer, count))
return CPC_ERR_UNKNOWN;
/* lock this object */
down(&card->sem);
/* verify that the device wasn't unplugged */
if (!card->present) {
up(&card->sem);
return CPC_ERR_NO_INTERFACE_PRESENT;
}
if (IsBufferEmpty(card->chan)) {
retval = 0;
} else {
chan = card->chan;
#if 0
/* convert LPC2119 params back to SJA1000 params */
if (card->deviceRevision >= 0x0200
&& chan->buf[chan->oidx].type == CPC_MSG_T_CAN_PRMS) {
LPC2119_TO_SJA1000_Params(&chan->buf[chan->oidx]);
}
#endif
if (copy_to_user(buffer, &chan->buf[chan->oidx], count) != 0) {
retval = CPC_ERR_IO_TRANSFER;
} else {
chan->oidx = (chan->oidx + 1) % CPC_MSG_BUF_CNT;
chan->WnR = 1;
retval = sizeof(CPC_MSG_T);
}
}
// spin_unlock_irqrestore(&card->slock, flags);
/* unlock the device */
up(&card->sem);
return retval;
}
#define SHIFT 1
static void inline cpcusb_align_buffer_alignment(unsigned char *buf)
{
// CPC-USB uploads packed bytes.
CPC_MSG_T *cpc = (CPC_MSG_T *) buf;
unsigned int i;
for (i = 0; i < cpc->length + (2 * sizeof(unsigned long)); i++) {
((unsigned char *) &cpc->msgid)[1 + i] =
((unsigned char *) &cpc->msgid)[1 + SHIFT + i];
}
}
static int cpc_get_buffer_count(CPC_CHAN_T * chan)
{
// check the buffer parameters
if (chan->iidx == chan->oidx)
return !chan->WnR ? CPC_MSG_BUF_CNT : 0;
else if (chan->iidx >= chan->oidx)
return (chan->iidx - chan->oidx) % CPC_MSG_BUF_CNT;
return (chan->iidx + CPC_MSG_BUF_CNT - chan->oidx) % CPC_MSG_BUF_CNT;
}
static ssize_t cpcusb_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos)
{
CPC_USB_T *card = (CPC_USB_T *) file->private_data;
CPC_USB_WRITE_URB_T *wrUrb = NULL;
ssize_t bytes_written = 0;
int retval = 0;
int j;
unsigned char *obuf = NULL;
unsigned char type = 0;
CPC_MSG_T *info = NULL;
dbg("%s - entered minor %d, count = %d, present = %d",
__FUNCTION__, card->minor, count, card->present);
if (count > sizeof(CPC_MSG_T))
return CPC_ERR_UNKNOWN;
/* check if can read from the given address */
if (!access_ok(VERIFY_READ, buffer, count))
return CPC_ERR_UNKNOWN;
/* lock this object */
down(&card->sem);
/* verify that the device wasn't unplugged */
if (!card->present) {
retval = CPC_ERR_NO_INTERFACE_PRESENT;
goto exit;
}
/* verify that we actually have some data to write */
if (count == 0) {
dbg("%s - write request of 0 bytes", __FUNCTION__);
goto exit;
}
if (card->free_slots <= 5) {
info = (CPC_MSG_T *) buffer;
if (info->type != CPC_CMD_T_CLEAR_CMD_QUEUE
|| card->free_slots <= 0) {
dbg("%s - send buffer full please try again %d",
__FUNCTION__, card->free_slots);
retval = CPC_ERR_CAN_NO_TRANSMIT_BUF;
goto exit;
}
}
/* Find a free write urb */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
if (!atomic_read(&card->wrUrbs[j].busy)) {
wrUrb = &card->wrUrbs[j]; /* remember found URB */
atomic_set(&wrUrb->busy, 1); /* lock this URB */
init_completion(&wrUrb->finished); /* init completion */
dbg("WR URB no. %d started", j);
break;
}
}
/* don't found write urb say error */
if (!wrUrb) {
dbg("%s - no free send urb available", __FUNCTION__);
retval = CPC_ERR_CAN_NO_TRANSMIT_BUF;
goto exit;
}
dbg("URB write req");
obuf = (unsigned char *) wrUrb->urb->transfer_buffer;
/* copy the data from userspace into our transfer buffer;
* this is the only copy required.
*/
if (copy_from_user(&obuf[4], buffer, count) != 0) {
atomic_set(&wrUrb->busy, 0); /* release urb */
retval = CPC_ERR_IO_TRANSFER;
goto exit;
}
/* check if it is a DRIVER information message, so we can
* response to that message and not the USB
*/
info = (CPC_MSG_T *) & obuf[4];
bytes_written = 11 + info->length;
if (bytes_written >= wrUrb->size) {
retval = CPC_ERR_IO_TRANSFER;
goto exit;
}
switch (info->type) {
case CPC_CMD_T_CLEAR_MSG_QUEUE:
ResetBuffer(card->chan);
break;
case CPC_CMD_T_INQ_MSG_QUEUE_CNT:
retval = cpc_get_buffer_count(card->chan);
atomic_set(&wrUrb->busy, 0);
goto exit;
case CPC_CMD_T_INQ_INFO:
if (info->msg.info.source == CPC_INFOMSG_T_DRIVER) {
/* release urb cause we'll use it for driver
* information
*/
atomic_set(&wrUrb->busy, 0);
if (IsBufferFull(card->chan)) {
retval = CPC_ERR_IO_TRANSFER;
goto exit;
}
/* it is a driver information request message and we have
* free rx slots to store the response
*/
type = info->msg.info.type;
info = &card->chan->buf[card->chan->iidx];
info->type = CPC_MSG_T_INFO;
info->msg.info.source = CPC_INFOMSG_T_DRIVER;
info->msg.info.type = type;
switch (type) {
case CPC_INFOMSG_T_VERSION:
info->length = strlen(CPC_DRIVER_VERSION) + 2;
sprintf(info->msg.info.msg, "%s\n",
CPC_DRIVER_VERSION);
break;
case CPC_INFOMSG_T_SERIAL:
info->length = strlen(CPC_DRIVER_SERIAL) + 2;
sprintf(info->msg.info.msg, "%s\n",
CPC_DRIVER_SERIAL);
break;
default:
info->length = 2;
info->msg.info.type =
CPC_INFOMSG_T_UNKNOWN_TYPE;
}
card->chan->WnR = 0;
card->chan->iidx =
(card->chan->iidx + 1) % CPC_MSG_BUF_CNT;
retval = info->length;
goto exit;
}
break;
case CPC_CMD_T_CAN_PRMS:
/* Check the controller type. If it's the new CPC-USB, make sure if these are SJA1000 params */
if (info->msg.canparams.cc_type != SJA1000
&& info->msg.canparams.cc_type != M16C_BASIC
&& (card->productId == USB_CPCUSB_LPC2119_PRODUCT_ID
&& info->msg.canparams.cc_type != SJA1000)) {
/* don't forget to release the urb */
atomic_set(&wrUrb->busy, 0);
retval = CPC_ERR_WRONG_CONTROLLER_TYPE;
goto exit;
}
break;
}
/* just convert the params if it is an old CPC-USB with M16C controller */
if (card->productId == USB_CPCUSB_M16C_PRODUCT_ID) {
/* if it is a parameter message convert it from SJA1000 controller
* settings to M16C Basic controller settings
*/
SJA1000_TO_M16C_BASIC_Params((CPC_MSG_T *) & obuf[4]);
}
/* don't forget the byte alignment */
cpcusb_align_buffer_alignment(&obuf[4]);
/* setup a the 4 byte header */
obuf[0] = obuf[1] = obuf[2] = obuf[3] = 0;
/* this urb was already set up, except for this write size */
wrUrb->urb->transfer_buffer_length = bytes_written + 4;
/* send the data out the bulk port */
/* a character device write uses GFP_KERNEL,
unless a spinlock is held */
retval = usb_submit_urb(wrUrb->urb, GFP_KERNEL);
if (retval) {
atomic_set(&wrUrb->busy, 0); /* release urb */
err("%s - failed submitting write urb, error %d",
__FUNCTION__, retval);
} else {
retval = bytes_written;
}
exit:
/* unlock the device */
up(&card->sem);
dbg("%s - leaved", __FUNCTION__);
return retval;
}
/*
* callback for interrupt IN urb
*/
static void cpcusb_read_interrupt_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
)
{
CPC_USB_T *card = (CPC_USB_T *) urb->context;
int retval;
unsigned long flags;
spin_lock_irqsave(&card->slock, flags);
if (!card->present) {
spin_unlock_irqrestore(&card->slock, flags);
info("%s - no such device", __FUNCTION__);
return;
}
switch (urb->status) {
case 0: /* success */
card->free_slots = card->intr_in_buffer[1];
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* urb was killed */
spin_unlock_irqrestore(&card->slock, flags);
dbg("%s - intr urb killed", __FUNCTION__);
return;
default:
info("%s - nonzero urb status %d", __FUNCTION__, urb->status);
break;
}
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval) {
err("%s - failed resubmitting intr urb, error %d",
__FUNCTION__, retval);
}
spin_unlock_irqrestore(&card->slock, flags);
wake_up_interruptible(card->chan->CPCWait_q);
return;
}
#define UN_SHIFT 1
#define CPCMSG_HEADER_LEN_FIRMWARE 11
static int inline cpcusb_unalign_and_copy_buffy(unsigned char *out,
unsigned char *in)
{
unsigned int i, j;
for (i = 0; i < 3; i++) {
out[i] = in[i];
}
for (j = 0; j < (in[1] + (CPCMSG_HEADER_LEN_FIRMWARE - 3)); j++) {
out[j + i + UN_SHIFT] = in[j + i];
}
return i + j;
}
/*
* callback for bulk IN urb
*/
static void cpcusb_read_bulk_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
)
{
CPC_USB_T *card = (CPC_USB_T *) urb->context;
CPC_CHAN_T *chan;
unsigned char *ibuf = urb->transfer_buffer;
int retval, msgCnt, start, again = 0;
unsigned long flags;
if (!card) {
err("%s - device object lost", __FUNCTION__);
return;
}
spin_lock_irqsave(&card->slock, flags);
if (!card->present) {
spin_unlock_irqrestore(&card->slock, flags);
info("%s - no such device", __FUNCTION__);
return;
}
switch (urb->status) {
case 0: /* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* urb was killed */
spin_unlock_irqrestore(&card->slock, flags);
dbg("%s - read urb killed", __FUNCTION__);
return;
default:
info("%s - nonzero urb status %d", __FUNCTION__, urb->status);
break;
}
if (urb->actual_length) {
msgCnt = ibuf[0] & ~0x80;
again = ibuf[0] & 0x80;
/* we have a 4 byte header */
start = 4;
chan = card->chan;
while (msgCnt) {
if (!(IsBufferFull(card->chan))) {
start +=
cpcusb_unalign_and_copy_buffy((unsigned char *)
&chan->buf[chan->iidx], &ibuf[start]);
if (start > urb->transfer_buffer_length) {
err("%d > %d", start, urb->transfer_buffer_length);
break;
}
chan->WnR = 0;
chan->iidx = (chan->iidx + 1) % CPC_MSG_BUF_CNT;
msgCnt--;
} else {
break;
}
}
}
usb_fill_bulk_urb(urb, card->udev,
usb_rcvbulkpipe(card->udev, card->num_bulk_in),
urb->transfer_buffer,
urb->transfer_buffer_length,
cpcusb_read_bulk_callback, card);
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval) {
err("%s - failed resubmitting read urb, error %d", __FUNCTION__, retval);
}
spin_unlock_irqrestore(&card->slock, flags);
wake_up_interruptible(card->chan->CPCWait_q);
}
/*
* callback for bulk IN urb
*/
static void cpcusb_write_bulk_callback(struct urb *urb
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
, struct pt_regs *regs
#endif
)
{
CPC_USB_T *card = (CPC_USB_T *) urb->context;
unsigned long flags;
int j;
spin_lock_irqsave(&card->slock, flags);
/* find this urb */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
if (card->wrUrbs[j].urb == urb) {
dbg("URB found no. %d", j);
/* notify anyone waiting that the write has finished */
complete(&card->wrUrbs[j].finished);
atomic_set(&card->wrUrbs[j].busy, 0);
break;
}
}
switch (urb->status) {
case 0: /* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* urb was killed */
spin_unlock_irqrestore(&card->slock, flags);
dbg("%s - write urb no. %d killed", __FUNCTION__, j);
return;
default:
info("%s - nonzero urb status %d", __FUNCTION__, urb->status);
break;
}
spin_unlock_irqrestore(&card->slock, flags);
wake_up_interruptible(card->chan->CPCWait_q);
}
static inline int cpcusb_get_free_slot(void)
{
int i;
for (i = 0; i < CPC_USB_CARD_CNT; i++) {
if (!CPCUSB_Table[i])
return i;
}
return -1;
}
/*
* probe function for new CPC-USB devices
*/
static int cpcusb_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
CPC_USB_T *card = NULL;
CPC_CHAN_T *chan = NULL;
struct usb_device *udev = interface_to_usbdev(interface);
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int i, j, retval = -ENOMEM, slot;
if ((slot = cpcusb_get_free_slot()) < 0) {
info("No more devices supported");
return -ENOMEM;
}
/* allocate memory for our device state and initialize it */
card = kzalloc(sizeof(CPC_USB_T), GFP_KERNEL);
if (!card) {
err("Out of memory");
return -ENOMEM;
}
CPCUSB_Table[slot] = card;
/* allocate and initialize the channel struct */
card->chan = kmalloc(sizeof(CPC_CHAN_T), GFP_KERNEL);
if (!card) {
kfree(card);
err("Out of memory");
return -ENOMEM;
}
chan = card->chan;
memset(chan, 0, sizeof(CPC_CHAN_T));
ResetBuffer(chan);
init_MUTEX(&card->sem);
spin_lock_init(&card->slock);
card->udev = udev;
card->interface = interface;
if (udev->descriptor.iSerialNumber) {
usb_string(udev, udev->descriptor.iSerialNumber, card->serialNumber,
128);
info("Serial %s", card->serialNumber);
}
card->productId = udev->descriptor.idProduct;
info("Product %s",
card->productId == USB_CPCUSB_LPC2119_PRODUCT_ID ?
"CPC-USB/ARM7" : "CPC-USB/M16C");
/* set up the endpoint information */
/* check out the endpoints */
/* use only the first bulk-in and bulk-out endpoints */
iface_desc = &interface->altsetting[0];
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if (!card->num_intr_in &&
(endpoint->bEndpointAddress & USB_DIR_IN) &&
((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_INT)) {
card->intr_in_urb = usb_alloc_urb(0, GFP_KERNEL);
card->num_intr_in = 1;
if (!card->intr_in_urb) {
err("No free urbs available");
goto error;
}
dbg("intr_in urb %d", card->num_intr_in);
}
if (!card->num_bulk_in &&
(endpoint->bEndpointAddress & USB_DIR_IN) &&
((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_BULK)) {
card->num_bulk_in = 2;
for (j = 0; j < CPC_USB_URB_CNT; j++) {
card->urbs[j].size = endpoint->wMaxPacketSize;
card->urbs[j].urb = usb_alloc_urb(0, GFP_KERNEL);
if (!card->urbs[j].urb) {
err("No free urbs available");
goto error;
}
card->urbs[j].buffer =
usb_buffer_alloc(udev,
card->urbs[j].size,
GFP_KERNEL,
&card->urbs[j].urb->transfer_dma);
if (!card->urbs[j].buffer) {
err("Couldn't allocate bulk_in_buffer");
goto error;
}
}
info("%s - %d reading URB's allocated",
__FUNCTION__, CPC_USB_URB_CNT);
}
if (!card->num_bulk_out &&
!(endpoint->bEndpointAddress & USB_DIR_IN) &&
((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_BULK)) {
card->num_bulk_out = 2;
for (j = 0; j < CPC_USB_URB_CNT; j++) {
card->wrUrbs[j].size =
endpoint->wMaxPacketSize;
card->wrUrbs[j].urb =
usb_alloc_urb(0, GFP_KERNEL);
if (!card->wrUrbs[j].urb) {
err("No free urbs available");
goto error;
}
card->wrUrbs[j].buffer = usb_buffer_alloc(udev,
card->wrUrbs[j].size, GFP_KERNEL,
&card->wrUrbs[j].urb->transfer_dma);
if (!card->wrUrbs[j].buffer) {
err("Couldn't allocate bulk_out_buffer");
goto error;
}
usb_fill_bulk_urb(card->wrUrbs[j].urb, udev,
usb_sndbulkpipe(udev, endpoint->bEndpointAddress),
card->wrUrbs[j].buffer,
card->wrUrbs[j].size,
cpcusb_write_bulk_callback,
card);
}
info("%s - %d writing URB's allocated", __FUNCTION__, CPC_USB_URB_CNT);
}
}
if (!(card->num_bulk_in && card->num_bulk_out)) {
err("Couldn't find both bulk-in and bulk-out endpoints");
goto error;
}
/* allow device read, write and ioctl */
card->present = 1;
/* we can register the device now, as it is ready */
usb_set_intfdata(interface, card);
retval = usb_register_dev(interface, &cpcusb_class);
if (retval) {
/* something prevented us from registering this driver */
err("Not able to get a minor for this device.");
usb_set_intfdata(interface, NULL);
goto error;
}
card->chan->minor = card->minor = interface->minor;
chan->buf = vmalloc(sizeof(CPC_MSG_T) * CPC_MSG_BUF_CNT);
if (chan->buf == NULL) {
err("Out of memory");
retval = -ENOMEM;
goto error;
}
info("Allocated memory for %d messages (%d kbytes)",
CPC_MSG_BUF_CNT, (sizeof(CPC_MSG_T) * CPC_MSG_BUF_CNT) / 1000);
memset(chan->buf, 0, sizeof(CPC_MSG_T) * CPC_MSG_BUF_CNT);
ResetBuffer(chan);
card->chan->CPCWait_q = kmalloc(sizeof(wait_queue_head_t), GFP_KERNEL);
if (!card->chan->CPCWait_q) {
err("Out of memory");
retval = -ENOMEM;
goto error;
}
init_waitqueue_head(card->chan->CPCWait_q);
CPCUSB_Table[slot] = card;
card->idx = slot;
CPCUsbCnt++;
/* let the user know what node this device is now attached to */
info("Device now attached to USB-%d", card->minor);
return 0;
error:
for (j = 0; j < CPC_USB_URB_CNT; j++) {
if (card->urbs[j].buffer) {
usb_buffer_free(card->udev, card->urbs[j].size,
card->urbs[j].buffer,
card->urbs[j].urb->transfer_dma);
card->urbs[j].buffer = NULL;
}
if (card->urbs[j].urb) {
usb_free_urb(card->urbs[j].urb);
card->urbs[j].urb = NULL;
}
}
cpcusb_delete(card);
return retval;
}
/*
* called by the usb core when the device is removed from the system
*/
static void cpcusb_disconnect(struct usb_interface *interface)
{
CPC_USB_T *card = NULL;
int minor, j;
/* prevent races with open() */
down(&disconnect_sem);
card = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
down(&card->sem);
/* prevent device read, write and ioctl */
card->present = 0;
minor = card->minor;
/* free all urbs and their buffers */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
/* terminate an ongoing write */
if (atomic_read(&card->wrUrbs[j].busy)) {
usb_kill_urb(card->wrUrbs[j].urb);
wait_for_completion(&card->wrUrbs[j].finished);
}
usb_buffer_free(card->udev, card->wrUrbs[j].size,
card->wrUrbs[j].buffer,
card->wrUrbs[j].urb->transfer_dma);
usb_free_urb(card->wrUrbs[j].urb);
}
info("%d write URBs freed", CPC_USB_URB_CNT);
/* free all urbs and their buffers */
for (j = 0; j < CPC_USB_URB_CNT; j++) {
usb_buffer_free(card->udev, card->urbs[j].size,
card->urbs[j].buffer,
card->urbs[j].urb->transfer_dma);
usb_free_urb(card->urbs[j].urb);
}
info("%d read URBs freed", CPC_USB_URB_CNT);
usb_free_urb(card->intr_in_urb);
/* give back our minor */
usb_deregister_dev(interface, &cpcusb_class);
up(&card->sem);
/* if the device is opened, cpcusb_release will clean this up */
if (!card->open)
cpcusb_delete(card);
else
wake_up_interruptible(card->chan->CPCWait_q);
up(&disconnect_sem);
CPCUsbCnt--;
info("USB-%d now disconnected", minor);
}
static int __init CPCUsb_Init(void)
{
int result, i;
info(DRIVER_DESC " v" DRIVER_VERSION);
info("Build on " __DATE__ " at " __TIME__);
for (i = 0; i < CPC_USB_CARD_CNT; i++)
CPCUSB_Table[i] = 0;
/* register this driver with the USB subsystem */
result = usb_register(&cpcusb_driver);
if (result) {
err("usb_register failed. Error number %d", result);
return result;
}
procDir = proc_mkdir(CPC_USB_PROC_DIR, NULL);
if (!procDir) {
err("Could not create proc entry");
} else {
procDir->owner = THIS_MODULE;
procEntry = create_proc_read_entry("info", 0444, procDir,
cpcusb_proc_read_info,
NULL);
if (!procEntry) {
err("Could not create proc entry %s", CPC_USB_PROC_DIR "/info");
remove_proc_entry(CPC_USB_PROC_DIR, NULL);
procDir = NULL;
} else {
procEntry->owner = THIS_MODULE;
}
}
return 0;
}
static void __exit CPCUsb_Exit(void)
{
wait_event(rmmodWq, !atomic_read(&useCount));
/* deregister this driver with the USB subsystem */
usb_deregister(&cpcusb_driver);
if (procDir) {
if (procEntry)
remove_proc_entry("info", procDir);
remove_proc_entry(CPC_USB_PROC_DIR, NULL);
}
}
module_init(CPCUsb_Init);
module_exit(CPCUsb_Exit);
/*
* CPC CAN Interface Definitions
*
* Copyright (C) 2000-2008 EMS Dr. Thomas Wuensche
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef CPC_HEADER
#define CPC_HEADER
// the maximum length of the union members within a CPC_MSG
// this value can be defined by the customer, but has to be
// >= 64 bytes
// however, if not defined before, we set a length of 64 byte
#if !defined(CPC_MSG_LEN) || (CPC_MSG_LEN < 64)
#undef CPC_MSG_LEN
#define CPC_MSG_LEN 64
#endif
// check the operating system used
#ifdef _WIN32 // running a Windows OS
// define basic types on Windows platforms
#ifdef _MSC_VER // Visual Studio
typedef unsigned __int8 u8;
typedef unsigned __int16 u16;
typedef unsigned __int32 u32;
#else // Borland Compiler
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#endif
// on Windows OS we use a byte alignment of 1
#pragma pack(push, 1)
// set the calling conventions for the library function calls
#define CALL_CONV __stdcall
#else
// Kernel headers already define this types
#ifndef __KERNEL__
// define basic types
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#endif
// Linux does not use this calling convention
#define CALL_CONV
#endif
// Transmission of events from CPC interfaces to PC can be individually
// controlled per event type. Default state is: don't transmit
// Control values are constructed by bit-or of Subject and Action
// and passed to CPC_Control()
// Control-Values for CPC_Control() Command Subject Selection
#define CONTR_CAN_Message 0x04
#define CONTR_Busload 0x08
#define CONTR_CAN_State 0x0C
#define CONTR_SendAck 0x10
#define CONTR_Filter 0x14
#define CONTR_CmdQueue 0x18 // reserved, do not use
#define CONTR_BusError 0x1C
// Control Command Actions
#define CONTR_CONT_OFF 0
#define CONTR_CONT_ON 1
#define CONTR_SING_ON 2
// CONTR_SING_ON doesn't change CONTR_CONT_ON state, so it should be
// read as: transmit at least once
// defines for confirmed request
#define DO_NOT_CONFIRM 0
#define DO_CONFIRM 1
// event flags
#define EVENT_READ 0x01
#define EVENT_WRITE 0x02
// Messages from CPC to PC contain a message object type field.
// The following message types are sent by CPC and can be used in
// handlers, others should be ignored.
#define CPC_MSG_T_RESYNC 0 // Normally to be ignored
#define CPC_MSG_T_CAN 1 // CAN data frame
#define CPC_MSG_T_BUSLOAD 2 // Busload message
#define CPC_MSG_T_STRING 3 // Normally to be ignored
#define CPC_MSG_T_CONTI 4 // Normally to be ignored
#define CPC_MSG_T_MEM 7 // Normally not to be handled
#define CPC_MSG_T_RTR 8 // CAN remote frame
#define CPC_MSG_T_TXACK 9 // Send acknowledge
#define CPC_MSG_T_POWERUP 10 // Power-up message
#define CPC_MSG_T_CMD_NO 11 // Normally to be ignored
#define CPC_MSG_T_CAN_PRMS 12 // Actual CAN parameters
#define CPC_MSG_T_ABORTED 13 // Command aborted message
#define CPC_MSG_T_CANSTATE 14 // CAN state message
#define CPC_MSG_T_RESET 15 // used to reset CAN-Controller
#define CPC_MSG_T_XCAN 16 // XCAN data frame
#define CPC_MSG_T_XRTR 17 // XCAN remote frame
#define CPC_MSG_T_INFO 18 // information strings
#define CPC_MSG_T_CONTROL 19 // used for control of interface/driver behaviour
#define CPC_MSG_T_CONFIRM 20 // response type for confirmed requests
#define CPC_MSG_T_OVERRUN 21 // response type for overrun conditions
#define CPC_MSG_T_KEEPALIVE 22 // response type for keep alive conditions
#define CPC_MSG_T_CANERROR 23 // response type for bus error conditions
#define CPC_MSG_T_DISCONNECTED 24 // response type for a disconnected interface
#define CPC_MSG_T_ERR_COUNTER 25 // RX/TX error counter of CAN controller
#define CPC_MSG_T_FIRMWARE 100 // response type for USB firmware download
// Messages from the PC to the CPC interface contain a command field
// Most of the command types are wrapped by the library functions and have therefore
// normally not to be used.
// However, programmers who wish to circumvent the library and talk directly
// to the drivers (mainly Linux programmers) can use the following
// command types:
#define CPC_CMD_T_CAN 1 // CAN data frame
#define CPC_CMD_T_CONTROL 3 // used for control of interface/driver behaviour
#define CPC_CMD_T_CAN_PRMS 6 // set CAN parameters
#define CPC_CMD_T_CLEARBUF 8 // clears input queue; this is depricated, use CPC_CMD_T_CLEAR_MSG_QUEUE instead
#define CPC_CMD_T_INQ_CAN_PARMS 11 // inquire actual CAN parameters
#define CPC_CMD_T_FILTER_PRMS 12 // set filter parameter
#define CPC_CMD_T_RTR 13 // CAN remote frame
#define CPC_CMD_T_CANSTATE 14 // CAN state message
#define CPC_CMD_T_XCAN 15 // XCAN data frame
#define CPC_CMD_T_XRTR 16 // XCAN remote frame
#define CPC_CMD_T_RESET 17 // used to reset CAN-Controller
#define CPC_CMD_T_INQ_INFO 18 // miscellanous information strings
#define CPC_CMD_T_OPEN_CHAN 19 // open a channel
#define CPC_CMD_T_CLOSE_CHAN 20 // close a channel
#define CPC_CMD_T_CNTBUF 21 // this is depricated, use CPC_CMD_T_INQ_MSG_QUEUE_CNT instead
#define CPC_CMD_T_CAN_EXIT 200 // exit the CAN (disable interrupts; reset bootrate; reset output_cntr; mode = 1)
#define CPC_CMD_T_INQ_MSG_QUEUE_CNT CPC_CMD_T_CNTBUF // inquires the count of elements in the message queue
#define CPC_CMD_T_INQ_ERR_COUNTER 25 // request the CAN controllers error counter
#define CPC_CMD_T_CLEAR_MSG_QUEUE CPC_CMD_T_CLEARBUF // clear CPC_MSG queue
#define CPC_CMD_T_CLEAR_CMD_QUEUE 28 // clear CPC_CMD queue
#define CPC_CMD_T_FIRMWARE 100 // reserved, must not be used
#define CPC_CMD_T_USB_RESET 101 // reserved, must not be used
#define CPC_CMD_T_WAIT_NOTIFY 102 // reserved, must not be used
#define CPC_CMD_T_WAIT_SETUP 103 // reserved, must not be used
#define CPC_CMD_T_ABORT 255 // Normally not to be used
// definitions for CPC_MSG_T_INFO
// information sources
#define CPC_INFOMSG_T_UNKNOWN_SOURCE 0
#define CPC_INFOMSG_T_INTERFACE 1
#define CPC_INFOMSG_T_DRIVER 2
#define CPC_INFOMSG_T_LIBRARY 3
// information types
#define CPC_INFOMSG_T_UNKNOWN_TYPE 0
#define CPC_INFOMSG_T_VERSION 1
#define CPC_INFOMSG_T_SERIAL 2
// definitions for controller types
#define PCA82C200 1 // Philips basic CAN controller, replaced by SJA1000
#define SJA1000 2 // Philips basic CAN controller
#define AN82527 3 // Intel full CAN controller
#define M16C_BASIC 4 // M16C controller running in basic CAN (not full CAN) mode
// channel open error codes
#define CPC_ERR_NO_FREE_CHANNEL -1 // no more free space within the channel array
#define CPC_ERR_CHANNEL_ALREADY_OPEN -2 // the channel is already open
#define CPC_ERR_CHANNEL_NOT_ACTIVE -3 // access to a channel not active failed
#define CPC_ERR_NO_DRIVER_PRESENT -4 // no driver at the location searched by the library
#define CPC_ERR_NO_INIFILE_PRESENT -5 // the library could not find the inifile
#define CPC_ERR_WRONG_PARAMETERS -6 // wrong parameters in the inifile
#define CPC_ERR_NO_INTERFACE_PRESENT -7 // 1. The specified interface is not connected
// 2. The interface (mostly CPC-USB) was disconnected upon operation
#define CPC_ERR_NO_MATCHING_CHANNEL -8 // the driver couldn't find a matching channel
#define CPC_ERR_NO_BUFFER_AVAILABLE -9 // the driver couldn't allocate buffer for messages
#define CPC_ERR_NO_INTERRUPT -10 // the requested interrupt couldn't be claimed
#define CPC_ERR_NO_MATCHING_INTERFACE -11 // no interface type related to this channel was found
#define CPC_ERR_NO_RESOURCES -12 // the requested resources could not be claimed
#define CPC_ERR_SOCKET -13 // error concerning TCP sockets
// init error codes
#define CPC_ERR_WRONG_CONTROLLER_TYPE -14 // wrong CAN controller type within initialization
#define CPC_ERR_NO_RESET_MODE -15 // the controller could not be set into reset mode
#define CPC_ERR_NO_CAN_ACCESS -16 // the CAN controller could not be accessed
// transmit error codes
#define CPC_ERR_CAN_WRONG_ID -20 // the provided CAN id is too big
#define CPC_ERR_CAN_WRONG_LENGTH -21 // the provided CAN length is too long
#define CPC_ERR_CAN_NO_TRANSMIT_BUF -22 // the transmit buffer was occupied
#define CPC_ERR_CAN_TRANSMIT_TIMEOUT -23 // The message could not be sent within a
// specified time
// other error codes
#define CPC_ERR_SERVICE_NOT_SUPPORTED -30 // the requested service is not supported by the interface
#define CPC_ERR_IO_TRANSFER -31 // a transmission error down to the driver occurred
#define CPC_ERR_TRANSMISSION_FAILED -32 // a transmission error down to the interface occurred
#define CPC_ERR_TRANSMISSION_TIMEOUT -33 // a timeout occurred within transmission to the interface
#define CPC_ERR_OP_SYS_NOT_SUPPORTED -35 // the operating system is not supported
#define CPC_ERR_UNKNOWN -40 // an unknown error ocurred (mostly IOCTL errors)
#define CPC_ERR_LOADING_DLL -50 // the library 'cpcwin.dll' could not be loaded
#define CPC_ERR_ASSIGNING_FUNCTION -51 // the specified function could not be assigned
#define CPC_ERR_DLL_INITIALIZATION -52 // the DLL was not initialized correctly
#define CPC_ERR_MISSING_LICFILE -55 // the file containing the licenses does not exist
#define CPC_ERR_MISSING_LICENSE -56 // a required license was not found
// CAN state bit values. Ignore any bits not listed
#define CPC_CAN_STATE_BUSOFF 0x80
#define CPC_CAN_STATE_ERROR 0x40
// Mask to help ignore undefined bits
#define CPC_CAN_STATE_MASK 0xc0
// CAN-Message representation in a CPC_MSG
// Message object type is CPC_MSG_T_CAN or CPC_MSG_T_RTR
// or CPC_MSG_T_XCAN or CPC_MSG_T_XRTR
typedef struct CPC_CAN_MSG {
u32 id;
u8 length;
u8 msg[8];
} CPC_CAN_MSG_T;
// representation of the CAN parameters for the PCA82C200 controller
typedef struct CPC_PCA82C200_PARAMS {
u8 acc_code; // Acceptance-code for receive, Standard: 0
u8 acc_mask; // Acceptance-mask for receive, Standard: 0xff (everything)
u8 btr0; // Bus-timing register 0
u8 btr1; // Bus-timing register 1
u8 outp_contr; // Output-control register
} CPC_PCA82C200_PARAMS_T;
// representation of the CAN parameters for the SJA1000 controller
typedef struct CPC_SJA1000_PARAMS {
u8 mode; // enables single or dual acceptance filtering
u8 acc_code0; // Acceptance-code for receive, Standard: 0
u8 acc_code1;
u8 acc_code2;
u8 acc_code3;
u8 acc_mask0; // Acceptance-mask for receive, Standard: 0xff (everything)
u8 acc_mask1;
u8 acc_mask2;
u8 acc_mask3;
u8 btr0; // Bus-timing register 0
u8 btr1; // Bus-timing register 1
u8 outp_contr; // Output-control register
} CPC_SJA1000_PARAMS_T;
// representation of the CAN parameters for the M16C controller
// in basic CAN mode (means no full CAN)
typedef struct CPC_M16C_BASIC_PARAMS {
u8 con0;
u8 con1;
u8 ctlr0;
u8 ctlr1;
u8 clk;
u8 acc_std_code0;
u8 acc_std_code1;
u8 acc_ext_code0;
u8 acc_ext_code1;
u8 acc_ext_code2;
u8 acc_ext_code3;
u8 acc_std_mask0;
u8 acc_std_mask1;
u8 acc_ext_mask0;
u8 acc_ext_mask1;
u8 acc_ext_mask2;
u8 acc_ext_mask3;
} CPC_M16C_BASIC_PARAMS_T;
// CAN params message representation
typedef struct CPC_CAN_PARAMS {
u8 cc_type; // represents the controller type
union {
CPC_M16C_BASIC_PARAMS_T m16c_basic;
CPC_SJA1000_PARAMS_T sja1000;
CPC_PCA82C200_PARAMS_T pca82c200;
} cc_params;
} CPC_CAN_PARAMS_T;
// the following structures are slightly different for Windows and Linux
// To be able to use the 'Select' mechanism with Linux the application
// needs to know the devices file desciptor.
// This mechanism is not implemented within Windows and the file descriptor
// is therefore not needed
#ifdef _WIN32
// CAN init params message representation
typedef struct CPC_INIT_PARAMS {
CPC_CAN_PARAMS_T canparams;
} CPC_INIT_PARAMS_T;
#else// Linux
// CHAN init params representation
typedef struct CPC_CHAN_PARAMS {
int fd;
} CPC_CHAN_PARAMS_T;
// CAN init params message representation
typedef struct CPC_INIT_PARAMS {
CPC_CHAN_PARAMS_T chanparams;
CPC_CAN_PARAMS_T canparams;
} CPC_INIT_PARAMS_T;
#endif
// structure for confirmed message handling
typedef struct CPC_CONFIRM {
u8 result; // error code
} CPC_CONFIRM_T;
// structure for information requests
typedef struct CPC_INFO {
u8 source; // interface, driver or library
u8 type; // version or serial number
char msg[CPC_MSG_LEN - 2]; // string holding the requested information
} CPC_INFO_T;
// OVERRUN ///////////////////////////////////////
// In general two types of overrun may occur.
// A hardware overrun, where the CAN controller
// lost a message, because the interrupt was
// not handled before the next messgae comes in.
// Or a software overrun, where i.e. a received
// message could not be stored in the CPC_MSG
// buffer.
// After a software overrun has occurred
// we wait until we have CPC_OVR_GAP slots
// free in the CPC_MSG buffer.
#define CPC_OVR_GAP 10
// Two types of software overrun may occur.
// A received CAN message or a CAN state event
// can cause an overrun.
// Note: A CPC_CMD which would normally store
// its result immediately in the CPC_MSG
// queue may fail, because the message queue is full.
// This will not generate an overrun message, but
// will halt command execution, until this command
// is able to store its message in the message queue.
#define CPC_OVR_EVENT_CAN 0x01
#define CPC_OVR_EVENT_CANSTATE 0x02
#define CPC_OVR_EVENT_BUSERROR 0x04
// If the CAN controller lost a message
// we indicate it with the highest bit
// set in the count field.
#define CPC_OVR_HW 0x80
// structure for overrun conditions
typedef struct {
u8 event;
u8 count;
} CPC_OVERRUN_T;
// CAN errors ////////////////////////////////////
// Each CAN controller type has different
// registers to record errors.
// Therefor a structure containing the specific
// errors is set up for each controller here
// SJA1000 error structure
// see the SJA1000 datasheet for detailed
// explanation of the registers
typedef struct CPC_SJA1000_CAN_ERROR {
u8 ecc; // error capture code register
u8 rxerr; // RX error counter register
u8 txerr; // TX error counter register
} CPC_SJA1000_CAN_ERROR_T;
// M16C error structure
// see the M16C datasheet for detailed
// explanation of the registers
typedef struct CPC_M16C_CAN_ERROR {
u8 tbd; // to be defined
} CPC_M16C_CAN_ERROR_T;
// structure for CAN error conditions
#define CPC_CAN_ECODE_ERRFRAME 0x01
typedef struct CPC_CAN_ERROR {
u8 ecode;
struct {
u8 cc_type; // CAN controller type
union {
CPC_SJA1000_CAN_ERROR_T sja1000;
CPC_M16C_CAN_ERROR_T m16c;
} regs;
} cc;
} CPC_CAN_ERROR_T;
// Structure containing RX/TX error counter.
// This structure is used to request the
// values of the CAN controllers TX and RX
// error counter.
typedef struct CPC_CAN_ERR_COUNTER {
u8 rx;
u8 tx;
} CPC_CAN_ERR_COUNTER_T;
// If this flag is set, transmissions from PC to CPC are protected against loss
#define CPC_SECURE_TO_CPC 0x01
// If this flag is set, transmissions from CPC to PC are protected against loss
#define CPC_SECURE_TO_PC 0x02
// If this flag is set, the CAN-transmit buffer is checked to be free before sending a message
#define CPC_SECURE_SEND 0x04
// If this flag is set, the transmission complete flag is checked
// after sending a message
// THIS IS CURRENTLY ONLY IMPLEMENTED IN THE PASSIVE INTERFACE DRIVERS
#define CPC_SECURE_TRANSMIT 0x08
// main message type used between library and application
typedef struct CPC_MSG {
u8 type; // type of message
u8 length; // length of data within union 'msg'
u8 msgid; // confirmation handle
u32 ts_sec; // timestamp in seconds
u32 ts_nsec; // timestamp in nano seconds
union {
u8 generic[CPC_MSG_LEN];
CPC_CAN_MSG_T canmsg;
CPC_CAN_PARAMS_T canparams;
CPC_CONFIRM_T confirmation;
CPC_INFO_T info;
CPC_OVERRUN_T overrun;
CPC_CAN_ERROR_T error;
CPC_CAN_ERR_COUNTER_T err_counter;
u8 busload;
u8 canstate;
} msg;
} CPC_MSG_T;
#ifdef _WIN32
#pragma pack(pop) // reset the byte alignment
#endif
#endif // CPC_HEADER
/*
* CPCLIB
*
* Copyright (C) 2000-2008 EMS Dr. Thomas Wuensche
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*/
#ifndef CPC_INT_H
#define CPC_INT_H
#include <linux/wait.h>
#define CPC_MSG_BUF_CNT 1500
#ifdef CONFIG_PROC_FS
# define CPC_PROC_DIR "driver/"
#endif
#undef dbg
#undef err
#undef info
/* Use our own dbg macro */
#define dbg(format, arg...) do { if (debug) printk( KERN_INFO format "\n" , ## arg); } while (0)
#define err(format, arg...) do { printk( KERN_INFO "ERROR " format "\n" , ## arg); } while (0)
#define info(format, arg...) do { printk( KERN_INFO format "\n" , ## arg); } while (0)
/* Macros help using of our buffers */
#define IsBufferFull(x) (!(x)->WnR) && ((x)->iidx == (x)->oidx)
#define IsBufferEmpty(x) ((x)->WnR) && ((x)->iidx == (x)->oidx)
#define IsBufferNotEmpty(x) (!(x)->WnR) || ((x)->iidx != (x)->oidx)
#define ResetBuffer(x) do { (x)->oidx = (x)->iidx=0; (x)->WnR = 1; } while(0);
#define CPC_BufWriteAllowed ((chan->oidx != chan->iidx) || chan->WnR)
typedef void (*chan_write_byte_t) (void *chan, unsigned int reg,
unsigned char val);
typedef unsigned char (*chan_read_byte_t) (void *chan, unsigned int reg);
typedef struct CPC_CHAN {
void __iomem * canBase; // base address of SJA1000
chan_read_byte_t read_byte; // CAN controller read access routine
chan_write_byte_t write_byte; // CAN controller write access routine
CPC_MSG_T *buf; // buffer for CPC msg
unsigned int iidx;
unsigned int oidx;
unsigned int WnR;
unsigned int minor;
unsigned int locked;
unsigned int irqDisabled;
unsigned char cpcCtrlCANMessage;
unsigned char cpcCtrlCANState;
unsigned char cpcCtrlBUSState;
unsigned char controllerType;
unsigned long ovrTimeSec;
unsigned long ovrTimeNSec;
unsigned long ovrLockedBuffer;
CPC_OVERRUN_T ovr;
/* for debugging only */
unsigned int handledIrqs;
unsigned int lostMessages;
unsigned int sentStdCan;
unsigned int sentExtCan;
unsigned int sentStdRtr;
unsigned int sentExtRtr;
unsigned int recvStdCan;
unsigned int recvExtCan;
unsigned int recvStdRtr;
unsigned int recvExtRtr;
wait_queue_head_t *CPCWait_q;
void *private;
} CPC_CHAN_T;
#endif
/* Header for CPC-USB Driver ********************
* Copyright 1999, 2000, 2001
*
* Company: EMS Dr. Thomas Wuensche
* Sonnenhang 3
* 85304 Ilmmuenster
* Phone: +49-8441-490260
* Fax: +49-8441-81860
* email: support@ems-wuensche.com
* WWW: www.ems-wuensche.com
*/
#ifndef CPCUSB_H
#define CPCUSB_H
#undef err
#undef dbg
#undef info
/* Use our own dbg macro */
#define dbg(format, arg...) do { if (debug) printk(KERN_INFO "CPC-USB: " format "\n" , ## arg); } while (0)
#define info(format, arg...) do { printk(KERN_INFO "CPC-USB: " format "\n" , ## arg); } while (0)
#define err(format, arg...) do { printk(KERN_INFO "CPC-USB(ERROR): " format "\n" , ## arg); } while (0)
#define CPC_USB_CARD_CNT 4
typedef struct CPC_USB_READ_URB {
unsigned char *buffer; /* the buffer to send data */
size_t size; /* the size of the send buffer */
struct urb *urb; /* the urb used to send data */
} CPC_USB_READ_URB_T;
typedef struct CPC_USB_WRITE_URB {
unsigned char *buffer; /* the buffer to send data */
size_t size; /* the size of the send buffer */
struct urb *urb; /* the urb used to send data */
atomic_t busy; /* true if write urb is busy */
struct completion finished; /* wait for the write to finish */
} CPC_USB_WRITE_URB_T;
#define CPC_USB_URB_CNT 10
typedef struct CPC_USB {
struct usb_device *udev; /* save off the usb device pointer */
struct usb_interface *interface; /* the interface for this device */
unsigned char minor; /* the starting minor number for this device */
unsigned char num_ports; /* the number of ports this device has */
int num_intr_in; /* number of interrupt in endpoints we have */
int num_bulk_in; /* number of bulk in endpoints we have */
int num_bulk_out; /* number of bulk out endpoints we have */
CPC_USB_READ_URB_T urbs[CPC_USB_URB_CNT];
unsigned char intr_in_buffer[4]; /* interrupt transfer buffer */
struct urb *intr_in_urb; /* interrupt transfer urb */
CPC_USB_WRITE_URB_T wrUrbs[CPC_USB_URB_CNT];
int open; /* if the port is open or not */
int present; /* if the device is not disconnected */
struct semaphore sem; /* locks this structure */
int free_slots; /* free send slots of CPC-USB */
int idx;
spinlock_t slock;
char serialNumber[128]; /* serial number */
int productId; /* product id to differ between M16C and LPC2119 */
CPC_CHAN_T *chan;
} CPC_USB_T;
#define CPCTable CPCUSB_Table
#define CPC_DRIVER_VERSION "0.724"
#define CPC_DRIVER_SERIAL "not applicable"
#define OBUF_SIZE 255 // 4096
/* read timeouts -- RD_NAK_TIMEOUT * RD_EXPIRE = Number of seconds */
#define RD_NAK_TIMEOUT (10*HZ) /* Default number of X seconds to wait */
#define RD_EXPIRE 12 /* Number of attempts to wait X seconds */
#define CPC_USB_BASE_MNR 0 /* CPC-USB start at minor 0 */
#endif
#ifndef SJA2M16C_H
#define SJA2M16C_H
#include "cpc.h"
#define BAUDRATE_TOLERANCE_PERCENT 1
#define SAMPLEPOINT_TOLERANCE_PERCENT 5
#define SAMPLEPOINT_UPPER_LIMIT 88
// M16C parameters
typedef struct FIELD_C0CONR {
unsigned int brp:4;
unsigned int sam:1;
unsigned int pr:3;
unsigned int dummy:8;
} FIELD_C0CONR_T;
typedef struct FIELD_C1CONR {
unsigned int ph1:3;
unsigned int ph2:3;
unsigned int sjw:2;
unsigned int dummy:8;
} FIELD_C1CONR_T;
typedef union C0CONR {
unsigned char c0con;
FIELD_C0CONR_T bc0con;
} C0CONR_T;
typedef union C1CONR {
unsigned char c1con;
FIELD_C1CONR_T bc1con;
} C1CONR_T;
#define SJA_TSEG1 ((pParams->btr1 & 0x0f)+1)
#define SJA_TSEG2 (((pParams->btr1 & 0x70)>>4)+1)
#define SJA_BRP ((pParams->btr0 & 0x3f)+1)
#define SJA_SJW ((pParams->btr0 & 0xc0)>>6)
#define SJA_SAM ((pParams->btr1 & 0x80)>>7)
int baudrate_m16c(int clk, int brp, int pr, int ph1, int ph2);
int samplepoint_m16c(int brp, int pr, int ph1, int ph2);
int SJA1000_TO_M16C_BASIC_Params(CPC_MSG_T * pMsg);
#endif /* */
/****************************************************************************
*
* Copyright (c) 2003,2004 by EMS Dr. Thomas Wuensche
*
* - All rights reserved -
*
* This code is provided "as is" without warranty of any kind, either
* expressed or implied, including but not limited to the liability
* concerning the freedom from material defects, the fitness for parti-
* cular purposes or the freedom of proprietary rights of third parties.
*
*****************************************************************************
* Module name.: cpcusb
*****************************************************************************
* Include file: cpc.h
*****************************************************************************
* Project.....: Windows Driver Development Kit
* Filename....: sja2m16c.cpp
* Authors.....: (GU) Gerhard Uttenthaler
* (CS) Christian Schoett
*****************************************************************************
* Short descr.: converts baudrate between SJA1000 and M16C
*****************************************************************************
* Description.: handles the baudrate conversion from SJA1000 parameters to
* M16C parameters
*****************************************************************************
* Address : EMS Dr. Thomas Wuensche
* Sonnenhang 3
* D-85304 Ilmmuenster
* Tel. : +49-8441-490260
* Fax. : +49-8441-81860
* email: support@ems-wuensche.com
*****************************************************************************
* History
*****************************************************************************
* Version Date Auth Remark
*
* 01.00 ?? GU - initial release
* 01.10 ?????????? CS - adapted to fit into the USB Windows driver
* 02.00 18.08.2004 GU - improved the baudrate calculating algorithm
* - implemented acceptance filtering
* 02.10 10.09.2004 CS - adapted to fit into the USB Windows driver
*****************************************************************************
* ToDo's
*****************************************************************************
*/
/****************************************************************************/
/* I N C L U D E S
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/completion.h>
#include <asm/uaccess.h>
#include <linux/usb.h>
#include "cpc.h"
#include "cpc_int.h"
#include "cpcusb.h"
#include "sja2m16c.h"
/*********************************************************************/
int baudrate_m16c(int clk, int brp, int pr, int ph1, int ph2)
{
return (16000000 / (1 << clk)) / 2 / (brp + 1) / (1 + pr + 1 +
ph1 + 1 + ph2 +
1);
}
/*********************************************************************/
int samplepoint_m16c(int brp, int pr, int ph1, int ph2)
{
return (100 * (1 + pr + 1 + ph1 + 1)) / (1 + pr + 1 + ph1 + 1 +
ph2 + 1);
}
/****************************************************************************
* Function.....: SJA1000_TO_M16C_BASIC_Params
*
* Task.........: This routine converts SJA1000 CAN btr parameters into M16C
* parameters based on the sample point and the error. In
* addition it converts the acceptance filter parameters to
* suit the M16C parameters
*
* Parameters...: None
*
* Return values: None
*
* Comments.....:
*****************************************************************************
* History
*****************************************************************************
* 19.01.2005 CS - modifed the conversion of SJA1000 filter params into
* M16C params. Due to compatibility reasons with the
* older 82C200 CAN controller the SJA1000
****************************************************************************/
int SJA1000_TO_M16C_BASIC_Params(CPC_MSG_T * in)
{
int sjaBaudrate;
int sjaSamplepoint;
int *baudrate_error; // BRP[0..15], PR[0..7], PH1[0..7], PH2[0..7]
int *samplepoint_error; // BRP[0..15], PR[0..7], PH1[0..7], PH2[0..7]
int baudrate_error_merk;
int clk, brp, pr, ph1, ph2;
int clk_merk, brp_merk, pr_merk, ph1_merk, ph2_merk;
int index;
unsigned char acc_code0, acc_code1, acc_code2, acc_code3;
unsigned char acc_mask0, acc_mask1, acc_mask2, acc_mask3;
CPC_MSG_T * out;
C0CONR_T c0con;
C1CONR_T c1con;
int tmpAccCode;
int tmpAccMask;
// we have to convert the parameters into M16C parameters
CPC_SJA1000_PARAMS_T * pParams;
// check if the type is CAN parameters and if we have to convert the given params
if (in->type != CPC_CMD_T_CAN_PRMS
|| in->msg.canparams.cc_type != SJA1000)
return 0;
pParams =
(CPC_SJA1000_PARAMS_T *) & in->msg.canparams.cc_params.sja1000;
acc_code0 = pParams->acc_code0;
acc_code1 = pParams->acc_code1;
acc_code2 = pParams->acc_code2;
acc_code3 = pParams->acc_code3;
acc_mask0 = pParams->acc_mask0;
acc_mask1 = pParams->acc_mask1;
acc_mask2 = pParams->acc_mask2;
acc_mask3 = pParams->acc_mask3;
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("acc_code0: %2.2Xh\n", acc_code0);
info("acc_code1: %2.2Xh\n", acc_code1);
info("acc_code2: %2.2Xh\n", acc_code2);
info("acc_code3: %2.2Xh\n", acc_code3);
info("acc_mask0: %2.2Xh\n", acc_mask0);
info("acc_mask1: %2.2Xh\n", acc_mask1);
info("acc_mask2: %2.2Xh\n", acc_mask2);
info("acc_mask3: %2.2Xh\n", acc_mask3);
#endif /* */
if (!
(baudrate_error =
(int *) vmalloc(sizeof(int) * 16 * 8 * 8 * 8 * 5))) {
err("Could not allocate memory\n");
return -3;
}
if (!
(samplepoint_error =
(int *) vmalloc(sizeof(int) * 16 * 8 * 8 * 8 * 5))) {
err("Could not allocate memory\n");
vfree(baudrate_error);
return -3;
}
memset(baudrate_error, 0xff, sizeof(baudrate_error));
memset(samplepoint_error, 0xff, sizeof(baudrate_error));
sjaBaudrate =
16000000 / 2 / SJA_BRP / (1 + SJA_TSEG1 + SJA_TSEG2);
sjaSamplepoint =
100 * (1 + SJA_TSEG1) / (1 + SJA_TSEG1 + SJA_TSEG2);
if (sjaBaudrate == 0) {
vfree(baudrate_error);
vfree(samplepoint_error);
return -2;
}
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("\nStarting SJA CAN params\n");
info("-------------------------\n");
info("TS1 : %2.2Xh TS2 : %2.2Xh\n", SJA_TSEG1, SJA_TSEG2);
info("BTR0 : %2.2Xh BTR1: %2.2Xh\n", pParams->btr0,
pParams->btr1);
info("Baudrate: %d.%dkBaud\n", sjaBaudrate / 1000,
sjaBaudrate % 1000);
info("Sample P: 0.%d\n", sjaSamplepoint);
info("\n");
#endif /* */
c0con.bc0con.sam = SJA_SAM;
c1con.bc1con.sjw = SJA_SJW;
// calculate errors for all baudrates
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
baudrate_error[index] =
100 *
abs(baudrate_m16c
(clk, brp, pr, ph1,
ph2) -
sjaBaudrate) /
sjaBaudrate;
samplepoint_error[index] =
abs(samplepoint_m16c
(brp, pr, ph1,
ph2) -
sjaSamplepoint);
#if 0
info
("Baudrate : %d kBaud\n",
baudrate_m16c(clk,
brp, pr,
ph1,
ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
info
("clk : %d\n",
clk);
#endif /* */
index++;
}
}
}
}
}
// mark all baudrate_error entries which are outer limits
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
if ((baudrate_error[index]
>
BAUDRATE_TOLERANCE_PERCENT)
||
(samplepoint_error
[index] >
SAMPLEPOINT_TOLERANCE_PERCENT)
||
(samplepoint_m16c
(brp, pr, ph1,
ph2) >
SAMPLEPOINT_UPPER_LIMIT))
{
baudrate_error
[index] = -1;
} else
if (((1 + pr + 1 +
ph1 + 1 + ph2 +
1) < 8)
||
((1 + pr + 1 +
ph1 + 1 + ph2 +
1) > 25)) {
baudrate_error
[index] = -1;
}
#if 0
else {
info
("Baudrate : %d kBaud\n",
baudrate_m16c
(clk, brp, pr,
ph1, ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
}
#endif /* */
index++;
}
}
}
}
}
// find list of minimum of baudrate_error within unmarked entries
clk_merk = brp_merk = pr_merk = ph1_merk = ph2_merk = 0;
baudrate_error_merk = 100;
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
if (baudrate_error[index]
!= -1) {
if (baudrate_error
[index] <
baudrate_error_merk)
{
baudrate_error_merk
=
baudrate_error
[index];
brp_merk =
brp;
pr_merk =
pr;
ph1_merk =
ph1;
ph2_merk =
ph2;
clk_merk =
clk;
#if 0
info
("brp: %2.2Xh pr: %2.2Xh ph1: %2.2Xh ph2: %2.2Xh\n",
brp,
pr,
ph1,
ph2);
info
("Baudrate : %d kBaud\n",
baudrate_m16c
(clk,
brp,
pr,
ph1,
ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
#endif /* */
}
}
index++;
}
}
}
}
}
if (baudrate_error_merk == 100) {
info("ERROR: Could not convert CAN init parameter\n");
vfree(baudrate_error);
vfree(samplepoint_error);
return -1;
}
// setting m16c CAN parameter
c0con.bc0con.brp = brp_merk;
c0con.bc0con.pr = pr_merk;
c1con.bc1con.ph1 = ph1_merk;
c1con.bc1con.ph2 = ph2_merk;
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("\nResulting M16C CAN params\n");
info("-------------------------\n");
info("clk : %2.2Xh\n", clk_merk);
info("ph1 : %2.2Xh ph2: %2.2Xh\n", c1con.bc1con.ph1 + 1,
c1con.bc1con.ph2 + 1);
info("pr : %2.2Xh brp: %2.2Xh\n", c0con.bc0con.pr + 1,
c0con.bc0con.brp + 1);
info("sjw : %2.2Xh sam: %2.2Xh\n", c1con.bc1con.sjw,
c0con.bc0con.sam);
info("co1 : %2.2Xh co0: %2.2Xh\n", c1con.c1con, c0con.c0con);
info("Baudrate: %d.%dBaud\n",
baudrate_m16c(clk_merk, c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2) / 1000,
baudrate_m16c(clk_merk, c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2) % 1000);
info("Sample P: 0.%d\n",
samplepoint_m16c(c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2));
info("\n");
#endif /* */
out = in;
out->type = 6;
out->length = sizeof(CPC_M16C_BASIC_PARAMS_T) + 1;
out->msg.canparams.cc_type = M16C_BASIC;
out->msg.canparams.cc_params.m16c_basic.con0 = c0con.c0con;
out->msg.canparams.cc_params.m16c_basic.con1 = c1con.c1con;
out->msg.canparams.cc_params.m16c_basic.ctlr0 = 0x4C;
out->msg.canparams.cc_params.m16c_basic.ctlr1 = 0x00;
out->msg.canparams.cc_params.m16c_basic.clk = clk_merk;
out->msg.canparams.cc_params.m16c_basic.acc_std_code0 =
acc_code0;
out->msg.canparams.cc_params.m16c_basic.acc_std_code1 = acc_code1;
// info("code0: 0x%2.2X, code1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_code0, out->msg.canparams.cc_params.m16c_basic.acc_std_code1);
tmpAccCode = (acc_code1 >> 5) + (acc_code0 << 3);
out->msg.canparams.cc_params.m16c_basic.acc_std_code0 =
(unsigned char) tmpAccCode;
out->msg.canparams.cc_params.m16c_basic.acc_std_code1 =
(unsigned char) (tmpAccCode >> 8);
// info("code0: 0x%2.2X, code1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_code0, out->msg.canparams.cc_params.m16c_basic.acc_std_code1);
out->msg.canparams.cc_params.m16c_basic.acc_std_mask0 =
~acc_mask0;
out->msg.canparams.cc_params.m16c_basic.acc_std_mask1 =
~acc_mask1;
// info("mask0: 0x%2.2X, mask1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_mask0, out->msg.canparams.cc_params.m16c_basic.acc_std_mask1);
tmpAccMask = ((acc_mask1) >> 5) + ((acc_mask0) << 3);
// info("tmpAccMask: 0x%4.4X\n", tmpAccMask);
out->msg.canparams.cc_params.m16c_basic.acc_std_mask0 =
(unsigned char) ~tmpAccMask;
out->msg.canparams.cc_params.m16c_basic.acc_std_mask1 =
(unsigned char) ~(tmpAccMask >> 8);
// info("mask0: 0x%2.2X, mask1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_mask0, out->msg.canparams.cc_params.m16c_basic.acc_std_mask1);
out->msg.canparams.cc_params.m16c_basic.acc_ext_code0 =
(unsigned char) tmpAccCode;
out->msg.canparams.cc_params.m16c_basic.acc_ext_code1 =
(unsigned char) (tmpAccCode >> 8);
out->msg.canparams.cc_params.m16c_basic.acc_ext_code2 = acc_code2;
out->msg.canparams.cc_params.m16c_basic.acc_ext_code3 = acc_code3;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask0 =
(unsigned char) ~tmpAccMask;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask1 =
(unsigned char) ~(tmpAccMask >> 8);
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask2 =
~acc_mask2;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask3 =
~acc_mask3;
vfree(baudrate_error);
vfree(samplepoint_error);
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment