Commit e4961125 authored by Richard Fitzgerald's avatar Richard Fitzgerald Committed by Mark Brown

ASoC: cs35l56: Add driver for Cirrus Logic CS35L56

The CS35L56 combines a high-performance mono audio amplifier, Class-H
tracking inductive boost converter, Halo Core(TM) DSP and a DC-DC boost
converter supporting Class-H tracking.

Supported control interfaces are I2C, SPI or SoundWire.
Supported audio interfaces are I2S/TDM or SoundWire.

Most chip functionality is controlled by on-board ROM firmware that is
always running. The driver must apply patch/tune to the firmware
before using the CS35L56.
Signed-off-by: default avatarSimon Trimmer <simont@opensource.cirrus.com>
Signed-off-by: default avatarRichard Fitzgerald <rf@opensource.cirrus.com>
Link: https://lore.kernel.org/r/20230320112245.115720-9-rf@opensource.cirrus.comSigned-off-by: default avatarMark Brown <broonie@kernel.org>
parent 991b1de8
......@@ -4905,6 +4905,7 @@ L: patches@opensource.cirrus.com
S: Maintained
F: Documentation/devicetree/bindings/sound/cirrus,cs*
F: include/dt-bindings/sound/cs*
F: include/sound/cs*
F: sound/pci/hda/cs*
F: sound/pci/hda/hda_cs_dsp_ctl.*
F: sound/soc/codecs/cs*
......
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Common definitions for Cirrus Logic CS35L56 smart amp
*
* Copyright (C) 2023 Cirrus Logic, Inc. and
* Cirrus Logic International Semiconductor Ltd.
*/
#ifndef __CS35L56_H
#define __CS35L56_H
#include <linux/firmware/cirrus/cs_dsp.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#define CS35L56_DEVID 0x0000000
#define CS35L56_REVID 0x0000004
#define CS35L56_RELID 0x000000C
#define CS35L56_OTPID 0x0000010
#define CS35L56_SFT_RESET 0x0000020
#define CS35L56_GLOBAL_ENABLES 0x0002014
#define CS35L56_BLOCK_ENABLES 0x0002018
#define CS35L56_BLOCK_ENABLES2 0x000201C
#define CS35L56_REFCLK_INPUT 0x0002C04
#define CS35L56_GLOBAL_SAMPLE_RATE 0x0002C0C
#define CS35L56_ASP1_ENABLES1 0x0004800
#define CS35L56_ASP1_CONTROL1 0x0004804
#define CS35L56_ASP1_CONTROL2 0x0004808
#define CS35L56_ASP1_CONTROL3 0x000480C
#define CS35L56_ASP1_FRAME_CONTROL1 0x0004810
#define CS35L56_ASP1_FRAME_CONTROL5 0x0004820
#define CS35L56_ASP1_DATA_CONTROL1 0x0004830
#define CS35L56_ASP1_DATA_CONTROL5 0x0004840
#define CS35L56_DACPCM1_INPUT 0x0004C00
#define CS35L56_DACPCM2_INPUT 0x0004C08
#define CS35L56_ASP1TX1_INPUT 0x0004C20
#define CS35L56_ASP1TX2_INPUT 0x0004C24
#define CS35L56_ASP1TX3_INPUT 0x0004C28
#define CS35L56_ASP1TX4_INPUT 0x0004C2C
#define CS35L56_DSP1RX1_INPUT 0x0004C40
#define CS35L56_DSP1RX2_INPUT 0x0004C44
#define CS35L56_SWIRE_DP3_CH1_INPUT 0x0004C70
#define CS35L56_SWIRE_DP3_CH2_INPUT 0x0004C74
#define CS35L56_SWIRE_DP3_CH3_INPUT 0x0004C78
#define CS35L56_SWIRE_DP3_CH4_INPUT 0x0004C7C
#define CS35L56_SWIRE_DP3_CH5_INPUT 0x0004C80
#define CS35L56_SWIRE_DP3_CH6_INPUT 0x0004C84
#define CS35L56_IRQ1_CFG 0x000E000
#define CS35L56_IRQ1_STATUS 0x000E004
#define CS35L56_IRQ1_EINT_1 0x000E010
#define CS35L56_IRQ1_EINT_2 0x000E014
#define CS35L56_IRQ1_EINT_4 0x000E01C
#define CS35L56_IRQ1_EINT_8 0x000E02C
#define CS35L56_IRQ1_EINT_18 0x000E054
#define CS35L56_IRQ1_EINT_20 0x000E05C
#define CS35L56_IRQ1_MASK_1 0x000E090
#define CS35L56_IRQ1_MASK_2 0x000E094
#define CS35L56_IRQ1_MASK_4 0x000E09C
#define CS35L56_IRQ1_MASK_8 0x000E0AC
#define CS35L56_IRQ1_MASK_18 0x000E0D4
#define CS35L56_IRQ1_MASK_20 0x000E0DC
#define CS35L56_DSP_VIRTUAL1_MBOX_1 0x0011020
#define CS35L56_DSP_VIRTUAL1_MBOX_2 0x0011024
#define CS35L56_DSP_VIRTUAL1_MBOX_3 0x0011028
#define CS35L56_DSP_VIRTUAL1_MBOX_4 0x001102C
#define CS35L56_DSP_VIRTUAL1_MBOX_5 0x0011030
#define CS35L56_DSP_VIRTUAL1_MBOX_6 0x0011034
#define CS35L56_DSP_VIRTUAL1_MBOX_7 0x0011038
#define CS35L56_DSP_VIRTUAL1_MBOX_8 0x001103C
#define CS35L56_DSP_RESTRICT_STS1 0x00190F0
#define CS35L56_DSP1_XMEM_PACKED_0 0x2000000
#define CS35L56_DSP1_XMEM_PACKED_6143 0x2005FFC
#define CS35L56_DSP1_XMEM_UNPACKED32_0 0x2400000
#define CS35L56_DSP1_XMEM_UNPACKED32_4095 0x2403FFC
#define CS35L56_DSP1_SYS_INFO_ID 0x25E0000
#define CS35L56_DSP1_SYS_INFO_END 0x25E004C
#define CS35L56_DSP1_AHBM_WINDOW_DEBUG_0 0x25E2040
#define CS35L56_DSP1_AHBM_WINDOW_DEBUG_1 0x25E2044
#define CS35L56_DSP1_XMEM_UNPACKED24_0 0x2800000
#define CS35L56_DSP1_HALO_STATE_A1 0x2801E58
#define CS35L56_DSP1_HALO_STATE 0x28021E0
#define CS35L56_DSP1_PM_CUR_STATE_A1 0x2804000
#define CS35L56_DSP1_PM_CUR_STATE 0x2804308
#define CS35L56_DSP1_XMEM_UNPACKED24_8191 0x2807FFC
#define CS35L56_DSP1_CORE_BASE 0x2B80000
#define CS35L56_DSP1_SCRATCH1 0x2B805C0
#define CS35L56_DSP1_SCRATCH2 0x2B805C8
#define CS35L56_DSP1_SCRATCH3 0x2B805D0
#define CS35L56_DSP1_SCRATCH4 0x2B805D8
#define CS35L56_DSP1_YMEM_PACKED_0 0x2C00000
#define CS35L56_DSP1_YMEM_PACKED_4604 0x2C047F0
#define CS35L56_DSP1_YMEM_UNPACKED32_0 0x3000000
#define CS35L56_DSP1_YMEM_UNPACKED32_3070 0x3002FF8
#define CS35L56_DSP1_YMEM_UNPACKED24_0 0x3400000
#define CS35L56_MAIN_RENDER_USER_MUTE 0x3400024
#define CS35L56_MAIN_RENDER_USER_VOLUME 0x340002C
#define CS35L56_MAIN_POSTURE_NUMBER 0x3400094
#define CS35L56_TRANSDUCER_ACTUAL_PS 0x3400150
#define CS35L56_DSP1_YMEM_UNPACKED24_6141 0x3405FF4
#define CS35L56_DSP1_PMEM_0 0x3800000
#define CS35L56_DSP1_PMEM_5114 0x3804FE8
/* DEVID */
#define CS35L56_DEVID_MASK 0x00FFFFFF
/* REVID */
#define CS35L56_AREVID_MASK 0x000000F0
#define CS35L56_MTLREVID_MASK 0x0000000F
#define CS35L56_REVID_B0 0x000000B0
/* ASP_ENABLES1 */
#define CS35L56_ASP_RX2_EN_SHIFT 17
#define CS35L56_ASP_RX1_EN_SHIFT 16
#define CS35L56_ASP_TX4_EN_SHIFT 3
#define CS35L56_ASP_TX3_EN_SHIFT 2
#define CS35L56_ASP_TX2_EN_SHIFT 1
#define CS35L56_ASP_TX1_EN_SHIFT 0
/* ASP_CONTROL1 */
#define CS35L56_ASP_BCLK_FREQ_MASK 0x0000003F
#define CS35L56_ASP_BCLK_FREQ_SHIFT 0
/* ASP_CONTROL2 */
#define CS35L56_ASP_RX_WIDTH_MASK 0xFF000000
#define CS35L56_ASP_RX_WIDTH_SHIFT 24
#define CS35L56_ASP_TX_WIDTH_MASK 0x00FF0000
#define CS35L56_ASP_TX_WIDTH_SHIFT 16
#define CS35L56_ASP_FMT_MASK 0x00000700
#define CS35L56_ASP_FMT_SHIFT 8
#define CS35L56_ASP_BCLK_INV_MASK 0x00000040
#define CS35L56_ASP_FSYNC_INV_MASK 0x00000004
/* ASP_CONTROL3 */
#define CS35L56_ASP1_DOUT_HIZ_CTRL_MASK 0x00000003
/* ASP_DATA_CONTROL1 */
#define CS35L56_ASP_TX_WL_MASK 0x0000003F
/* ASP_DATA_CONTROL5 */
#define CS35L56_ASP_RX_WL_MASK 0x0000003F
/* ASPTXn_INPUT */
#define CS35L56_ASP_TXn_SRC_MASK 0x0000007F
/* SWIRETX[1..7]_SRC SDWTXn INPUT */
#define CS35L56_SWIRETXn_SRC_MASK 0x0000007F
/* IRQ1_STATUS */
#define CS35L56_IRQ1_STS_MASK 0x00000001
/* IRQ1_EINT_1 */
#define CS35L56_AMP_SHORT_ERR_EINT1_MASK 0x80000000
/* IRQ1_EINT_2 */
#define CS35L56_DSP_VIRTUAL2_MBOX_WR_EINT1_MASK 0x00200000
/* IRQ1_EINT_4 */
#define CS35L56_OTP_BOOT_DONE_MASK 0x00000002
/* IRQ1_EINT_8 */
#define CS35L56_TEMP_ERR_EINT1_MASK 0x80000000
/* Mixer input sources */
#define CS35L56_INPUT_SRC_NONE 0x00
#define CS35L56_INPUT_SRC_ASP1RX1 0x08
#define CS35L56_INPUT_SRC_ASP1RX2 0x09
#define CS35L56_INPUT_SRC_VMON 0x18
#define CS35L56_INPUT_SRC_IMON 0x19
#define CS35L56_INPUT_SRC_ERR_VOL 0x20
#define CS35L56_INPUT_SRC_CLASSH 0x21
#define CS35L56_INPUT_SRC_VDDBMON 0x28
#define CS35L56_INPUT_SRC_VBSTMON 0x29
#define CS35L56_INPUT_SRC_DSP1TX1 0x32
#define CS35L56_INPUT_SRC_DSP1TX2 0x33
#define CS35L56_INPUT_SRC_DSP1TX3 0x34
#define CS35L56_INPUT_SRC_DSP1TX4 0x35
#define CS35L56_INPUT_SRC_DSP1TX5 0x36
#define CS35L56_INPUT_SRC_DSP1TX6 0x37
#define CS35L56_INPUT_SRC_DSP1TX7 0x38
#define CS35L56_INPUT_SRC_DSP1TX8 0x39
#define CS35L56_INPUT_SRC_TEMPMON 0x3A
#define CS35L56_INPUT_SRC_INTERPOLATOR 0x40
#define CS35L56_INPUT_SRC_SWIRE_RX1 0x44
#define CS35L56_INPUT_SRC_SWIRE_RX2 0x45
#define CS35L56_INPUT_SRC_SWIRE_RX3 0x46
#define CS35L56_INPUT_MASK 0x7F
#define CS35L56_NUM_INPUT_SRC 22
/* ASP formats */
#define CS35L56_ASP_FMT_DSP_A 0
#define CS35L56_ASP_FMT_I2S 2
/* ASP HiZ modes */
#define CS35L56_ASP_UNUSED_HIZ_OFF_HIZ 3
/* MAIN_RENDER_ACTUAL_PS */
#define CS35L56_PS0 0
#define CS35L56_PS3 3
/* CS35L56_DSP_RESTRICT_STS1 */
#define CS35L56_RESTRICTED_MASK 0x7
/* CS35L56_MAIN_RENDER_USER_MUTE */
#define CS35L56_MAIN_RENDER_USER_MUTE_MASK 1
/* CS35L56_MAIN_RENDER_USER_VOLUME */
#define CS35L56_MAIN_RENDER_USER_VOLUME_MIN -400
#define CS35L56_MAIN_RENDER_USER_VOLUME_MAX 400
#define CS35L56_MAIN_RENDER_USER_VOLUME_MASK 0x0000FFC0
#define CS35L56_MAIN_RENDER_USER_VOLUME_SHIFT 6
#define CS35L56_MAIN_RENDER_USER_VOLUME_SIGNBIT 9
/* CS35L56_MAIN_POSTURE_NUMBER */
#define CS35L56_MAIN_POSTURE_MIN 0
#define CS35L56_MAIN_POSTURE_MAX 255
#define CS35L56_MAIN_POSTURE_MASK CS35L56_MAIN_POSTURE_MAX
/* Software Values */
#define CS35L56_HALO_STATE_SHUTDOWN 1
#define CS35L56_HALO_STATE_BOOT_DONE 2
#define CS35L56_MBOX_CMD_AUDIO_PLAY 0x0B000001
#define CS35L56_MBOX_CMD_AUDIO_PAUSE 0x0B000002
#define CS35L56_MBOX_CMD_HIBERNATE_NOW 0x02000001
#define CS35L56_MBOX_CMD_WAKEUP 0x02000002
#define CS35L56_MBOX_CMD_PREVENT_AUTO_HIBERNATE 0x02000003
#define CS35L56_MBOX_CMD_ALLOW_AUTO_HIBERNATE 0x02000004
#define CS35L56_MBOX_CMD_SHUTDOWN 0x02000005
#define CS35L56_MBOX_CMD_SYSTEM_RESET 0x02000007
#define CS35L56_MBOX_TIMEOUT_US 5000
#define CS35L56_MBOX_POLL_US 250
#define CS35L56_PS0_POLL_US 500
#define CS35L56_PS0_TIMEOUT_US 50000
#define CS35L56_PS3_POLL_US 500
#define CS35L56_PS3_TIMEOUT_US 300000
#define CS35L56_CONTROL_PORT_READY_US 2200
#define CS35L56_HALO_STATE_POLL_US 1000
#define CS35L56_HALO_STATE_TIMEOUT_US 50000
#define CS35L56_HIBERNATE_WAKE_POLL_US 500
#define CS35L56_HIBERNATE_WAKE_TIMEOUT_US 5000
#define CS35L56_RESET_PULSE_MIN_US 1100
#define CS35L56_SDW1_PLAYBACK_PORT 1
#define CS35L56_SDW1_CAPTURE_PORT 3
#define CS35L56_NUM_BULK_SUPPLIES 3
#define CS35L56_NUM_DSP_REGIONS 5
extern struct regmap_config cs35l56_regmap_i2c;
extern struct regmap_config cs35l56_regmap_spi;
extern struct regmap_config cs35l56_regmap_sdw;
extern const struct cs_dsp_region cs35l56_dsp1_regions[CS35L56_NUM_DSP_REGIONS];
extern const char * const cs35l56_tx_input_texts[CS35L56_NUM_INPUT_SRC];
extern const unsigned int cs35l56_tx_input_values[CS35L56_NUM_INPUT_SRC];
void cs35l56_patch(struct device *dev, struct regmap *regmap, u8 revid);
void cs35l56_reread_firmware_registers(struct device *dev, struct regmap *regmap);
int cs35l56_get_bclk_freq_id(unsigned int freq);
void cs35l56_fill_supply_names(struct regulator_bulk_data *data);
#endif /* ifndef __CS35L56_H */
......@@ -68,6 +68,9 @@ config SND_SOC_ALL_CODECS
imply SND_SOC_CS35L41_I2C
imply SND_SOC_CS35L45_I2C
imply SND_SOC_CS35L45_SPI
imply SND_SOC_CS35L56_I2C
imply SND_SOC_CS35L56_SPI
imply SND_SOC_CS35L56_SDW
imply SND_SOC_CS42L42
imply SND_SOC_CS42L42_SDW
imply SND_SOC_CS42L51_I2C
......@@ -364,6 +367,7 @@ config SND_SOC_WM_ADSP
default y if SND_SOC_WM2200=y
default y if SND_SOC_CS35L41_SPI=y
default y if SND_SOC_CS35L41_I2C=y
default y if SND_SOC_CS35L56=y
default m if SND_SOC_MADERA=m
default m if SND_SOC_CS47L24=m
default m if SND_SOC_WM5102=m
......@@ -371,6 +375,7 @@ config SND_SOC_WM_ADSP
default m if SND_SOC_WM2200=m
default m if SND_SOC_CS35L41_SPI=m
default m if SND_SOC_CS35L41_I2C=m
default m if SND_SOC_CS35L56=m
config SND_SOC_AB8500_CODEC
tristate
......@@ -711,6 +716,41 @@ config SND_SOC_CS35L45_I2C
Enable support for Cirrus Logic CS35L45 smart speaker amplifier
with I2C control.
config SND_SOC_CS35L56
tristate
config SND_SOC_CS35L56_SHARED
tristate
config SND_SOC_CS35L56_I2C
tristate "Cirrus Logic CS35L56 CODEC (I2C)"
depends on I2C
depends on SOUNDWIRE || !SOUNDWIRE
select REGMAP_I2C
select SND_SOC_CS35L56
select SND_SOC_CS35L56_SHARED
help
Enable support for Cirrus Logic CS35L56 boosted amplifier with I2C control
config SND_SOC_CS35L56_SPI
tristate "Cirrus Logic CS35L56 CODEC (SPI)"
depends on SPI_MASTER
depends on SOUNDWIRE || !SOUNDWIRE
select REGMAP_SPI
select SND_SOC_CS35L56
select SND_SOC_CS35L56_SHARED
help
Enable support for Cirrus Logic CS35L56 boosted amplifier with SPI control
config SND_SOC_CS35L56_SDW
tristate "Cirrus Logic CS35L56 CODEC (SDW)"
depends on SOUNDWIRE
select REGMAP
select SND_SOC_CS35L56
select SND_SOC_CS35L56_SHARED
help
Enable support for Cirrus Logic CS35L56 boosted amplifier with SoundWire control
config SND_SOC_CS42L42_CORE
tristate
......
......@@ -66,6 +66,11 @@ snd-soc-cs35l41-i2c-objs := cs35l41-i2c.o
snd-soc-cs35l45-objs := cs35l45.o cs35l45-tables.o
snd-soc-cs35l45-spi-objs := cs35l45-spi.o
snd-soc-cs35l45-i2c-objs := cs35l45-i2c.o
snd-soc-cs35l56-objs := cs35l56.o
snd-soc-cs35l56-shared-objs := cs35l56-shared.o
snd-soc-cs35l56-i2c-objs := cs35l56-i2c.o
snd-soc-cs35l56-spi-objs := cs35l56-spi.o
snd-soc-cs35l56-sdw-objs := cs35l56-sdw.o
snd-soc-cs42l42-objs := cs42l42.o
snd-soc-cs42l42-i2c-objs := cs42l42-i2c.o
snd-soc-cs42l42-sdw-objs := cs42l42-sdw.o
......@@ -433,6 +438,11 @@ obj-$(CONFIG_SND_SOC_CS35L41_I2C) += snd-soc-cs35l41-i2c.o
obj-$(CONFIG_SND_SOC_CS35L45) += snd-soc-cs35l45.o
obj-$(CONFIG_SND_SOC_CS35L45_SPI) += snd-soc-cs35l45-spi.o
obj-$(CONFIG_SND_SOC_CS35L45_I2C) += snd-soc-cs35l45-i2c.o
obj-$(CONFIG_SND_SOC_CS35L56) += snd-soc-cs35l56.o
obj-$(CONFIG_SND_SOC_CS35L56_SHARED) += snd-soc-cs35l56-shared.o
obj-$(CONFIG_SND_SOC_CS35L56_I2C) += snd-soc-cs35l56-i2c.o
obj-$(CONFIG_SND_SOC_CS35L56_SPI) += snd-soc-cs35l56-spi.o
obj-$(CONFIG_SND_SOC_CS35L56_SDW) += snd-soc-cs35l56-sdw.o
obj-$(CONFIG_SND_SOC_CS42L42_CORE) += snd-soc-cs42l42.o
obj-$(CONFIG_SND_SOC_CS42L42) += snd-soc-cs42l42-i2c.o
obj-$(CONFIG_SND_SOC_CS42L42_SDW) += snd-soc-cs42l42-sdw.o
......
// SPDX-License-Identifier: GPL-2.0-only
//
// CS35L56 ALSA SoC audio driver I2C binding
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/acpi.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "cs35l56.h"
static int cs35l56_i2c_probe(struct i2c_client *client)
{
struct cs35l56_private *cs35l56;
struct device *dev = &client->dev;
const struct regmap_config *regmap_config = &cs35l56_regmap_i2c;
int ret;
cs35l56 = devm_kzalloc(dev, sizeof(struct cs35l56_private), GFP_KERNEL);
if (!cs35l56)
return -ENOMEM;
cs35l56->dev = dev;
cs35l56->irq = client->irq;
cs35l56->can_hibernate = true;
i2c_set_clientdata(client, cs35l56);
cs35l56->regmap = devm_regmap_init_i2c(client, regmap_config);
if (IS_ERR(cs35l56->regmap)) {
ret = PTR_ERR(cs35l56->regmap);
return dev_err_probe(cs35l56->dev, ret, "Failed to allocate register map\n");
}
ret = cs35l56_common_probe(cs35l56);
if (ret != 0)
return ret;
ret = cs35l56_init(cs35l56);
if (ret == 0)
ret = cs35l56_irq_request(cs35l56);
if (ret < 0)
cs35l56_remove(cs35l56);
return ret;
}
static void cs35l56_i2c_remove(struct i2c_client *client)
{
struct cs35l56_private *cs35l56 = i2c_get_clientdata(client);
cs35l56_remove(cs35l56);
}
static const struct i2c_device_id cs35l56_id_i2c[] = {
{ "cs35l56", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, cs35l56_id_i2c);
static struct i2c_driver cs35l56_i2c_driver = {
.driver = {
.name = "cs35l56",
.pm = &cs35l56_pm_ops_i2c_spi,
},
.id_table = cs35l56_id_i2c,
.probe_new = cs35l56_i2c_probe,
.remove = cs35l56_i2c_remove,
};
module_i2c_driver(cs35l56_i2c_driver);
MODULE_DESCRIPTION("ASoC CS35L56 I2C driver");
MODULE_IMPORT_NS(SND_SOC_CS35L56_CORE);
MODULE_IMPORT_NS(SND_SOC_CS35L56_SHARED);
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
//
// CS35L56 ALSA SoC audio driver SoundWire binding
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/soundwire/sdw.h>
#include <linux/soundwire/sdw_registers.h>
#include <linux/soundwire/sdw_type.h>
#include <linux/swab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "cs35l56.h"
/* Register addresses are offset when sent over SoundWire */
#define CS35L56_SDW_ADDR_OFFSET 0x8000
static int cs35l56_sdw_read_one(struct sdw_slave *peripheral, unsigned int reg, void *buf)
{
int ret;
ret = sdw_nread_no_pm(peripheral, reg, 4, (u8 *)buf);
if (ret != 0) {
dev_err(&peripheral->dev, "Read failed @%#x:%d\n", reg, ret);
return ret;
}
swab32s((u32 *)buf);
return 0;
}
static int cs35l56_sdw_read(void *context, const void *reg_buf,
const size_t reg_size, void *val_buf,
size_t val_size)
{
struct sdw_slave *peripheral = context;
u8 *buf8 = val_buf;
unsigned int reg, bytes;
int ret;
reg = le32_to_cpu(*(const __le32 *)reg_buf);
reg += CS35L56_SDW_ADDR_OFFSET;
if (val_size == 4)
return cs35l56_sdw_read_one(peripheral, reg, val_buf);
while (val_size) {
bytes = SDW_REG_NO_PAGE - (reg & SDW_REGADDR); /* to end of page */
if (bytes > val_size)
bytes = val_size;
ret = sdw_nread_no_pm(peripheral, reg, bytes, buf8);
if (ret != 0) {
dev_err(&peripheral->dev, "Read failed @%#x..%#x:%d\n",
reg, reg + bytes - 1, ret);
return ret;
}
swab32_array((u32 *)buf8, bytes / 4);
val_size -= bytes;
reg += bytes;
buf8 += bytes;
}
return 0;
}
static inline void cs35l56_swab_copy(void *dest, const void *src, size_t nbytes)
{
u32 *dest32 = dest;
const u32 *src32 = src;
for (; nbytes > 0; nbytes -= 4)
*dest32++ = swab32(*src32++);
}
static int cs35l56_sdw_write_one(struct sdw_slave *peripheral, unsigned int reg, const void *buf)
{
u32 val_le = swab32(*(u32 *)buf);
int ret;
ret = sdw_nwrite_no_pm(peripheral, reg, 4, (u8 *)&val_le);
if (ret != 0) {
dev_err(&peripheral->dev, "Write failed @%#x:%d\n", reg, ret);
return ret;
}
return 0;
}
static int cs35l56_sdw_gather_write(void *context,
const void *reg_buf, size_t reg_size,
const void *val_buf, size_t val_size)
{
struct sdw_slave *peripheral = context;
const u8 *src_be = val_buf;
u32 val_le_buf[64]; /* Define u32 so it is 32-bit aligned */
unsigned int reg, bytes;
int ret;
reg = le32_to_cpu(*(const __le32 *)reg_buf);
reg += CS35L56_SDW_ADDR_OFFSET;
if (val_size == 4)
return cs35l56_sdw_write_one(peripheral, reg, src_be);
while (val_size) {
bytes = SDW_REG_NO_PAGE - (reg & SDW_REGADDR); /* to end of page */
if (bytes > val_size)
bytes = val_size;
if (bytes > sizeof(val_le_buf))
bytes = sizeof(val_le_buf);
cs35l56_swab_copy(val_le_buf, src_be, bytes);
ret = sdw_nwrite_no_pm(peripheral, reg, bytes, (u8 *)val_le_buf);
if (ret != 0) {
dev_err(&peripheral->dev, "Write failed @%#x..%#x:%d\n",
reg, reg + bytes - 1, ret);
return ret;
}
val_size -= bytes;
reg += bytes;
src_be += bytes;
}
return 0;
}
static int cs35l56_sdw_write(void *context, const void *val_buf, size_t val_size)
{
const u8 *src_buf = val_buf;
/* First word of val_buf contains the destination address */
return cs35l56_sdw_gather_write(context, &src_buf[0], 4, &src_buf[4], val_size - 4);
}
/*
* Registers are big-endian on I2C and SPI but little-endian on SoundWire.
* Exported firmware controls are big-endian on I2C/SPI but little-endian on
* SoundWire. Firmware files are always big-endian and are opaque blobs.
* Present a big-endian regmap and hide the endianness swap, so that the ALSA
* byte controls always have the same byte order, and firmware file blobs
* can be written verbatim.
*/
static const struct regmap_bus cs35l56_regmap_bus_sdw = {
.read = cs35l56_sdw_read,
.write = cs35l56_sdw_write,
.gather_write = cs35l56_sdw_gather_write,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_BIG,
};
static void cs35l56_sdw_init(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
int ret;
pm_runtime_get_noresume(cs35l56->dev);
regcache_cache_only(cs35l56->regmap, false);
ret = cs35l56_init(cs35l56);
if (ret < 0) {
regcache_cache_only(cs35l56->regmap, true);
goto out;
}
/*
* cs35l56_init can return with !init_done if it triggered
* a soft reset.
*/
if (cs35l56->init_done) {
/* Enable SoundWire interrupts */
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
}
out:
pm_runtime_mark_last_busy(cs35l56->dev);
pm_runtime_put_autosuspend(cs35l56->dev);
}
static int cs35l56_sdw_interrupt(struct sdw_slave *peripheral,
struct sdw_slave_intr_status *status)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
/* SoundWire core holds our pm_runtime when calling this function. */
dev_dbg(cs35l56->dev, "int control_port=%#x\n", status->control_port);
if ((status->control_port & SDW_SCP_INT1_IMPL_DEF) == 0)
return 0;
/*
* Prevent bus manager suspending and possibly issuing a
* bus-reset before the queued work has run.
*/
pm_runtime_get_noresume(cs35l56->dev);
/*
* Mask and clear until it has been handled. The read of GEN_INT_STAT_1
* is required as per the SoundWire spec for interrupt status bits
* to clear. GEN_INT_MASK_1 masks the _inputs_ to GEN_INT_STAT1.
* None of the interrupts are time-critical so use the
* power-efficient queue.
*/
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
queue_work(system_power_efficient_wq, &cs35l56->sdw_irq_work);
return 0;
}
static void cs35l56_sdw_irq_work(struct work_struct *work)
{
struct cs35l56_private *cs35l56 = container_of(work,
struct cs35l56_private,
sdw_irq_work);
cs35l56_irq(-1, cs35l56);
/* unmask interrupts */
if (!cs35l56->sdw_irq_no_unmask)
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
pm_runtime_put_autosuspend(cs35l56->dev);
}
static int cs35l56_sdw_read_prop(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
struct sdw_slave_prop *prop = &peripheral->prop;
struct sdw_dpn_prop *ports;
ports = devm_kcalloc(cs35l56->dev, 2, sizeof(*ports), GFP_KERNEL);
if (!ports)
return -ENOMEM;
prop->source_ports = BIT(CS35L56_SDW1_CAPTURE_PORT);
prop->sink_ports = BIT(CS35L56_SDW1_PLAYBACK_PORT);
prop->paging_support = true;
prop->clk_stop_mode1 = false;
prop->quirks = SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY;
prop->scp_int1_mask = SDW_SCP_INT1_BUS_CLASH | SDW_SCP_INT1_PARITY | SDW_SCP_INT1_IMPL_DEF;
/* DP1 - playback */
ports[0].num = CS35L56_SDW1_PLAYBACK_PORT;
ports[0].type = SDW_DPN_FULL;
ports[0].ch_prep_timeout = 10;
prop->sink_dpn_prop = &ports[0];
/* DP3 - capture */
ports[1].num = CS35L56_SDW1_CAPTURE_PORT;
ports[1].type = SDW_DPN_FULL;
ports[1].ch_prep_timeout = 10;
prop->src_dpn_prop = &ports[1];
return 0;
}
static int cs35l56_sdw_update_status(struct sdw_slave *peripheral,
enum sdw_slave_status status)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
switch (status) {
case SDW_SLAVE_ATTACHED:
dev_dbg(cs35l56->dev, "%s: ATTACHED\n", __func__);
if (cs35l56->sdw_attached)
break;
if (!cs35l56->init_done || cs35l56->soft_resetting)
cs35l56_sdw_init(peripheral);
cs35l56->sdw_attached = true;
break;
case SDW_SLAVE_UNATTACHED:
dev_dbg(cs35l56->dev, "%s: UNATTACHED\n", __func__);
cs35l56->sdw_attached = false;
break;
default:
break;
}
return 0;
}
static int cs35l56_a1_kick_divider(struct cs35l56_private *cs35l56,
struct sdw_slave *peripheral)
{
unsigned int curr_scale_reg, next_scale_reg;
int curr_scale, next_scale, ret;
if (!cs35l56->init_done)
return 0;
if (peripheral->bus->params.curr_bank) {
curr_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B1;
next_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B0;
} else {
curr_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B0;
next_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B1;
}
/*
* Current clock scale value must be different to new value.
* Modify current to guarantee this. If next still has the dummy
* value we wrote when it was current, the core code has not set
* a new scale so restore its original good value
*/
curr_scale = sdw_read_no_pm(peripheral, curr_scale_reg);
if (curr_scale < 0) {
dev_err(cs35l56->dev, "Failed to read current clock scale: %d\n", curr_scale);
return curr_scale;
}
next_scale = sdw_read_no_pm(peripheral, next_scale_reg);
if (next_scale < 0) {
dev_err(cs35l56->dev, "Failed to read next clock scale: %d\n", next_scale);
return next_scale;
}
if (next_scale == CS35L56_SDW_INVALID_BUS_SCALE) {
next_scale = cs35l56->old_sdw_clock_scale;
ret = sdw_write_no_pm(peripheral, next_scale_reg, next_scale);
if (ret < 0) {
dev_err(cs35l56->dev, "Failed to modify current clock scale: %d\n", ret);
return ret;
}
}
cs35l56->old_sdw_clock_scale = curr_scale;
ret = sdw_write_no_pm(peripheral, curr_scale_reg, CS35L56_SDW_INVALID_BUS_SCALE);
if (ret < 0) {
dev_err(cs35l56->dev, "Failed to modify current clock scale: %d\n", ret);
return ret;
}
dev_dbg(cs35l56->dev, "Next bus scale: %#x\n", next_scale);
return 0;
}
static int cs35l56_sdw_bus_config(struct sdw_slave *peripheral,
struct sdw_bus_params *params)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
int sclk;
sclk = params->curr_dr_freq / 2;
dev_dbg(cs35l56->dev, "%s: sclk=%u c=%u r=%u\n", __func__, sclk, params->col, params->row);
if (cs35l56->rev < 0xb0)
return cs35l56_a1_kick_divider(cs35l56, peripheral);
return 0;
}
static int __maybe_unused cs35l56_sdw_clk_stop(struct sdw_slave *peripheral,
enum sdw_clk_stop_mode mode,
enum sdw_clk_stop_type type)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
dev_dbg(cs35l56->dev, "%s: mode:%d type:%d\n", __func__, mode, type);
return 0;
}
static const struct sdw_slave_ops cs35l56_sdw_ops = {
.read_prop = cs35l56_sdw_read_prop,
.interrupt_callback = cs35l56_sdw_interrupt,
.update_status = cs35l56_sdw_update_status,
.bus_config = cs35l56_sdw_bus_config,
#ifdef DEBUG
.clk_stop = cs35l56_sdw_clk_stop,
#endif
};
static int __maybe_unused cs35l56_sdw_handle_unattach(struct cs35l56_private *cs35l56)
{
struct sdw_slave *peripheral = cs35l56->sdw_peripheral;
if (peripheral->unattach_request) {
/* Cannot access registers until bus is re-initialized. */
dev_dbg(cs35l56->dev, "Wait for initialization_complete\n");
if (!wait_for_completion_timeout(&peripheral->initialization_complete,
msecs_to_jiffies(5000))) {
dev_err(cs35l56->dev, "initialization_complete timed out\n");
return -ETIMEDOUT;
}
peripheral->unattach_request = 0;
/*
* Don't call regcache_mark_dirty(), we can't be sure that the
* Manager really did issue a Bus Reset.
*/
}
return 0;
}
static int __maybe_unused cs35l56_sdw_runtime_suspend(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
if (!cs35l56->init_done)
return 0;
return cs35l56_runtime_suspend(dev);
}
static int __maybe_unused cs35l56_sdw_runtime_resume(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "Runtime resume\n");
if (!cs35l56->init_done)
return 0;
ret = cs35l56_sdw_handle_unattach(cs35l56);
if (ret < 0)
return ret;
ret = cs35l56_runtime_resume_common(cs35l56);
if (ret)
return ret;
/* Re-enable SoundWire interrupts */
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
return 0;
}
static int cs35l56_sdw_probe(struct sdw_slave *peripheral, const struct sdw_device_id *id)
{
struct device *dev = &peripheral->dev;
struct cs35l56_private *cs35l56;
int ret;
cs35l56 = devm_kzalloc(dev, sizeof(*cs35l56), GFP_KERNEL);
if (!cs35l56)
return -ENOMEM;
cs35l56->dev = dev;
cs35l56->sdw_peripheral = peripheral;
INIT_WORK(&cs35l56->sdw_irq_work, cs35l56_sdw_irq_work);
dev_set_drvdata(dev, cs35l56);
cs35l56->regmap = devm_regmap_init(dev, &cs35l56_regmap_bus_sdw,
peripheral, &cs35l56_regmap_sdw);
if (IS_ERR(cs35l56->regmap)) {
ret = PTR_ERR(cs35l56->regmap);
return dev_err_probe(dev, ret, "Failed to allocate register map\n");
}
/* Start in cache-only until device is enumerated */
regcache_cache_only(cs35l56->regmap, true);
ret = cs35l56_common_probe(cs35l56);
if (ret != 0)
return ret;
return 0;
}
static int cs35l56_sdw_remove(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
/* Disable SoundWire interrupts */
cs35l56->sdw_irq_no_unmask = true;
cancel_work_sync(&cs35l56->sdw_irq_work);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
return cs35l56_remove(cs35l56);
}
static const struct dev_pm_ops cs35l56_sdw_pm = {
SET_RUNTIME_PM_OPS(cs35l56_sdw_runtime_suspend, cs35l56_sdw_runtime_resume, NULL)
};
static const struct sdw_device_id cs35l56_sdw_id[] = {
SDW_SLAVE_ENTRY(0x01FA, 0x3556, 0),
{},
};
MODULE_DEVICE_TABLE(sdw, cs35l56_sdw_id);
static struct sdw_driver cs35l56_sdw_driver = {
.driver = {
.name = "cs35l56",
.pm = &cs35l56_sdw_pm,
},
.probe = cs35l56_sdw_probe,
.remove = cs35l56_sdw_remove,
.ops = &cs35l56_sdw_ops,
.id_table = cs35l56_sdw_id,
};
module_sdw_driver(cs35l56_sdw_driver);
MODULE_DESCRIPTION("ASoC CS35L56 SoundWire driver");
MODULE_IMPORT_NS(SND_SOC_CS35L56_CORE);
MODULE_IMPORT_NS(SND_SOC_CS35L56_SHARED);
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
//
// Components shared between ASoC and HDA CS35L56 drivers
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include "cs35l56.h"
static const struct reg_default cs35l56_reg_defaults[] = {
{ CS35L56_ASP1_ENABLES1, 0x00000000 },
{ CS35L56_ASP1_CONTROL1, 0x00000028 },
{ CS35L56_ASP1_CONTROL2, 0x18180200 },
{ CS35L56_ASP1_CONTROL3, 0x00000002 },
{ CS35L56_ASP1_FRAME_CONTROL1, 0x03020100 },
{ CS35L56_ASP1_FRAME_CONTROL5, 0x00020100 },
{ CS35L56_ASP1_DATA_CONTROL1, 0x00000018 },
{ CS35L56_ASP1_DATA_CONTROL5, 0x00000018 },
{ CS35L56_ASP1TX1_INPUT, 0x00000018 },
{ CS35L56_ASP1TX2_INPUT, 0x00000019 },
{ CS35L56_ASP1TX3_INPUT, 0x00000020 },
{ CS35L56_ASP1TX4_INPUT, 0x00000028 },
{ CS35L56_SWIRE_DP3_CH1_INPUT, 0x00000018 },
{ CS35L56_SWIRE_DP3_CH2_INPUT, 0x00000019 },
{ CS35L56_SWIRE_DP3_CH3_INPUT, 0x00000029 },
{ CS35L56_SWIRE_DP3_CH4_INPUT, 0x00000028 },
{ CS35L56_SWIRE_DP3_CH5_INPUT, 0x00000018 },
{ CS35L56_SWIRE_DP3_CH6_INPUT, 0x00000018 },
{ CS35L56_IRQ1_CFG, 0x00000000 },
{ CS35L56_IRQ1_MASK_1, 0x83ffffff },
{ CS35L56_IRQ1_MASK_2, 0xffff7fff },
{ CS35L56_IRQ1_MASK_4, 0xe0ffffff },
{ CS35L56_IRQ1_MASK_8, 0xfc000fff },
{ CS35L56_IRQ1_MASK_18, 0x1f7df0ff },
{ CS35L56_IRQ1_MASK_20, 0x15c00000 },
/* CS35L56_MAIN_RENDER_USER_MUTE - soft register, no default */
/* CS35L56_MAIN_RENDER_USER_VOLUME - soft register, no default */
/* CS35L56_MAIN_POSTURE_NUMBER - soft register, no default */
};
/*
* The Ax devices have different default register values to that of B0,
* establish a common set of register defaults.
*/
static const struct reg_sequence cs35l56_reva_patch[] = {
{ CS35L56_SWIRE_DP3_CH5_INPUT, 0x00000018 },
{ CS35L56_SWIRE_DP3_CH6_INPUT, 0x00000018 },
};
void cs35l56_patch(struct device *dev, struct regmap *regmap, u8 revid)
{
int ret;
if (revid >= CS35L56_REVID_B0)
return;
ret = regmap_register_patch(regmap, cs35l56_reva_patch,
ARRAY_SIZE(cs35l56_reva_patch));
if (ret)
dev_err(dev, "Failed to apply patch: %d\n", ret);
}
EXPORT_SYMBOL_NS_GPL(cs35l56_patch, SND_SOC_CS35L56_SHARED);
static bool cs35l56_is_dsp_memory(unsigned int reg)
{
switch (reg) {
case CS35L56_DSP1_XMEM_PACKED_0 ... CS35L56_DSP1_XMEM_PACKED_6143:
case CS35L56_DSP1_XMEM_UNPACKED32_0 ... CS35L56_DSP1_XMEM_UNPACKED32_4095:
case CS35L56_DSP1_XMEM_UNPACKED24_0 ... CS35L56_DSP1_XMEM_UNPACKED24_8191:
case CS35L56_DSP1_YMEM_PACKED_0 ... CS35L56_DSP1_YMEM_PACKED_4604:
case CS35L56_DSP1_YMEM_UNPACKED32_0 ... CS35L56_DSP1_YMEM_UNPACKED32_3070:
case CS35L56_DSP1_YMEM_UNPACKED24_0 ... CS35L56_DSP1_YMEM_UNPACKED24_6141:
case CS35L56_DSP1_PMEM_0 ... CS35L56_DSP1_PMEM_5114:
return true;
default:
return false;
}
}
static bool cs35l56_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L56_DEVID:
case CS35L56_REVID:
case CS35L56_RELID:
case CS35L56_OTPID:
case CS35L56_SFT_RESET:
case CS35L56_GLOBAL_ENABLES:
case CS35L56_BLOCK_ENABLES:
case CS35L56_BLOCK_ENABLES2:
case CS35L56_REFCLK_INPUT:
case CS35L56_GLOBAL_SAMPLE_RATE:
case CS35L56_ASP1_ENABLES1:
case CS35L56_ASP1_CONTROL1:
case CS35L56_ASP1_CONTROL2:
case CS35L56_ASP1_CONTROL3:
case CS35L56_ASP1_FRAME_CONTROL1:
case CS35L56_ASP1_FRAME_CONTROL5:
case CS35L56_ASP1_DATA_CONTROL1:
case CS35L56_ASP1_DATA_CONTROL5:
case CS35L56_DACPCM1_INPUT:
case CS35L56_DACPCM2_INPUT:
case CS35L56_ASP1TX1_INPUT:
case CS35L56_ASP1TX2_INPUT:
case CS35L56_ASP1TX3_INPUT:
case CS35L56_ASP1TX4_INPUT:
case CS35L56_DSP1RX1_INPUT:
case CS35L56_DSP1RX2_INPUT:
case CS35L56_SWIRE_DP3_CH1_INPUT:
case CS35L56_SWIRE_DP3_CH2_INPUT:
case CS35L56_SWIRE_DP3_CH3_INPUT:
case CS35L56_SWIRE_DP3_CH4_INPUT:
case CS35L56_SWIRE_DP3_CH5_INPUT:
case CS35L56_SWIRE_DP3_CH6_INPUT:
case CS35L56_IRQ1_CFG:
case CS35L56_IRQ1_STATUS:
case CS35L56_IRQ1_EINT_1 ... CS35L56_IRQ1_EINT_8:
case CS35L56_IRQ1_EINT_18:
case CS35L56_IRQ1_EINT_20:
case CS35L56_IRQ1_MASK_1:
case CS35L56_IRQ1_MASK_2:
case CS35L56_IRQ1_MASK_4:
case CS35L56_IRQ1_MASK_8:
case CS35L56_IRQ1_MASK_18:
case CS35L56_IRQ1_MASK_20:
case CS35L56_DSP_VIRTUAL1_MBOX_1:
case CS35L56_DSP_VIRTUAL1_MBOX_2:
case CS35L56_DSP_VIRTUAL1_MBOX_3:
case CS35L56_DSP_VIRTUAL1_MBOX_4:
case CS35L56_DSP_VIRTUAL1_MBOX_5:
case CS35L56_DSP_VIRTUAL1_MBOX_6:
case CS35L56_DSP_VIRTUAL1_MBOX_7:
case CS35L56_DSP_VIRTUAL1_MBOX_8:
case CS35L56_DSP_RESTRICT_STS1:
case CS35L56_DSP1_SYS_INFO_ID ... CS35L56_DSP1_SYS_INFO_END:
case CS35L56_DSP1_AHBM_WINDOW_DEBUG_0:
case CS35L56_DSP1_AHBM_WINDOW_DEBUG_1:
case CS35L56_DSP1_SCRATCH1:
case CS35L56_DSP1_SCRATCH2:
case CS35L56_DSP1_SCRATCH3:
case CS35L56_DSP1_SCRATCH4:
return true;
default:
return cs35l56_is_dsp_memory(reg);
}
}
static bool cs35l56_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L56_DSP1_XMEM_PACKED_0 ... CS35L56_DSP1_XMEM_PACKED_6143:
case CS35L56_DSP1_YMEM_PACKED_0 ... CS35L56_DSP1_YMEM_PACKED_4604:
case CS35L56_DSP1_PMEM_0 ... CS35L56_DSP1_PMEM_5114:
return true;
default:
return false;
}
}
static bool cs35l56_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L56_DEVID:
case CS35L56_REVID:
case CS35L56_RELID:
case CS35L56_OTPID:
case CS35L56_SFT_RESET:
case CS35L56_GLOBAL_ENABLES: /* owned by firmware */
case CS35L56_BLOCK_ENABLES: /* owned by firmware */
case CS35L56_BLOCK_ENABLES2: /* owned by firmware */
case CS35L56_REFCLK_INPUT: /* owned by firmware */
case CS35L56_GLOBAL_SAMPLE_RATE: /* owned by firmware */
case CS35L56_DACPCM1_INPUT: /* owned by firmware */
case CS35L56_DACPCM2_INPUT: /* owned by firmware */
case CS35L56_DSP1RX1_INPUT: /* owned by firmware */
case CS35L56_DSP1RX2_INPUT: /* owned by firmware */
case CS35L56_IRQ1_STATUS:
case CS35L56_IRQ1_EINT_1 ... CS35L56_IRQ1_EINT_8:
case CS35L56_IRQ1_EINT_18:
case CS35L56_IRQ1_EINT_20:
case CS35L56_DSP_VIRTUAL1_MBOX_1:
case CS35L56_DSP_VIRTUAL1_MBOX_2:
case CS35L56_DSP_VIRTUAL1_MBOX_3:
case CS35L56_DSP_VIRTUAL1_MBOX_4:
case CS35L56_DSP_VIRTUAL1_MBOX_5:
case CS35L56_DSP_VIRTUAL1_MBOX_6:
case CS35L56_DSP_VIRTUAL1_MBOX_7:
case CS35L56_DSP_VIRTUAL1_MBOX_8:
case CS35L56_DSP_RESTRICT_STS1:
case CS35L56_DSP1_SYS_INFO_ID ... CS35L56_DSP1_SYS_INFO_END:
case CS35L56_DSP1_AHBM_WINDOW_DEBUG_0:
case CS35L56_DSP1_AHBM_WINDOW_DEBUG_1:
case CS35L56_DSP1_SCRATCH1:
case CS35L56_DSP1_SCRATCH2:
case CS35L56_DSP1_SCRATCH3:
case CS35L56_DSP1_SCRATCH4:
return true;
case CS35L56_MAIN_RENDER_USER_MUTE:
case CS35L56_MAIN_RENDER_USER_VOLUME:
case CS35L56_MAIN_POSTURE_NUMBER:
return false;
default:
return cs35l56_is_dsp_memory(reg);
}
}
static const u32 cs35l56_firmware_registers[] = {
CS35L56_MAIN_RENDER_USER_MUTE,
CS35L56_MAIN_RENDER_USER_VOLUME,
CS35L56_MAIN_POSTURE_NUMBER,
};
void cs35l56_reread_firmware_registers(struct device *dev, struct regmap *regmap)
{
int i;
unsigned int val;
for (i = 0; i < ARRAY_SIZE(cs35l56_firmware_registers); i++) {
regmap_read(regmap, cs35l56_firmware_registers[i], &val);
dev_dbg(dev, "%s: %d: %#x: %#x\n", __func__,
i, cs35l56_firmware_registers[i], val);
}
}
EXPORT_SYMBOL_NS_GPL(cs35l56_reread_firmware_registers, SND_SOC_CS35L56_SHARED);
const struct cs_dsp_region cs35l56_dsp1_regions[] = {
{ .type = WMFW_HALO_PM_PACKED, .base = CS35L56_DSP1_PMEM_0 },
{ .type = WMFW_HALO_XM_PACKED, .base = CS35L56_DSP1_XMEM_PACKED_0 },
{ .type = WMFW_HALO_YM_PACKED, .base = CS35L56_DSP1_YMEM_PACKED_0 },
{ .type = WMFW_ADSP2_XM, .base = CS35L56_DSP1_XMEM_UNPACKED24_0 },
{ .type = WMFW_ADSP2_YM, .base = CS35L56_DSP1_YMEM_UNPACKED24_0 },
};
EXPORT_SYMBOL_NS_GPL(cs35l56_dsp1_regions, SND_SOC_CS35L56_SHARED);
static const u32 cs35l56_bclk_valid_for_pll_freq_table[] = {
[0x0C] = 128000,
[0x0F] = 256000,
[0x11] = 384000,
[0x12] = 512000,
[0x15] = 768000,
[0x17] = 1024000,
[0x1A] = 1500000,
[0x1B] = 1536000,
[0x1C] = 2000000,
[0x1D] = 2048000,
[0x1E] = 2400000,
[0x20] = 3000000,
[0x21] = 3072000,
[0x23] = 4000000,
[0x24] = 4096000,
[0x25] = 4800000,
[0x27] = 6000000,
[0x28] = 6144000,
[0x29] = 6250000,
[0x2A] = 6400000,
[0x2E] = 8000000,
[0x2F] = 8192000,
[0x30] = 9600000,
[0x32] = 12000000,
[0x33] = 12288000,
[0x37] = 13500000,
[0x38] = 19200000,
[0x39] = 22579200,
[0x3B] = 24576000,
};
int cs35l56_get_bclk_freq_id(unsigned int freq)
{
int i;
if (freq == 0)
return -EINVAL;
/* The BCLK frequency must be a valid PLL REFCLK */
for (i = 0; i < ARRAY_SIZE(cs35l56_bclk_valid_for_pll_freq_table); ++i) {
if (cs35l56_bclk_valid_for_pll_freq_table[i] == freq)
return i;
}
return -EINVAL;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_get_bclk_freq_id, SND_SOC_CS35L56_SHARED);
static const char * const cs35l56_supplies[/* auto-sized */] = {
"VDD_P",
"VDD_IO",
"VDD_A",
};
void cs35l56_fill_supply_names(struct regulator_bulk_data *data)
{
int i;
BUILD_BUG_ON(ARRAY_SIZE(cs35l56_supplies) != CS35L56_NUM_BULK_SUPPLIES);
for (i = 0; i < ARRAY_SIZE(cs35l56_supplies); i++)
data[i].supply = cs35l56_supplies[i];
}
EXPORT_SYMBOL_NS_GPL(cs35l56_fill_supply_names, SND_SOC_CS35L56_SHARED);
const char * const cs35l56_tx_input_texts[] = {
"None", "ASP1RX1", "ASP1RX2", "VMON", "IMON", "ERRVOL", "CLASSH",
"VDDBMON", "VBSTMON", "DSP1TX1", "DSP1TX2", "DSP1TX3", "DSP1TX4",
"DSP1TX5", "DSP1TX6", "DSP1TX7", "DSP1TX8", "TEMPMON",
"INTERPOLATOR", "SDW1RX1", "SDW1RX2", "SDW2RX1",
};
EXPORT_SYMBOL_NS_GPL(cs35l56_tx_input_texts, SND_SOC_CS35L56_SHARED);
const unsigned int cs35l56_tx_input_values[] = {
CS35L56_INPUT_SRC_NONE,
CS35L56_INPUT_SRC_ASP1RX1,
CS35L56_INPUT_SRC_ASP1RX2,
CS35L56_INPUT_SRC_VMON,
CS35L56_INPUT_SRC_IMON,
CS35L56_INPUT_SRC_ERR_VOL,
CS35L56_INPUT_SRC_CLASSH,
CS35L56_INPUT_SRC_VDDBMON,
CS35L56_INPUT_SRC_VBSTMON,
CS35L56_INPUT_SRC_DSP1TX1,
CS35L56_INPUT_SRC_DSP1TX2,
CS35L56_INPUT_SRC_DSP1TX3,
CS35L56_INPUT_SRC_DSP1TX4,
CS35L56_INPUT_SRC_DSP1TX5,
CS35L56_INPUT_SRC_DSP1TX6,
CS35L56_INPUT_SRC_DSP1TX7,
CS35L56_INPUT_SRC_DSP1TX8,
CS35L56_INPUT_SRC_TEMPMON,
CS35L56_INPUT_SRC_INTERPOLATOR,
CS35L56_INPUT_SRC_SWIRE_RX1,
CS35L56_INPUT_SRC_SWIRE_RX2,
CS35L56_INPUT_SRC_SWIRE_RX3,
};
EXPORT_SYMBOL_NS_GPL(cs35l56_tx_input_values, SND_SOC_CS35L56_SHARED);
struct regmap_config cs35l56_regmap_i2c = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.max_register = CS35L56_DSP1_PMEM_5114,
.reg_defaults = cs35l56_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cs35l56_reg_defaults),
.volatile_reg = cs35l56_volatile_reg,
.readable_reg = cs35l56_readable_reg,
.precious_reg = cs35l56_precious_reg,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(cs35l56_regmap_i2c, SND_SOC_CS35L56_SHARED);
struct regmap_config cs35l56_regmap_spi = {
.reg_bits = 32,
.val_bits = 32,
.pad_bits = 16,
.reg_stride = 4,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.max_register = CS35L56_DSP1_PMEM_5114,
.reg_defaults = cs35l56_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cs35l56_reg_defaults),
.volatile_reg = cs35l56_volatile_reg,
.readable_reg = cs35l56_readable_reg,
.precious_reg = cs35l56_precious_reg,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(cs35l56_regmap_spi, SND_SOC_CS35L56_SHARED);
struct regmap_config cs35l56_regmap_sdw = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_format_endian = REGMAP_ENDIAN_LITTLE,
.val_format_endian = REGMAP_ENDIAN_BIG,
.max_register = CS35L56_DSP1_PMEM_5114,
.reg_defaults = cs35l56_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(cs35l56_reg_defaults),
.volatile_reg = cs35l56_volatile_reg,
.readable_reg = cs35l56_readable_reg,
.precious_reg = cs35l56_precious_reg,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(cs35l56_regmap_sdw, SND_SOC_CS35L56_SHARED);
MODULE_DESCRIPTION("ASoC CS35L56 Shared");
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
//
// CS35L56 ALSA SoC audio driver SPI binding
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "cs35l56.h"
static int cs35l56_spi_probe(struct spi_device *spi)
{
const struct regmap_config *regmap_config = &cs35l56_regmap_spi;
struct cs35l56_private *cs35l56;
int ret;
cs35l56 = devm_kzalloc(&spi->dev, sizeof(struct cs35l56_private), GFP_KERNEL);
if (!cs35l56)
return -ENOMEM;
spi_set_drvdata(spi, cs35l56);
cs35l56->regmap = devm_regmap_init_spi(spi, regmap_config);
if (IS_ERR(cs35l56->regmap)) {
ret = PTR_ERR(cs35l56->regmap);
return dev_err_probe(&spi->dev, ret, "Failed to allocate register map\n");
return ret;
}
cs35l56->dev = &spi->dev;
cs35l56->irq = spi->irq;
ret = cs35l56_common_probe(cs35l56);
if (ret != 0)
return ret;
ret = cs35l56_init(cs35l56);
if (ret == 0)
ret = cs35l56_irq_request(cs35l56);
if (ret < 0)
cs35l56_remove(cs35l56);
return ret;
}
static void cs35l56_spi_remove(struct spi_device *spi)
{
struct cs35l56_private *cs35l56 = spi_get_drvdata(spi);
cs35l56_remove(cs35l56);
}
static const struct spi_device_id cs35l56_id_spi[] = {
{ "cs35l56", 0 },
{}
};
MODULE_DEVICE_TABLE(spi, cs35l56_id_spi);
static struct spi_driver cs35l56_spi_driver = {
.driver = {
.name = "cs35l56",
.pm = &cs35l56_pm_ops_i2c_spi,
},
.id_table = cs35l56_id_spi,
.probe = cs35l56_spi_probe,
.remove = cs35l56_spi_remove,
};
module_spi_driver(cs35l56_spi_driver);
MODULE_DESCRIPTION("ASoC CS35L56 SPI driver");
MODULE_IMPORT_NS(SND_SOC_CS35L56_CORE);
MODULE_IMPORT_NS(SND_SOC_CS35L56_SHARED);
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
//
// Driver for Cirrus Logic CS35L56 smart amp
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/acpi.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/soundwire/sdw.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include "wm_adsp.h"
#include "cs35l56.h"
static int cs35l56_dsp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event);
static int cs35l56_wait_dsp_ready(struct cs35l56_private *cs35l56)
{
int ret;
if (!cs35l56->fw_patched) {
/* block until firmware download completes */
ret = wait_for_completion_timeout(&cs35l56->dsp_ready_completion,
msecs_to_jiffies(25000));
if (!ret) {
dev_err(cs35l56->dev, "dsp_ready_completion timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int cs35l56_dspwait_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
int ret = cs35l56_wait_dsp_ready(cs35l56);
if (ret)
return ret;
return snd_soc_get_volsw(kcontrol, ucontrol);
}
static int cs35l56_dspwait_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
int ret = cs35l56_wait_dsp_ready(cs35l56);
if (ret)
return ret;
return snd_soc_put_volsw(kcontrol, ucontrol);
}
static DECLARE_TLV_DB_SCALE(vol_tlv, -10000, 25, 0);
static const struct snd_kcontrol_new cs35l56_controls[] = {
SOC_SINGLE_EXT("Speaker Switch",
CS35L56_MAIN_RENDER_USER_MUTE, 0, 1, 1,
cs35l56_dspwait_get_volsw, cs35l56_dspwait_put_volsw),
SOC_SINGLE_S_EXT_TLV("Speaker Volume",
CS35L56_MAIN_RENDER_USER_VOLUME,
6, -400, 400, 9, 0,
cs35l56_dspwait_get_volsw,
cs35l56_dspwait_put_volsw,
vol_tlv),
SOC_SINGLE_EXT("Posture Number", CS35L56_MAIN_POSTURE_NUMBER,
0, 255, 0,
cs35l56_dspwait_get_volsw, cs35l56_dspwait_put_volsw),
};
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_asp1tx1_enum,
CS35L56_ASP1TX1_INPUT,
0, CS35L56_ASP_TXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new asp1_tx1_mux =
SOC_DAPM_ENUM("ASP1TX1 SRC", cs35l56_asp1tx1_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_asp1tx2_enum,
CS35L56_ASP1TX2_INPUT,
0, CS35L56_ASP_TXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new asp1_tx2_mux =
SOC_DAPM_ENUM("ASP1TX2 SRC", cs35l56_asp1tx2_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_asp1tx3_enum,
CS35L56_ASP1TX3_INPUT,
0, CS35L56_ASP_TXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new asp1_tx3_mux =
SOC_DAPM_ENUM("ASP1TX3 SRC", cs35l56_asp1tx3_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_asp1tx4_enum,
CS35L56_ASP1TX4_INPUT,
0, CS35L56_ASP_TXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new asp1_tx4_mux =
SOC_DAPM_ENUM("ASP1TX4 SRC", cs35l56_asp1tx4_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx1_enum,
CS35L56_SWIRE_DP3_CH1_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx1_mux =
SOC_DAPM_ENUM("SDW1TX1 SRC", cs35l56_sdw1tx1_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx2_enum,
CS35L56_SWIRE_DP3_CH2_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx2_mux =
SOC_DAPM_ENUM("SDW1TX2 SRC", cs35l56_sdw1tx2_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx3_enum,
CS35L56_SWIRE_DP3_CH3_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx3_mux =
SOC_DAPM_ENUM("SDW1TX3 SRC", cs35l56_sdw1tx3_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx4_enum,
CS35L56_SWIRE_DP3_CH4_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx4_mux =
SOC_DAPM_ENUM("SDW1TX4 SRC", cs35l56_sdw1tx4_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx5_enum,
CS35L56_SWIRE_DP3_CH5_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx5_mux =
SOC_DAPM_ENUM("SDW1TX5 SRC", cs35l56_sdw1tx5_enum);
static SOC_VALUE_ENUM_SINGLE_DECL(cs35l56_sdw1tx6_enum,
CS35L56_SWIRE_DP3_CH6_INPUT,
0, CS35L56_SWIRETXn_SRC_MASK,
cs35l56_tx_input_texts,
cs35l56_tx_input_values);
static const struct snd_kcontrol_new sdw1_tx6_mux =
SOC_DAPM_ENUM("SDW1TX6 SRC", cs35l56_sdw1tx6_enum);
static const struct snd_soc_dapm_widget cs35l56_dapm_widgets[] = {
SND_SOC_DAPM_REGULATOR_SUPPLY("VDD_B", 0, 0),
SND_SOC_DAPM_REGULATOR_SUPPLY("VDD_AMP", 0, 0),
SND_SOC_DAPM_OUT_DRV("AMP", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("SPK"),
SND_SOC_DAPM_PGA_E("DSP1", SND_SOC_NOPM, 0, 0, NULL, 0, cs35l56_dsp_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_AIF_IN("ASP1RX1", NULL, 0, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_RX1_EN_SHIFT, 0),
SND_SOC_DAPM_AIF_IN("ASP1RX2", NULL, 1, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_RX2_EN_SHIFT, 0),
SND_SOC_DAPM_AIF_OUT("ASP1TX1", NULL, 0, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_TX1_EN_SHIFT, 0),
SND_SOC_DAPM_AIF_OUT("ASP1TX2", NULL, 1, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_TX2_EN_SHIFT, 0),
SND_SOC_DAPM_AIF_OUT("ASP1TX3", NULL, 2, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_TX3_EN_SHIFT, 0),
SND_SOC_DAPM_AIF_OUT("ASP1TX4", NULL, 3, CS35L56_ASP1_ENABLES1,
CS35L56_ASP_TX4_EN_SHIFT, 0),
SND_SOC_DAPM_MUX("ASP1 TX1 Source", SND_SOC_NOPM, 0, 0, &asp1_tx1_mux),
SND_SOC_DAPM_MUX("ASP1 TX2 Source", SND_SOC_NOPM, 0, 0, &asp1_tx2_mux),
SND_SOC_DAPM_MUX("ASP1 TX3 Source", SND_SOC_NOPM, 0, 0, &asp1_tx3_mux),
SND_SOC_DAPM_MUX("ASP1 TX4 Source", SND_SOC_NOPM, 0, 0, &asp1_tx4_mux),
SND_SOC_DAPM_MUX("SDW1 TX1 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx1_mux),
SND_SOC_DAPM_MUX("SDW1 TX2 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx2_mux),
SND_SOC_DAPM_MUX("SDW1 TX3 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx3_mux),
SND_SOC_DAPM_MUX("SDW1 TX4 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx4_mux),
SND_SOC_DAPM_MUX("SDW1 TX5 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx5_mux),
SND_SOC_DAPM_MUX("SDW1 TX6 Source", SND_SOC_NOPM, 0, 0, &sdw1_tx6_mux),
SND_SOC_DAPM_SIGGEN("VMON ADC"),
SND_SOC_DAPM_SIGGEN("IMON ADC"),
SND_SOC_DAPM_SIGGEN("ERRVOL ADC"),
SND_SOC_DAPM_SIGGEN("CLASSH ADC"),
SND_SOC_DAPM_SIGGEN("VDDBMON ADC"),
SND_SOC_DAPM_SIGGEN("VBSTMON ADC"),
SND_SOC_DAPM_SIGGEN("TEMPMON ADC"),
};
#define CS35L56_SRC_ROUTE(name) \
{ name" Source", "ASP1RX1", "ASP1RX1" }, \
{ name" Source", "ASP1RX2", "ASP1RX2" }, \
{ name" Source", "VMON", "VMON ADC" }, \
{ name" Source", "IMON", "IMON ADC" }, \
{ name" Source", "ERRVOL", "ERRVOL ADC" }, \
{ name" Source", "CLASSH", "CLASSH ADC" }, \
{ name" Source", "VDDBMON", "VDDBMON ADC" }, \
{ name" Source", "VBSTMON", "VBSTMON ADC" }, \
{ name" Source", "DSP1TX1", "DSP1" }, \
{ name" Source", "DSP1TX2", "DSP1" }, \
{ name" Source", "DSP1TX3", "DSP1" }, \
{ name" Source", "DSP1TX4", "DSP1" }, \
{ name" Source", "DSP1TX5", "DSP1" }, \
{ name" Source", "DSP1TX6", "DSP1" }, \
{ name" Source", "DSP1TX7", "DSP1" }, \
{ name" Source", "DSP1TX8", "DSP1" }, \
{ name" Source", "TEMPMON", "TEMPMON ADC" }, \
{ name" Source", "INTERPOLATOR", "AMP" }, \
{ name" Source", "SDW1RX1", "SDW1 Playback" }, \
{ name" Source", "SDW1RX2", "SDW1 Playback" },
static const struct snd_soc_dapm_route cs35l56_audio_map[] = {
{ "AMP", NULL, "VDD_B" },
{ "AMP", NULL, "VDD_AMP" },
{ "ASP1RX1", NULL, "ASP1 Playback" },
{ "ASP1RX2", NULL, "ASP1 Playback" },
{ "DSP1", NULL, "ASP1RX1" },
{ "DSP1", NULL, "ASP1RX2" },
{ "DSP1", NULL, "SDW1 Playback" },
{ "AMP", NULL, "DSP1" },
{ "SPK", NULL, "AMP" },
CS35L56_SRC_ROUTE("ASP1 TX1")
CS35L56_SRC_ROUTE("ASP1 TX2")
CS35L56_SRC_ROUTE("ASP1 TX3")
CS35L56_SRC_ROUTE("ASP1 TX4")
{ "ASP1TX1", NULL, "ASP1 TX1 Source" },
{ "ASP1TX2", NULL, "ASP1 TX2 Source" },
{ "ASP1TX3", NULL, "ASP1 TX3 Source" },
{ "ASP1TX4", NULL, "ASP1 TX4 Source" },
{ "ASP1 Capture", NULL, "ASP1TX1" },
{ "ASP1 Capture", NULL, "ASP1TX2" },
{ "ASP1 Capture", NULL, "ASP1TX3" },
{ "ASP1 Capture", NULL, "ASP1TX4" },
CS35L56_SRC_ROUTE("SDW1 TX1")
CS35L56_SRC_ROUTE("SDW1 TX2")
CS35L56_SRC_ROUTE("SDW1 TX3")
CS35L56_SRC_ROUTE("SDW1 TX4")
CS35L56_SRC_ROUTE("SDW1 TX5")
CS35L56_SRC_ROUTE("SDW1 TX6")
{ "SDW1 Capture", NULL, "SDW1 TX1 Source" },
{ "SDW1 Capture", NULL, "SDW1 TX2 Source" },
{ "SDW1 Capture", NULL, "SDW1 TX3 Source" },
{ "SDW1 Capture", NULL, "SDW1 TX4 Source" },
{ "SDW1 Capture", NULL, "SDW1 TX5 Source" },
{ "SDW1 Capture", NULL, "SDW1 TX6 Source" },
};
static int cs35l56_mbox_send(struct cs35l56_private *cs35l56, unsigned int command)
{
unsigned int val;
int ret;
regmap_write(cs35l56->regmap, CS35L56_DSP_VIRTUAL1_MBOX_1, command);
ret = regmap_read_poll_timeout(cs35l56->regmap, CS35L56_DSP_VIRTUAL1_MBOX_1,
val, (val == 0),
CS35L56_MBOX_POLL_US, CS35L56_MBOX_TIMEOUT_US);
if (ret) {
dev_warn(cs35l56->dev, "MBOX command %#x failed: %d\n", command, ret);
return ret;
}
return 0;
}
static int cs35l56_dsp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
dev_dbg(cs35l56->dev, "%s: %d\n", __func__, event);
return wm_adsp_event(w, kcontrol, event);
}
irqreturn_t cs35l56_irq(int irq, void *data)
{
struct cs35l56_private *cs35l56 = data;
unsigned int status1 = 0, status8 = 0, status20 = 0;
unsigned int mask1, mask8, mask20;
unsigned int rv, val;
irqreturn_t ret = IRQ_NONE;
if (!cs35l56->init_done)
return IRQ_NONE;
mutex_lock(&cs35l56->irq_lock);
rv = pm_runtime_resume_and_get(cs35l56->dev);
if (rv < 0) {
dev_err(cs35l56->dev, "irq: failed to get pm_runtime: %d\n", rv);
goto err_unlock;
}
regmap_read(cs35l56->regmap, CS35L56_IRQ1_STATUS, &val);
if ((val & CS35L56_IRQ1_STS_MASK) == 0) {
dev_dbg(cs35l56->dev, "Spurious IRQ: no pending interrupt\n");
goto err;
}
/* Ack interrupts */
regmap_read(cs35l56->regmap, CS35L56_IRQ1_EINT_1, &status1);
regmap_read(cs35l56->regmap, CS35L56_IRQ1_MASK_1, &mask1);
status1 &= ~mask1;
regmap_write(cs35l56->regmap, CS35L56_IRQ1_EINT_1, status1);
regmap_read(cs35l56->regmap, CS35L56_IRQ1_EINT_8, &status8);
regmap_read(cs35l56->regmap, CS35L56_IRQ1_MASK_8, &mask8);
status8 &= ~mask8;
regmap_write(cs35l56->regmap, CS35L56_IRQ1_EINT_8, status8);
regmap_read(cs35l56->regmap, CS35L56_IRQ1_EINT_20, &status20);
regmap_read(cs35l56->regmap, CS35L56_IRQ1_MASK_20, &mask20);
status20 &= ~mask20;
/* We don't want EINT20 but they default to unmasked: force mask */
regmap_write(cs35l56->regmap, CS35L56_IRQ1_MASK_20, 0xffffffff);
dev_dbg(cs35l56->dev, "%s: %#x %#x\n", __func__, status1, status8);
/* Check to see if unmasked bits are active */
if (!status1 && !status8 && !status20)
goto err;
if (status1 & CS35L56_AMP_SHORT_ERR_EINT1_MASK)
dev_crit(cs35l56->dev, "Amp short error\n");
if (status8 & CS35L56_TEMP_ERR_EINT1_MASK)
dev_crit(cs35l56->dev, "Overtemp error\n");
ret = IRQ_HANDLED;
err:
pm_runtime_put(cs35l56->dev);
err_unlock:
mutex_unlock(&cs35l56->irq_lock);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_irq, SND_SOC_CS35L56_CORE);
int cs35l56_irq_request(struct cs35l56_private *cs35l56)
{
int ret;
if (!cs35l56->irq)
return 0;
ret = devm_request_threaded_irq(cs35l56->dev, cs35l56->irq, NULL,
cs35l56_irq,
IRQF_ONESHOT | IRQF_SHARED | IRQF_TRIGGER_LOW,
"cs35l56", cs35l56);
if (ret < 0)
dev_err(cs35l56->dev, "Failed to get IRQ: %d\n", ret);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_irq_request, SND_SOC_CS35L56_CORE);
static int cs35l56_asp_dai_set_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(codec_dai->component);
unsigned int val;
dev_dbg(cs35l56->dev, "%s: %#x\n", __func__, fmt);
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
dev_err(cs35l56->dev, "Unsupported clock source mode\n");
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
val = CS35L56_ASP_FMT_DSP_A << CS35L56_ASP_FMT_SHIFT;
cs35l56->tdm_mode = true;
break;
case SND_SOC_DAIFMT_I2S:
val = CS35L56_ASP_FMT_I2S << CS35L56_ASP_FMT_SHIFT;
cs35l56->tdm_mode = false;
break;
default:
dev_err(cs35l56->dev, "Unsupported DAI format\n");
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_IF:
val |= CS35L56_ASP_FSYNC_INV_MASK;
break;
case SND_SOC_DAIFMT_IB_NF:
val |= CS35L56_ASP_BCLK_INV_MASK;
break;
case SND_SOC_DAIFMT_IB_IF:
val |= CS35L56_ASP_BCLK_INV_MASK | CS35L56_ASP_FSYNC_INV_MASK;
break;
case SND_SOC_DAIFMT_NB_NF:
break;
default:
dev_err(cs35l56->dev, "Invalid clock invert\n");
return -EINVAL;
}
regmap_update_bits(cs35l56->regmap,
CS35L56_ASP1_CONTROL2,
CS35L56_ASP_FMT_MASK |
CS35L56_ASP_BCLK_INV_MASK | CS35L56_ASP_FSYNC_INV_MASK,
val);
/* Hi-Z DOUT in unused slots and when all TX are disabled */
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_CONTROL3,
CS35L56_ASP1_DOUT_HIZ_CTRL_MASK,
CS35L56_ASP_UNUSED_HIZ_OFF_HIZ);
return 0;
}
static void cs35l56_set_asp_slot_positions(struct cs35l56_private *cs35l56,
unsigned int reg, unsigned long mask)
{
unsigned int reg_val, channel_shift;
int bit_num;
/* Init all slots to 63 */
switch (reg) {
case CS35L56_ASP1_FRAME_CONTROL1:
reg_val = 0x3f3f3f3f;
break;
case CS35L56_ASP1_FRAME_CONTROL5:
reg_val = 0x3f3f3f;
break;
}
/* Enable consecutive TX1..TXn for each of the slots set in mask */
channel_shift = 0;
for_each_set_bit(bit_num, &mask, 32) {
reg_val &= ~(0x3f << channel_shift);
reg_val |= bit_num << channel_shift;
channel_shift += 8;
}
regmap_write(cs35l56->regmap, reg, reg_val);
}
static int cs35l56_asp_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
if ((slots == 0) || (slot_width == 0)) {
dev_dbg(cs35l56->dev, "tdm config cleared\n");
cs35l56->asp_slot_width = 0;
cs35l56->asp_slot_count = 0;
return 0;
}
if (slot_width > (CS35L56_ASP_RX_WIDTH_MASK >> CS35L56_ASP_RX_WIDTH_SHIFT)) {
dev_err(cs35l56->dev, "tdm invalid slot width %d\n", slot_width);
return -EINVAL;
}
/* More than 32 slots would give an unsupportable BCLK frequency */
if (slots > 32) {
dev_err(cs35l56->dev, "tdm invalid slot count %d\n", slots);
return -EINVAL;
}
cs35l56->asp_slot_width = (u8)slot_width;
cs35l56->asp_slot_count = (u8)slots;
// Note: rx/tx is from point of view of the CPU end
if (tx_mask == 0)
tx_mask = 0x3; // ASPRX1/RX2 in slots 0 and 1
if (rx_mask == 0)
rx_mask = 0xf; // ASPTX1..TX4 in slots 0..3
cs35l56_set_asp_slot_positions(cs35l56, CS35L56_ASP1_FRAME_CONTROL1, rx_mask);
cs35l56_set_asp_slot_positions(cs35l56, CS35L56_ASP1_FRAME_CONTROL5, tx_mask);
dev_dbg(cs35l56->dev, "tdm slot width: %u count: %u tx_mask: %#x rx_mask: %#x\n",
cs35l56->asp_slot_width, cs35l56->asp_slot_count, tx_mask, rx_mask);
return 0;
}
static int cs35l56_asp_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
unsigned int rate = params_rate(params);
u8 asp_width, asp_wl;
asp_wl = params_width(params);
if (cs35l56->asp_slot_width)
asp_width = cs35l56->asp_slot_width;
else
asp_width = asp_wl;
dev_dbg(cs35l56->dev, "%s: wl=%d, width=%d, rate=%d", __func__, asp_wl, asp_width, rate);
if (!cs35l56->sysclk_set) {
unsigned int slots = cs35l56->asp_slot_count;
unsigned int bclk_freq;
int freq_id;
if (slots == 0) {
slots = params_channels(params);
/* I2S always has an even number of slots */
if (!cs35l56->tdm_mode)
slots = round_up(slots, 2);
}
bclk_freq = asp_width * slots * rate;
freq_id = cs35l56_get_bclk_freq_id(bclk_freq);
if (freq_id < 0) {
dev_err(cs35l56->dev, "%s: Invalid BCLK %u\n", __func__, bclk_freq);
return -EINVAL;
}
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_CONTROL1,
CS35L56_ASP_BCLK_FREQ_MASK,
freq_id << CS35L56_ASP_BCLK_FREQ_SHIFT);
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_CONTROL2,
CS35L56_ASP_RX_WIDTH_MASK, asp_width <<
CS35L56_ASP_RX_WIDTH_SHIFT);
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_DATA_CONTROL5,
CS35L56_ASP_RX_WL_MASK, asp_wl);
} else {
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_CONTROL2,
CS35L56_ASP_TX_WIDTH_MASK, asp_width <<
CS35L56_ASP_TX_WIDTH_SHIFT);
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_DATA_CONTROL1,
CS35L56_ASP_TX_WL_MASK, asp_wl);
}
return 0;
}
static int cs35l56_asp_dai_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
int freq_id;
if (freq == 0) {
cs35l56->sysclk_set = false;
return 0;
}
freq_id = cs35l56_get_bclk_freq_id(freq);
if (freq_id < 0)
return freq_id;
regmap_update_bits(cs35l56->regmap, CS35L56_ASP1_CONTROL1,
CS35L56_ASP_BCLK_FREQ_MASK,
freq_id << CS35L56_ASP_BCLK_FREQ_SHIFT);
cs35l56->sysclk_set = true;
return 0;
}
static int cs35l56_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
unsigned int val;
int ret;
dev_dbg(cs35l56->dev, "%s: %d %s\n", __func__, stream, mute ? "mute" : "unmute");
if (stream != SNDRV_PCM_STREAM_PLAYBACK)
return 0;
if (mute) {
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_AUDIO_PAUSE);
} else {
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_AUDIO_PLAY);
if (ret == 0) {
/* Wait for firmware to enter PS0 power state */
ret = regmap_read_poll_timeout(cs35l56->regmap,
CS35L56_TRANSDUCER_ACTUAL_PS,
val, (val == CS35L56_PS0),
CS35L56_PS0_POLL_US,
CS35L56_PS0_TIMEOUT_US);
if (ret)
dev_err(cs35l56->dev, "PS0 wait failed: %d\n", ret);
ret = 0;
}
}
return ret;
}
static const struct snd_soc_dai_ops cs35l56_ops = {
.set_fmt = cs35l56_asp_dai_set_fmt,
.set_tdm_slot = cs35l56_asp_dai_set_tdm_slot,
.hw_params = cs35l56_asp_dai_hw_params,
.set_sysclk = cs35l56_asp_dai_set_sysclk,
.mute_stream = cs35l56_mute_stream,
};
static void cs35l56_sdw_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
snd_soc_dai_set_dma_data(dai, substream, NULL);
}
static int cs35l56_sdw_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
/* rx/tx are from point of view of the CPU end so opposite to our rx/tx */
cs35l56->rx_mask = tx_mask;
cs35l56->tx_mask = rx_mask;
return 0;
}
static int cs35l56_sdw_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
struct sdw_stream_runtime *sdw_stream = snd_soc_dai_get_dma_data(dai, substream);
struct sdw_stream_config sconfig;
struct sdw_port_config pconfig;
int ret;
dev_dbg(cs35l56->dev, "%s: rate %d\n", __func__, params_rate(params));
if (!cs35l56->init_done)
return -ENODEV;
if (!sdw_stream)
return -EINVAL;
memset(&sconfig, 0, sizeof(sconfig));
memset(&pconfig, 0, sizeof(pconfig));
sconfig.frame_rate = params_rate(params);
sconfig.bps = snd_pcm_format_width(params_format(params));
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
sconfig.direction = SDW_DATA_DIR_RX;
pconfig.num = CS35L56_SDW1_PLAYBACK_PORT;
pconfig.ch_mask = cs35l56->rx_mask;
} else {
sconfig.direction = SDW_DATA_DIR_TX;
pconfig.num = CS35L56_SDW1_CAPTURE_PORT;
pconfig.ch_mask = cs35l56->tx_mask;
}
if (pconfig.ch_mask == 0) {
sconfig.ch_count = params_channels(params);
pconfig.ch_mask = GENMASK(sconfig.ch_count - 1, 0);
} else {
sconfig.ch_count = hweight32(pconfig.ch_mask);
}
ret = sdw_stream_add_slave(cs35l56->sdw_peripheral, &sconfig, &pconfig,
1, sdw_stream);
if (ret) {
dev_err(dai->dev, "Failed to add sdw stream: %d\n", ret);
return ret;
}
return 0;
}
static int cs35l56_sdw_dai_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(dai->component);
struct sdw_stream_runtime *sdw_stream = snd_soc_dai_get_dma_data(dai, substream);
if (!cs35l56->sdw_peripheral)
return -EINVAL;
sdw_stream_remove_slave(cs35l56->sdw_peripheral, sdw_stream);
return 0;
}
static int cs35l56_sdw_dai_set_stream(struct snd_soc_dai *dai,
void *sdw_stream, int direction)
{
if (!sdw_stream)
return 0;
snd_soc_dai_dma_data_set(dai, direction, sdw_stream);
return 0;
}
static const struct snd_soc_dai_ops cs35l56_sdw_dai_ops = {
.set_tdm_slot = cs35l56_sdw_dai_set_tdm_slot,
.shutdown = cs35l56_sdw_dai_shutdown,
.hw_params = cs35l56_sdw_dai_hw_params,
.hw_free = cs35l56_sdw_dai_hw_free,
.mute_stream = cs35l56_mute_stream,
.set_stream = cs35l56_sdw_dai_set_stream,
};
static struct snd_soc_dai_driver cs35l56_dai[] = {
{
.name = "cs35l56-asp1",
.id = 0,
.playback = {
.stream_name = "ASP1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = CS35L56_RATES,
.formats = CS35L56_RX_FORMATS,
},
.capture = {
.stream_name = "ASP1 Capture",
.channels_min = 1,
.channels_max = 4,
.rates = CS35L56_RATES,
.formats = CS35L56_TX_FORMATS,
},
.ops = &cs35l56_ops,
.symmetric_rate = 1,
.symmetric_sample_bits = 1,
},
{
.name = "cs35l56-sdw1",
.id = 1,
.playback = {
.stream_name = "SDW1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = CS35L56_RATES,
.formats = CS35L56_RX_FORMATS,
},
.capture = {
.stream_name = "SDW1 Capture",
.channels_min = 1,
.channels_max = 6,
.rates = CS35L56_RATES,
.formats = CS35L56_TX_FORMATS,
},
.symmetric_rate = 1,
.ops = &cs35l56_sdw_dai_ops,
}
};
static int cs35l56_wait_for_firmware_boot(struct cs35l56_private *cs35l56)
{
unsigned int reg;
unsigned int val;
int ret;
if (cs35l56->rev < CS35L56_REVID_B0)
reg = CS35L56_DSP1_HALO_STATE_A1;
else
reg = CS35L56_DSP1_HALO_STATE;
ret = regmap_read_poll_timeout(cs35l56->regmap, reg,
val,
(val < 0xFFFF) && (val >= CS35L56_HALO_STATE_BOOT_DONE),
CS35L56_HALO_STATE_POLL_US,
CS35L56_HALO_STATE_TIMEOUT_US);
if ((ret < 0) && (ret != -ETIMEDOUT)) {
dev_err(cs35l56->dev, "Failed to read HALO_STATE: %d\n", ret);
return ret;
}
if ((ret == -ETIMEDOUT) || (val != CS35L56_HALO_STATE_BOOT_DONE)) {
dev_err(cs35l56->dev, "Firmware boot fail: HALO_STATE=%#x\n", val);
return -EIO;
}
return 0;
}
static const struct reg_sequence cs35l56_system_reset_seq[] = {
REG_SEQ0(CS35L56_DSP_VIRTUAL1_MBOX_1, CS35L56_MBOX_CMD_SYSTEM_RESET),
};
static void cs35l56_system_reset(struct cs35l56_private *cs35l56)
{
cs35l56->soft_resetting = true;
/*
* Must enter cache-only first so there can't be any more register
* accesses other than the controlled system reset sequence below.
*/
regcache_cache_only(cs35l56->regmap, true);
regmap_multi_reg_write_bypassed(cs35l56->regmap,
cs35l56_system_reset_seq,
ARRAY_SIZE(cs35l56_system_reset_seq));
/* On SoundWire the registers won't be accessible until it re-enumerates. */
if (cs35l56->sdw_peripheral)
return;
usleep_range(CS35L56_CONTROL_PORT_READY_US, CS35L56_CONTROL_PORT_READY_US + 400);
regcache_cache_only(cs35l56->regmap, false);
}
static void cs35l56_dsp_work(struct work_struct *work)
{
struct cs35l56_private *cs35l56 = container_of(work,
struct cs35l56_private,
dsp_work);
unsigned int reg;
unsigned int val;
int ret = 0;
if (!wait_for_completion_timeout(&cs35l56->init_completion,
msecs_to_jiffies(5000))) {
dev_err(cs35l56->dev, "%s: init_completion timed out\n", __func__);
goto complete;
}
if (!cs35l56->init_done || cs35l56->removing)
goto complete;
cs35l56->dsp.part = devm_kasprintf(cs35l56->dev, GFP_KERNEL, "cs35l56%s-%02x",
cs35l56->secured ? "s" : "", cs35l56->rev);
if (!cs35l56->dsp.part)
goto complete;
pm_runtime_get_sync(cs35l56->dev);
/*
* Disable SoundWire interrupts to prevent race with IRQ work.
* Setting sdw_irq_no_unmask prevents the handler re-enabling
* the SoundWire interrupt.
*/
if (cs35l56->sdw_peripheral) {
cs35l56->sdw_irq_no_unmask = true;
cancel_work_sync(&cs35l56->sdw_irq_work);
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
}
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_SHUTDOWN);
if (ret) {
dev_dbg(cs35l56->dev, "%s: CS35L56_MBOX_CMD_SHUTDOWN ret %d\n", __func__, ret);
goto err;
}
if (cs35l56->rev < CS35L56_REVID_B0)
reg = CS35L56_DSP1_PM_CUR_STATE_A1;
else
reg = CS35L56_DSP1_PM_CUR_STATE;
ret = regmap_read_poll_timeout(cs35l56->regmap, reg,
val, (val == CS35L56_HALO_STATE_SHUTDOWN),
CS35L56_HALO_STATE_POLL_US,
CS35L56_HALO_STATE_TIMEOUT_US);
if (ret < 0)
dev_err(cs35l56->dev, "Failed to poll PM_CUR_STATE to 1 is %d (ret %d)\n",
val, ret);
/* Use wm_adsp to load and apply the firmware patch and coefficient files */
ret = wm_adsp_power_up(&cs35l56->dsp);
if (ret) {
dev_dbg(cs35l56->dev, "%s: wm_adsp_power_up ret %d\n", __func__, ret);
goto err;
}
if (cs35l56->removing)
goto err;
mutex_lock(&cs35l56->irq_lock);
init_completion(&cs35l56->init_completion);
cs35l56_system_reset(cs35l56);
if (cs35l56->sdw_peripheral) {
/*
* The system-reset causes the CS35L56 to detach from the bus.
* Wait for the manager to re-enumerate the CS35L56 and
* cs35l56_init() to run again.
*/
if (!wait_for_completion_timeout(&cs35l56->init_completion,
msecs_to_jiffies(5000))) {
dev_err(cs35l56->dev, "%s: init_completion timed out (SDW)\n", __func__);
goto err_unlock;
}
} else if (cs35l56_init(cs35l56)) {
goto err_unlock;
}
cs35l56->fw_patched = true;
err_unlock:
mutex_unlock(&cs35l56->irq_lock);
err:
pm_runtime_mark_last_busy(cs35l56->dev);
pm_runtime_put_autosuspend(cs35l56->dev);
/* Re-enable SoundWire interrupts */
if (cs35l56->sdw_peripheral) {
cs35l56->sdw_irq_no_unmask = false;
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
}
complete:
complete_all(&cs35l56->dsp_ready_completion);
}
static int cs35l56_component_probe(struct snd_soc_component *component)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
struct dentry *debugfs_root = component->debugfs_root;
BUILD_BUG_ON(ARRAY_SIZE(cs35l56_tx_input_texts) != ARRAY_SIZE(cs35l56_tx_input_values));
cs35l56->removing = false;
cs35l56->component = component;
wm_adsp2_component_probe(&cs35l56->dsp, component);
debugfs_create_bool("init_done", 0444, debugfs_root, &cs35l56->init_done);
debugfs_create_bool("can_hibernate", 0444, debugfs_root, &cs35l56->can_hibernate);
debugfs_create_bool("fw_patched", 0444, debugfs_root, &cs35l56->fw_patched);
queue_work(cs35l56->dsp_wq, &cs35l56->dsp_work);
return 0;
}
static void cs35l56_component_remove(struct snd_soc_component *component)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
cs35l56->removing = true;
complete(&cs35l56->init_completion);
cancel_work_sync(&cs35l56->dsp_work);
}
static int cs35l56_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct cs35l56_private *cs35l56 = snd_soc_component_get_drvdata(component);
int ret = 0;
switch (level) {
case SND_SOC_BIAS_STANDBY:
/*
* Wait for patching to complete when transitioning from
* BIAS_OFF to BIAS_STANDBY
*/
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
ret = cs35l56_wait_dsp_ready(cs35l56);
break;
default:
break;
}
return ret;
}
static const struct snd_soc_component_driver soc_component_dev_cs35l56 = {
.probe = cs35l56_component_probe,
.remove = cs35l56_component_remove,
.dapm_widgets = cs35l56_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cs35l56_dapm_widgets),
.dapm_routes = cs35l56_audio_map,
.num_dapm_routes = ARRAY_SIZE(cs35l56_audio_map),
.controls = cs35l56_controls,
.num_controls = ARRAY_SIZE(cs35l56_controls),
.set_bias_level = cs35l56_set_bias_level,
};
static const struct reg_sequence cs35l56_hibernate_seq[] = {
/* This must be the last register access */
REG_SEQ0(CS35L56_DSP_VIRTUAL1_MBOX_1, CS35L56_MBOX_CMD_HIBERNATE_NOW),
};
static const struct reg_sequence cs35l56_hibernate_wake_seq[] = {
REG_SEQ0(CS35L56_DSP_VIRTUAL1_MBOX_1, CS35L56_MBOX_CMD_WAKEUP),
};
int cs35l56_runtime_suspend(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
unsigned int val;
int ret;
if (!cs35l56->init_done)
return 0;
/* Firmware must have entered a power-save state */
ret = regmap_read_poll_timeout(cs35l56->regmap,
CS35L56_TRANSDUCER_ACTUAL_PS,
val, (val >= CS35L56_PS3),
CS35L56_PS3_POLL_US,
CS35L56_PS3_TIMEOUT_US);
if (ret)
dev_warn(cs35l56->dev, "PS3 wait failed: %d\n", ret);
/* Clear BOOT_DONE so it can be used to detect a reboot */
regmap_write(cs35l56->regmap, CS35L56_IRQ1_EINT_4, CS35L56_OTP_BOOT_DONE_MASK);
if (!cs35l56->can_hibernate) {
regcache_cache_only(cs35l56->regmap, true);
dev_dbg(dev, "Suspended: no hibernate");
return 0;
}
/*
* Enable auto-hibernate. If it is woken by some other wake source
* it will automatically return to hibernate.
*/
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_ALLOW_AUTO_HIBERNATE);
if (ret)
dev_warn(cs35l56->dev, "ALLOW_HIBERNATE failed: %d\n", ret);
/*
* Must enter cache-only first so there can't be any more register
* accesses other than the controlled hibernate sequence below.
*/
regcache_cache_only(cs35l56->regmap, true);
regmap_multi_reg_write_bypassed(cs35l56->regmap,
cs35l56_hibernate_seq,
ARRAY_SIZE(cs35l56_hibernate_seq));
dev_dbg(dev, "Suspended: hibernate");
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_runtime_suspend, SND_SOC_CS35L56_CORE);
static int __maybe_unused cs35l56_runtime_resume_i2c_spi(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
if (!cs35l56->init_done)
return 0;
return cs35l56_runtime_resume_common(cs35l56);
}
int cs35l56_runtime_resume_common(struct cs35l56_private *cs35l56)
{
unsigned int val;
int ret;
if (!cs35l56->can_hibernate) {
regcache_cache_only(cs35l56->regmap, false);
goto out_sync;
}
if (!cs35l56->sdw_peripheral) {
/*
* Dummy transaction to trigger I2C/SPI auto-wake. This will NAK on I2C.
* Must be done before releasing cache-only.
*/
regmap_multi_reg_write_bypassed(cs35l56->regmap,
cs35l56_hibernate_wake_seq,
ARRAY_SIZE(cs35l56_hibernate_wake_seq));
usleep_range(CS35L56_CONTROL_PORT_READY_US,
CS35L56_CONTROL_PORT_READY_US + 400);
}
regcache_cache_only(cs35l56->regmap, false);
ret = cs35l56_wait_for_firmware_boot(cs35l56);
if (ret) {
dev_err(cs35l56->dev, "Hibernate wake failed: %d\n", ret);
goto err;
}
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_PREVENT_AUTO_HIBERNATE);
if (ret)
goto err;
out_sync:
/* BOOT_DONE will be 1 if the amp reset */
regmap_read(cs35l56->regmap, CS35L56_IRQ1_EINT_4, &val);
if (val & CS35L56_OTP_BOOT_DONE_MASK) {
dev_dbg(cs35l56->dev, "Registers reset in suspend\n");
regcache_mark_dirty(cs35l56->regmap);
}
regcache_sync(cs35l56->regmap);
dev_dbg(cs35l56->dev, "Resumed");
return 0;
err:
regmap_write(cs35l56->regmap, CS35L56_DSP_VIRTUAL1_MBOX_1,
CS35L56_MBOX_CMD_HIBERNATE_NOW);
regcache_cache_only(cs35l56->regmap, true);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_runtime_resume_common, SND_SOC_CS35L56_CORE);
static int cs35l56_dsp_init(struct cs35l56_private *cs35l56)
{
struct wm_adsp *dsp;
int ret;
cs35l56->dsp_wq = create_singlethread_workqueue("cs35l56-dsp");
if (!cs35l56->dsp_wq)
return -ENOMEM;
INIT_WORK(&cs35l56->dsp_work, cs35l56_dsp_work);
init_completion(&cs35l56->dsp_ready_completion);
dsp = &cs35l56->dsp;
dsp->part = "cs35l56";
dsp->cs_dsp.num = 1;
dsp->cs_dsp.type = WMFW_HALO;
dsp->cs_dsp.rev = 0;
dsp->fw = 12;
dsp->cs_dsp.dev = cs35l56->dev;
dsp->cs_dsp.regmap = cs35l56->regmap;
dsp->cs_dsp.base = CS35L56_DSP1_CORE_BASE;
dsp->cs_dsp.base_sysinfo = CS35L56_DSP1_SYS_INFO_ID;
dsp->cs_dsp.mem = cs35l56_dsp1_regions;
dsp->cs_dsp.num_mems = ARRAY_SIZE(cs35l56_dsp1_regions);
dsp->cs_dsp.no_core_startstop = true;
dsp->wmfw_optional = true;
dev_dbg(cs35l56->dev, "DSP system name: '%s'\n", dsp->system_name);
ret = wm_halo_init(dsp);
if (ret != 0) {
dev_err(cs35l56->dev, "wm_halo_init failed\n");
return ret;
}
return 0;
}
static int cs35l56_acpi_get_name(struct cs35l56_private *cs35l56)
{
acpi_handle handle = ACPI_HANDLE(cs35l56->dev);
const char *sub;
/* If there is no ACPI_HANDLE, there is no ACPI for this system, return 0 */
if (!handle)
return 0;
sub = acpi_get_subsystem_id(handle);
if (IS_ERR(sub)) {
/* If bad ACPI, return 0 and fallback to legacy firmware path, otherwise fail */
if (PTR_ERR(sub) == -ENODATA)
return 0;
else
return PTR_ERR(sub);
}
cs35l56->dsp.system_name = sub;
dev_dbg(cs35l56->dev, "Subsystem ID: %s\n", cs35l56->dsp.system_name);
return 0;
}
int cs35l56_common_probe(struct cs35l56_private *cs35l56)
{
int ret;
init_completion(&cs35l56->init_completion);
mutex_init(&cs35l56->irq_lock);
dev_set_drvdata(cs35l56->dev, cs35l56);
cs35l56_fill_supply_names(cs35l56->supplies);
ret = devm_regulator_bulk_get(cs35l56->dev, ARRAY_SIZE(cs35l56->supplies),
cs35l56->supplies);
if (ret != 0)
return dev_err_probe(cs35l56->dev, ret, "Failed to request supplies\n");
/* Reset could be controlled by the BIOS or shared by multiple amps */
cs35l56->reset_gpio = devm_gpiod_get_optional(cs35l56->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(cs35l56->reset_gpio)) {
ret = PTR_ERR(cs35l56->reset_gpio);
/*
* If RESET is shared the first amp to probe will grab the reset
* line and reset all the amps
*/
if (ret != -EBUSY)
return dev_err_probe(cs35l56->dev, ret, "Failed to get reset GPIO\n");
dev_info(cs35l56->dev, "Reset GPIO busy, assume shared reset\n");
cs35l56->reset_gpio = NULL;
}
ret = regulator_bulk_enable(ARRAY_SIZE(cs35l56->supplies), cs35l56->supplies);
if (ret != 0)
return dev_err_probe(cs35l56->dev, ret, "Failed to enable supplies\n");
if (cs35l56->reset_gpio) {
/* satisfy minimum reset pulse width spec */
usleep_range(CS35L56_RESET_PULSE_MIN_US,
CS35L56_RESET_PULSE_MIN_US + 400);
gpiod_set_value_cansleep(cs35l56->reset_gpio, 1);
}
ret = cs35l56_acpi_get_name(cs35l56);
if (ret != 0)
goto err;
ret = cs35l56_dsp_init(cs35l56);
if (ret < 0) {
dev_err_probe(cs35l56->dev, ret, "DSP init failed\n");
goto err;
}
ret = devm_snd_soc_register_component(cs35l56->dev,
&soc_component_dev_cs35l56,
cs35l56_dai, ARRAY_SIZE(cs35l56_dai));
if (ret < 0) {
dev_err_probe(cs35l56->dev, ret, "Register codec failed\n");
goto err;
}
return 0;
err:
gpiod_set_value_cansleep(cs35l56->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs35l56->supplies), cs35l56->supplies);
return ret;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_common_probe, SND_SOC_CS35L56_CORE);
int cs35l56_init(struct cs35l56_private *cs35l56)
{
int ret;
unsigned int devid, revid, otpid, secured;
/*
* Check whether the actions associated with soft reset or one time
* init need to be performed.
*/
if (cs35l56->soft_resetting)
goto post_soft_reset;
if (cs35l56->init_done)
return 0;
pm_runtime_set_autosuspend_delay(cs35l56->dev, 100);
pm_runtime_use_autosuspend(cs35l56->dev);
pm_runtime_set_active(cs35l56->dev);
pm_runtime_enable(cs35l56->dev);
/*
* If the system is not using a reset_gpio then issue a
* dummy read to force a wakeup.
*/
if (!cs35l56->reset_gpio)
regmap_read(cs35l56->regmap, CS35L56_DSP_VIRTUAL1_MBOX_1, &devid);
/* Wait for control port to be ready (datasheet tIRS). */
usleep_range(CS35L56_CONTROL_PORT_READY_US,
CS35L56_CONTROL_PORT_READY_US + 400);
/*
* The HALO_STATE register is in different locations on Ax and B0
* devices so the REVID needs to be determined before waiting for the
* firmware to boot.
*/
ret = regmap_read(cs35l56->regmap, CS35L56_REVID, &revid);
if (ret < 0) {
dev_err(cs35l56->dev, "Get Revision ID failed\n");
return ret;
}
cs35l56->rev = revid & (CS35L56_AREVID_MASK | CS35L56_MTLREVID_MASK);
ret = cs35l56_wait_for_firmware_boot(cs35l56);
if (ret)
return ret;
ret = regmap_read(cs35l56->regmap, CS35L56_DEVID, &devid);
if (ret < 0) {
dev_err(cs35l56->dev, "Get Device ID failed\n");
return ret;
}
devid &= CS35L56_DEVID_MASK;
switch (devid) {
case 0x35A56:
break;
default:
dev_err(cs35l56->dev, "Unknown device %x\n", devid);
return ret;
}
ret = regmap_read(cs35l56->regmap, CS35L56_DSP_RESTRICT_STS1, &secured);
if (ret) {
dev_err(cs35l56->dev, "Get Secure status failed\n");
return ret;
}
/* When any bus is restricted treat the device as secured */
if (secured & CS35L56_RESTRICTED_MASK)
cs35l56->secured = true;
ret = regmap_read(cs35l56->regmap, CS35L56_OTPID, &otpid);
if (ret < 0) {
dev_err(cs35l56->dev, "Get OTP ID failed\n");
return ret;
}
dev_info(cs35l56->dev, "Cirrus Logic CS35L56%s Rev %02X OTP%d\n",
cs35l56->secured ? "s" : "", cs35l56->rev, otpid);
cs35l56_patch(cs35l56->dev, cs35l56->regmap, cs35l56->rev);
/* Wake source interrupts default to unmasked, so mask them */
regmap_write(cs35l56->regmap, CS35L56_IRQ1_MASK_20, 0xffffffff);
regmap_update_bits(cs35l56->regmap, CS35L56_IRQ1_MASK_1,
CS35L56_AMP_SHORT_ERR_EINT1_MASK,
0);
regmap_update_bits(cs35l56->regmap, CS35L56_IRQ1_MASK_8,
CS35L56_TEMP_ERR_EINT1_MASK,
0);
if (!cs35l56->reset_gpio) {
dev_dbg(cs35l56->dev, "No reset gpio: using soft reset\n");
cs35l56_system_reset(cs35l56);
if (cs35l56->sdw_peripheral) {
/* Keep alive while we wait for re-enumeration */
pm_runtime_get_noresume(cs35l56->dev);
return 0;
}
}
post_soft_reset:
if (cs35l56->soft_resetting) {
cs35l56->soft_resetting = false;
/* Done re-enumerating after one-time init so release the keep-alive */
if (cs35l56->sdw_peripheral && !cs35l56->init_done)
pm_runtime_put_noidle(cs35l56->dev);
regcache_mark_dirty(cs35l56->regmap);
ret = cs35l56_wait_for_firmware_boot(cs35l56);
if (ret)
return ret;
dev_dbg(cs35l56->dev, "Firmware rebooted after soft reset\n");
}
/* Disable auto-hibernate so that runtime_pm has control */
ret = cs35l56_mbox_send(cs35l56, CS35L56_MBOX_CMD_PREVENT_AUTO_HIBERNATE);
if (ret)
return ret;
/* Populate soft registers in the regmap cache */
cs35l56_reread_firmware_registers(cs35l56->dev, cs35l56->regmap);
/* Registers could be dirty after soft reset or SoundWire enumeration */
regcache_sync(cs35l56->regmap);
cs35l56->init_done = true;
complete(&cs35l56->init_completion);
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_init, SND_SOC_CS35L56_CORE);
int cs35l56_remove(struct cs35l56_private *cs35l56)
{
cs35l56->init_done = false;
/*
* WAKE IRQs unmask if CS35L56 hibernates so free the handler to
* prevent it racing with remove().
*/
if (cs35l56->irq)
devm_free_irq(cs35l56->dev, cs35l56->irq, cs35l56);
flush_workqueue(cs35l56->dsp_wq);
destroy_workqueue(cs35l56->dsp_wq);
pm_runtime_suspend(cs35l56->dev);
pm_runtime_disable(cs35l56->dev);
regcache_cache_only(cs35l56->regmap, true);
kfree(cs35l56->dsp.system_name);
gpiod_set_value_cansleep(cs35l56->reset_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(cs35l56->supplies), cs35l56->supplies);
return 0;
}
EXPORT_SYMBOL_NS_GPL(cs35l56_remove, SND_SOC_CS35L56_CORE);
const struct dev_pm_ops cs35l56_pm_ops_i2c_spi = {
SET_RUNTIME_PM_OPS(cs35l56_runtime_suspend, cs35l56_runtime_resume_i2c_spi, NULL)
};
EXPORT_SYMBOL_NS_GPL(cs35l56_pm_ops_i2c_spi, SND_SOC_CS35L56_CORE);
MODULE_DESCRIPTION("ASoC CS35L56 driver");
MODULE_IMPORT_NS(SND_SOC_CS35L56_SHARED);
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Driver for Cirrus Logic CS35L56 smart amp
*
* Copyright (C) 2023 Cirrus Logic, Inc. and
* Cirrus Logic International Semiconductor Ltd.
*/
#ifndef CS35L56_H
#define CS35L56_H
#include <linux/completion.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/workqueue.h>
#include <sound/cs35l56.h>
#include "wm_adsp.h"
#define CS35L56_SDW_GEN_INT_STAT_1 0xc0
#define CS35L56_SDW_GEN_INT_MASK_1 0xc1
#define CS35L56_SDW_INT_MASK_CODEC_IRQ BIT(0)
#define CS35L56_SDW_INVALID_BUS_SCALE 0xf
#define CS35L56_RX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE)
#define CS35L56_TX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE \
| SNDRV_PCM_FMTBIT_S32_LE)
#define CS35L56_RATES (SNDRV_PCM_RATE_48000)
struct sdw_slave;
struct cs35l56_private {
struct wm_adsp dsp; /* must be first member */
struct work_struct dsp_work;
struct workqueue_struct *dsp_wq;
struct completion dsp_ready_completion;
struct mutex irq_lock;
struct snd_soc_component *component;
struct device *dev;
struct regmap *regmap;
struct regulator_bulk_data supplies[CS35L56_NUM_BULK_SUPPLIES];
int irq;
struct sdw_slave *sdw_peripheral;
u8 rev;
struct work_struct sdw_irq_work;
bool secured;
bool sdw_irq_no_unmask;
bool soft_resetting;
bool init_done;
bool sdw_attached;
bool removing;
bool fw_patched;
bool can_hibernate;
struct completion init_completion;
struct gpio_desc *reset_gpio;
u32 rx_mask;
u32 tx_mask;
u8 asp_slot_width;
u8 asp_slot_count;
bool tdm_mode;
bool sysclk_set;
u8 old_sdw_clock_scale;
};
extern const struct dev_pm_ops cs35l56_pm_ops_i2c_spi;
int cs35l56_runtime_suspend(struct device *dev);
int cs35l56_runtime_resume_common(struct cs35l56_private *cs35l56);
irqreturn_t cs35l56_irq(int irq, void *data);
int cs35l56_irq_request(struct cs35l56_private *cs35l56);
int cs35l56_common_probe(struct cs35l56_private *cs35l56);
int cs35l56_init(struct cs35l56_private *cs35l56);
int cs35l56_remove(struct cs35l56_private *cs35l56);
#endif /* ifndef CS35L56_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment