Commit e5a06939 authored by Chris Metcalf's avatar Chris Metcalf

drivers/net/tile/: on-chip network drivers for the tile architecture

This change adds the first network driver for the tile architecture,
supporting the on-chip XGBE and GBE shims.

The infrastructure is present for the TILE-Gx networking drivers (another
three source files in the new directory) but for now the the actual
tilegx sources are waiting on releasing hardware to initial customers.

Note that arch/tile/include/hv/* are "upstream" headers from the
Tilera hypervisor and will probably benefit less from LKML review.
Signed-off-by: default avatarChris Metcalf <cmetcalf@tilera.com>
parent 239b0b44
......@@ -5828,6 +5828,7 @@ W: http://www.tilera.com/scm/
S: Supported
F: arch/tile/
F: drivers/char/hvc_tile.c
F: drivers/net/tile/
TLAN NETWORK DRIVER
M: Samuel Chessman <chessman@tux.org>
......
......@@ -137,4 +137,56 @@ static inline void finv_buffer(void *buffer, size_t size)
mb_incoherent();
}
/*
* Flush & invalidate a VA range that is homed remotely on a single core,
* waiting until the memory controller holds the flushed values.
*/
static inline void finv_buffer_remote(void *buffer, size_t size)
{
char *p;
int i;
/*
* Flush and invalidate the buffer out of the local L1/L2
* and request the home cache to flush and invalidate as well.
*/
__finv_buffer(buffer, size);
/*
* Wait for the home cache to acknowledge that it has processed
* all the flush-and-invalidate requests. This does not mean
* that the flushed data has reached the memory controller yet,
* but it does mean the home cache is processing the flushes.
*/
__insn_mf();
/*
* Issue a load to the last cache line, which can't complete
* until all the previously-issued flushes to the same memory
* controller have also completed. If we weren't striping
* memory, that one load would be sufficient, but since we may
* be, we also need to back up to the last load issued to
* another memory controller, which would be the point where
* we crossed an 8KB boundary (the granularity of striping
* across memory controllers). Keep backing up and doing this
* until we are before the beginning of the buffer, or have
* hit all the controllers.
*/
for (i = 0, p = (char *)buffer + size - 1;
i < (1 << CHIP_LOG_NUM_MSHIMS()) && p >= (char *)buffer;
++i) {
const unsigned long STRIPE_WIDTH = 8192;
/* Force a load instruction to issue. */
*(volatile char *)p;
/* Jump to end of previous stripe. */
p -= STRIPE_WIDTH;
p = (char *)((unsigned long)p | (STRIPE_WIDTH - 1));
}
/* Wait for the loads (and thus flushes) to have completed. */
__insn_mf();
}
#endif /* _ASM_TILE_CACHEFLUSH_H */
......@@ -292,8 +292,18 @@ extern int kstack_hash;
/* Are we using huge pages in the TLB for kernel data? */
extern int kdata_huge;
/* Support standard Linux prefetching. */
#define ARCH_HAS_PREFETCH
#define prefetch(x) __builtin_prefetch(x)
#define PREFETCH_STRIDE CHIP_L2_LINE_SIZE()
/* Bring a value into the L1D, faulting the TLB if necessary. */
#ifdef __tilegx__
#define prefetch_L1(x) __insn_prefetch_l1_fault((void *)(x))
#else
#define prefetch_L1(x) __insn_prefetch_L1((void *)(x))
#endif
#else /* __ASSEMBLY__ */
/* Do some slow action (e.g. read a slow SPR). */
......
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* @file drivers/xgbe/impl.h
* Implementation details for the NetIO library.
*/
#ifndef __DRV_XGBE_IMPL_H__
#define __DRV_XGBE_IMPL_H__
#include <hv/netio_errors.h>
#include <hv/netio_intf.h>
#include <hv/drv_xgbe_intf.h>
/** How many groups we have (log2). */
#define LOG2_NUM_GROUPS (12)
/** How many groups we have. */
#define NUM_GROUPS (1 << LOG2_NUM_GROUPS)
/** Number of output requests we'll buffer per tile. */
#define EPP_REQS_PER_TILE (32)
/** Words used in an eDMA command without checksum acceleration. */
#define EDMA_WDS_NO_CSUM 8
/** Words used in an eDMA command with checksum acceleration. */
#define EDMA_WDS_CSUM 10
/** Total available words in the eDMA command FIFO. */
#define EDMA_WDS_TOTAL 128
/*
* FIXME: These definitions are internal and should have underscores!
* NOTE: The actual numeric values here are intentional and allow us to
* optimize the concept "if small ... else if large ... else ...", by
* checking for the low bit being set, and then for non-zero.
* These are used as array indices, so they must have the values (0, 1, 2)
* in some order.
*/
#define SIZE_SMALL (1) /**< Small packet queue. */
#define SIZE_LARGE (2) /**< Large packet queue. */
#define SIZE_JUMBO (0) /**< Jumbo packet queue. */
/** The number of "SIZE_xxx" values. */
#define NETIO_NUM_SIZES 3
/*
* Default numbers of packets for IPP drivers. These values are chosen
* such that CIPP1 will not overflow its L2 cache.
*/
/** The default number of small packets. */
#define NETIO_DEFAULT_SMALL_PACKETS 2750
/** The default number of large packets. */
#define NETIO_DEFAULT_LARGE_PACKETS 2500
/** The default number of jumbo packets. */
#define NETIO_DEFAULT_JUMBO_PACKETS 250
/** Log2 of the size of a memory arena. */
#define NETIO_ARENA_SHIFT 24 /* 16 MB */
/** Size of a memory arena. */
#define NETIO_ARENA_SIZE (1 << NETIO_ARENA_SHIFT)
/** A queue of packets.
*
* This structure partially defines a queue of packets waiting to be
* processed. The queue as a whole is written to by an interrupt handler and
* read by non-interrupt code; this data structure is what's touched by the
* interrupt handler. The other part of the queue state, the read offset, is
* kept in user space, not in hypervisor space, so it is in a separate data
* structure.
*
* The read offset (__packet_receive_read in the user part of the queue
* structure) points to the next packet to be read. When the read offset is
* equal to the write offset, the queue is empty; therefore the queue must
* contain one more slot than the required maximum queue size.
*
* Here's an example of all 3 state variables and what they mean. All
* pointers move left to right.
*
* @code
* I I V V V V I I I I
* 0 1 2 3 4 5 6 7 8 9 10
* ^ ^ ^ ^
* | | |
* | | __last_packet_plus_one
* | __buffer_write
* __packet_receive_read
* @endcode
*
* This queue has 10 slots, and thus can hold 9 packets (_last_packet_plus_one
* = 10). The read pointer is at 2, and the write pointer is at 6; thus,
* there are valid, unread packets in slots 2, 3, 4, and 5. The remaining
* slots are invalid (do not contain a packet).
*/
typedef struct {
/** Byte offset of the next notify packet to be written: zero for the first
* packet on the queue, sizeof (netio_pkt_t) for the second packet on the
* queue, etc. */
volatile uint32_t __packet_write;
/** Offset of the packet after the last valid packet (i.e., when any
* pointer is incremented to this value, it wraps back to zero). */
uint32_t __last_packet_plus_one;
}
__netio_packet_queue_t;
/** A queue of buffers.
*
* This structure partially defines a queue of empty buffers which have been
* obtained via requests to the IPP. (The elements of the queue are packet
* handles, which are transformed into a full netio_pkt_t when the buffer is
* retrieved.) The queue as a whole is written to by an interrupt handler and
* read by non-interrupt code; this data structure is what's touched by the
* interrupt handler. The other parts of the queue state, the read offset and
* requested write offset, are kept in user space, not in hypervisor space, so
* they are in a separate data structure.
*
* The read offset (__buffer_read in the user part of the queue structure)
* points to the next buffer to be read. When the read offset is equal to the
* write offset, the queue is empty; therefore the queue must contain one more
* slot than the required maximum queue size.
*
* The requested write offset (__buffer_requested_write in the user part of
* the queue structure) points to the slot which will hold the next buffer we
* request from the IPP, once we get around to sending such a request. When
* the requested write offset is equal to the write offset, no requests for
* new buffers are outstanding; when the requested write offset is one greater
* than the read offset, no more requests may be sent.
*
* Note that, unlike the packet_queue, the buffer_queue places incoming
* buffers at decreasing addresses. This makes the check for "is it time to
* wrap the buffer pointer" cheaper in the assembly code which receives new
* buffers, and means that the value which defines the queue size,
* __last_buffer, is different than in the packet queue. Also, the offset
* used in the packet_queue is already scaled by the size of a packet; here we
* use unscaled slot indices for the offsets. (These differences are
* historical, and in the future it's possible that the packet_queue will look
* more like this queue.)
*
* @code
* Here's an example of all 4 state variables and what they mean. Remember:
* all pointers move right to left.
*
* V V V I I R R V V V
* 0 1 2 3 4 5 6 7 8 9
* ^ ^ ^ ^
* | | | |
* | | | __last_buffer
* | | __buffer_write
* | __buffer_requested_write
* __buffer_read
* @endcode
*
* This queue has 10 slots, and thus can hold 9 buffers (_last_buffer = 9).
* The read pointer is at 2, and the write pointer is at 6; thus, there are
* valid, unread buffers in slots 2, 1, 0, 9, 8, and 7. The requested write
* pointer is at 4; thus, requests have been made to the IPP for buffers which
* will be placed in slots 6 and 5 when they arrive. Finally, the remaining
* slots are invalid (do not contain a buffer).
*/
typedef struct
{
/** Ordinal number of the next buffer to be written: 0 for the first slot in
* the queue, 1 for the second slot in the queue, etc. */
volatile uint32_t __buffer_write;
/** Ordinal number of the last buffer (i.e., when any pointer is decremented
* below zero, it is reloaded with this value). */
uint32_t __last_buffer;
}
__netio_buffer_queue_t;
/**
* An object for providing Ethernet packets to a process.
*/
typedef struct __netio_queue_impl_t
{
/** The queue of packets waiting to be received. */
__netio_packet_queue_t __packet_receive_queue;
/** The intr bit mask that IDs this device. */
unsigned int __intr_id;
/** Offset to queues of empty buffers, one per size. */
uint32_t __buffer_queue[NETIO_NUM_SIZES];
/** The address of the first EPP tile, or -1 if no EPP. */
/* ISSUE: Actually this is always "0" or "~0". */
uint32_t __epp_location;
/** The queue ID that this queue represents. */
unsigned int __queue_id;
/** Number of acknowledgements received. */
volatile uint32_t __acks_received;
/** Last completion number received for packet_sendv. */
volatile uint32_t __last_completion_rcv;
/** Number of packets allowed to be outstanding. */
uint32_t __max_outstanding;
/** First VA available for packets. */
void* __va_0;
/** First VA in second range available for packets. */
void* __va_1;
/** Padding to align the "__packets" field to the size of a netio_pkt_t. */
uint32_t __padding[3];
/** The packets themselves. */
netio_pkt_t __packets[0];
}
netio_queue_impl_t;
/**
* An object for managing the user end of a NetIO queue.
*/
typedef struct __netio_queue_user_impl_t
{
/** The next incoming packet to be read. */
uint32_t __packet_receive_read;
/** The next empty buffers to be read, one index per size. */
uint8_t __buffer_read[NETIO_NUM_SIZES];
/** Where the empty buffer we next request from the IPP will go, one index
* per size. */
uint8_t __buffer_requested_write[NETIO_NUM_SIZES];
/** PCIe interface flag. */
uint8_t __pcie;
/** Number of packets left to be received before we send a credit update. */
uint32_t __receive_credit_remaining;
/** Value placed in __receive_credit_remaining when it reaches zero. */
uint32_t __receive_credit_interval;
/** First fast I/O routine index. */
uint32_t __fastio_index;
/** Number of acknowledgements expected. */
uint32_t __acks_outstanding;
/** Last completion number requested. */
uint32_t __last_completion_req;
/** File descriptor for driver. */
int __fd;
}
netio_queue_user_impl_t;
#define NETIO_GROUP_CHUNK_SIZE 64 /**< Max # groups in one IPP request */
#define NETIO_BUCKET_CHUNK_SIZE 64 /**< Max # buckets in one IPP request */
/** Internal structure used to convey packet send information to the
* hypervisor. FIXME: Actually, it's not used for that anymore, but
* netio_packet_send() still uses it internally.
*/
typedef struct
{
uint16_t flags; /**< Packet flags (__NETIO_SEND_FLG_xxx) */
uint16_t transfer_size; /**< Size of packet */
uint32_t va; /**< VA of start of packet */
__netio_pkt_handle_t handle; /**< Packet handle */
uint32_t csum0; /**< First checksum word */
uint32_t csum1; /**< Second checksum word */
}
__netio_send_cmd_t;
/** Flags used in two contexts:
* - As the "flags" member in the __netio_send_cmd_t, above; used only
* for netio_pkt_send_{prepare,commit}.
* - As part of the flags passed to the various send packet fast I/O calls.
*/
/** Need acknowledgement on this packet. Note that some code in the
* normal send_pkt fast I/O handler assumes that this is equal to 1. */
#define __NETIO_SEND_FLG_ACK 0x1
/** Do checksum on this packet. (Only used with the __netio_send_cmd_t;
* normal packet sends use a special fast I/O index to denote checksumming,
* and multi-segment sends test the checksum descriptor.) */
#define __NETIO_SEND_FLG_CSUM 0x2
/** Get a completion on this packet. Only used with multi-segment sends. */
#define __NETIO_SEND_FLG_COMPLETION 0x4
/** Position of the number-of-extra-segments value in the flags word.
Only used with multi-segment sends. */
#define __NETIO_SEND_FLG_XSEG_SHIFT 3
/** Width of the number-of-extra-segments value in the flags word. */
#define __NETIO_SEND_FLG_XSEG_WIDTH 2
#endif /* __DRV_XGBE_IMPL_H__ */
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* @file drv_xgbe_intf.h
* Interface to the hypervisor XGBE driver.
*/
#ifndef __DRV_XGBE_INTF_H__
#define __DRV_XGBE_INTF_H__
/**
* An object for forwarding VAs and PAs to the hypervisor.
* @ingroup types
*
* This allows the supervisor to specify a number of areas of memory to
* store packet buffers.
*/
typedef struct
{
/** The physical address of the memory. */
HV_PhysAddr pa;
/** Page table entry for the memory. This is only used to derive the
* memory's caching mode; the PA bits are ignored. */
HV_PTE pte;
/** The virtual address of the memory. */
HV_VirtAddr va;
/** Size (in bytes) of the memory area. */
int size;
}
netio_ipp_address_t;
/** The various pread/pwrite offsets into the hypervisor-level driver.
* @ingroup types
*/
typedef enum
{
/** Inform the Linux driver of the address of the NetIO arena memory.
* This offset is actually only used to convey information from netio
* to the Linux driver; it never makes it from there to the hypervisor.
* Write-only; takes a uint32_t specifying the VA address. */
NETIO_FIXED_ADDR = 0x5000000000000000ULL,
/** Inform the Linux driver of the size of the NetIO arena memory.
* This offset is actually only used to convey information from netio
* to the Linux driver; it never makes it from there to the hypervisor.
* Write-only; takes a uint32_t specifying the VA size. */
NETIO_FIXED_SIZE = 0x5100000000000000ULL,
/** Register current tile with IPP. Write then read: write, takes a
* netio_input_config_t, read returns a pointer to a netio_queue_impl_t. */
NETIO_IPP_INPUT_REGISTER_OFF = 0x6000000000000000ULL,
/** Unregister current tile from IPP. Write-only, takes a dummy argument. */
NETIO_IPP_INPUT_UNREGISTER_OFF = 0x6100000000000000ULL,
/** Start packets flowing. Write-only, takes a dummy argument. */
NETIO_IPP_INPUT_INIT_OFF = 0x6200000000000000ULL,
/** Stop packets flowing. Write-only, takes a dummy argument. */
NETIO_IPP_INPUT_UNINIT_OFF = 0x6300000000000000ULL,
/** Configure group (typically we group on VLAN). Write-only: takes an
* array of netio_group_t's, low 24 bits of the offset is the base group
* number times the size of a netio_group_t. */
NETIO_IPP_INPUT_GROUP_CFG_OFF = 0x6400000000000000ULL,
/** Configure bucket. Write-only: takes an array of netio_bucket_t's, low
* 24 bits of the offset is the base bucket number times the size of a
* netio_bucket_t. */
NETIO_IPP_INPUT_BUCKET_CFG_OFF = 0x6500000000000000ULL,
/** Get/set a parameter. Read or write: read or write data is the parameter
* value, low 32 bits of the offset is a __netio_getset_offset_t. */
NETIO_IPP_PARAM_OFF = 0x6600000000000000ULL,
/** Get fast I/O index. Read-only; returns a 4-byte base index value. */
NETIO_IPP_GET_FASTIO_OFF = 0x6700000000000000ULL,
/** Configure hijack IP address. Packets with this IPv4 dest address
* go to bucket NETIO_NUM_BUCKETS - 1. Write-only: takes an IP address
* in some standard form. FIXME: Define the form! */
NETIO_IPP_INPUT_HIJACK_CFG_OFF = 0x6800000000000000ULL,
/**
* Offsets beyond this point are reserved for the supervisor (although that
* enforcement must be done by the supervisor driver itself).
*/
NETIO_IPP_USER_MAX_OFF = 0x6FFFFFFFFFFFFFFFULL,
/** Register I/O memory. Write-only, takes a netio_ipp_address_t. */
NETIO_IPP_IOMEM_REGISTER_OFF = 0x7000000000000000ULL,
/** Unregister I/O memory. Write-only, takes a netio_ipp_address_t. */
NETIO_IPP_IOMEM_UNREGISTER_OFF = 0x7100000000000000ULL,
/* Offsets greater than 0x7FFFFFFF can't be used directly from Linux
* userspace code due to limitations in the pread/pwrite syscalls. */
/** Drain LIPP buffers. */
NETIO_IPP_DRAIN_OFF = 0xFA00000000000000ULL,
/** Supply a netio_ipp_address_t to be used as shared memory for the
* LEPP command queue. */
NETIO_EPP_SHM_OFF = 0xFB00000000000000ULL,
/* 0xFC... is currently unused. */
/** Stop IPP/EPP tiles. Write-only, takes a dummy argument. */
NETIO_IPP_STOP_SHIM_OFF = 0xFD00000000000000ULL,
/** Start IPP/EPP tiles. Write-only, takes a dummy argument. */
NETIO_IPP_START_SHIM_OFF = 0xFE00000000000000ULL,
/** Supply packet arena. Write-only, takes an array of
* netio_ipp_address_t values. */
NETIO_IPP_ADDRESS_OFF = 0xFF00000000000000ULL,
} netio_hv_offset_t;
/** Extract the base offset from an offset */
#define NETIO_BASE_OFFSET(off) ((off) & 0xFF00000000000000ULL)
/** Extract the local offset from an offset */
#define NETIO_LOCAL_OFFSET(off) ((off) & 0x00FFFFFFFFFFFFFFULL)
/**
* Get/set offset.
*/
typedef union
{
struct
{
uint64_t addr:48; /**< Class-specific address */
unsigned int class:8; /**< Class (e.g., NETIO_PARAM) */
unsigned int opcode:8; /**< High 8 bits of NETIO_IPP_PARAM_OFF */
}
bits; /**< Bitfields */
uint64_t word; /**< Aggregated value to use as the offset */
}
__netio_getset_offset_t;
/**
* Fast I/O index offsets (must be contiguous).
*/
typedef enum
{
NETIO_FASTIO_ALLOCATE = 0, /**< Get empty packet buffer */
NETIO_FASTIO_FREE_BUFFER = 1, /**< Give buffer back to IPP */
NETIO_FASTIO_RETURN_CREDITS = 2, /**< Give credits to IPP */
NETIO_FASTIO_SEND_PKT_NOCK = 3, /**< Send a packet, no checksum */
NETIO_FASTIO_SEND_PKT_CK = 4, /**< Send a packet, with checksum */
NETIO_FASTIO_SEND_PKT_VEC = 5, /**< Send a vector of packets */
NETIO_FASTIO_SENDV_PKT = 6, /**< Sendv one packet */
NETIO_FASTIO_NUM_INDEX = 7, /**< Total number of fast I/O indices */
} netio_fastio_index_t;
/** 3-word return type for Fast I/O call. */
typedef struct
{
int err; /**< Error code. */
uint32_t val0; /**< Value. Meaning depends upon the specific call. */
uint32_t val1; /**< Value. Meaning depends upon the specific call. */
} netio_fastio_rv3_t;
/** 0-argument fast I/O call */
int __netio_fastio0(uint32_t fastio_index);
/** 1-argument fast I/O call */
int __netio_fastio1(uint32_t fastio_index, uint32_t arg0);
/** 3-argument fast I/O call, 2-word return value */
netio_fastio_rv3_t __netio_fastio3_rv3(uint32_t fastio_index, uint32_t arg0,
uint32_t arg1, uint32_t arg2);
/** 4-argument fast I/O call */
int __netio_fastio4(uint32_t fastio_index, uint32_t arg0, uint32_t arg1,
uint32_t arg2, uint32_t arg3);
/** 6-argument fast I/O call */
int __netio_fastio6(uint32_t fastio_index, uint32_t arg0, uint32_t arg1,
uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5);
/** 9-argument fast I/O call */
int __netio_fastio9(uint32_t fastio_index, uint32_t arg0, uint32_t arg1,
uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5,
uint32_t arg6, uint32_t arg7, uint32_t arg8);
/** Allocate an empty packet.
* @param fastio_index Fast I/O index.
* @param size Size of the packet to allocate.
*/
#define __netio_fastio_allocate(fastio_index, size) \
__netio_fastio1((fastio_index) + NETIO_FASTIO_ALLOCATE, size)
/** Free a buffer.
* @param fastio_index Fast I/O index.
* @param handle Handle for the packet to free.
*/
#define __netio_fastio_free_buffer(fastio_index, handle) \
__netio_fastio1((fastio_index) + NETIO_FASTIO_FREE_BUFFER, handle)
/** Increment our receive credits.
* @param fastio_index Fast I/O index.
* @param credits Number of credits to add.
*/
#define __netio_fastio_return_credits(fastio_index, credits) \
__netio_fastio1((fastio_index) + NETIO_FASTIO_RETURN_CREDITS, credits)
/** Send packet, no checksum.
* @param fastio_index Fast I/O index.
* @param ackflag Nonzero if we want an ack.
* @param size Size of the packet.
* @param va Virtual address of start of packet.
* @param handle Packet handle.
*/
#define __netio_fastio_send_pkt_nock(fastio_index, ackflag, size, va, handle) \
__netio_fastio4((fastio_index) + NETIO_FASTIO_SEND_PKT_NOCK, ackflag, \
size, va, handle)
/** Send packet, calculate checksum.
* @param fastio_index Fast I/O index.
* @param ackflag Nonzero if we want an ack.
* @param size Size of the packet.
* @param va Virtual address of start of packet.
* @param handle Packet handle.
* @param csum0 Shim checksum header.
* @param csum1 Checksum seed.
*/
#define __netio_fastio_send_pkt_ck(fastio_index, ackflag, size, va, handle, \
csum0, csum1) \
__netio_fastio6((fastio_index) + NETIO_FASTIO_SEND_PKT_CK, ackflag, \
size, va, handle, csum0, csum1)
/** Format for the "csum0" argument to the __netio_fastio_send routines
* and LEPP. Note that this is currently exactly identical to the
* ShimProtocolOffloadHeader.
*/
typedef union
{
struct
{
unsigned int start_byte:7; /**< The first byte to be checksummed */
unsigned int count:14; /**< Number of bytes to be checksummed. */
unsigned int destination_byte:7; /**< The byte to write the checksum to. */
unsigned int reserved:4; /**< Reserved. */
} bits; /**< Decomposed method of access. */
unsigned int word; /**< To send out the IDN. */
} __netio_checksum_header_t;
/** Sendv packet with 1 or 2 segments.
* @param fastio_index Fast I/O index.
* @param flags Ack/csum/notify flags in low 3 bits; number of segments minus
* 1 in next 2 bits; expected checksum in high 16 bits.
* @param confno Confirmation number to request, if notify flag set.
* @param csum0 Checksum descriptor; if zero, no checksum.
* @param va_F Virtual address of first segment.
* @param va_L Virtual address of last segment, if 2 segments.
* @param len_F_L Length of first segment in low 16 bits; length of last
* segment, if 2 segments, in high 16 bits.
*/
#define __netio_fastio_sendv_pkt_1_2(fastio_index, flags, confno, csum0, \
va_F, va_L, len_F_L) \
__netio_fastio6((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \
csum0, va_F, va_L, len_F_L)
/** Send packet on PCIe interface.
* @param fastio_index Fast I/O index.
* @param flags Ack/csum/notify flags in low 3 bits.
* @param confno Confirmation number to request, if notify flag set.
* @param csum0 Checksum descriptor; Hard wired 0, not needed for PCIe.
* @param va_F Virtual address of the packet buffer.
* @param va_L Virtual address of last segment, if 2 segments. Hard wired 0.
* @param len_F_L Length of the packet buffer in low 16 bits.
*/
#define __netio_fastio_send_pcie_pkt(fastio_index, flags, confno, csum0, \
va_F, va_L, len_F_L) \
__netio_fastio6((fastio_index) + PCIE_FASTIO_SENDV_PKT, flags, confno, \
csum0, va_F, va_L, len_F_L)
/** Sendv packet with 3 or 4 segments.
* @param fastio_index Fast I/O index.
* @param flags Ack/csum/notify flags in low 3 bits; number of segments minus
* 1 in next 2 bits; expected checksum in high 16 bits.
* @param confno Confirmation number to request, if notify flag set.
* @param csum0 Checksum descriptor; if zero, no checksum.
* @param va_F Virtual address of first segment.
* @param va_L Virtual address of last segment (third segment if 3 segments,
* fourth segment if 4 segments).
* @param len_F_L Length of first segment in low 16 bits; length of last
* segment in high 16 bits.
* @param va_M0 Virtual address of "middle 0" segment; this segment is sent
* second when there are three segments, and third if there are four.
* @param va_M1 Virtual address of "middle 1" segment; this segment is sent
* second when there are four segments.
* @param len_M0_M1 Length of middle 0 segment in low 16 bits; length of middle
* 1 segment, if 4 segments, in high 16 bits.
*/
#define __netio_fastio_sendv_pkt_3_4(fastio_index, flags, confno, csum0, va_F, \
va_L, len_F_L, va_M0, va_M1, len_M0_M1) \
__netio_fastio9((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \
csum0, va_F, va_L, len_F_L, va_M0, va_M1, len_M0_M1)
/** Send vector of packets.
* @param fastio_index Fast I/O index.
* @param seqno Number of packets transmitted so far on this interface;
* used to decide which packets should be acknowledged.
* @param nentries Number of entries in vector.
* @param va Virtual address of start of vector entry array.
* @return 3-word netio_fastio_rv3_t structure. The structure's err member
* is an error code, or zero if no error. The val0 member is the
* updated value of seqno; it has been incremented by 1 for each
* packet sent. That increment may be less than nentries if an
* error occured, or if some of the entries in the vector contain
* handles equal to NETIO_PKT_HANDLE_NONE. The val1 member is the
* updated value of nentries; it has been decremented by 1 for each
* vector entry processed. Again, that decrement may be less than
* nentries (leaving the returned value positive) if an error
* occurred.
*/
#define __netio_fastio_send_pkt_vec(fastio_index, seqno, nentries, va) \
__netio_fastio3_rv3((fastio_index) + NETIO_FASTIO_SEND_PKT_VEC, seqno, \
nentries, va)
/** An egress DMA command for LEPP. */
typedef struct
{
/** Is this a TSO transfer?
*
* NOTE: This field is always 0, to distinguish it from
* lepp_tso_cmd_t. It must come first!
*/
uint8_t tso : 1;
/** Unused padding bits. */
uint8_t _unused : 3;
/** Should this packet be sent directly from caches instead of DRAM,
* using hash-for-home to locate the packet data?
*/
uint8_t hash_for_home : 1;
/** Should we compute a checksum? */
uint8_t compute_checksum : 1;
/** Is this the final buffer for this packet?
*
* A single packet can be split over several input buffers (a "gather"
* operation). This flag indicates that this is the last buffer
* in a packet.
*/
uint8_t end_of_packet : 1;
/** Should LEPP advance 'comp_busy' when this DMA is fully finished? */
uint8_t send_completion : 1;
/** High bits of Client Physical Address of the start of the buffer
* to be egressed.
*
* NOTE: Only 6 bits are actually needed here, as CPAs are
* currently 38 bits. So two bits could be scavenged from this.
*/
uint8_t cpa_hi;
/** The number of bytes to be egressed. */
uint16_t length;
/** Low 32 bits of Client Physical Address of the start of the buffer
* to be egressed.
*/
uint32_t cpa_lo;
/** Checksum information (only used if 'compute_checksum'). */
__netio_checksum_header_t checksum_data;
} lepp_cmd_t;
/** A chunk of physical memory for a TSO egress. */
typedef struct
{
/** The low bits of the CPA. */
uint32_t cpa_lo;
/** The high bits of the CPA. */
uint16_t cpa_hi : 15;
/** Should this packet be sent directly from caches instead of DRAM,
* using hash-for-home to locate the packet data?
*/
uint16_t hash_for_home : 1;
/** The length in bytes. */
uint16_t length;
} lepp_frag_t;
/** An LEPP command that handles TSO. */
typedef struct
{
/** Is this a TSO transfer?
*
* NOTE: This field is always 1, to distinguish it from
* lepp_cmd_t. It must come first!
*/
uint8_t tso : 1;
/** Unused padding bits. */
uint8_t _unused : 7;
/** Size of the header[] array in bytes. It must be in the range
* [40, 127], which are the smallest header for a TCP packet over
* Ethernet and the maximum possible prepend size supported by
* hardware, respectively. Note that the array storage must be
* padded out to a multiple of four bytes so that the following
* LEPP command is aligned properly.
*/
uint8_t header_size;
/** Byte offset of the IP header in header[]. */
uint8_t ip_offset;
/** Byte offset of the TCP header in header[]. */
uint8_t tcp_offset;
/** The number of bytes to use for the payload of each packet,
* except of course the last one, which may not have enough bytes.
* This means that each Ethernet packet except the last will have a
* size of header_size + payload_size.
*/
uint16_t payload_size;
/** The length of the 'frags' array that follows this struct. */
uint16_t num_frags;
/** The actual frags. */
lepp_frag_t frags[0 /* Variable-sized; num_frags entries. */];
/*
* The packet header template logically follows frags[],
* but you can't declare that in C.
*
* uint32_t header[header_size_in_words_rounded_up];
*/
} lepp_tso_cmd_t;
/** An LEPP completion ring entry. */
typedef void* lepp_comp_t;
/** Maximum number of frags for one TSO command. This is adapted from
* linux's "MAX_SKB_FRAGS", and presumably over-estimates by one, for
* our page size of exactly 65536. We add one for a "body" fragment.
*/
#define LEPP_MAX_FRAGS (65536 / HV_PAGE_SIZE_SMALL + 2 + 1)
/** Total number of bytes needed for an lepp_tso_cmd_t. */
#define LEPP_TSO_CMD_SIZE(num_frags, header_size) \
(sizeof(lepp_tso_cmd_t) + \
(num_frags) * sizeof(lepp_frag_t) + \
(((header_size) + 3) & -4))
/** The size of the lepp "cmd" queue. */
#define LEPP_CMD_QUEUE_BYTES \
(((CHIP_L2_CACHE_SIZE() - 2 * CHIP_L2_LINE_SIZE()) / \
(sizeof(lepp_cmd_t) + sizeof(lepp_comp_t))) * sizeof(lepp_cmd_t))
/** The largest possible command that can go in lepp_queue_t::cmds[]. */
#define LEPP_MAX_CMD_SIZE LEPP_TSO_CMD_SIZE(LEPP_MAX_FRAGS, 128)
/** The largest possible value of lepp_queue_t::cmd_{head, tail} (inclusive).
*/
#define LEPP_CMD_LIMIT \
(LEPP_CMD_QUEUE_BYTES - LEPP_MAX_CMD_SIZE)
/** The maximum number of completions in an LEPP queue. */
#define LEPP_COMP_QUEUE_SIZE \
((LEPP_CMD_LIMIT + sizeof(lepp_cmd_t) - 1) / sizeof(lepp_cmd_t))
/** Increment an index modulo the queue size. */
#define LEPP_QINC(var) \
(var = __insn_mnz(var - (LEPP_COMP_QUEUE_SIZE - 1), var + 1))
/** A queue used to convey egress commands from the client to LEPP. */
typedef struct
{
/** Index of first completion not yet processed by user code.
* If this is equal to comp_busy, there are no such completions.
*
* NOTE: This is only read/written by the user.
*/
unsigned int comp_head;
/** Index of first completion record not yet completed.
* If this is equal to comp_tail, there are no such completions.
* This index gets advanced (modulo LEPP_QUEUE_SIZE) whenever
* a command with the 'completion' bit set is finished.
*
* NOTE: This is only written by LEPP, only read by the user.
*/
volatile unsigned int comp_busy;
/** Index of the first empty slot in the completion ring.
* Entries from this up to but not including comp_head (in ring order)
* can be filled in with completion data.
*
* NOTE: This is only read/written by the user.
*/
unsigned int comp_tail;
/** Byte index of first command enqueued for LEPP but not yet processed.
*
* This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT.
*
* NOTE: LEPP advances this counter as soon as it no longer needs
* the cmds[] storage for this entry, but the transfer is not actually
* complete (i.e. the buffer pointed to by the command is no longer
* needed) until comp_busy advances.
*
* If this is equal to cmd_tail, the ring is empty.
*
* NOTE: This is only written by LEPP, only read by the user.
*/
volatile unsigned int cmd_head;
/** Byte index of first empty slot in the command ring. This field can
* be incremented up to but not equal to cmd_head (because that would
* mean the ring is empty).
*
* This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT.
*
* NOTE: This is read/written by the user, only read by LEPP.
*/
volatile unsigned int cmd_tail;
/** A ring of variable-sized egress DMA commands.
*
* NOTE: Only written by the user, only read by LEPP.
*/
char cmds[LEPP_CMD_QUEUE_BYTES]
__attribute__((aligned(CHIP_L2_LINE_SIZE())));
/** A ring of user completion data.
* NOTE: Only read/written by the user.
*/
lepp_comp_t comps[LEPP_COMP_QUEUE_SIZE]
__attribute__((aligned(CHIP_L2_LINE_SIZE())));
} lepp_queue_t;
/** An internal helper function for determining the number of entries
* available in a ring buffer, given that there is one sentinel.
*/
static inline unsigned int
_lepp_num_free_slots(unsigned int head, unsigned int tail)
{
/*
* One entry is reserved for use as a sentinel, to distinguish
* "empty" from "full". So we compute
* (head - tail - 1) % LEPP_QUEUE_SIZE, but without using a slow % operation.
*/
return (head - tail - 1) + ((head <= tail) ? LEPP_COMP_QUEUE_SIZE : 0);
}
/** Returns how many new comp entries can be enqueued. */
static inline unsigned int
lepp_num_free_comp_slots(const lepp_queue_t* q)
{
return _lepp_num_free_slots(q->comp_head, q->comp_tail);
}
static inline int
lepp_qsub(int v1, int v2)
{
int delta = v1 - v2;
return delta + ((delta >> 31) & LEPP_COMP_QUEUE_SIZE);
}
/** FIXME: Check this from linux, via a new "pwrite()" call. */
#define LIPP_VERSION 1
/** We use exactly two bytes of alignment padding. */
#define LIPP_PACKET_PADDING 2
/** The minimum size of a "small" buffer (including the padding). */
#define LIPP_SMALL_PACKET_SIZE 128
/*
* NOTE: The following two values should total to less than around
* 13582, to keep the total size used for "lipp_state_t" below 64K.
*/
/** The maximum number of "small" buffers.
* This is enough for 53 network cpus with 128 credits. Note that
* if these are exhausted, we will fall back to using large buffers.
*/
#define LIPP_SMALL_BUFFERS 6785
/** The maximum number of "large" buffers.
* This is enough for 53 network cpus with 128 credits.
*/
#define LIPP_LARGE_BUFFERS 6785
#endif /* __DRV_XGBE_INTF_H__ */
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* Error codes returned from NetIO routines.
*/
#ifndef __NETIO_ERRORS_H__
#define __NETIO_ERRORS_H__
/**
* @addtogroup error
*
* @brief The error codes returned by NetIO functions.
*
* NetIO functions return 0 (defined as ::NETIO_NO_ERROR) on success, and
* a negative value if an error occurs.
*
* In cases where a NetIO function failed due to a error reported by
* system libraries, the error code will be the negation of the
* system errno at the time of failure. The @ref netio_strerror()
* function will deliver error strings for both NetIO and system error
* codes.
*
* @{
*/
/** The set of all NetIO errors. */
typedef enum
{
/** Operation successfully completed. */
NETIO_NO_ERROR = 0,
/** A packet was successfully retrieved from an input queue. */
NETIO_PKT = 0,
/** Largest NetIO error number. */
NETIO_ERR_MAX = -701,
/** The tile is not registered with the IPP. */
NETIO_NOT_REGISTERED = -701,
/** No packet was available to retrieve from the input queue. */
NETIO_NOPKT = -702,
/** The requested function is not implemented. */
NETIO_NOT_IMPLEMENTED = -703,
/** On a registration operation, the target queue already has the maximum
* number of tiles registered for it, and no more may be added. On a
* packet send operation, the output queue is full and nothing more can
* be queued until some of the queued packets are actually transmitted. */
NETIO_QUEUE_FULL = -704,
/** The calling process or thread is not bound to exactly one CPU. */
NETIO_BAD_AFFINITY = -705,
/** Cannot allocate memory on requested controllers. */
NETIO_CANNOT_HOME = -706,
/** On a registration operation, the IPP specified is not configured
* to support the options requested; for instance, the application
* wants a specific type of tagged headers which the configured IPP
* doesn't support. Or, the supplied configuration information is
* not self-consistent, or is out of range; for instance, specifying
* both NETIO_RECV and NETIO_NO_RECV, or asking for more than
* NETIO_MAX_SEND_BUFFERS to be preallocated. On a VLAN or bucket
* configure operation, the number of items, or the base item, was
* out of range.
*/
NETIO_BAD_CONFIG = -707,
/** Too many tiles have registered to transmit packets. */
NETIO_TOOMANY_XMIT = -708,
/** Packet transmission was attempted on a queue which was registered
with transmit disabled. */
NETIO_UNREG_XMIT = -709,
/** This tile is already registered with the IPP. */
NETIO_ALREADY_REGISTERED = -710,
/** The Ethernet link is down. The application should try again later. */
NETIO_LINK_DOWN = -711,
/** An invalid memory buffer has been specified. This may be an unmapped
* virtual address, or one which does not meet alignment requirements.
* For netio_input_register(), this error may be returned when multiple
* processes specify different memory regions to be used for NetIO
* buffers. That can happen if these processes specify explicit memory
* regions with the ::NETIO_FIXED_BUFFER_VA flag, or if tmc_cmem_init()
* has not been called by a common ancestor of the processes.
*/
NETIO_FAULT = -712,
/** Cannot combine user-managed shared memory and cache coherence. */
NETIO_BAD_CACHE_CONFIG = -713,
/** Smallest NetIO error number. */
NETIO_ERR_MIN = -713,
#ifndef __DOXYGEN__
/** Used internally to mean that no response is needed; never returned to
* an application. */
NETIO_NO_RESPONSE = 1
#endif
} netio_error_t;
/** @} */
#endif /* __NETIO_ERRORS_H__ */
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -988,8 +988,12 @@ static long __write_once initfree = 1;
/* Select whether to free (1) or mark unusable (0) the __init pages. */
static int __init set_initfree(char *str)
{
strict_strtol(str, 0, &initfree);
pr_info("initfree: %s free init pages\n", initfree ? "will" : "won't");
long val;
if (strict_strtol(str, 0, &val)) {
initfree = val;
pr_info("initfree: %s free init pages\n",
initfree ? "will" : "won't");
}
return 1;
}
__setup("initfree=", set_initfree);
......
......@@ -2945,6 +2945,18 @@ source "drivers/s390/net/Kconfig"
source "drivers/net/caif/Kconfig"
config TILE_NET
tristate "Tilera GBE/XGBE network driver support"
depends on TILE
default y
select CRC32
help
This is a standard Linux network device driver for the
on-chip Tilera Gigabit Ethernet and XAUI interfaces.
To compile this driver as a module, choose M here: the module
will be called tile_net.
config XEN_NETDEV_FRONTEND
tristate "Xen network device frontend driver"
depends on XEN
......
......@@ -301,3 +301,4 @@ obj-$(CONFIG_CAIF) += caif/
obj-$(CONFIG_OCTEON_MGMT_ETHERNET) += octeon/
obj-$(CONFIG_PCH_GBE) += pch_gbe/
obj-$(CONFIG_TILE_NET) += tile/
#
# Makefile for the TILE on-chip networking support.
#
obj-$(CONFIG_TILE_NET) += tile_net.o
ifdef CONFIG_TILEGX
tile_net-objs := tilegx.o mpipe.o iorpc_mpipe.o dma_queue.o
else
tile_net-objs := tilepro.o
endif
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/netdevice.h> /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/skbuff.h>
#include <linux/ioctl.h>
#include <linux/cdev.h>
#include <linux/hugetlb.h>
#include <linux/in6.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <asm/checksum.h>
#include <asm/homecache.h>
#include <hv/drv_xgbe_intf.h>
#include <hv/drv_xgbe_impl.h>
#include <hv/hypervisor.h>
#include <hv/netio_intf.h>
/* For TSO */
#include <linux/ip.h>
#include <linux/tcp.h>
/* There is no singlethread_cpu, so schedule work on the current cpu. */
#define singlethread_cpu -1
/*
* First, "tile_net_init_module()" initializes all four "devices" which
* can be used by linux.
*
* Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
* the network cpus, then uses "tile_net_open_aux()" to initialize
* LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
* the tiles, provide buffers to LIPP, allow ingress to start, and
* turn on hypervisor interrupt handling (and NAPI) on all tiles.
*
* If registration fails due to the link being down, then "retry_work"
* is used to keep calling "tile_net_open_inner()" until it succeeds.
*
* If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
* stop egress, drain the LIPP buffers, unregister all the tiles, stop
* LIPP/LEPP, and wipe the LEPP queue.
*
* We start out with the ingress interrupt enabled on each CPU. When
* this interrupt fires, we disable it, and call "napi_schedule()".
* This will cause "tile_net_poll()" to be called, which will pull
* packets from the netio queue, filtering them out, or passing them
* to "netif_receive_skb()". If our budget is exhausted, we will
* return, knowing we will be called again later. Otherwise, we
* reenable the ingress interrupt, and call "napi_complete()".
*
*
* NOTE: The use of "native_driver" ensures that EPP exists, and that
* "epp_sendv" is legal, and that "LIPP" is being used.
*
* NOTE: Failing to free completions for an arbitrarily long time
* (which is defined to be illegal) does in fact cause bizarre
* problems. The "egress_timer" helps prevent this from happening.
*
* NOTE: The egress code can be interrupted by the interrupt handler.
*/
/* HACK: Allow use of "jumbo" packets. */
/* This should be 1500 if "jumbo" is not set in LIPP. */
/* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
/* ISSUE: This has not been thoroughly tested (except at 1500). */
#define TILE_NET_MTU 1500
/* HACK: Define to support GSO. */
/* ISSUE: This may actually hurt performance of the TCP blaster. */
/* #define TILE_NET_GSO */
/* Define this to collapse "duplicate" acks. */
/* #define IGNORE_DUP_ACKS */
/* HACK: Define this to verify incoming packets. */
/* #define TILE_NET_VERIFY_INGRESS */
/* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
#define TILE_NET_TX_QUEUE_LEN 0
/* Define to dump packets (prints out the whole packet on tx and rx). */
/* #define TILE_NET_DUMP_PACKETS */
/* Define to enable debug spew (all PDEBUG's are enabled). */
/* #define TILE_NET_DEBUG */
/* Define to activate paranoia checks. */
/* #define TILE_NET_PARANOIA */
/* Default transmit lockup timeout period, in jiffies. */
#define TILE_NET_TIMEOUT (5 * HZ)
/* Default retry interval for bringing up the NetIO interface, in jiffies. */
#define TILE_NET_RETRY_INTERVAL (5 * HZ)
/* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
#define TILE_NET_DEVS 4
/* Paranoia. */
#if NET_IP_ALIGN != LIPP_PACKET_PADDING
#error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
#endif
/* Debug print. */
#ifdef TILE_NET_DEBUG
#define PDEBUG(fmt, args...) net_printk(fmt, ## args)
#else
#define PDEBUG(fmt, args...)
#endif
MODULE_AUTHOR("Tilera");
MODULE_LICENSE("GPL");
#define IS_MULTICAST(mac_addr) \
(((u8 *)(mac_addr))[0] & 0x01)
#define IS_BROADCAST(mac_addr) \
(((u16 *)(mac_addr))[0] == 0xffff)
/*
* Queue of incoming packets for a specific cpu and device.
*
* Includes a pointer to the "system" data, and the actual "user" data.
*/
struct tile_netio_queue {
netio_queue_impl_t *__system_part;
netio_queue_user_impl_t __user_part;
};
/*
* Statistics counters for a specific cpu and device.
*/
struct tile_net_stats_t {
u32 rx_packets;
u32 rx_bytes;
u32 tx_packets;
u32 tx_bytes;
};
/*
* Info for a specific cpu and device.
*
* ISSUE: There is a "dev" pointer in "napi" as well.
*/
struct tile_net_cpu {
/* The NAPI struct. */
struct napi_struct napi;
/* Packet queue. */
struct tile_netio_queue queue;
/* Statistics. */
struct tile_net_stats_t stats;
/* ISSUE: Is this needed? */
bool napi_enabled;
/* True if this tile has succcessfully registered with the IPP. */
bool registered;
/* True if the link was down last time we tried to register. */
bool link_down;
/* True if "egress_timer" is scheduled. */
bool egress_timer_scheduled;
/* Number of small sk_buffs which must still be provided. */
unsigned int num_needed_small_buffers;
/* Number of large sk_buffs which must still be provided. */
unsigned int num_needed_large_buffers;
/* A timer for handling egress completions. */
struct timer_list egress_timer;
};
/*
* Info for a specific device.
*/
struct tile_net_priv {
/* Our network device. */
struct net_device *dev;
/* The actual egress queue. */
lepp_queue_t *epp_queue;
/* Protects "epp_queue->cmd_tail" and "epp_queue->comp_tail" */
spinlock_t cmd_lock;
/* Protects "epp_queue->comp_head". */
spinlock_t comp_lock;
/* The hypervisor handle for this interface. */
int hv_devhdl;
/* The intr bit mask that IDs this device. */
u32 intr_id;
/* True iff "tile_net_open_aux()" has succeeded. */
int partly_opened;
/* True iff "tile_net_open_inner()" has succeeded. */
int fully_opened;
/* Effective network cpus. */
struct cpumask network_cpus_map;
/* Number of network cpus. */
int network_cpus_count;
/* Credits per network cpu. */
int network_cpus_credits;
/* Network stats. */
struct net_device_stats stats;
/* For NetIO bringup retries. */
struct delayed_work retry_work;
/* Quick access to per cpu data. */
struct tile_net_cpu *cpu[NR_CPUS];
};
/*
* The actual devices (xgbe0, xgbe1, gbe0, gbe1).
*/
static struct net_device *tile_net_devs[TILE_NET_DEVS];
/*
* The "tile_net_cpu" structures for each device.
*/
static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
/*
* True if "network_cpus" was specified.
*/
static bool network_cpus_used;
/*
* The actual cpus in "network_cpus".
*/
static struct cpumask network_cpus_map;
#ifdef TILE_NET_DEBUG
/*
* printk with extra stuff.
*
* We print the CPU we're running in brackets.
*/
static void net_printk(char *fmt, ...)
{
int i;
int len;
va_list args;
static char buf[256];
len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
va_start(args, fmt);
i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
va_end(args);
buf[255] = '\0';
pr_notice(buf);
}
#endif
#ifdef TILE_NET_DUMP_PACKETS
/*
* Dump a packet.
*/
static void dump_packet(unsigned char *data, unsigned long length, char *s)
{
unsigned long i;
static unsigned int count;
pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
data, length, s, count++);
pr_info("\n");
for (i = 0; i < length; i++) {
if ((i & 0xf) == 0)
sprintf(buf, "%8.8lx:", i);
sprintf(buf + strlen(buf), " %2.2x", data[i]);
if ((i & 0xf) == 0xf || i == length - 1)
pr_info("%s\n", buf);
}
}
#endif
/*
* Provide support for the __netio_fastio1() swint
* (see <hv/drv_xgbe_intf.h> for how it is used).
*
* The fastio swint2 call may clobber all the caller-saved registers.
* It rarely clobbers memory, but we allow for the possibility in
* the signature just to be on the safe side.
*
* Also, gcc doesn't seem to allow an input operand to be
* clobbered, so we fake it with dummy outputs.
*
* This function can't be static because of the way it is declared
* in the netio header.
*/
inline int __netio_fastio1(u32 fastio_index, u32 arg0)
{
long result, clobber_r1, clobber_r10;
asm volatile("swint2"
: "=R00" (result),
"=R01" (clobber_r1), "=R10" (clobber_r10)
: "R10" (fastio_index), "R01" (arg0)
: "memory", "r2", "r3", "r4",
"r5", "r6", "r7", "r8", "r9",
"r11", "r12", "r13", "r14",
"r15", "r16", "r17", "r18", "r19",
"r20", "r21", "r22", "r23", "r24",
"r25", "r26", "r27", "r28", "r29");
return result;
}
/*
* Provide a linux buffer to LIPP.
*/
static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
void *va, bool small)
{
struct tile_netio_queue *queue = &info->queue;
/* Convert "va" and "small" to "linux_buffer_t". */
unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
}
/*
* Provide a linux buffer for LIPP.
*/
static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
bool small)
{
/* ISSUE: What should we use here? */
unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
/* Round up to ensure to avoid "false sharing" with last cache line. */
unsigned int buffer_size =
(((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
/*
* ISSUE: Since CPAs are 38 bits, and we can only encode the
* high 31 bits in a "linux_buffer_t", the low 7 bits must be
* zero, and thus, we must align the actual "va" mod 128.
*/
const unsigned long align = 128;
struct sk_buff *skb;
void *va;
struct sk_buff **skb_ptr;
/* Note that "dev_alloc_skb()" adds NET_SKB_PAD more bytes, */
/* and also "reserves" that many bytes. */
/* ISSUE: Can we "share" the NET_SKB_PAD bytes with "skb_ptr"? */
int len = sizeof(*skb_ptr) + align + buffer_size;
while (1) {
/* Allocate (or fail). */
skb = dev_alloc_skb(len);
if (skb == NULL)
return false;
/* Make room for a back-pointer to 'skb'. */
skb_reserve(skb, sizeof(*skb_ptr));
/* Make sure we are aligned. */
skb_reserve(skb, -(long)skb->data & (align - 1));
/* This address is given to IPP. */
va = skb->data;
if (small)
break;
/* ISSUE: This has never been observed! */
/* Large buffers must not span a huge page. */
if (((((long)va & ~HPAGE_MASK) + 1535) & HPAGE_MASK) == 0)
break;
pr_err("Leaking unaligned linux buffer at %p.\n", va);
}
/* Skip two bytes to satisfy LIPP assumptions. */
/* Note that this aligns IP on a 16 byte boundary. */
/* ISSUE: Do this when the packet arrives? */
skb_reserve(skb, NET_IP_ALIGN);
/* Save a back-pointer to 'skb'. */
skb_ptr = va - sizeof(*skb_ptr);
*skb_ptr = skb;
/* Invalidate the packet buffer. */
if (!hash_default)
__inv_buffer(skb->data, buffer_size);
/* Make sure "skb_ptr" has been flushed. */
__insn_mf();
#ifdef TILE_NET_PARANOIA
#if CHIP_HAS_CBOX_HOME_MAP()
if (hash_default) {
HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
panic("Non-coherent ingress buffer!");
}
#endif
#endif
/* Provide the new buffer. */
tile_net_provide_linux_buffer(info, va, small);
return true;
}
/*
* Provide linux buffers for LIPP.
*/
static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
{
while (info->num_needed_small_buffers != 0) {
if (!tile_net_provide_needed_buffer(info, true))
goto oops;
info->num_needed_small_buffers--;
}
while (info->num_needed_large_buffers != 0) {
if (!tile_net_provide_needed_buffer(info, false))
goto oops;
info->num_needed_large_buffers--;
}
return;
oops:
/* Add a description to the page allocation failure dump. */
pr_notice("Could not provide a linux buffer to LIPP.\n");
}
/*
* Grab some LEPP completions, and store them in "comps", of size
* "comps_size", and return the number of completions which were
* stored, so the caller can free them.
*
* If "pending" is not NULL, it will be set to true if there might
* still be some pending completions caused by this tile, else false.
*/
static unsigned int tile_net_lepp_grab_comps(struct net_device *dev,
struct sk_buff *comps[],
unsigned int comps_size,
bool *pending)
{
struct tile_net_priv *priv = netdev_priv(dev);
lepp_queue_t *eq = priv->epp_queue;
unsigned int n = 0;
unsigned int comp_head;
unsigned int comp_busy;
unsigned int comp_tail;
spin_lock(&priv->comp_lock);
comp_head = eq->comp_head;
comp_busy = eq->comp_busy;
comp_tail = eq->comp_tail;
while (comp_head != comp_busy && n < comps_size) {
comps[n++] = eq->comps[comp_head];
LEPP_QINC(comp_head);
}
if (pending != NULL)
*pending = (comp_head != comp_tail);
eq->comp_head = comp_head;
spin_unlock(&priv->comp_lock);
return n;
}
/*
* Make sure the egress timer is scheduled.
*
* Note that we use "schedule if not scheduled" logic instead of the more
* obvious "reschedule" logic, because "reschedule" is fairly expensive.
*/
static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
{
if (!info->egress_timer_scheduled) {
mod_timer_pinned(&info->egress_timer, jiffies + 1);
info->egress_timer_scheduled = true;
}
}
/*
* The "function" for "info->egress_timer".
*
* This timer will reschedule itself as long as there are any pending
* completions expected (on behalf of any tile).
*
* ISSUE: Realistically, will the timer ever stop scheduling itself?
*
* ISSUE: This timer is almost never actually needed, so just use a global
* timer that can run on any tile.
*
* ISSUE: Maybe instead track number of expected completions, and free
* only that many, resetting to zero if "pending" is ever false.
*/
static void tile_net_handle_egress_timer(unsigned long arg)
{
struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
struct net_device *dev = info->napi.dev;
struct sk_buff *olds[32];
unsigned int wanted = 32;
unsigned int i, nolds = 0;
bool pending;
/* The timer is no longer scheduled. */
info->egress_timer_scheduled = false;
nolds = tile_net_lepp_grab_comps(dev, olds, wanted, &pending);
for (i = 0; i < nolds; i++)
kfree_skb(olds[i]);
/* Reschedule timer if needed. */
if (pending)
tile_net_schedule_egress_timer(info);
}
#ifdef IGNORE_DUP_ACKS
/*
* Help detect "duplicate" ACKs. These are sequential packets (for a
* given flow) which are exactly 66 bytes long, sharing everything but
* ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
* Tstamps=10@0x38. The ID's are +1, the Hsum's are -1, the Ack's are
* +N, and the Tstamps are usually identical.
*
* NOTE: Apparently truly duplicate acks (with identical "ack" values),
* should not be collapsed, as they are used for some kind of flow control.
*/
static bool is_dup_ack(char *s1, char *s2, unsigned int len)
{
int i;
unsigned long long ignorable = 0;
/* Identification. */
ignorable |= (1ULL << 0x12);
ignorable |= (1ULL << 0x13);
/* Header checksum. */
ignorable |= (1ULL << 0x18);
ignorable |= (1ULL << 0x19);
/* ACK. */
ignorable |= (1ULL << 0x2a);
ignorable |= (1ULL << 0x2b);
ignorable |= (1ULL << 0x2c);
ignorable |= (1ULL << 0x2d);
/* WinSize. */
ignorable |= (1ULL << 0x30);
ignorable |= (1ULL << 0x31);
/* Checksum. */
ignorable |= (1ULL << 0x32);
ignorable |= (1ULL << 0x33);
for (i = 0; i < len; i++, ignorable >>= 1) {
if ((ignorable & 1) || (s1[i] == s2[i]))
continue;
#ifdef TILE_NET_DEBUG
/* HACK: Mention non-timestamp diffs. */
if (i < 0x38 && i != 0x2f &&
net_ratelimit())
pr_info("Diff at 0x%x\n", i);
#endif
return false;
}
#ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
/* HACK: Do not suppress truly duplicate ACKs. */
/* ISSUE: Is this actually necessary or helpful? */
if (s1[0x2a] == s2[0x2a] &&
s1[0x2b] == s2[0x2b] &&
s1[0x2c] == s2[0x2c] &&
s1[0x2d] == s2[0x2d]) {
return false;
}
#endif
return true;
}
#endif
/*
* Like "tile_net_handle_packets()", but just discard packets.
*/
static void tile_net_discard_packets(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
struct tile_netio_queue *queue = &info->queue;
netio_queue_impl_t *qsp = queue->__system_part;
netio_queue_user_impl_t *qup = &queue->__user_part;
while (qup->__packet_receive_read !=
qsp->__packet_receive_queue.__packet_write) {
int index = qup->__packet_receive_read;
int index2_aux = index + sizeof(netio_pkt_t);
int index2 =
((index2_aux ==
qsp->__packet_receive_queue.__last_packet_plus_one) ?
0 : index2_aux);
netio_pkt_t *pkt = (netio_pkt_t *)
((unsigned long) &qsp[1] + index);
/* Extract the "linux_buffer_t". */
unsigned int buffer = pkt->__packet.word;
/* Convert "linux_buffer_t" to "va". */
void *va = __va((phys_addr_t)(buffer >> 1) << 7);
/* Acquire the associated "skb". */
struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
struct sk_buff *skb = *skb_ptr;
kfree_skb(skb);
/* Consume this packet. */
qup->__packet_receive_read = index2;
}
}
/*
* Handle the next packet. Return true if "processed", false if "filtered".
*/
static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
{
struct net_device *dev = info->napi.dev;
struct tile_netio_queue *queue = &info->queue;
netio_queue_impl_t *qsp = queue->__system_part;
netio_queue_user_impl_t *qup = &queue->__user_part;
struct tile_net_stats_t *stats = &info->stats;
int filter;
int index2_aux = index + sizeof(netio_pkt_t);
int index2 =
((index2_aux ==
qsp->__packet_receive_queue.__last_packet_plus_one) ?
0 : index2_aux);
netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
/* Extract the packet size. */
unsigned long len =
(NETIO_PKT_CUSTOM_LENGTH(pkt) +
NET_IP_ALIGN - NETIO_PACKET_PADDING);
/* Extract the "linux_buffer_t". */
unsigned int buffer = pkt->__packet.word;
/* Extract "small" (vs "large"). */
bool small = ((buffer & 1) != 0);
/* Convert "linux_buffer_t" to "va". */
void *va = __va((phys_addr_t)(buffer >> 1) << 7);
/* Extract the packet data pointer. */
/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
unsigned char *buf = va + NET_IP_ALIGN;
#ifdef IGNORE_DUP_ACKS
static int other;
static int final;
static int keep;
static int skip;
#endif
/* Invalidate the packet buffer. */
if (!hash_default)
__inv_buffer(buf, len);
/* ISSUE: Is this needed? */
dev->last_rx = jiffies;
#ifdef TILE_NET_DUMP_PACKETS
dump_packet(buf, len, "rx");
#endif /* TILE_NET_DUMP_PACKETS */
#ifdef TILE_NET_VERIFY_INGRESS
if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) &&
NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) {
/*
* FIXME: This complains about UDP packets
* with a "zero" checksum (bug 6624).
*/
#ifdef TILE_NET_PANIC_ON_BAD
dump_packet(buf, len, "rx");
panic("Bad L4 checksum.");
#else
pr_warning("Bad L4 checksum on %d byte packet.\n", len);
#endif
}
if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) &&
NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) {
dump_packet(buf, len, "rx");
panic("Bad L3 checksum.");
}
switch (NETIO_PKT_STATUS_M(metadata, pkt)) {
case NETIO_PKT_STATUS_OVERSIZE:
if (len >= 64) {
dump_packet(buf, len, "rx");
panic("Unexpected OVERSIZE.");
}
break;
case NETIO_PKT_STATUS_BAD:
#ifdef TILE_NET_PANIC_ON_BAD
dump_packet(buf, len, "rx");
panic("Unexpected BAD packet.");
#else
pr_warning("Unexpected BAD %d byte packet.\n", len);
#endif
}
#endif
filter = 0;
if (!(dev->flags & IFF_UP)) {
/* Filter packets received before we're up. */
filter = 1;
} else if (!(dev->flags & IFF_PROMISC)) {
/*
* FIXME: Implement HW multicast filter.
*/
if (!IS_MULTICAST(buf) && !IS_BROADCAST(buf)) {
/* Filter packets not for our address. */
const u8 *mine = dev->dev_addr;
filter = compare_ether_addr(mine, buf);
}
}
#ifdef IGNORE_DUP_ACKS
if (len != 66) {
/* FIXME: Must check "is_tcp_ack(buf, len)" somehow. */
other++;
} else if (index2 ==
qsp->__packet_receive_queue.__packet_write) {
final++;
} else {
netio_pkt_t *pkt2 = (netio_pkt_t *)
((unsigned long) &qsp[1] + index2);
netio_pkt_metadata_t *metadata2 =
NETIO_PKT_METADATA(pkt2);
/* Extract the packet size. */
unsigned long len2 =
(NETIO_PKT_CUSTOM_LENGTH(pkt2) +
NET_IP_ALIGN - NETIO_PACKET_PADDING);
if (len2 == 66 &&
NETIO_PKT_FLOW_HASH_M(metadata, pkt) ==
NETIO_PKT_FLOW_HASH_M(metadata2, pkt2)) {
/* Extract the "linux_buffer_t". */
unsigned int buffer2 = pkt2->__packet.word;
/* Convert "linux_buffer_t" to "va". */
void *va2 =
__va((phys_addr_t)(buffer2 >> 1) << 7);
/* Extract the packet data pointer. */
/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
unsigned char *buf2 = va2 + NET_IP_ALIGN;
/* Invalidate the packet buffer. */
if (!hash_default)
__inv_buffer(buf2, len2);
if (is_dup_ack(buf, buf2, len)) {
skip++;
filter = 1;
} else {
keep++;
}
}
}
if (net_ratelimit())
pr_info("Other %d Final %d Keep %d Skip %d.\n",
other, final, keep, skip);
#endif
if (filter) {
/* ISSUE: Update "drop" statistics? */
tile_net_provide_linux_buffer(info, va, small);
} else {
/* Acquire the associated "skb". */
struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
struct sk_buff *skb = *skb_ptr;
/* Paranoia. */
if (skb->data != buf)
panic("Corrupt linux buffer from LIPP! "
"VA=%p, skb=%p, skb->data=%p\n",
va, skb, skb->data);
/* Encode the actual packet length. */
skb_put(skb, len);
/* NOTE: This call also sets "skb->dev = dev". */
skb->protocol = eth_type_trans(skb, dev);
/* ISSUE: Discard corrupt packets? */
/* ISSUE: Discard packets with bad checksums? */
/* Avoid recomputing TCP/UDP checksums. */
if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_receive_skb(skb);
stats->rx_packets++;
stats->rx_bytes += len;
if (small)
info->num_needed_small_buffers++;
else
info->num_needed_large_buffers++;
}
/* Return four credits after every fourth packet. */
if (--qup->__receive_credit_remaining == 0) {
u32 interval = qup->__receive_credit_interval;
qup->__receive_credit_remaining = interval;
__netio_fastio_return_credits(qup->__fastio_index, interval);
}
/* Consume this packet. */
qup->__packet_receive_read = index2;
return !filter;
}
/*
* Handle some packets for the given device on the current CPU.
*
* ISSUE: The "rotting packet" race condition occurs if a packet
* arrives after the queue appears to be empty, and before the
* hypervisor interrupt is re-enabled.
*/
static int tile_net_poll(struct napi_struct *napi, int budget)
{
struct net_device *dev = napi->dev;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
struct tile_netio_queue *queue = &info->queue;
netio_queue_impl_t *qsp = queue->__system_part;
netio_queue_user_impl_t *qup = &queue->__user_part;
unsigned int work = 0;
while (1) {
int index = qup->__packet_receive_read;
if (index == qsp->__packet_receive_queue.__packet_write)
break;
if (tile_net_poll_aux(info, index)) {
if (++work >= budget)
goto done;
}
}
napi_complete(&info->napi);
/* Re-enable hypervisor interrupts. */
enable_percpu_irq(priv->intr_id);
/* HACK: Avoid the "rotting packet" problem. */
if (qup->__packet_receive_read !=
qsp->__packet_receive_queue.__packet_write)
napi_schedule(&info->napi);
/* ISSUE: Handle completions? */
done:
tile_net_provide_needed_buffers(info);
return work;
}
/*
* Handle an ingress interrupt for the given device on the current cpu.
*/
static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
/* Disable hypervisor interrupt. */
disable_percpu_irq(priv->intr_id);
napi_schedule(&info->napi);
return IRQ_HANDLED;
}
/*
* One time initialization per interface.
*/
static int tile_net_open_aux(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int ret;
int dummy;
unsigned int epp_lotar;
/*
* Find out where EPP memory should be homed.
*/
ret = hv_dev_pread(priv->hv_devhdl, 0,
(HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
NETIO_EPP_SHM_OFF);
if (ret < 0) {
pr_err("could not read epp_shm_queue lotar.\n");
return -EIO;
}
/*
* Home the page on the EPP.
*/
{
int epp_home = hv_lotar_to_cpu(epp_lotar);
struct page *page = virt_to_page(priv->epp_queue);
homecache_change_page_home(page, 0, epp_home);
}
/*
* Register the EPP shared memory queue.
*/
{
netio_ipp_address_t ea = {
.va = 0,
.pa = __pa(priv->epp_queue),
.pte = hv_pte(0),
.size = PAGE_SIZE,
};
ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
ret = hv_dev_pwrite(priv->hv_devhdl, 0,
(HV_VirtAddr)&ea,
sizeof(ea),
NETIO_EPP_SHM_OFF);
if (ret < 0)
return -EIO;
}
/*
* Start LIPP/LEPP.
*/
if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
pr_warning("Failed to start LIPP/LEPP.\n");
return -EIO;
}
return 0;
}
/*
* Register with hypervisor on each CPU.
*
* Strangely, this function does important things even if it "fails",
* which is especially common if the link is not up yet. Hopefully
* these things are all "harmless" if done twice!
*/
static void tile_net_register(void *dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info;
struct tile_netio_queue *queue;
/* Only network cpus can receive packets. */
int queue_id =
cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
netio_input_config_t config = {
.flags = 0,
.num_receive_packets = priv->network_cpus_credits,
.queue_id = queue_id
};
int ret = 0;
netio_queue_impl_t *queuep;
PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
if (!strcmp(dev->name, "xgbe0"))
info = &__get_cpu_var(hv_xgbe0);
else if (!strcmp(dev->name, "xgbe1"))
info = &__get_cpu_var(hv_xgbe1);
else if (!strcmp(dev->name, "gbe0"))
info = &__get_cpu_var(hv_gbe0);
else if (!strcmp(dev->name, "gbe1"))
info = &__get_cpu_var(hv_gbe1);
else
BUG();
/* Initialize the egress timer. */
init_timer(&info->egress_timer);
info->egress_timer.data = (long)info;
info->egress_timer.function = tile_net_handle_egress_timer;
priv->cpu[my_cpu] = info;
/*
* Register ourselves with the IPP.
*/
ret = hv_dev_pwrite(priv->hv_devhdl, 0,
(HV_VirtAddr)&config,
sizeof(netio_input_config_t),
NETIO_IPP_INPUT_REGISTER_OFF);
PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
ret);
if (ret < 0) {
printk(KERN_DEBUG "hv_dev_pwrite NETIO_IPP_INPUT_REGISTER_OFF"
" failure %d\n", ret);
info->link_down = (ret == NETIO_LINK_DOWN);
return;
}
/*
* Get the pointer to our queue's system part.
*/
ret = hv_dev_pread(priv->hv_devhdl, 0,
(HV_VirtAddr)&queuep,
sizeof(netio_queue_impl_t *),
NETIO_IPP_INPUT_REGISTER_OFF);
PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
ret);
PDEBUG("queuep %p\n", queuep);
if (ret <= 0) {
/* ISSUE: Shouldn't this be a fatal error? */
pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
return;
}
queue = &info->queue;
queue->__system_part = queuep;
memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
/* This is traditionally "config.num_receive_packets / 2". */
queue->__user_part.__receive_credit_interval = 4;
queue->__user_part.__receive_credit_remaining =
queue->__user_part.__receive_credit_interval;
/*
* Get a fastio index from the hypervisor.
* ISSUE: Shouldn't this check the result?
*/
ret = hv_dev_pread(priv->hv_devhdl, 0,
(HV_VirtAddr)&queue->__user_part.__fastio_index,
sizeof(queue->__user_part.__fastio_index),
NETIO_IPP_GET_FASTIO_OFF);
PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
netif_napi_add(dev, &info->napi, tile_net_poll, 64);
/* Now we are registered. */
info->registered = true;
}
/*
* Unregister with hypervisor on each CPU.
*/
static void tile_net_unregister(void *dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
int ret = 0;
int dummy = 0;
/* Do nothing if never registered. */
if (info == NULL)
return;
/* Do nothing if already unregistered. */
if (!info->registered)
return;
/*
* Unregister ourselves with LIPP.
*/
ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_UNREGISTER_OFF) returned %d\n",
ret);
if (ret < 0) {
/* FIXME: Just panic? */
pr_err("hv_dev_pwrite NETIO_IPP_INPUT_UNREGISTER_OFF"
" failure %d\n", ret);
}
/*
* Discard all packets still in our NetIO queue. Hopefully,
* once the unregister call is complete, there will be no
* packets still in flight on the IDN.
*/
tile_net_discard_packets(dev);
/* Reset state. */
info->num_needed_small_buffers = 0;
info->num_needed_large_buffers = 0;
/* Cancel egress timer. */
del_timer(&info->egress_timer);
info->egress_timer_scheduled = false;
netif_napi_del(&info->napi);
/* Now we are unregistered. */
info->registered = false;
}
/*
* Helper function for "tile_net_stop()".
*
* Also used to handle registration failure in "tile_net_open_inner()",
* when "fully_opened" is known to be false, and the various extra
* steps in "tile_net_stop()" are not necessary. ISSUE: It might be
* simpler if we could just call "tile_net_stop()" anyway.
*/
static void tile_net_stop_aux(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int dummy = 0;
/* Unregister all tiles, so LIPP will stop delivering packets. */
on_each_cpu(tile_net_unregister, (void *)dev, 1);
/* Stop LIPP/LEPP. */
if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
panic("Failed to stop LIPP/LEPP!\n");
priv->partly_opened = 0;
}
/*
* Disable ingress interrupts for the given device on the current cpu.
*/
static void tile_net_disable_intr(void *dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
/* Disable hypervisor interrupt. */
disable_percpu_irq(priv->intr_id);
/* Disable NAPI if needed. */
if (info != NULL && info->napi_enabled) {
napi_disable(&info->napi);
info->napi_enabled = false;
}
}
/*
* Enable ingress interrupts for the given device on the current cpu.
*/
static void tile_net_enable_intr(void *dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
/* Enable hypervisor interrupt. */
enable_percpu_irq(priv->intr_id);
/* Enable NAPI. */
napi_enable(&info->napi);
info->napi_enabled = true;
}
/*
* tile_net_open_inner does most of the work of bringing up the interface.
* It's called from tile_net_open(), and also from tile_net_retry_open().
* The return value is 0 if the interface was brought up, < 0 if
* tile_net_open() should return the return value as an error, and > 0 if
* tile_net_open() should return success and schedule a work item to
* periodically retry the bringup.
*/
static int tile_net_open_inner(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info;
struct tile_netio_queue *queue;
unsigned int irq;
int i;
/*
* First try to register just on the local CPU, and handle any
* semi-expected "link down" failure specially. Note that we
* do NOT call "tile_net_stop_aux()", unlike below.
*/
tile_net_register(dev);
info = priv->cpu[my_cpu];
if (!info->registered) {
if (info->link_down)
return 1;
return -EAGAIN;
}
/*
* Now register everywhere else. If any registration fails,
* even for "link down" (which might not be possible), we
* clean up using "tile_net_stop_aux()".
*/
smp_call_function(tile_net_register, (void *)dev, 1);
for_each_online_cpu(i) {
if (!priv->cpu[i]->registered) {
tile_net_stop_aux(dev);
return -EAGAIN;
}
}
queue = &info->queue;
/*
* Set the device intr bit mask.
* The tile_net_register above sets per tile __intr_id.
*/
priv->intr_id = queue->__system_part->__intr_id;
BUG_ON(!priv->intr_id);
/*
* Register the device interrupt handler.
* The __ffs() function returns the index into the interrupt handler
* table from the interrupt bit mask which should have one bit
* and one bit only set.
*/
irq = __ffs(priv->intr_id);
tile_irq_activate(irq, TILE_IRQ_PERCPU);
BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
0, dev->name, (void *)dev) != 0);
/* ISSUE: How could "priv->fully_opened" ever be "true" here? */
if (!priv->fully_opened) {
int dummy = 0;
/* Allocate initial buffers. */
int max_buffers =
priv->network_cpus_count * priv->network_cpus_credits;
info->num_needed_small_buffers =
min(LIPP_SMALL_BUFFERS, max_buffers);
info->num_needed_large_buffers =
min(LIPP_LARGE_BUFFERS, max_buffers);
tile_net_provide_needed_buffers(info);
if (info->num_needed_small_buffers != 0 ||
info->num_needed_large_buffers != 0)
panic("Insufficient memory for buffer stack!");
/* Start LIPP/LEPP and activate "ingress" at the shim. */
if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
panic("Failed to activate the LIPP Shim!\n");
priv->fully_opened = 1;
}
/* On each tile, enable the hypervisor to trigger interrupts. */
/* ISSUE: Do this before starting LIPP/LEPP? */
on_each_cpu(tile_net_enable_intr, (void *)dev, 1);
/* Start our transmit queue. */
netif_start_queue(dev);
return 0;
}
/*
* Called periodically to retry bringing up the NetIO interface,
* if it doesn't come up cleanly during tile_net_open().
*/
static void tile_net_open_retry(struct work_struct *w)
{
struct delayed_work *dw =
container_of(w, struct delayed_work, work);
struct tile_net_priv *priv =
container_of(dw, struct tile_net_priv, retry_work);
/*
* Try to bring the NetIO interface up. If it fails, reschedule
* ourselves to try again later; otherwise, tell Linux we now have
* a working link. ISSUE: What if the return value is negative?
*/
if (tile_net_open_inner(priv->dev))
schedule_delayed_work_on(singlethread_cpu, &priv->retry_work,
TILE_NET_RETRY_INTERVAL);
else
netif_carrier_on(priv->dev);
}
/*
* Called when a network interface is made active.
*
* Returns 0 on success, negative value on failure.
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*
* If the actual link is not available yet, then we tell Linux that
* we have no carrier, and we keep checking until the link comes up.
*/
static int tile_net_open(struct net_device *dev)
{
int ret = 0;
struct tile_net_priv *priv = netdev_priv(dev);
/*
* We rely on priv->partly_opened to tell us if this is the
* first time this interface is being brought up. If it is
* set, the IPP was already initialized and should not be
* initialized again.
*/
if (!priv->partly_opened) {
int count;
int credits;
/* Initialize LIPP/LEPP, and start the Shim. */
ret = tile_net_open_aux(dev);
if (ret < 0) {
pr_err("tile_net_open_aux failed: %d\n", ret);
return ret;
}
/* Analyze the network cpus. */
if (network_cpus_used)
cpumask_copy(&priv->network_cpus_map,
&network_cpus_map);
else
cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
count = cpumask_weight(&priv->network_cpus_map);
/* Limit credits to available buffers, and apply min. */
credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
/* Apply "GBE" max limit. */
/* ISSUE: Use higher limit for XGBE? */
credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
priv->network_cpus_count = count;
priv->network_cpus_credits = credits;
#ifdef TILE_NET_DEBUG
pr_info("Using %d network cpus, with %d credits each\n",
priv->network_cpus_count, priv->network_cpus_credits);
#endif
priv->partly_opened = 1;
}
/*
* Attempt to bring up the link.
*/
ret = tile_net_open_inner(dev);
if (ret <= 0) {
if (ret == 0)
netif_carrier_on(dev);
return ret;
}
/*
* We were unable to bring up the NetIO interface, but we want to
* try again in a little bit. Tell Linux that we have no carrier
* so it doesn't try to use the interface before the link comes up
* and then remember to try again later.
*/
netif_carrier_off(dev);
schedule_delayed_work_on(singlethread_cpu, &priv->retry_work,
TILE_NET_RETRY_INTERVAL);
return 0;
}
/*
* Disables a network interface.
*
* Returns 0, this is not allowed to fail.
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*
* ISSUE: Can this can be called while "tile_net_poll()" is running?
*/
static int tile_net_stop(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
bool pending = true;
PDEBUG("tile_net_stop()\n");
/* ISSUE: Only needed if not yet fully open. */
cancel_delayed_work_sync(&priv->retry_work);
/* Can't transmit any more. */
netif_stop_queue(dev);
/*
* Disable hypervisor interrupts on each tile.
*/
on_each_cpu(tile_net_disable_intr, (void *)dev, 1);
/*
* Unregister the interrupt handler.
* The __ffs() function returns the index into the interrupt handler
* table from the interrupt bit mask which should have one bit
* and one bit only set.
*/
if (priv->intr_id)
free_irq(__ffs(priv->intr_id), dev);
/*
* Drain all the LIPP buffers.
*/
while (true) {
int buffer;
/* NOTE: This should never fail. */
if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
break;
/* Stop when done. */
if (buffer == 0)
break;
{
/* Convert "linux_buffer_t" to "va". */
void *va = __va((phys_addr_t)(buffer >> 1) << 7);
/* Acquire the associated "skb". */
struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
struct sk_buff *skb = *skb_ptr;
kfree_skb(skb);
}
}
/* Stop LIPP/LEPP. */
tile_net_stop_aux(dev);
priv->fully_opened = 0;
/*
* XXX: ISSUE: It appears that, in practice anyway, by the
* time we get here, there are no pending completions.
*/
while (pending) {
struct sk_buff *olds[32];
unsigned int wanted = 32;
unsigned int i, nolds = 0;
nolds = tile_net_lepp_grab_comps(dev, olds,
wanted, &pending);
/* ISSUE: We have never actually seen this debug spew. */
if (nolds != 0)
pr_info("During tile_net_stop(), grabbed %d comps.\n",
nolds);
for (i = 0; i < nolds; i++)
kfree_skb(olds[i]);
}
/* Wipe the EPP queue. */
memset(priv->epp_queue, 0, sizeof(lepp_queue_t));
/* Evict the EPP queue. */
finv_buffer(priv->epp_queue, PAGE_SIZE);
return 0;
}
/*
* Prepare the "frags" info for the resulting LEPP command.
*
* If needed, flush the memory used by the frags.
*/
static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
struct sk_buff *skb,
void *b_data, unsigned int b_len)
{
unsigned int i, n = 0;
struct skb_shared_info *sh = skb_shinfo(skb);
phys_addr_t cpa;
if (b_len != 0) {
if (!hash_default)
finv_buffer_remote(b_data, b_len);
cpa = __pa(b_data);
frags[n].cpa_lo = cpa;
frags[n].cpa_hi = cpa >> 32;
frags[n].length = b_len;
frags[n].hash_for_home = hash_default;
n++;
}
for (i = 0; i < sh->nr_frags; i++) {
skb_frag_t *f = &sh->frags[i];
unsigned long pfn = page_to_pfn(f->page);
/* FIXME: Compute "hash_for_home" properly. */
/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
int hash_for_home = hash_default;
/* FIXME: Hmmm. */
if (!hash_default) {
void *va = pfn_to_kaddr(pfn) + f->page_offset;
BUG_ON(PageHighMem(f->page));
finv_buffer_remote(va, f->size);
}
cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
frags[n].cpa_lo = cpa;
frags[n].cpa_hi = cpa >> 32;
frags[n].length = f->size;
frags[n].hash_for_home = hash_for_home;
n++;
}
return n;
}
/*
* This function takes "skb", consisting of a header template and a
* payload, and hands it to LEPP, to emit as one or more segments,
* each consisting of a possibly modified header, plus a piece of the
* payload, via a process known as "tcp segmentation offload".
*
* Usually, "data" will contain the header template, of size "sh_len",
* and "sh->frags" will contain "skb->data_len" bytes of payload, and
* there will be "sh->gso_segs" segments.
*
* Sometimes, if "sendfile()" requires copying, we will be called with
* "data" containing the header and payload, with "frags" being empty.
*
* In theory, "sh->nr_frags" could be 3, but in practice, it seems
* that this will never actually happen.
*
* See "emulate_large_send_offload()" for some reference code, which
* does not handle checksumming.
*
* ISSUE: How do we make sure that high memory DMA does not migrate?
*/
static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
struct tile_net_stats_t *stats = &info->stats;
struct skb_shared_info *sh = skb_shinfo(skb);
unsigned char *data = skb->data;
/* The ip header follows the ethernet header. */
struct iphdr *ih = ip_hdr(skb);
unsigned int ih_len = ih->ihl * 4;
/* Note that "nh == ih", by definition. */
unsigned char *nh = skb_network_header(skb);
unsigned int eh_len = nh - data;
/* The tcp header follows the ip header. */
struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
unsigned int th_len = th->doff * 4;
/* The total number of header bytes. */
/* NOTE: This may be less than skb_headlen(skb). */
unsigned int sh_len = eh_len + ih_len + th_len;
/* The number of payload bytes at "skb->data + sh_len". */
/* This is non-zero for sendfile() without HIGHDMA. */
unsigned int b_len = skb_headlen(skb) - sh_len;
/* The total number of payload bytes. */
unsigned int d_len = b_len + skb->data_len;
/* The maximum payload size. */
unsigned int p_len = sh->gso_size;
/* The total number of segments. */
unsigned int num_segs = sh->gso_segs;
/* The temporary copy of the command. */
u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
/* Analyze the "frags". */
unsigned int num_frags =
tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
/* The size of the command, including frags and header. */
size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
/* The command header. */
lepp_tso_cmd_t cmd_init = {
.tso = true,
.header_size = sh_len,
.ip_offset = eh_len,
.tcp_offset = eh_len + ih_len,
.payload_size = p_len,
.num_frags = num_frags,
};
unsigned long irqflags;
lepp_queue_t *eq = priv->epp_queue;
struct sk_buff *olds[4];
unsigned int wanted = 4;
unsigned int i, nolds = 0;
unsigned int cmd_head, cmd_tail, cmd_next;
unsigned int comp_tail;
unsigned int free_slots;
/* Paranoia. */
BUG_ON(skb->protocol != htons(ETH_P_IP));
BUG_ON(ih->protocol != IPPROTO_TCP);
BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
BUG_ON(num_frags > LEPP_MAX_FRAGS);
/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
BUG_ON(num_segs <= 1);
/* Finish preparing the command. */
/* Copy the command header. */
*cmd = cmd_init;
/* Copy the "header". */
memcpy(&cmd->frags[num_frags], data, sh_len);
/* Prefetch and wait, to minimize time spent holding the spinlock. */
prefetch_L1(&eq->comp_tail);
prefetch_L1(&eq->cmd_tail);
mb();
/* Enqueue the command. */
spin_lock_irqsave(&priv->cmd_lock, irqflags);
/*
* Handle completions if needed to make room.
* HACK: Spin until there is sufficient room.
*/
free_slots = lepp_num_free_comp_slots(eq);
if (free_slots < 1) {
spin:
nolds += tile_net_lepp_grab_comps(dev, olds + nolds,
wanted - nolds, NULL);
if (lepp_num_free_comp_slots(eq) < 1)
goto spin;
}
cmd_head = eq->cmd_head;
cmd_tail = eq->cmd_tail;
/* NOTE: The "gotos" below are untested. */
/* Prepare to advance, detecting full queue. */
cmd_next = cmd_tail + cmd_size;
if (cmd_tail < cmd_head && cmd_next >= cmd_head)
goto spin;
if (cmd_next > LEPP_CMD_LIMIT) {
cmd_next = 0;
if (cmd_next == cmd_head)
goto spin;
}
/* Copy the command. */
memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
/* Advance. */
cmd_tail = cmd_next;
/* Record "skb" for eventual freeing. */
comp_tail = eq->comp_tail;
eq->comps[comp_tail] = skb;
LEPP_QINC(comp_tail);
eq->comp_tail = comp_tail;
/* Flush before allowing LEPP to handle the command. */
__insn_mf();
eq->cmd_tail = cmd_tail;
spin_unlock_irqrestore(&priv->cmd_lock, irqflags);
if (nolds == 0)
nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL);
/* Handle completions. */
for (i = 0; i < nolds; i++)
kfree_skb(olds[i]);
/* Update stats. */
stats->tx_packets += num_segs;
stats->tx_bytes += (num_segs * sh_len) + d_len;
/* Make sure the egress timer is scheduled. */
tile_net_schedule_egress_timer(info);
return NETDEV_TX_OK;
}
/*
* Transmit a packet (called by the kernel via "hard_start_xmit" hook).
*/
static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
int my_cpu = smp_processor_id();
struct tile_net_cpu *info = priv->cpu[my_cpu];
struct tile_net_stats_t *stats = &info->stats;
unsigned long irqflags;
struct skb_shared_info *sh = skb_shinfo(skb);
unsigned int len = skb->len;
unsigned char *data = skb->data;
unsigned int csum_start = skb->csum_start - skb_headroom(skb);
lepp_frag_t frags[LEPP_MAX_FRAGS];
unsigned int num_frags;
lepp_queue_t *eq = priv->epp_queue;
struct sk_buff *olds[4];
unsigned int wanted = 4;
unsigned int i, nolds = 0;
unsigned int cmd_size = sizeof(lepp_cmd_t);
unsigned int cmd_head, cmd_tail, cmd_next;
unsigned int comp_tail;
lepp_cmd_t cmds[LEPP_MAX_FRAGS];
unsigned int free_slots;
/*
* This is paranoia, since we think that if the link doesn't come
* up, telling Linux we have no carrier will keep it from trying
* to transmit. If it does, though, we can't execute this routine,
* since data structures we depend on aren't set up yet.
*/
if (!info->registered)
return NETDEV_TX_BUSY;
/* Save the timestamp. */
dev->trans_start = jiffies;
#ifdef TILE_NET_PARANOIA
#if CHIP_HAS_CBOX_HOME_MAP()
if (hash_default) {
HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
panic("Non-coherent egress buffer!");
}
#endif
#endif
#ifdef TILE_NET_DUMP_PACKETS
/* ISSUE: Does not dump the "frags". */
dump_packet(data, skb_headlen(skb), "tx");
#endif /* TILE_NET_DUMP_PACKETS */
if (sh->gso_size != 0)
return tile_net_tx_tso(skb, dev);
/* Prepare the commands. */
num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
for (i = 0; i < num_frags; i++) {
bool final = (i == num_frags - 1);
lepp_cmd_t cmd = {
.cpa_lo = frags[i].cpa_lo,
.cpa_hi = frags[i].cpa_hi,
.length = frags[i].length,
.hash_for_home = frags[i].hash_for_home,
.send_completion = final,
.end_of_packet = final
};
if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
cmd.compute_checksum = 1;
cmd.checksum_data.bits.start_byte = csum_start;
cmd.checksum_data.bits.count = len - csum_start;
cmd.checksum_data.bits.destination_byte =
csum_start + skb->csum_offset;
}
cmds[i] = cmd;
}
/* Prefetch and wait, to minimize time spent holding the spinlock. */
prefetch_L1(&eq->comp_tail);
prefetch_L1(&eq->cmd_tail);
mb();
/* Enqueue the commands. */
spin_lock_irqsave(&priv->cmd_lock, irqflags);
/*
* Handle completions if needed to make room.
* HACK: Spin until there is sufficient room.
*/
free_slots = lepp_num_free_comp_slots(eq);
if (free_slots < 1) {
spin:
nolds += tile_net_lepp_grab_comps(dev, olds + nolds,
wanted - nolds, NULL);
if (lepp_num_free_comp_slots(eq) < 1)
goto spin;
}
cmd_head = eq->cmd_head;
cmd_tail = eq->cmd_tail;
/* NOTE: The "gotos" below are untested. */
/* Copy the commands, or fail. */
for (i = 0; i < num_frags; i++) {
/* Prepare to advance, detecting full queue. */
cmd_next = cmd_tail + cmd_size;
if (cmd_tail < cmd_head && cmd_next >= cmd_head)
goto spin;
if (cmd_next > LEPP_CMD_LIMIT) {
cmd_next = 0;
if (cmd_next == cmd_head)
goto spin;
}
/* Copy the command. */
*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
/* Advance. */
cmd_tail = cmd_next;
}
/* Record "skb" for eventual freeing. */
comp_tail = eq->comp_tail;
eq->comps[comp_tail] = skb;
LEPP_QINC(comp_tail);
eq->comp_tail = comp_tail;
/* Flush before allowing LEPP to handle the command. */
__insn_mf();
eq->cmd_tail = cmd_tail;
spin_unlock_irqrestore(&priv->cmd_lock, irqflags);
if (nolds == 0)
nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL);
/* Handle completions. */
for (i = 0; i < nolds; i++)
kfree_skb(olds[i]);
/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
stats->tx_packets++;
stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
/* Make sure the egress timer is scheduled. */
tile_net_schedule_egress_timer(info);
return NETDEV_TX_OK;
}
/*
* Deal with a transmit timeout.
*/
static void tile_net_tx_timeout(struct net_device *dev)
{
PDEBUG("tile_net_tx_timeout()\n");
PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
jiffies - dev->trans_start);
/* XXX: ISSUE: This doesn't seem useful for us. */
netif_wake_queue(dev);
}
/*
* Ioctl commands.
*/
static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/*
* Get System Network Statistics.
*
* Returns the address of the device statistics structure.
*/
static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
u32 rx_packets = 0;
u32 tx_packets = 0;
u32 rx_bytes = 0;
u32 tx_bytes = 0;
int i;
for_each_online_cpu(i) {
if (priv->cpu[i]) {
rx_packets += priv->cpu[i]->stats.rx_packets;
rx_bytes += priv->cpu[i]->stats.rx_bytes;
tx_packets += priv->cpu[i]->stats.tx_packets;
tx_bytes += priv->cpu[i]->stats.tx_bytes;
}
}
priv->stats.rx_packets = rx_packets;
priv->stats.rx_bytes = rx_bytes;
priv->stats.tx_packets = tx_packets;
priv->stats.tx_bytes = tx_bytes;
return &priv->stats;
}
/*
* Change the "mtu".
*
* The "change_mtu" method is usually not needed.
* If you need it, it must be like this.
*/
static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
{
PDEBUG("tile_net_change_mtu()\n");
/* Check ranges. */
if ((new_mtu < 68) || (new_mtu > 1500))
return -EINVAL;
/* Accept the value. */
dev->mtu = new_mtu;
return 0;
}
/*
* Change the Ethernet Address of the NIC.
*
* The hypervisor driver does not support changing MAC address. However,
* the IPP does not do anything with the MAC address, so the address which
* gets used on outgoing packets, and which is accepted on incoming packets,
* is completely up to the NetIO program or kernel driver which is actually
* handling them.
*
* Returns 0 on success, negative on failure.
*/
static int tile_net_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
/* ISSUE: Note that "dev_addr" is now a pointer. */
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return 0;
}
/*
* Obtain the MAC address from the hypervisor.
* This must be done before opening the device.
*/
static int tile_net_get_mac(struct net_device *dev)
{
struct tile_net_priv *priv = netdev_priv(dev);
char hv_dev_name[32];
int len;
__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
int ret;
/* For example, "xgbe0". */
strcpy(hv_dev_name, dev->name);
len = strlen(hv_dev_name);
/* For example, "xgbe/0". */
hv_dev_name[len] = hv_dev_name[len - 1];
hv_dev_name[len - 1] = '/';
len++;
/* For example, "xgbe/0/native_hash". */
strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
/* Get the hypervisor handle for this device. */
priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
PDEBUG("hv_dev_open(%s) returned %d %p\n",
hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
if (priv->hv_devhdl < 0) {
if (priv->hv_devhdl == HV_ENODEV)
printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
hv_dev_name);
else
printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
hv_dev_name, priv->hv_devhdl);
return -1;
}
/*
* Read the hardware address from the hypervisor.
* ISSUE: Note that "dev_addr" is now a pointer.
*/
offset.bits.class = NETIO_PARAM;
offset.bits.addr = NETIO_PARAM_MAC;
ret = hv_dev_pread(priv->hv_devhdl, 0,
(HV_VirtAddr)dev->dev_addr, dev->addr_len,
offset.word);
PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
if (ret <= 0) {
printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
dev->name);
/*
* Since the device is configured by the hypervisor but we
* can't get its MAC address, we are most likely running
* the simulator, so let's generate a random MAC address.
*/
random_ether_addr(dev->dev_addr);
}
return 0;
}
static struct net_device_ops tile_net_ops = {
.ndo_open = tile_net_open,
.ndo_stop = tile_net_stop,
.ndo_start_xmit = tile_net_tx,
.ndo_do_ioctl = tile_net_ioctl,
.ndo_get_stats = tile_net_get_stats,
.ndo_change_mtu = tile_net_change_mtu,
.ndo_tx_timeout = tile_net_tx_timeout,
.ndo_set_mac_address = tile_net_set_mac_address
};
/*
* The setup function.
*
* This uses ether_setup() to assign various fields in dev, including
* setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
*/
static void tile_net_setup(struct net_device *dev)
{
PDEBUG("tile_net_setup()\n");
ether_setup(dev);
dev->netdev_ops = &tile_net_ops;
dev->watchdog_timeo = TILE_NET_TIMEOUT;
/* We want lockless xmit. */
dev->features |= NETIF_F_LLTX;
/* We support hardware tx checksums. */
dev->features |= NETIF_F_HW_CSUM;
/* We support scatter/gather. */
dev->features |= NETIF_F_SG;
/* We support TSO. */
dev->features |= NETIF_F_TSO;
#ifdef TILE_NET_GSO
/* We support GSO. */
dev->features |= NETIF_F_GSO;
#endif
if (hash_default)
dev->features |= NETIF_F_HIGHDMA;
/* ISSUE: We should support NETIF_F_UFO. */
dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
dev->mtu = TILE_NET_MTU;
}
/*
* Allocate the device structure, register the device, and obtain the
* MAC address from the hypervisor.
*/
static struct net_device *tile_net_dev_init(const char *name)
{
int ret;
struct net_device *dev;
struct tile_net_priv *priv;
struct page *page;
/*
* Allocate the device structure. This allocates "priv", calls
* tile_net_setup(), and saves "name". Normally, "name" is a
* template, instantiated by register_netdev(), but not for us.
*/
dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
if (!dev) {
pr_err("alloc_netdev(%s) failed\n", name);
return NULL;
}
priv = netdev_priv(dev);
/* Initialize "priv". */
memset(priv, 0, sizeof(*priv));
/* Save "dev" for "tile_net_open_retry()". */
priv->dev = dev;
INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
spin_lock_init(&priv->cmd_lock);
spin_lock_init(&priv->comp_lock);
/* Allocate "epp_queue". */
BUG_ON(get_order(sizeof(lepp_queue_t)) != 0);
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
if (!page) {
free_netdev(dev);
return NULL;
}
priv->epp_queue = page_address(page);
/* Register the network device. */
ret = register_netdev(dev);
if (ret) {
pr_err("register_netdev %s failed %d\n", dev->name, ret);
free_page((unsigned long)priv->epp_queue);
free_netdev(dev);
return NULL;
}
/* Get the MAC address. */
ret = tile_net_get_mac(dev);
if (ret < 0) {
unregister_netdev(dev);
free_page((unsigned long)priv->epp_queue);
free_netdev(dev);
return NULL;
}
return dev;
}
/*
* Module cleanup.
*/
static void tile_net_cleanup(void)
{
int i;
for (i = 0; i < TILE_NET_DEVS; i++) {
if (tile_net_devs[i]) {
struct net_device *dev = tile_net_devs[i];
struct tile_net_priv *priv = netdev_priv(dev);
unregister_netdev(dev);
finv_buffer(priv->epp_queue, PAGE_SIZE);
free_page((unsigned long)priv->epp_queue);
free_netdev(dev);
}
}
}
/*
* Module initialization.
*/
static int tile_net_init_module(void)
{
pr_info("Tilera IPP Net Driver\n");
tile_net_devs[0] = tile_net_dev_init("xgbe0");
tile_net_devs[1] = tile_net_dev_init("xgbe1");
tile_net_devs[2] = tile_net_dev_init("gbe0");
tile_net_devs[3] = tile_net_dev_init("gbe1");
return 0;
}
#ifndef MODULE
/*
* The "network_cpus" boot argument specifies the cpus that are dedicated
* to handle ingress packets.
*
* The parameter should be in the form "network_cpus=m-n[,x-y]", where
* m, n, x, y are integer numbers that represent the cpus that can be
* neither a dedicated cpu nor a dataplane cpu.
*/
static int __init network_cpus_setup(char *str)
{
int rc = cpulist_parse_crop(str, &network_cpus_map);
if (rc != 0) {
pr_warning("network_cpus=%s: malformed cpu list\n",
str);
} else {
/* Remove dedicated cpus. */
cpumask_and(&network_cpus_map, &network_cpus_map,
cpu_possible_mask);
if (cpumask_empty(&network_cpus_map)) {
pr_warning("Ignoring network_cpus='%s'.\n",
str);
} else {
char buf[1024];
cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
pr_info("Linux network CPUs: %s\n", buf);
network_cpus_used = true;
}
}
return 0;
}
__setup("network_cpus=", network_cpus_setup);
#endif
module_init(tile_net_init_module);
module_exit(tile_net_cleanup);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment