Commit e7858f52 authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'cpu_stop' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into sched/core

parents 27a9da65 bbf1bb3e
......@@ -182,16 +182,6 @@ Similarly, sched_expedited RCU provides the following:
sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0
state: -1 / 0:0 3:0 4:0
As before, the first four lines are similar to those for RCU.
The last line shows the task-migration state. The first number is
-1 if synchronize_sched_expedited() is idle, -2 if in the process of
posting wakeups to the migration kthreads, and N when waiting on CPU N.
Each of the colon-separated fields following the "/" is a CPU:state pair.
Valid states are "0" for idle, "1" for waiting for quiescent state,
"2" for passed through quiescent state, and "3" when a race with a
CPU-hotplug event forces use of the synchronize_sched() primitive.
USAGE
......
......@@ -391,7 +391,6 @@ static void __init time_init_wq(void)
if (time_sync_wq)
return;
time_sync_wq = create_singlethread_workqueue("timesync");
stop_machine_create();
}
/*
......
......@@ -80,12 +80,6 @@ static void do_suspend(void)
shutting_down = SHUTDOWN_SUSPEND;
err = stop_machine_create();
if (err) {
printk(KERN_ERR "xen suspend: failed to setup stop_machine %d\n", err);
goto out;
}
#ifdef CONFIG_PREEMPT
/* If the kernel is preemptible, we need to freeze all the processes
to prevent them from being in the middle of a pagetable update
......@@ -93,7 +87,7 @@ static void do_suspend(void)
err = freeze_processes();
if (err) {
printk(KERN_ERR "xen suspend: freeze failed %d\n", err);
goto out_destroy_sm;
goto out;
}
#endif
......@@ -136,12 +130,8 @@ static void do_suspend(void)
out_thaw:
#ifdef CONFIG_PREEMPT
thaw_processes();
out_destroy_sm:
#endif
stop_machine_destroy();
out:
#endif
shutting_down = SHUTDOWN_INVALID;
}
#endif /* CONFIG_PM_SLEEP */
......
......@@ -60,8 +60,6 @@ static inline long rcu_batches_completed_bh(void)
return 0;
}
extern int rcu_expedited_torture_stats(char *page);
static inline void rcu_force_quiescent_state(void)
{
}
......
......@@ -35,7 +35,6 @@ struct notifier_block;
extern void rcu_sched_qs(int cpu);
extern void rcu_bh_qs(int cpu);
extern int rcu_needs_cpu(int cpu);
extern int rcu_expedited_torture_stats(char *page);
#ifdef CONFIG_TREE_PREEMPT_RCU
......
#ifndef _LINUX_STOP_MACHINE
#define _LINUX_STOP_MACHINE
/* "Bogolock": stop the entire machine, disable interrupts. This is a
very heavy lock, which is equivalent to grabbing every spinlock
(and more). So the "read" side to such a lock is anything which
disables preeempt. */
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/list.h>
#include <asm/system.h>
/*
* stop_cpu[s]() is simplistic per-cpu maximum priority cpu
* monopolization mechanism. The caller can specify a non-sleeping
* function to be executed on a single or multiple cpus preempting all
* other processes and monopolizing those cpus until it finishes.
*
* Resources for this mechanism are preallocated when a cpu is brought
* up and requests are guaranteed to be served as long as the target
* cpus are online.
*/
typedef int (*cpu_stop_fn_t)(void *arg);
#ifdef CONFIG_SMP
struct cpu_stop_work {
struct list_head list; /* cpu_stopper->works */
cpu_stop_fn_t fn;
void *arg;
struct cpu_stop_done *done;
};
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg);
void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf);
int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg);
int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg);
#else /* CONFIG_SMP */
#include <linux/workqueue.h>
struct cpu_stop_work {
struct work_struct work;
cpu_stop_fn_t fn;
void *arg;
};
static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
int ret = -ENOENT;
preempt_disable();
if (cpu == smp_processor_id())
ret = fn(arg);
preempt_enable();
return ret;
}
static void stop_one_cpu_nowait_workfn(struct work_struct *work)
{
struct cpu_stop_work *stwork =
container_of(work, struct cpu_stop_work, work);
preempt_disable();
stwork->fn(stwork->arg);
preempt_enable();
}
static inline void stop_one_cpu_nowait(unsigned int cpu,
cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf)
{
if (cpu == smp_processor_id()) {
INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn);
work_buf->fn = fn;
work_buf->arg = arg;
schedule_work(&work_buf->work);
}
}
static inline int stop_cpus(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg)
{
if (cpumask_test_cpu(raw_smp_processor_id(), cpumask))
return stop_one_cpu(raw_smp_processor_id(), fn, arg);
return -ENOENT;
}
static inline int try_stop_cpus(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg)
{
return stop_cpus(cpumask, fn, arg);
}
#endif /* CONFIG_SMP */
/*
* stop_machine "Bogolock": stop the entire machine, disable
* interrupts. This is a very heavy lock, which is equivalent to
* grabbing every spinlock (and more). So the "read" side to such a
* lock is anything which disables preeempt.
*/
#if defined(CONFIG_STOP_MACHINE) && defined(CONFIG_SMP)
/**
......@@ -36,24 +124,7 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
*/
int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
/**
* stop_machine_create: create all stop_machine threads
*
* Description: This causes all stop_machine threads to be created before
* stop_machine actually gets called. This can be used by subsystems that
* need a non failing stop_machine infrastructure.
*/
int stop_machine_create(void);
/**
* stop_machine_destroy: destroy all stop_machine threads
*
* Description: This causes all stop_machine threads which were created with
* stop_machine_create to be destroyed again.
*/
void stop_machine_destroy(void);
#else
#else /* CONFIG_STOP_MACHINE && CONFIG_SMP */
static inline int stop_machine(int (*fn)(void *), void *data,
const struct cpumask *cpus)
......@@ -65,8 +136,5 @@ static inline int stop_machine(int (*fn)(void *), void *data,
return ret;
}
static inline int stop_machine_create(void) { return 0; }
static inline void stop_machine_destroy(void) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */
#endif /* _LINUX_STOP_MACHINE */
......@@ -68,7 +68,7 @@ obj-$(CONFIG_USER_NS) += user_namespace.o
obj-$(CONFIG_PID_NS) += pid_namespace.o
obj-$(CONFIG_IKCONFIG) += configs.o
obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o
obj-$(CONFIG_STOP_MACHINE) += stop_machine.o
obj-$(CONFIG_SMP) += stop_machine.o
obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o
obj-$(CONFIG_AUDITSYSCALL) += auditsc.o
......
......@@ -266,9 +266,6 @@ int __ref cpu_down(unsigned int cpu)
{
int err;
err = stop_machine_create();
if (err)
return err;
cpu_maps_update_begin();
if (cpu_hotplug_disabled) {
......@@ -280,7 +277,6 @@ int __ref cpu_down(unsigned int cpu)
out:
cpu_maps_update_done();
stop_machine_destroy();
return err;
}
EXPORT_SYMBOL(cpu_down);
......@@ -361,9 +357,6 @@ int disable_nonboot_cpus(void)
{
int cpu, first_cpu, error;
error = stop_machine_create();
if (error)
return error;
cpu_maps_update_begin();
first_cpu = cpumask_first(cpu_online_mask);
/*
......@@ -394,7 +387,6 @@ int disable_nonboot_cpus(void)
printk(KERN_ERR "Non-boot CPUs are not disabled\n");
}
cpu_maps_update_done();
stop_machine_destroy();
return error;
}
......
......@@ -723,16 +723,8 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
return -EFAULT;
name[MODULE_NAME_LEN-1] = '\0';
/* Create stop_machine threads since free_module relies on
* a non-failing stop_machine call. */
ret = stop_machine_create();
if (ret)
return ret;
if (mutex_lock_interruptible(&module_mutex) != 0) {
ret = -EINTR;
goto out_stop;
}
if (mutex_lock_interruptible(&module_mutex) != 0)
return -EINTR;
mod = find_module(name);
if (!mod) {
......@@ -792,8 +784,6 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
out:
mutex_unlock(&module_mutex);
out_stop:
stop_machine_destroy();
return ret;
}
......
......@@ -669,7 +669,7 @@ static struct rcu_torture_ops sched_expedited_ops = {
.sync = synchronize_sched_expedited,
.cb_barrier = NULL,
.fqs = rcu_sched_force_quiescent_state,
.stats = rcu_expedited_torture_stats,
.stats = NULL,
.irq_capable = 1,
.name = "sched_expedited"
};
......
......@@ -55,9 +55,9 @@
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stop_machine.h>
#include <linux/sysctl.h>
#include <linux/syscalls.h>
#include <linux/times.h>
......@@ -539,15 +539,13 @@ struct rq {
int post_schedule;
int active_balance;
int push_cpu;
struct cpu_stop_work active_balance_work;
/* cpu of this runqueue: */
int cpu;
int online;
unsigned long avg_load_per_task;
struct task_struct *migration_thread;
struct list_head migration_queue;
u64 rt_avg;
u64 age_stamp;
u64 idle_stamp;
......@@ -2037,21 +2035,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
__set_task_cpu(p, new_cpu);
}
struct migration_req {
struct list_head list;
struct migration_arg {
struct task_struct *task;
int dest_cpu;
struct completion done;
};
static int migration_cpu_stop(void *data);
/*
* The task's runqueue lock must be held.
* Returns true if you have to wait for migration thread.
*/
static int
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
static bool migrate_task(struct task_struct *p, int dest_cpu)
{
struct rq *rq = task_rq(p);
......@@ -2059,15 +2054,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
* If the task is not on a runqueue (and not running), then
* the next wake-up will properly place the task.
*/
if (!p->se.on_rq && !task_running(rq, p))
return 0;
init_completion(&req->done);
req->task = p;
req->dest_cpu = dest_cpu;
list_add(&req->list, &rq->migration_queue);
return 1;
return p->se.on_rq || task_running(rq, p);
}
/*
......@@ -3110,7 +3097,6 @@ static void update_cpu_load(struct rq *this_rq)
void sched_exec(void)
{
struct task_struct *p = current;
struct migration_req req;
unsigned long flags;
struct rq *rq;
int dest_cpu;
......@@ -3124,17 +3110,11 @@ void sched_exec(void)
* select_task_rq() can race against ->cpus_allowed
*/
if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
likely(cpu_active(dest_cpu)) &&
migrate_task(p, dest_cpu, &req)) {
/* Need to wait for migration thread (might exit: take ref). */
struct task_struct *mt = rq->migration_thread;
likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
struct migration_arg arg = { p, dest_cpu };
get_task_struct(mt);
task_rq_unlock(rq, &flags);
wake_up_process(mt);
put_task_struct(mt);
wait_for_completion(&req.done);
stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
return;
}
unlock:
......@@ -5290,17 +5270,15 @@ static inline void sched_init_granularity(void)
/*
* This is how migration works:
*
* 1) we queue a struct migration_req structure in the source CPU's
* runqueue and wake up that CPU's migration thread.
* 2) we down() the locked semaphore => thread blocks.
* 3) migration thread wakes up (implicitly it forces the migrated
* thread off the CPU)
* 4) it gets the migration request and checks whether the migrated
* task is still in the wrong runqueue.
* 5) if it's in the wrong runqueue then the migration thread removes
* 1) we invoke migration_cpu_stop() on the target CPU using
* stop_one_cpu().
* 2) stopper starts to run (implicitly forcing the migrated thread
* off the CPU)
* 3) it checks whether the migrated task is still in the wrong runqueue.
* 4) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 6) migration thread up()s the semaphore.
* 7) we wake up and the migration is done.
* 5) stopper completes and stop_one_cpu() returns and the migration
* is done.
*/
/*
......@@ -5314,9 +5292,9 @@ static inline void sched_init_granularity(void)
*/
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
struct migration_req req;
unsigned long flags;
struct rq *rq;
unsigned int dest_cpu;
int ret = 0;
/*
......@@ -5354,15 +5332,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
if (cpumask_test_cpu(task_cpu(p), new_mask))
goto out;
if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
if (migrate_task(p, dest_cpu)) {
struct migration_arg arg = { p, dest_cpu };
/* Need help from migration thread: drop lock and wait. */
struct task_struct *mt = rq->migration_thread;
get_task_struct(mt);
task_rq_unlock(rq, &flags);
wake_up_process(mt);
put_task_struct(mt);
wait_for_completion(&req.done);
stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
tlb_migrate_finish(p->mm);
return 0;
}
......@@ -5420,70 +5395,22 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
return ret;
}
#define RCU_MIGRATION_IDLE 0
#define RCU_MIGRATION_NEED_QS 1
#define RCU_MIGRATION_GOT_QS 2
#define RCU_MIGRATION_MUST_SYNC 3
/*
* migration_thread - this is a highprio system thread that performs
* thread migration by bumping thread off CPU then 'pushing' onto
* another runqueue.
* migration_cpu_stop - this will be executed by a highprio stopper thread
* and performs thread migration by bumping thread off CPU then
* 'pushing' onto another runqueue.
*/
static int migration_thread(void *data)
static int migration_cpu_stop(void *data)
{
int badcpu;
int cpu = (long)data;
struct rq *rq;
rq = cpu_rq(cpu);
BUG_ON(rq->migration_thread != current);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
struct migration_req *req;
struct list_head *head;
raw_spin_lock_irq(&rq->lock);
if (cpu_is_offline(cpu)) {
raw_spin_unlock_irq(&rq->lock);
break;
}
if (rq->active_balance) {
active_load_balance(rq, cpu);
rq->active_balance = 0;
}
head = &rq->migration_queue;
if (list_empty(head)) {
raw_spin_unlock_irq(&rq->lock);
schedule();
set_current_state(TASK_INTERRUPTIBLE);
continue;
}
req = list_entry(head->next, struct migration_req, list);
list_del_init(head->next);
struct migration_arg *arg = data;
if (req->task != NULL) {
raw_spin_unlock(&rq->lock);
__migrate_task(req->task, cpu, req->dest_cpu);
} else if (likely(cpu == (badcpu = smp_processor_id()))) {
req->dest_cpu = RCU_MIGRATION_GOT_QS;
raw_spin_unlock(&rq->lock);
} else {
req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
raw_spin_unlock(&rq->lock);
WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
}
/*
* The original target cpu might have gone down and we might
* be on another cpu but it doesn't matter.
*/
local_irq_disable();
__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
local_irq_enable();
complete(&req->done);
}
__set_current_state(TASK_RUNNING);
return 0;
}
......@@ -5850,35 +5777,20 @@ static void set_rq_offline(struct rq *rq)
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
struct task_struct *p;
int cpu = (long)hcpu;
unsigned long flags;
struct rq *rq;
struct rq *rq = cpu_rq(cpu);
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
if (IS_ERR(p))
return NOTIFY_BAD;
kthread_bind(p, cpu);
/* Must be high prio: stop_machine expects to yield to it. */
rq = task_rq_lock(p, &flags);
__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
task_rq_unlock(rq, &flags);
get_task_struct(p);
cpu_rq(cpu)->migration_thread = p;
rq->calc_load_update = calc_load_update;
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
/* Strictly unnecessary, as first user will wake it. */
wake_up_process(cpu_rq(cpu)->migration_thread);
/* Update our root-domain */
rq = cpu_rq(cpu);
raw_spin_lock_irqsave(&rq->lock, flags);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
......@@ -5889,25 +5801,9 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!cpu_rq(cpu)->migration_thread)
break;
/* Unbind it from offline cpu so it can run. Fall thru. */
kthread_bind(cpu_rq(cpu)->migration_thread,
cpumask_any(cpu_online_mask));
kthread_stop(cpu_rq(cpu)->migration_thread);
put_task_struct(cpu_rq(cpu)->migration_thread);
cpu_rq(cpu)->migration_thread = NULL;
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
migrate_live_tasks(cpu);
rq = cpu_rq(cpu);
kthread_stop(rq->migration_thread);
put_task_struct(rq->migration_thread);
rq->migration_thread = NULL;
/* Idle task back to normal (off runqueue, low prio) */
raw_spin_lock_irq(&rq->lock);
deactivate_task(rq, rq->idle, 0);
......@@ -5918,29 +5814,11 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
migrate_nr_uninterruptible(rq);
BUG_ON(rq->nr_running != 0);
calc_global_load_remove(rq);
/*
* No need to migrate the tasks: it was best-effort if
* they didn't take sched_hotcpu_mutex. Just wake up
* the requestors.
*/
raw_spin_lock_irq(&rq->lock);
while (!list_empty(&rq->migration_queue)) {
struct migration_req *req;
req = list_entry(rq->migration_queue.next,
struct migration_req, list);
list_del_init(&req->list);
raw_spin_unlock_irq(&rq->lock);
complete(&req->done);
raw_spin_lock_irq(&rq->lock);
}
raw_spin_unlock_irq(&rq->lock);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
/* Update our root-domain */
rq = cpu_rq(cpu);
raw_spin_lock_irqsave(&rq->lock, flags);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
......@@ -7757,10 +7635,8 @@ void __init sched_init(void)
rq->push_cpu = 0;
rq->cpu = i;
rq->online = 0;
rq->migration_thread = NULL;
rq->idle_stamp = 0;
rq->avg_idle = 2*sysctl_sched_migration_cost;
INIT_LIST_HEAD(&rq->migration_queue);
rq_attach_root(rq, &def_root_domain);
#endif
init_rq_hrtick(rq);
......@@ -9054,43 +8930,32 @@ struct cgroup_subsys cpuacct_subsys = {
#ifndef CONFIG_SMP
int rcu_expedited_torture_stats(char *page)
{
return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
void synchronize_sched_expedited(void)
{
barrier();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
#else /* #ifndef CONFIG_SMP */
static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1
static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
int rcu_expedited_torture_stats(char *page)
static int synchronize_sched_expedited_cpu_stop(void *data)
{
int cnt = 0;
int cpu;
cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
for_each_online_cpu(cpu) {
cnt += sprintf(&page[cnt], " %d:%d",
cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
}
cnt += sprintf(&page[cnt], "\n");
return cnt;
/*
* There must be a full memory barrier on each affected CPU
* between the time that try_stop_cpus() is called and the
* time that it returns.
*
* In the current initial implementation of cpu_stop, the
* above condition is already met when the control reaches
* this point and the following smp_mb() is not strictly
* necessary. Do smp_mb() anyway for documentation and
* robustness against future implementation changes.
*/
smp_mb(); /* See above comment block. */
return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
static long synchronize_sched_expedited_count;
/*
* Wait for an rcu-sched grace period to elapse, but use "big hammer"
......@@ -9104,18 +8969,14 @@ static long synchronize_sched_expedited_count;
*/
void synchronize_sched_expedited(void)
{
int cpu;
unsigned long flags;
bool need_full_sync = 0;
struct rq *rq;
struct migration_req *req;
long snap;
int trycount = 0;
int snap, trycount = 0;
smp_mb(); /* ensure prior mod happens before capturing snap. */
snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
snap = atomic_read(&synchronize_sched_expedited_count) + 1;
get_online_cpus();
while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
while (try_stop_cpus(cpu_online_mask,
synchronize_sched_expedited_cpu_stop,
NULL) == -EAGAIN) {
put_online_cpus();
if (trycount++ < 10)
udelay(trycount * num_online_cpus());
......@@ -9123,41 +8984,15 @@ void synchronize_sched_expedited(void)
synchronize_sched();
return;
}
if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
smp_mb(); /* ensure test happens before caller kfree */
return;
}
get_online_cpus();
}
rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
for_each_online_cpu(cpu) {
rq = cpu_rq(cpu);
req = &per_cpu(rcu_migration_req, cpu);
init_completion(&req->done);
req->task = NULL;
req->dest_cpu = RCU_MIGRATION_NEED_QS;
raw_spin_lock_irqsave(&rq->lock, flags);
list_add(&req->list, &rq->migration_queue);
raw_spin_unlock_irqrestore(&rq->lock, flags);
wake_up_process(rq->migration_thread);
}
for_each_online_cpu(cpu) {
rcu_expedited_state = cpu;
req = &per_cpu(rcu_migration_req, cpu);
rq = cpu_rq(cpu);
wait_for_completion(&req->done);
raw_spin_lock_irqsave(&rq->lock, flags);
if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
need_full_sync = 1;
req->dest_cpu = RCU_MIGRATION_IDLE;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
synchronize_sched_expedited_count++;
mutex_unlock(&rcu_sched_expedited_mutex);
atomic_inc(&synchronize_sched_expedited_count);
smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
put_online_cpus();
if (need_full_sync)
synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
......
......@@ -2798,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}
static int active_load_balance_cpu_stop(void *data);
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
......@@ -2887,8 +2889,9 @@ static int load_balance(int this_cpu, struct rq *this_rq,
if (need_active_balance(sd, sd_idle, idle)) {
raw_spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the migration_thread, if the curr
* task on busiest cpu can't be moved to this_cpu
/* don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest cpu can't be
* moved to this_cpu
*/
if (!cpumask_test_cpu(this_cpu,
&busiest->curr->cpus_allowed)) {
......@@ -2898,14 +2901,22 @@ static int load_balance(int this_cpu, struct rq *this_rq,
goto out_one_pinned;
}
/*
* ->active_balance synchronizes accesses to
* ->active_balance_work. Once set, it's cleared
* only after active load balance is finished.
*/
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
raw_spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance)
wake_up_process(busiest->migration_thread);
stop_one_cpu_nowait(cpu_of(busiest),
active_load_balance_cpu_stop, busiest,
&busiest->active_balance_work);
/*
* We've kicked active balancing, reset the failure
......@@ -3012,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
}
/*
* active_load_balance is run by migration threads. It pushes running tasks
* off the busiest CPU onto idle CPUs. It requires at least 1 task to be
* running on each physical CPU where possible, and avoids physical /
* logical imbalances.
*
* Called with busiest_rq locked.
* active_load_balance_cpu_stop is run by cpu stopper. It pushes
* running tasks off the busiest CPU onto idle CPUs. It requires at
* least 1 task to be running on each physical CPU where possible, and
* avoids physical / logical imbalances.
*/
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
static int active_load_balance_cpu_stop(void *data)
{
struct rq *busiest_rq = data;
int busiest_cpu = cpu_of(busiest_rq);
int target_cpu = busiest_rq->push_cpu;
struct rq *target_rq = cpu_rq(target_cpu);
struct sched_domain *sd;
struct rq *target_rq;
raw_spin_lock_irq(&busiest_rq->lock);
/* make sure the requested cpu hasn't gone down in the meantime */
if (unlikely(busiest_cpu != smp_processor_id() ||
!busiest_rq->active_balance))
goto out_unlock;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
return;
target_rq = cpu_rq(target_cpu);
goto out_unlock;
/*
* This condition is "impossible", if it occurs
......@@ -3058,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
schedstat_inc(sd, alb_failed);
}
double_unlock_balance(busiest_rq, target_rq);
out_unlock:
busiest_rq->active_balance = 0;
raw_spin_unlock_irq(&busiest_rq->lock);
return 0;
}
#ifdef CONFIG_NO_HZ
......
/* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
* GPL v2 and any later version.
/*
* kernel/stop_machine.c
*
* Copyright (C) 2008, 2005 IBM Corporation.
* Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
* Copyright (C) 2010 SUSE Linux Products GmbH
* Copyright (C) 2010 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2 and any later version.
*/
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/stop_machine.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <asm/atomic.h>
#include <asm/uaccess.h>
/*
* Structure to determine completion condition and record errors. May
* be shared by works on different cpus.
*/
struct cpu_stop_done {
atomic_t nr_todo; /* nr left to execute */
bool executed; /* actually executed? */
int ret; /* collected return value */
struct completion completion; /* fired if nr_todo reaches 0 */
};
/* the actual stopper, one per every possible cpu, enabled on online cpus */
struct cpu_stopper {
spinlock_t lock;
struct list_head works; /* list of pending works */
struct task_struct *thread; /* stopper thread */
bool enabled; /* is this stopper enabled? */
};
static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
{
memset(done, 0, sizeof(*done));
atomic_set(&done->nr_todo, nr_todo);
init_completion(&done->completion);
}
/* signal completion unless @done is NULL */
static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
{
if (done) {
if (executed)
done->executed = true;
if (atomic_dec_and_test(&done->nr_todo))
complete(&done->completion);
}
}
/* queue @work to @stopper. if offline, @work is completed immediately */
static void cpu_stop_queue_work(struct cpu_stopper *stopper,
struct cpu_stop_work *work)
{
unsigned long flags;
spin_lock_irqsave(&stopper->lock, flags);
if (stopper->enabled) {
list_add_tail(&work->list, &stopper->works);
wake_up_process(stopper->thread);
} else
cpu_stop_signal_done(work->done, false);
spin_unlock_irqrestore(&stopper->lock, flags);
}
/**
* stop_one_cpu - stop a cpu
* @cpu: cpu to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Execute @fn(@arg) on @cpu. @fn is run in a process context with
* the highest priority preempting any task on the cpu and
* monopolizing it. This function returns after the execution is
* complete.
*
* This function doesn't guarantee @cpu stays online till @fn
* completes. If @cpu goes down in the middle, execution may happen
* partially or fully on different cpus. @fn should either be ready
* for that or the caller should ensure that @cpu stays online until
* this function completes.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -ENOENT if @fn(@arg) was not executed because @cpu was offline;
* otherwise, the return value of @fn.
*/
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_done done;
struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
cpu_stop_init_done(&done, 1);
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
wait_for_completion(&done.completion);
return done.executed ? done.ret : -ENOENT;
}
/**
* stop_one_cpu_nowait - stop a cpu but don't wait for completion
* @cpu: cpu to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Similar to stop_one_cpu() but doesn't wait for completion. The
* caller is responsible for ensuring @work_buf is currently unused
* and will remain untouched until stopper starts executing @fn.
*
* CONTEXT:
* Don't care.
*/
void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf)
{
*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
}
/* static data for stop_cpus */
static DEFINE_MUTEX(stop_cpus_mutex);
static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_work *work;
struct cpu_stop_done done;
unsigned int cpu;
/* initialize works and done */
for_each_cpu(cpu, cpumask) {
work = &per_cpu(stop_cpus_work, cpu);
work->fn = fn;
work->arg = arg;
work->done = &done;
}
cpu_stop_init_done(&done, cpumask_weight(cpumask));
/*
* Disable preemption while queueing to avoid getting
* preempted by a stopper which might wait for other stoppers
* to enter @fn which can lead to deadlock.
*/
preempt_disable();
for_each_cpu(cpu, cpumask)
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
&per_cpu(stop_cpus_work, cpu));
preempt_enable();
wait_for_completion(&done.completion);
return done.executed ? done.ret : -ENOENT;
}
/**
* stop_cpus - stop multiple cpus
* @cpumask: cpus to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
* @fn is run in a process context with the highest priority
* preempting any task on the cpu and monopolizing it. This function
* returns after all executions are complete.
*
* This function doesn't guarantee the cpus in @cpumask stay online
* till @fn completes. If some cpus go down in the middle, execution
* on the cpu may happen partially or fully on different cpus. @fn
* should either be ready for that or the caller should ensure that
* the cpus stay online until this function completes.
*
* All stop_cpus() calls are serialized making it safe for @fn to wait
* for all cpus to start executing it.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -ENOENT if @fn(@arg) was not executed at all because all cpus in
* @cpumask were offline; otherwise, 0 if all executions of @fn
* returned 0, any non zero return value if any returned non zero.
*/
int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
int ret;
/* static works are used, process one request at a time */
mutex_lock(&stop_cpus_mutex);
ret = __stop_cpus(cpumask, fn, arg);
mutex_unlock(&stop_cpus_mutex);
return ret;
}
/**
* try_stop_cpus - try to stop multiple cpus
* @cpumask: cpus to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Identical to stop_cpus() except that it fails with -EAGAIN if
* someone else is already using the facility.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -EAGAIN if someone else is already stopping cpus, -ENOENT if
* @fn(@arg) was not executed at all because all cpus in @cpumask were
* offline; otherwise, 0 if all executions of @fn returned 0, any non
* zero return value if any returned non zero.
*/
int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
int ret;
/* static works are used, process one request at a time */
if (!mutex_trylock(&stop_cpus_mutex))
return -EAGAIN;
ret = __stop_cpus(cpumask, fn, arg);
mutex_unlock(&stop_cpus_mutex);
return ret;
}
static int cpu_stopper_thread(void *data)
{
struct cpu_stopper *stopper = data;
struct cpu_stop_work *work;
int ret;
repeat:
set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 0;
}
work = NULL;
spin_lock_irq(&stopper->lock);
if (!list_empty(&stopper->works)) {
work = list_first_entry(&stopper->works,
struct cpu_stop_work, list);
list_del_init(&work->list);
}
spin_unlock_irq(&stopper->lock);
if (work) {
cpu_stop_fn_t fn = work->fn;
void *arg = work->arg;
struct cpu_stop_done *done = work->done;
char ksym_buf[KSYM_NAME_LEN];
__set_current_state(TASK_RUNNING);
/* cpu stop callbacks are not allowed to sleep */
preempt_disable();
ret = fn(arg);
if (ret)
done->ret = ret;
/* restore preemption and check it's still balanced */
preempt_enable();
WARN_ONCE(preempt_count(),
"cpu_stop: %s(%p) leaked preempt count\n",
kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
ksym_buf), arg);
cpu_stop_signal_done(done, true);
} else
schedule();
goto repeat;
}
/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
unsigned int cpu = (unsigned long)hcpu;
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
struct cpu_stop_work *work;
struct task_struct *p;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
BUG_ON(stopper->thread || stopper->enabled ||
!list_empty(&stopper->works));
p = kthread_create(cpu_stopper_thread, stopper, "migration/%d",
cpu);
if (IS_ERR(p))
return NOTIFY_BAD;
sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
get_task_struct(p);
stopper->thread = p;
break;
case CPU_ONLINE:
kthread_bind(stopper->thread, cpu);
/* strictly unnecessary, as first user will wake it */
wake_up_process(stopper->thread);
/* mark enabled */
spin_lock_irq(&stopper->lock);
stopper->enabled = true;
spin_unlock_irq(&stopper->lock);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_DEAD:
/* kill the stopper */
kthread_stop(stopper->thread);
/* drain remaining works */
spin_lock_irq(&stopper->lock);
list_for_each_entry(work, &stopper->works, list)
cpu_stop_signal_done(work->done, false);
stopper->enabled = false;
spin_unlock_irq(&stopper->lock);
/* release the stopper */
put_task_struct(stopper->thread);
stopper->thread = NULL;
break;
#endif
}
return NOTIFY_OK;
}
/*
* Give it a higher priority so that cpu stopper is available to other
* cpu notifiers. It currently shares the same priority as sched
* migration_notifier.
*/
static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
.notifier_call = cpu_stop_cpu_callback,
.priority = 10,
};
static int __init cpu_stop_init(void)
{
void *bcpu = (void *)(long)smp_processor_id();
unsigned int cpu;
int err;
for_each_possible_cpu(cpu) {
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
spin_lock_init(&stopper->lock);
INIT_LIST_HEAD(&stopper->works);
}
/* start one for the boot cpu */
err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
bcpu);
BUG_ON(err == NOTIFY_BAD);
cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
register_cpu_notifier(&cpu_stop_cpu_notifier);
return 0;
}
early_initcall(cpu_stop_init);
#ifdef CONFIG_STOP_MACHINE
/* This controls the threads on each CPU. */
enum stopmachine_state {
......@@ -26,174 +390,94 @@ enum stopmachine_state {
/* Exit */
STOPMACHINE_EXIT,
};
static enum stopmachine_state state;
struct stop_machine_data {
int (*fn)(void *);
void *data;
int fnret;
/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
unsigned int num_threads;
const struct cpumask *active_cpus;
enum stopmachine_state state;
atomic_t thread_ack;
};
/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
static unsigned int num_threads;
static atomic_t thread_ack;
static DEFINE_MUTEX(lock);
/* setup_lock protects refcount, stop_machine_wq and stop_machine_work. */
static DEFINE_MUTEX(setup_lock);
/* Users of stop_machine. */
static int refcount;
static struct workqueue_struct *stop_machine_wq;
static struct stop_machine_data active, idle;
static const struct cpumask *active_cpus;
static void __percpu *stop_machine_work;
static void set_state(enum stopmachine_state newstate)
static void set_state(struct stop_machine_data *smdata,
enum stopmachine_state newstate)
{
/* Reset ack counter. */
atomic_set(&thread_ack, num_threads);
atomic_set(&smdata->thread_ack, smdata->num_threads);
smp_wmb();
state = newstate;
smdata->state = newstate;
}
/* Last one to ack a state moves to the next state. */
static void ack_state(void)
static void ack_state(struct stop_machine_data *smdata)
{
if (atomic_dec_and_test(&thread_ack))
set_state(state + 1);
if (atomic_dec_and_test(&smdata->thread_ack))
set_state(smdata, smdata->state + 1);
}
/* This is the actual function which stops the CPU. It runs
* in the context of a dedicated stopmachine workqueue. */
static void stop_cpu(struct work_struct *unused)
/* This is the cpu_stop function which stops the CPU. */
static int stop_machine_cpu_stop(void *data)
{
struct stop_machine_data *smdata = data;
enum stopmachine_state curstate = STOPMACHINE_NONE;
struct stop_machine_data *smdata = &idle;
int cpu = smp_processor_id();
int err;
int cpu = smp_processor_id(), err = 0;
bool is_active;
if (!smdata->active_cpus)
is_active = cpu == cpumask_first(cpu_online_mask);
else
is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
if (!active_cpus) {
if (cpu == cpumask_first(cpu_online_mask))
smdata = &active;
} else {
if (cpumask_test_cpu(cpu, active_cpus))
smdata = &active;
}
/* Simple state machine */
do {
/* Chill out and ensure we re-read stopmachine_state. */
cpu_relax();
if (state != curstate) {
curstate = state;
if (smdata->state != curstate) {
curstate = smdata->state;
switch (curstate) {
case STOPMACHINE_DISABLE_IRQ:
local_irq_disable();
hard_irq_disable();
break;
case STOPMACHINE_RUN:
/* On multiple CPUs only a single error code
* is needed to tell that something failed. */
if (is_active)
err = smdata->fn(smdata->data);
if (err)
smdata->fnret = err;
break;
default:
break;
}
ack_state();
ack_state(smdata);
}
} while (curstate != STOPMACHINE_EXIT);
local_irq_enable();
return err;
}
/* Callback for CPUs which aren't supposed to do anything. */
static int chill(void *unused)
{
return 0;
}
int stop_machine_create(void)
{
mutex_lock(&setup_lock);
if (refcount)
goto done;
stop_machine_wq = create_rt_workqueue("kstop");
if (!stop_machine_wq)
goto err_out;
stop_machine_work = alloc_percpu(struct work_struct);
if (!stop_machine_work)
goto err_out;
done:
refcount++;
mutex_unlock(&setup_lock);
return 0;
err_out:
if (stop_machine_wq)
destroy_workqueue(stop_machine_wq);
mutex_unlock(&setup_lock);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(stop_machine_create);
void stop_machine_destroy(void)
{
mutex_lock(&setup_lock);
refcount--;
if (refcount)
goto done;
destroy_workqueue(stop_machine_wq);
free_percpu(stop_machine_work);
done:
mutex_unlock(&setup_lock);
}
EXPORT_SYMBOL_GPL(stop_machine_destroy);
int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
{
struct work_struct *sm_work;
int i, ret;
/* Set up initial state. */
mutex_lock(&lock);
num_threads = num_online_cpus();
active_cpus = cpus;
active.fn = fn;
active.data = data;
active.fnret = 0;
idle.fn = chill;
idle.data = NULL;
set_state(STOPMACHINE_PREPARE);
/* Schedule the stop_cpu work on all cpus: hold this CPU so one
* doesn't hit this CPU until we're ready. */
get_cpu();
for_each_online_cpu(i) {
sm_work = per_cpu_ptr(stop_machine_work, i);
INIT_WORK(sm_work, stop_cpu);
queue_work_on(i, stop_machine_wq, sm_work);
}
/* This will release the thread on our CPU. */
put_cpu();
flush_workqueue(stop_machine_wq);
ret = active.fnret;
mutex_unlock(&lock);
return ret;
struct stop_machine_data smdata = { .fn = fn, .data = data,
.num_threads = num_online_cpus(),
.active_cpus = cpus };
/* Set the initial state and stop all online cpus. */
set_state(&smdata, STOPMACHINE_PREPARE);
return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
}
int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
{
int ret;
ret = stop_machine_create();
if (ret)
return ret;
/* No CPUs can come up or down during this. */
get_online_cpus();
ret = __stop_machine(fn, data, cpus);
put_online_cpus();
stop_machine_destroy();
return ret;
}
EXPORT_SYMBOL_GPL(stop_machine);
#endif /* CONFIG_STOP_MACHINE */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment