Commit e81792fb authored by Jussi Kivilinna's avatar Jussi Kivilinna Committed by Herbert Xu

crypto: serpent-sse2 - prepare serpent-sse2 glue code into generic x86 glue...

crypto: serpent-sse2 - prepare serpent-sse2 glue code into generic x86 glue code for 128bit block ciphers

Block cipher implementations in arch/x86/crypto/ contain common glue code that
is currently duplicated in each module (camellia-x86_64, twofish-x86_64-3way,
twofish-avx, serpent-sse2 and serpent-avx). This patch prepares serpent-sse2
glue into generic glue code for all 128bit block ciphers to use in
arch/x86/crypto.
Signed-off-by: default avatarJussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent a9629d71
......@@ -48,105 +48,129 @@
#include <linux/workqueue.h>
#include <linux/spinlock.h>
static inline bool serpent_fpu_begin(bool fpu_enabled, unsigned int nbytes)
typedef void (*common_glue_func_t)(void *ctx, u8 *dst, const u8 *src);
typedef void (*common_glue_cbc_func_t)(void *ctx, u128 *dst, const u128 *src);
typedef void (*common_glue_ctr_func_t)(void *ctx, u128 *dst, const u128 *src,
u128 *iv);
#define GLUE_FUNC_CAST(fn) ((common_glue_func_t)(fn))
#define GLUE_CBC_FUNC_CAST(fn) ((common_glue_cbc_func_t)(fn))
#define GLUE_CTR_FUNC_CAST(fn) ((common_glue_ctr_func_t)(fn))
struct common_glue_func_entry {
unsigned int num_blocks; /* number of blocks that @fn will process */
union {
common_glue_func_t ecb;
common_glue_cbc_func_t cbc;
common_glue_ctr_func_t ctr;
} fn_u;
};
struct common_glue_ctx {
unsigned int num_funcs;
int fpu_blocks_limit; /* -1 means fpu not needed at all */
/*
* First funcs entry must have largest num_blocks and last funcs entry
* must have num_blocks == 1!
*/
struct common_glue_func_entry funcs[];
};
static inline bool glue_fpu_begin(unsigned int bsize, int fpu_blocks_limit,
struct blkcipher_desc *desc,
bool fpu_enabled, unsigned int nbytes)
{
if (likely(fpu_blocks_limit < 0))
return false;
if (fpu_enabled)
return true;
/* SSE2 is only used when chunk to be processed is large enough, so
* do not enable FPU until it is necessary.
/*
* Vector-registers are only used when chunk to be processed is large
* enough, so do not enable FPU until it is necessary.
*/
if (nbytes < SERPENT_BLOCK_SIZE * SERPENT_PARALLEL_BLOCKS)
if (nbytes < bsize * (unsigned int)fpu_blocks_limit)
return false;
if (desc) {
/* prevent sleeping if FPU is in use */
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
}
kernel_fpu_begin();
return true;
}
static inline void serpent_fpu_end(bool fpu_enabled)
static inline void glue_fpu_end(bool fpu_enabled)
{
if (fpu_enabled)
kernel_fpu_end();
}
static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk,
bool enc)
static int __glue_ecb_crypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
void *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = 128 / 8;
unsigned int nbytes, i, func_bytes;
bool fpu_enabled = false;
struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = SERPENT_BLOCK_SIZE;
unsigned int nbytes;
int err;
err = blkcipher_walk_virt(desc, walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
while ((nbytes = walk->nbytes)) {
u8 *wsrc = walk->src.virt.addr;
u8 *wdst = walk->dst.virt.addr;
fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes);
fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit,
desc, fpu_enabled, nbytes);
for (i = 0; i < gctx->num_funcs; i++) {
func_bytes = bsize * gctx->funcs[i].num_blocks;
/* Process multi-block batch */
if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) {
if (nbytes >= func_bytes) {
do {
if (enc)
serpent_enc_blk_xway(ctx, wdst, wsrc);
else
serpent_dec_blk_xway(ctx, wdst, wsrc);
gctx->funcs[i].fn_u.ecb(ctx, wdst,
wsrc);
wsrc += bsize * SERPENT_PARALLEL_BLOCKS;
wdst += bsize * SERPENT_PARALLEL_BLOCKS;
nbytes -= bsize * SERPENT_PARALLEL_BLOCKS;
} while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS);
wsrc += func_bytes;
wdst += func_bytes;
nbytes -= func_bytes;
} while (nbytes >= func_bytes);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
if (enc)
__serpent_encrypt(ctx, wdst, wsrc);
else
__serpent_decrypt(ctx, wdst, wsrc);
wsrc += bsize;
wdst += bsize;
nbytes -= bsize;
} while (nbytes >= bsize);
}
done:
err = blkcipher_walk_done(desc, walk, nbytes);
}
serpent_fpu_end(fpu_enabled);
glue_fpu_end(fpu_enabled);
return err;
}
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, true);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
int glue_ecb_crypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_crypt(desc, &walk, false);
return __glue_ecb_crypt_128bit(gctx, desc, &walk);
}
static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
static unsigned int __glue_cbc_encrypt_128bit(const common_glue_func_t fn,
struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = SERPENT_BLOCK_SIZE;
void *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = 128 / 8;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
......@@ -154,7 +178,7 @@ static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
do {
u128_xor(dst, src, iv);
__serpent_encrypt(ctx, (u8 *)dst, (u8 *)dst);
fn(ctx, (u8 *)dst, (u8 *)dst);
iv = dst;
src += 1;
......@@ -166,7 +190,9 @@ static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
return nbytes;
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
int glue_cbc_encrypt_128bit(const common_glue_func_t fn,
struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
......@@ -176,24 +202,26 @@ static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
err = blkcipher_walk_virt(desc, &walk);
while ((nbytes = walk.nbytes)) {
nbytes = __cbc_encrypt(desc, &walk);
nbytes = __glue_cbc_encrypt_128bit(fn, desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
return err;
}
static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
static unsigned int
__glue_cbc_decrypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = SERPENT_BLOCK_SIZE;
void *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = 128 / 8;
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ivs[SERPENT_PARALLEL_BLOCKS - 1];
u128 last_iv;
int i;
unsigned int num_blocks, func_bytes;
unsigned int i;
/* Start of the last block. */
src += nbytes / bsize - 1;
......@@ -201,20 +229,18 @@ static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
last_iv = *src;
for (i = 0; i < gctx->num_funcs; i++) {
num_blocks = gctx->funcs[i].num_blocks;
func_bytes = bsize * num_blocks;
/* Process multi-block batch */
if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) {
if (nbytes >= func_bytes) {
do {
nbytes -= bsize * (SERPENT_PARALLEL_BLOCKS - 1);
src -= SERPENT_PARALLEL_BLOCKS - 1;
dst -= SERPENT_PARALLEL_BLOCKS - 1;
for (i = 0; i < SERPENT_PARALLEL_BLOCKS - 1; i++)
ivs[i] = src[i];
serpent_dec_blk_xway(ctx, (u8 *)dst, (u8 *)src);
nbytes -= func_bytes - bsize;
src -= num_blocks - 1;
dst -= num_blocks - 1;
for (i = 0; i < SERPENT_PARALLEL_BLOCKS - 1; i++)
u128_xor(dst + (i + 1), dst + (i + 1), ivs + i);
gctx->funcs[i].fn_u.cbc(ctx, dst, src);
nbytes -= bsize;
if (nbytes < bsize)
......@@ -223,23 +249,11 @@ static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
} while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS);
} while (nbytes >= func_bytes);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
for (;;) {
__serpent_decrypt(ctx, (u8 *)dst, (u8 *)src);
nbytes -= bsize;
if (nbytes < bsize)
break;
u128_xor(dst, dst, src - 1);
src -= 1;
dst -= 1;
}
done:
......@@ -249,24 +263,27 @@ static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
return nbytes;
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
int glue_cbc_decrypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
const unsigned int bsize = 128 / 8;
bool fpu_enabled = false;
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
while ((nbytes = walk.nbytes)) {
fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes);
nbytes = __cbc_decrypt(desc, &walk);
fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit,
desc, fpu_enabled, nbytes);
nbytes = __glue_cbc_decrypt_128bit(gctx, desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
serpent_fpu_end(fpu_enabled);
glue_fpu_end(fpu_enabled);
return err;
}
......@@ -289,109 +306,232 @@ static inline void u128_inc(u128 *i)
i->a++;
}
static void ctr_crypt_final(struct blkcipher_desc *desc,
static void glue_ctr_crypt_final_128bit(const common_glue_ctr_func_t fn_ctr,
struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
u8 *ctrblk = walk->iv;
u8 keystream[SERPENT_BLOCK_SIZE];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
void *ctx = crypto_blkcipher_ctx(desc->tfm);
u8 *src = (u8 *)walk->src.virt.addr;
u8 *dst = (u8 *)walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
u128 ctrblk;
u128 tmp;
be128_to_u128(&ctrblk, (be128 *)walk->iv);
__serpent_encrypt(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
memcpy(&tmp, src, nbytes);
fn_ctr(ctx, &tmp, &tmp, &ctrblk);
memcpy(dst, &tmp, nbytes);
crypto_inc(ctrblk, SERPENT_BLOCK_SIZE);
u128_to_be128((be128 *)walk->iv, &ctrblk);
}
static unsigned int __ctr_crypt(struct blkcipher_desc *desc,
static unsigned int __glue_ctr_crypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc,
struct blkcipher_walk *walk)
{
struct serpent_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
const unsigned int bsize = SERPENT_BLOCK_SIZE;
const unsigned int bsize = 128 / 8;
void *ctx = crypto_blkcipher_ctx(desc->tfm);
unsigned int nbytes = walk->nbytes;
u128 *src = (u128 *)walk->src.virt.addr;
u128 *dst = (u128 *)walk->dst.virt.addr;
u128 ctrblk;
be128 ctrblocks[SERPENT_PARALLEL_BLOCKS];
int i;
unsigned int num_blocks, func_bytes;
unsigned int i;
be128_to_u128(&ctrblk, (be128 *)walk->iv);
/* Process multi-block batch */
if (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS) {
do {
/* create ctrblks for parallel encrypt */
for (i = 0; i < SERPENT_PARALLEL_BLOCKS; i++) {
if (dst != src)
dst[i] = src[i];
u128_to_be128(&ctrblocks[i], &ctrblk);
u128_inc(&ctrblk);
}
for (i = 0; i < gctx->num_funcs; i++) {
num_blocks = gctx->funcs[i].num_blocks;
func_bytes = bsize * num_blocks;
serpent_enc_blk_xway_xor(ctx, (u8 *)dst,
(u8 *)ctrblocks);
if (nbytes >= func_bytes) {
do {
gctx->funcs[i].fn_u.ctr(ctx, dst, src, &ctrblk);
src += SERPENT_PARALLEL_BLOCKS;
dst += SERPENT_PARALLEL_BLOCKS;
nbytes -= bsize * SERPENT_PARALLEL_BLOCKS;
} while (nbytes >= bsize * SERPENT_PARALLEL_BLOCKS);
src += num_blocks;
dst += num_blocks;
nbytes -= func_bytes;
} while (nbytes >= func_bytes);
if (nbytes < bsize)
goto done;
}
/* Handle leftovers */
do {
if (dst != src)
*dst = *src;
u128_to_be128(&ctrblocks[0], &ctrblk);
u128_inc(&ctrblk);
__serpent_encrypt(ctx, (u8 *)ctrblocks, (u8 *)ctrblocks);
u128_xor(dst, dst, (u128 *)ctrblocks);
src += 1;
dst += 1;
nbytes -= bsize;
} while (nbytes >= bsize);
}
done:
u128_to_be128((be128 *)walk->iv, &ctrblk);
return nbytes;
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
int glue_ctr_crypt_128bit(const struct common_glue_ctx *gctx,
struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
const unsigned int bsize = 128 / 8;
bool fpu_enabled = false;
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, SERPENT_BLOCK_SIZE);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
err = blkcipher_walk_virt_block(desc, &walk, bsize);
while ((nbytes = walk.nbytes) >= SERPENT_BLOCK_SIZE) {
fpu_enabled = serpent_fpu_begin(fpu_enabled, nbytes);
nbytes = __ctr_crypt(desc, &walk);
while ((nbytes = walk.nbytes) >= bsize) {
fpu_enabled = glue_fpu_begin(bsize, gctx->fpu_blocks_limit,
desc, fpu_enabled, nbytes);
nbytes = __glue_ctr_crypt_128bit(gctx, desc, &walk);
err = blkcipher_walk_done(desc, &walk, nbytes);
}
serpent_fpu_end(fpu_enabled);
glue_fpu_end(fpu_enabled);
if (walk.nbytes) {
ctr_crypt_final(desc, &walk);
glue_ctr_crypt_final_128bit(
gctx->funcs[gctx->num_funcs - 1].fn_u.ctr, desc, &walk);
err = blkcipher_walk_done(desc, &walk, 0);
}
return err;
}
static void serpent_decrypt_cbc_xway(void *ctx, u128 *dst, const u128 *src)
{
u128 ivs[SERPENT_PARALLEL_BLOCKS - 1];
unsigned int j;
for (j = 0; j < SERPENT_PARALLEL_BLOCKS - 1; j++)
ivs[j] = src[j];
serpent_dec_blk_xway(ctx, (u8 *)dst, (u8 *)src);
for (j = 0; j < SERPENT_PARALLEL_BLOCKS - 1; j++)
u128_xor(dst + (j + 1), dst + (j + 1), ivs + j);
}
static void serpent_crypt_ctr(void *ctx, u128 *dst, const u128 *src, u128 *iv)
{
be128 ctrblk;
u128_to_be128(&ctrblk, iv);
u128_inc(iv);
__serpent_encrypt(ctx, (u8 *)&ctrblk, (u8 *)&ctrblk);
u128_xor(dst, src, (u128 *)&ctrblk);
}
static void serpent_crypt_ctr_xway(void *ctx, u128 *dst, const u128 *src,
u128 *iv)
{
be128 ctrblks[SERPENT_PARALLEL_BLOCKS];
unsigned int i;
for (i = 0; i < SERPENT_PARALLEL_BLOCKS; i++) {
if (dst != src)
dst[i] = src[i];
u128_to_be128(&ctrblks[i], iv);
u128_inc(iv);
}
serpent_enc_blk_xway_xor(ctx, (u8 *)dst, (u8 *)ctrblks);
}
static const struct common_glue_ctx serpent_enc = {
.num_funcs = 2,
.fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS,
.funcs = { {
.num_blocks = SERPENT_PARALLEL_BLOCKS,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_enc_blk_xway) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_encrypt) }
} }
};
static const struct common_glue_ctx serpent_ctr = {
.num_funcs = 2,
.fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS,
.funcs = { {
.num_blocks = SERPENT_PARALLEL_BLOCKS,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_crypt_ctr_xway) }
}, {
.num_blocks = 1,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_crypt_ctr) }
} }
};
static const struct common_glue_ctx serpent_dec = {
.num_funcs = 2,
.fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS,
.funcs = { {
.num_blocks = SERPENT_PARALLEL_BLOCKS,
.fn_u = { .ecb = GLUE_FUNC_CAST(serpent_dec_blk_xway) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_decrypt) }
} }
};
static const struct common_glue_ctx serpent_dec_cbc = {
.num_funcs = 2,
.fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS,
.funcs = { {
.num_blocks = SERPENT_PARALLEL_BLOCKS,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_decrypt_cbc_xway) }
}, {
.num_blocks = 1,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(__serpent_decrypt) }
} }
};
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&serpent_enc, desc, dst, src, nbytes);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&serpent_dec, desc, dst, src, nbytes);
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(__serpent_encrypt), desc,
dst, src, nbytes);
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_decrypt_128bit(&serpent_dec_cbc, desc, dst, src,
nbytes);
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ctr_crypt_128bit(&serpent_ctr, desc, dst, src, nbytes);
}
static inline bool serpent_fpu_begin(bool fpu_enabled, unsigned int nbytes)
{
return glue_fpu_begin(SERPENT_BLOCK_SIZE, SERPENT_PARALLEL_BLOCKS,
NULL, fpu_enabled, nbytes);
}
static inline void serpent_fpu_end(bool fpu_enabled)
{
glue_fpu_end(fpu_enabled);
}
struct crypt_priv {
struct serpent_ctx *ctx;
bool fpu_enabled;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment