Commit e827e326 authored by Rasesh Mody's avatar Rasesh Mody Committed by David S. Miller

bna: Remove Obsolete Files

Change details:
 - Removec bfi_ll.h bna_hw.h bna_ctrl.c and bna_txrx.c due to ENET, MSGQ
   and TXRX changes for new FW Driver interface and TX RX re-design.
Signed-off-by: default avatarRasesh Mody <rmody@brocade.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent f6d46a2e
/*
* Linux network driver for Brocade Converged Network Adapter.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (GPL) Version 2 as
* published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/*
* Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
* All rights reserved
* www.brocade.com
*/
#ifndef __BFI_LL_H__
#define __BFI_LL_H__
#include "bfi.h"
#pragma pack(1)
/**
* @brief
* "enums" for all LL mailbox messages other than IOC
*/
enum {
BFI_LL_H2I_MAC_UCAST_SET_REQ = 1,
BFI_LL_H2I_MAC_UCAST_ADD_REQ = 2,
BFI_LL_H2I_MAC_UCAST_DEL_REQ = 3,
BFI_LL_H2I_MAC_MCAST_ADD_REQ = 4,
BFI_LL_H2I_MAC_MCAST_DEL_REQ = 5,
BFI_LL_H2I_MAC_MCAST_FILTER_REQ = 6,
BFI_LL_H2I_MAC_MCAST_DEL_ALL_REQ = 7,
BFI_LL_H2I_PORT_ADMIN_REQ = 8,
BFI_LL_H2I_STATS_GET_REQ = 9,
BFI_LL_H2I_STATS_CLEAR_REQ = 10,
BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ = 11,
BFI_LL_H2I_RXF_DEFAULT_SET_REQ = 12,
BFI_LL_H2I_TXQ_STOP_REQ = 13,
BFI_LL_H2I_RXQ_STOP_REQ = 14,
BFI_LL_H2I_DIAG_LOOPBACK_REQ = 15,
BFI_LL_H2I_SET_PAUSE_REQ = 16,
BFI_LL_H2I_MTU_INFO_REQ = 17,
BFI_LL_H2I_RX_REQ = 18,
} ;
enum {
BFI_LL_I2H_MAC_UCAST_SET_RSP = BFA_I2HM(1),
BFI_LL_I2H_MAC_UCAST_ADD_RSP = BFA_I2HM(2),
BFI_LL_I2H_MAC_UCAST_DEL_RSP = BFA_I2HM(3),
BFI_LL_I2H_MAC_MCAST_ADD_RSP = BFA_I2HM(4),
BFI_LL_I2H_MAC_MCAST_DEL_RSP = BFA_I2HM(5),
BFI_LL_I2H_MAC_MCAST_FILTER_RSP = BFA_I2HM(6),
BFI_LL_I2H_MAC_MCAST_DEL_ALL_RSP = BFA_I2HM(7),
BFI_LL_I2H_PORT_ADMIN_RSP = BFA_I2HM(8),
BFI_LL_I2H_STATS_GET_RSP = BFA_I2HM(9),
BFI_LL_I2H_STATS_CLEAR_RSP = BFA_I2HM(10),
BFI_LL_I2H_RXF_PROMISCUOUS_SET_RSP = BFA_I2HM(11),
BFI_LL_I2H_RXF_DEFAULT_SET_RSP = BFA_I2HM(12),
BFI_LL_I2H_TXQ_STOP_RSP = BFA_I2HM(13),
BFI_LL_I2H_RXQ_STOP_RSP = BFA_I2HM(14),
BFI_LL_I2H_DIAG_LOOPBACK_RSP = BFA_I2HM(15),
BFI_LL_I2H_SET_PAUSE_RSP = BFA_I2HM(16),
BFI_LL_I2H_MTU_INFO_RSP = BFA_I2HM(17),
BFI_LL_I2H_RX_RSP = BFA_I2HM(18),
BFI_LL_I2H_LINK_DOWN_AEN = BFA_I2HM(19),
BFI_LL_I2H_LINK_UP_AEN = BFA_I2HM(20),
BFI_LL_I2H_PORT_ENABLE_AEN = BFA_I2HM(21),
BFI_LL_I2H_PORT_DISABLE_AEN = BFA_I2HM(22),
} ;
/**
* @brief bfi_ll_mac_addr_req is used by:
* BFI_LL_H2I_MAC_UCAST_SET_REQ
* BFI_LL_H2I_MAC_UCAST_ADD_REQ
* BFI_LL_H2I_MAC_UCAST_DEL_REQ
* BFI_LL_H2I_MAC_MCAST_ADD_REQ
* BFI_LL_H2I_MAC_MCAST_DEL_REQ
*/
struct bfi_ll_mac_addr_req {
struct bfi_mhdr mh; /*!< common msg header */
u8 rxf_id;
u8 rsvd1[3];
mac_t mac_addr;
u8 rsvd2[2];
};
/**
* @brief bfi_ll_mcast_filter_req is used by:
* BFI_LL_H2I_MAC_MCAST_FILTER_REQ
*/
struct bfi_ll_mcast_filter_req {
struct bfi_mhdr mh; /*!< common msg header */
u8 rxf_id;
u8 enable;
u8 rsvd[2];
};
/**
* @brief bfi_ll_mcast_del_all is used by:
* BFI_LL_H2I_MAC_MCAST_DEL_ALL_REQ
*/
struct bfi_ll_mcast_del_all_req {
struct bfi_mhdr mh; /*!< common msg header */
u8 rxf_id;
u8 rsvd[3];
};
/**
* @brief bfi_ll_q_stop_req is used by:
* BFI_LL_H2I_TXQ_STOP_REQ
* BFI_LL_H2I_RXQ_STOP_REQ
*/
struct bfi_ll_q_stop_req {
struct bfi_mhdr mh; /*!< common msg header */
u32 q_id_mask[2]; /* !< bit-mask for queue ids */
};
/**
* @brief bfi_ll_stats_req is used by:
* BFI_LL_I2H_STATS_GET_REQ
* BFI_LL_I2H_STATS_CLEAR_REQ
*/
struct bfi_ll_stats_req {
struct bfi_mhdr mh; /*!< common msg header */
u16 stats_mask; /* !< bit-mask for non-function statistics */
u8 rsvd[2];
u32 rxf_id_mask[2]; /* !< bit-mask for RxF Statistics */
u32 txf_id_mask[2]; /* !< bit-mask for TxF Statistics */
union bfi_addr_u host_buffer; /* !< where statistics are returned */
};
/**
* @brief defines for "stats_mask" above.
*/
#define BFI_LL_STATS_MAC (1 << 0) /* !< MAC Statistics */
#define BFI_LL_STATS_BPC (1 << 1) /* !< Pause Stats from BPC */
#define BFI_LL_STATS_RAD (1 << 2) /* !< Rx Admission Statistics */
#define BFI_LL_STATS_RX_FC (1 << 3) /* !< Rx FC Stats from RxA */
#define BFI_LL_STATS_TX_FC (1 << 4) /* !< Tx FC Stats from TxA */
#define BFI_LL_STATS_ALL 0x1f
/**
* @brief bfi_ll_port_admin_req
*/
struct bfi_ll_port_admin_req {
struct bfi_mhdr mh; /*!< common msg header */
u8 up;
u8 rsvd[3];
};
/**
* @brief bfi_ll_rxf_req is used by:
* BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ
* BFI_LL_H2I_RXF_DEFAULT_SET_REQ
*/
struct bfi_ll_rxf_req {
struct bfi_mhdr mh; /*!< common msg header */
u8 rxf_id;
u8 enable;
u8 rsvd[2];
};
/**
* @brief bfi_ll_rxf_multi_req is used by:
* BFI_LL_H2I_RX_REQ
*/
struct bfi_ll_rxf_multi_req {
struct bfi_mhdr mh; /*!< common msg header */
u32 rxf_id_mask[2];
u8 enable;
u8 rsvd[3];
};
/**
* @brief enum for Loopback opmodes
*/
enum {
BFI_LL_DIAG_LB_OPMODE_EXT = 0,
BFI_LL_DIAG_LB_OPMODE_CBL = 1,
};
/**
* @brief bfi_ll_set_pause_req is used by:
* BFI_LL_H2I_SET_PAUSE_REQ
*/
struct bfi_ll_set_pause_req {
struct bfi_mhdr mh;
u8 tx_pause; /* 1 = enable, 0 = disable */
u8 rx_pause; /* 1 = enable, 0 = disable */
u8 rsvd[2];
};
/**
* @brief bfi_ll_mtu_info_req is used by:
* BFI_LL_H2I_MTU_INFO_REQ
*/
struct bfi_ll_mtu_info_req {
struct bfi_mhdr mh;
u16 mtu;
u8 rsvd[2];
};
/**
* @brief
* Response header format used by all responses
* For both responses and asynchronous notifications
*/
struct bfi_ll_rsp {
struct bfi_mhdr mh; /*!< common msg header */
u8 error;
u8 rsvd[3];
};
/**
* @brief bfi_ll_cee_aen is used by:
* BFI_LL_I2H_LINK_DOWN_AEN
* BFI_LL_I2H_LINK_UP_AEN
*/
struct bfi_ll_aen {
struct bfi_mhdr mh; /*!< common msg header */
u32 reason;
u8 cee_linkup;
u8 prio_map; /*!< LL priority bit-map */
u8 rsvd[2];
};
/**
* @brief
* The following error codes can be returned
* by the mbox commands
*/
enum {
BFI_LL_CMD_OK = 0,
BFI_LL_CMD_FAIL = 1,
BFI_LL_CMD_DUP_ENTRY = 2, /* !< Duplicate entry in CAM */
BFI_LL_CMD_CAM_FULL = 3, /* !< CAM is full */
BFI_LL_CMD_NOT_OWNER = 4, /* !< Not permitted, b'cos not owner */
BFI_LL_CMD_NOT_EXEC = 5, /* !< Was not sent to f/w at all */
BFI_LL_CMD_WAITING = 6, /* !< Waiting for completion (VMware) */
BFI_LL_CMD_PORT_DISABLED = 7, /* !< port in disabled state */
} ;
/* Statistics */
#define BFI_LL_TXF_ID_MAX 64
#define BFI_LL_RXF_ID_MAX 64
/* TxF Frame Statistics */
struct bfi_ll_stats_txf {
u64 ucast_octets;
u64 ucast;
u64 ucast_vlan;
u64 mcast_octets;
u64 mcast;
u64 mcast_vlan;
u64 bcast_octets;
u64 bcast;
u64 bcast_vlan;
u64 errors;
u64 filter_vlan; /* frames filtered due to VLAN */
u64 filter_mac_sa; /* frames filtered due to SA check */
};
/* RxF Frame Statistics */
struct bfi_ll_stats_rxf {
u64 ucast_octets;
u64 ucast;
u64 ucast_vlan;
u64 mcast_octets;
u64 mcast;
u64 mcast_vlan;
u64 bcast_octets;
u64 bcast;
u64 bcast_vlan;
u64 frame_drops;
};
/* FC Tx Frame Statistics */
struct bfi_ll_stats_fc_tx {
u64 txf_ucast_octets;
u64 txf_ucast;
u64 txf_ucast_vlan;
u64 txf_mcast_octets;
u64 txf_mcast;
u64 txf_mcast_vlan;
u64 txf_bcast_octets;
u64 txf_bcast;
u64 txf_bcast_vlan;
u64 txf_parity_errors;
u64 txf_timeout;
u64 txf_fid_parity_errors;
};
/* FC Rx Frame Statistics */
struct bfi_ll_stats_fc_rx {
u64 rxf_ucast_octets;
u64 rxf_ucast;
u64 rxf_ucast_vlan;
u64 rxf_mcast_octets;
u64 rxf_mcast;
u64 rxf_mcast_vlan;
u64 rxf_bcast_octets;
u64 rxf_bcast;
u64 rxf_bcast_vlan;
};
/* RAD Frame Statistics */
struct bfi_ll_stats_rad {
u64 rx_frames;
u64 rx_octets;
u64 rx_vlan_frames;
u64 rx_ucast;
u64 rx_ucast_octets;
u64 rx_ucast_vlan;
u64 rx_mcast;
u64 rx_mcast_octets;
u64 rx_mcast_vlan;
u64 rx_bcast;
u64 rx_bcast_octets;
u64 rx_bcast_vlan;
u64 rx_drops;
};
/* BPC Tx Registers */
struct bfi_ll_stats_bpc {
/* transmit stats */
u64 tx_pause[8];
u64 tx_zero_pause[8]; /*!< Pause cancellation */
/*!<Pause initiation rather than retention */
u64 tx_first_pause[8];
/* receive stats */
u64 rx_pause[8];
u64 rx_zero_pause[8]; /*!< Pause cancellation */
/*!<Pause initiation rather than retention */
u64 rx_first_pause[8];
};
/* MAC Rx Statistics */
struct bfi_ll_stats_mac {
u64 frame_64; /* both rx and tx counter */
u64 frame_65_127; /* both rx and tx counter */
u64 frame_128_255; /* both rx and tx counter */
u64 frame_256_511; /* both rx and tx counter */
u64 frame_512_1023; /* both rx and tx counter */
u64 frame_1024_1518; /* both rx and tx counter */
u64 frame_1519_1522; /* both rx and tx counter */
/* receive stats */
u64 rx_bytes;
u64 rx_packets;
u64 rx_fcs_error;
u64 rx_multicast;
u64 rx_broadcast;
u64 rx_control_frames;
u64 rx_pause;
u64 rx_unknown_opcode;
u64 rx_alignment_error;
u64 rx_frame_length_error;
u64 rx_code_error;
u64 rx_carrier_sense_error;
u64 rx_undersize;
u64 rx_oversize;
u64 rx_fragments;
u64 rx_jabber;
u64 rx_drop;
/* transmit stats */
u64 tx_bytes;
u64 tx_packets;
u64 tx_multicast;
u64 tx_broadcast;
u64 tx_pause;
u64 tx_deferral;
u64 tx_excessive_deferral;
u64 tx_single_collision;
u64 tx_muliple_collision;
u64 tx_late_collision;
u64 tx_excessive_collision;
u64 tx_total_collision;
u64 tx_pause_honored;
u64 tx_drop;
u64 tx_jabber;
u64 tx_fcs_error;
u64 tx_control_frame;
u64 tx_oversize;
u64 tx_undersize;
u64 tx_fragments;
};
/* Complete statistics */
struct bfi_ll_stats {
struct bfi_ll_stats_mac mac_stats;
struct bfi_ll_stats_bpc bpc_stats;
struct bfi_ll_stats_rad rad_stats;
struct bfi_ll_stats_fc_rx fc_rx_stats;
struct bfi_ll_stats_fc_tx fc_tx_stats;
struct bfi_ll_stats_rxf rxf_stats[BFI_LL_RXF_ID_MAX];
struct bfi_ll_stats_txf txf_stats[BFI_LL_TXF_ID_MAX];
};
#pragma pack()
#endif /* __BFI_LL_H__ */
......@@ -16,7 +16,6 @@
#include "bfa_cs.h"
#include "bfa_ioc.h"
#include "cna.h"
#include "bfi_ll.h"
#include "bna_types.h"
extern const u32 bna_napi_dim_vector[][BNA_BIAS_T_MAX];
......
/*
* Linux network driver for Brocade Converged Network Adapter.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (GPL) Version 2 as
* published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/*
* Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
* All rights reserved
* www.brocade.com
*/
#include "bna.h"
#include "bfa_cs.h"
static void bna_device_cb_port_stopped(void *arg, enum bna_cb_status status);
static void
bna_port_cb_link_up(struct bna_port *port, struct bfi_ll_aen *aen,
int status)
{
int i;
u8 prio_map;
port->llport.link_status = BNA_LINK_UP;
if (aen->cee_linkup)
port->llport.link_status = BNA_CEE_UP;
/* Compute the priority */
prio_map = aen->prio_map;
if (prio_map) {
for (i = 0; i < 8; i++) {
if ((prio_map >> i) & 0x1)
break;
}
port->priority = i;
} else
port->priority = 0;
/* Dispatch events */
bna_tx_mod_cee_link_status(&port->bna->tx_mod, aen->cee_linkup);
bna_tx_mod_prio_changed(&port->bna->tx_mod, port->priority);
port->link_cbfn(port->bna->bnad, port->llport.link_status);
}
static void
bna_port_cb_link_down(struct bna_port *port, int status)
{
port->llport.link_status = BNA_LINK_DOWN;
/* Dispatch events */
bna_tx_mod_cee_link_status(&port->bna->tx_mod, BNA_LINK_DOWN);
port->link_cbfn(port->bna->bnad, BNA_LINK_DOWN);
}
static inline int
llport_can_be_up(struct bna_llport *llport)
{
int ready = 0;
if (llport->type == BNA_PORT_T_REGULAR)
ready = ((llport->flags & BNA_LLPORT_F_ADMIN_UP) &&
(llport->flags & BNA_LLPORT_F_RX_STARTED) &&
(llport->flags & BNA_LLPORT_F_PORT_ENABLED));
else
ready = ((llport->flags & BNA_LLPORT_F_ADMIN_UP) &&
(llport->flags & BNA_LLPORT_F_RX_STARTED) &&
!(llport->flags & BNA_LLPORT_F_PORT_ENABLED));
return ready;
}
#define llport_is_up llport_can_be_up
enum bna_llport_event {
LLPORT_E_START = 1,
LLPORT_E_STOP = 2,
LLPORT_E_FAIL = 3,
LLPORT_E_UP = 4,
LLPORT_E_DOWN = 5,
LLPORT_E_FWRESP_UP_OK = 6,
LLPORT_E_FWRESP_UP_FAIL = 7,
LLPORT_E_FWRESP_DOWN = 8
};
static void
bna_llport_cb_port_enabled(struct bna_llport *llport)
{
llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
if (llport_can_be_up(llport))
bfa_fsm_send_event(llport, LLPORT_E_UP);
}
static void
bna_llport_cb_port_disabled(struct bna_llport *llport)
{
int llport_up = llport_is_up(llport);
llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
if (llport_up)
bfa_fsm_send_event(llport, LLPORT_E_DOWN);
}
/**
* MBOX
*/
static int
bna_is_aen(u8 msg_id)
{
switch (msg_id) {
case BFI_LL_I2H_LINK_DOWN_AEN:
case BFI_LL_I2H_LINK_UP_AEN:
case BFI_LL_I2H_PORT_ENABLE_AEN:
case BFI_LL_I2H_PORT_DISABLE_AEN:
return 1;
default:
return 0;
}
}
static void
bna_mbox_aen_callback(struct bna *bna, struct bfi_mbmsg *msg)
{
struct bfi_ll_aen *aen = (struct bfi_ll_aen *)(msg);
switch (aen->mh.msg_id) {
case BFI_LL_I2H_LINK_UP_AEN:
bna_port_cb_link_up(&bna->port, aen, aen->reason);
break;
case BFI_LL_I2H_LINK_DOWN_AEN:
bna_port_cb_link_down(&bna->port, aen->reason);
break;
case BFI_LL_I2H_PORT_ENABLE_AEN:
bna_llport_cb_port_enabled(&bna->port.llport);
break;
case BFI_LL_I2H_PORT_DISABLE_AEN:
bna_llport_cb_port_disabled(&bna->port.llport);
break;
default:
break;
}
}
static void
bna_ll_isr(void *llarg, struct bfi_mbmsg *msg)
{
struct bna *bna = (struct bna *)(llarg);
struct bfi_ll_rsp *mb_rsp = (struct bfi_ll_rsp *)(msg);
struct bfi_mhdr *cmd_h, *rsp_h;
struct bna_mbox_qe *mb_qe = NULL;
int to_post = 0;
u8 aen = 0;
char message[BNA_MESSAGE_SIZE];
aen = bna_is_aen(mb_rsp->mh.msg_id);
if (!aen) {
mb_qe = bfa_q_first(&bna->mbox_mod.posted_q);
cmd_h = (struct bfi_mhdr *)(&mb_qe->cmd.msg[0]);
rsp_h = (struct bfi_mhdr *)(&mb_rsp->mh);
if ((BFA_I2HM(cmd_h->msg_id) == rsp_h->msg_id) &&
(cmd_h->mtag.i2htok == rsp_h->mtag.i2htok)) {
/* Remove the request from posted_q, update state */
list_del(&mb_qe->qe);
bna->mbox_mod.msg_pending--;
if (list_empty(&bna->mbox_mod.posted_q))
bna->mbox_mod.state = BNA_MBOX_FREE;
else
to_post = 1;
/* Dispatch the cbfn */
if (mb_qe->cbfn)
mb_qe->cbfn(mb_qe->cbarg, mb_rsp->error);
/* Post the next entry, if needed */
if (to_post) {
mb_qe = bfa_q_first(&bna->mbox_mod.posted_q);
bfa_nw_ioc_mbox_queue(&bna->device.ioc,
&mb_qe->cmd, NULL,
NULL);
}
} else {
snprintf(message, BNA_MESSAGE_SIZE,
"No matching rsp for [%d:%d:%d]\n",
mb_rsp->mh.msg_class, mb_rsp->mh.msg_id,
mb_rsp->mh.mtag.i2htok);
pr_info("%s", message);
}
} else
bna_mbox_aen_callback(bna, msg);
}
static void
bna_err_handler(struct bna *bna, u32 intr_status)
{
u32 init_halt;
if (intr_status & __HALT_STATUS_BITS) {
init_halt = readl(bna->device.ioc.ioc_regs.ll_halt);
init_halt &= ~__FW_INIT_HALT_P;
writel(init_halt, bna->device.ioc.ioc_regs.ll_halt);
}
bfa_nw_ioc_error_isr(&bna->device.ioc);
}
void
bna_mbox_handler(struct bna *bna, u32 intr_status)
{
if (BNA_IS_ERR_INTR(intr_status)) {
bna_err_handler(bna, intr_status);
return;
}
if (BNA_IS_MBOX_INTR(intr_status))
bfa_nw_ioc_mbox_isr(&bna->device.ioc);
}
void
bna_mbox_send(struct bna *bna, struct bna_mbox_qe *mbox_qe)
{
struct bfi_mhdr *mh;
mh = (struct bfi_mhdr *)(&mbox_qe->cmd.msg[0]);
mh->mtag.i2htok = htons(bna->mbox_mod.msg_ctr);
bna->mbox_mod.msg_ctr++;
bna->mbox_mod.msg_pending++;
if (bna->mbox_mod.state == BNA_MBOX_FREE) {
list_add_tail(&mbox_qe->qe, &bna->mbox_mod.posted_q);
bfa_nw_ioc_mbox_queue(&bna->device.ioc, &mbox_qe->cmd,
NULL, NULL);
bna->mbox_mod.state = BNA_MBOX_POSTED;
} else {
list_add_tail(&mbox_qe->qe, &bna->mbox_mod.posted_q);
}
}
static void
bna_mbox_flush_q(struct bna *bna, struct list_head *q)
{
struct bna_mbox_qe *mb_qe = NULL;
struct list_head *mb_q;
void (*cbfn)(void *arg, int status);
void *cbarg;
mb_q = &bna->mbox_mod.posted_q;
while (!list_empty(mb_q)) {
bfa_q_deq(mb_q, &mb_qe);
cbfn = mb_qe->cbfn;
cbarg = mb_qe->cbarg;
bfa_q_qe_init(mb_qe);
bna->mbox_mod.msg_pending--;
if (cbfn)
cbfn(cbarg, BNA_CB_NOT_EXEC);
}
bna->mbox_mod.state = BNA_MBOX_FREE;
}
static void
bna_mbox_mod_start(struct bna_mbox_mod *mbox_mod)
{
}
static void
bna_mbox_mod_stop(struct bna_mbox_mod *mbox_mod)
{
bna_mbox_flush_q(mbox_mod->bna, &mbox_mod->posted_q);
}
static void
bna_mbox_mod_init(struct bna_mbox_mod *mbox_mod, struct bna *bna)
{
bfa_nw_ioc_mbox_regisr(&bna->device.ioc, BFI_MC_LL, bna_ll_isr, bna);
mbox_mod->state = BNA_MBOX_FREE;
mbox_mod->msg_ctr = mbox_mod->msg_pending = 0;
INIT_LIST_HEAD(&mbox_mod->posted_q);
mbox_mod->bna = bna;
}
static void
bna_mbox_mod_uninit(struct bna_mbox_mod *mbox_mod)
{
mbox_mod->bna = NULL;
}
/**
* LLPORT
*/
#define call_llport_stop_cbfn(llport, status)\
do {\
if ((llport)->stop_cbfn)\
(llport)->stop_cbfn(&(llport)->bna->port, status);\
(llport)->stop_cbfn = NULL;\
} while (0)
static void bna_fw_llport_up(struct bna_llport *llport);
static void bna_fw_cb_llport_up(void *arg, int status);
static void bna_fw_llport_down(struct bna_llport *llport);
static void bna_fw_cb_llport_down(void *arg, int status);
static void bna_llport_start(struct bna_llport *llport);
static void bna_llport_stop(struct bna_llport *llport);
static void bna_llport_fail(struct bna_llport *llport);
enum bna_llport_state {
BNA_LLPORT_STOPPED = 1,
BNA_LLPORT_DOWN = 2,
BNA_LLPORT_UP_RESP_WAIT = 3,
BNA_LLPORT_DOWN_RESP_WAIT = 4,
BNA_LLPORT_UP = 5,
BNA_LLPORT_LAST_RESP_WAIT = 6
};
bfa_fsm_state_decl(bna_llport, stopped, struct bna_llport,
enum bna_llport_event);
bfa_fsm_state_decl(bna_llport, down, struct bna_llport,
enum bna_llport_event);
bfa_fsm_state_decl(bna_llport, up_resp_wait, struct bna_llport,
enum bna_llport_event);
bfa_fsm_state_decl(bna_llport, down_resp_wait, struct bna_llport,
enum bna_llport_event);
bfa_fsm_state_decl(bna_llport, up, struct bna_llport,
enum bna_llport_event);
bfa_fsm_state_decl(bna_llport, last_resp_wait, struct bna_llport,
enum bna_llport_event);
static struct bfa_sm_table llport_sm_table[] = {
{BFA_SM(bna_llport_sm_stopped), BNA_LLPORT_STOPPED},
{BFA_SM(bna_llport_sm_down), BNA_LLPORT_DOWN},
{BFA_SM(bna_llport_sm_up_resp_wait), BNA_LLPORT_UP_RESP_WAIT},
{BFA_SM(bna_llport_sm_down_resp_wait), BNA_LLPORT_DOWN_RESP_WAIT},
{BFA_SM(bna_llport_sm_up), BNA_LLPORT_UP},
{BFA_SM(bna_llport_sm_last_resp_wait), BNA_LLPORT_LAST_RESP_WAIT}
};
static void
bna_llport_sm_stopped_entry(struct bna_llport *llport)
{
llport->bna->port.link_cbfn((llport)->bna->bnad, BNA_LINK_DOWN);
call_llport_stop_cbfn(llport, BNA_CB_SUCCESS);
}
static void
bna_llport_sm_stopped(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_START:
bfa_fsm_set_state(llport, bna_llport_sm_down);
break;
case LLPORT_E_STOP:
call_llport_stop_cbfn(llport, BNA_CB_SUCCESS);
break;
case LLPORT_E_FAIL:
break;
case LLPORT_E_DOWN:
/* This event is received due to Rx objects failing */
/* No-op */
break;
case LLPORT_E_FWRESP_UP_OK:
case LLPORT_E_FWRESP_DOWN:
/**
* These events are received due to flushing of mbox when
* device fails
*/
/* No-op */
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_llport_sm_down_entry(struct bna_llport *llport)
{
bnad_cb_port_link_status((llport)->bna->bnad, BNA_LINK_DOWN);
}
static void
bna_llport_sm_down(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_STOP:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_UP:
bfa_fsm_set_state(llport, bna_llport_sm_up_resp_wait);
bna_fw_llport_up(llport);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_llport_sm_up_resp_wait_entry(struct bna_llport *llport)
{
BUG_ON(!llport_can_be_up(llport));
/**
* NOTE: Do not call bna_fw_llport_up() here. That will over step
* mbox due to down_resp_wait -> up_resp_wait transition on event
* LLPORT_E_UP
*/
}
static void
bna_llport_sm_up_resp_wait(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_STOP:
bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
break;
case LLPORT_E_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_DOWN:
bfa_fsm_set_state(llport, bna_llport_sm_down_resp_wait);
break;
case LLPORT_E_FWRESP_UP_OK:
bfa_fsm_set_state(llport, bna_llport_sm_up);
break;
case LLPORT_E_FWRESP_UP_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_down);
break;
case LLPORT_E_FWRESP_DOWN:
/* down_resp_wait -> up_resp_wait transition on LLPORT_E_UP */
bna_fw_llport_up(llport);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_llport_sm_down_resp_wait_entry(struct bna_llport *llport)
{
/**
* NOTE: Do not call bna_fw_llport_down() here. That will over step
* mbox due to up_resp_wait -> down_resp_wait transition on event
* LLPORT_E_DOWN
*/
}
static void
bna_llport_sm_down_resp_wait(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_STOP:
bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
break;
case LLPORT_E_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_UP:
bfa_fsm_set_state(llport, bna_llport_sm_up_resp_wait);
break;
case LLPORT_E_FWRESP_UP_OK:
/* up_resp_wait->down_resp_wait transition on LLPORT_E_DOWN */
bna_fw_llport_down(llport);
break;
case LLPORT_E_FWRESP_UP_FAIL:
case LLPORT_E_FWRESP_DOWN:
bfa_fsm_set_state(llport, bna_llport_sm_down);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_llport_sm_up_entry(struct bna_llport *llport)
{
}
static void
bna_llport_sm_up(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_STOP:
bfa_fsm_set_state(llport, bna_llport_sm_last_resp_wait);
bna_fw_llport_down(llport);
break;
case LLPORT_E_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_DOWN:
bfa_fsm_set_state(llport, bna_llport_sm_down_resp_wait);
bna_fw_llport_down(llport);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_llport_sm_last_resp_wait_entry(struct bna_llport *llport)
{
}
static void
bna_llport_sm_last_resp_wait(struct bna_llport *llport,
enum bna_llport_event event)
{
switch (event) {
case LLPORT_E_FAIL:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
case LLPORT_E_DOWN:
/**
* This event is received due to Rx objects stopping in
* parallel to llport
*/
/* No-op */
break;
case LLPORT_E_FWRESP_UP_OK:
/* up_resp_wait->last_resp_wait transition on LLPORT_T_STOP */
bna_fw_llport_down(llport);
break;
case LLPORT_E_FWRESP_UP_FAIL:
case LLPORT_E_FWRESP_DOWN:
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_fw_llport_admin_up(struct bna_llport *llport)
{
struct bfi_ll_port_admin_req ll_req;
memset(&ll_req, 0, sizeof(ll_req));
ll_req.mh.msg_class = BFI_MC_LL;
ll_req.mh.msg_id = BFI_LL_H2I_PORT_ADMIN_REQ;
ll_req.mh.mtag.h2i.lpu_id = 0;
ll_req.up = BNA_STATUS_T_ENABLED;
bna_mbox_qe_fill(&llport->mbox_qe, &ll_req, sizeof(ll_req),
bna_fw_cb_llport_up, llport);
bna_mbox_send(llport->bna, &llport->mbox_qe);
}
static void
bna_fw_llport_up(struct bna_llport *llport)
{
if (llport->type == BNA_PORT_T_REGULAR)
bna_fw_llport_admin_up(llport);
}
static void
bna_fw_cb_llport_up(void *arg, int status)
{
struct bna_llport *llport = (struct bna_llport *)arg;
bfa_q_qe_init(&llport->mbox_qe.qe);
if (status == BFI_LL_CMD_FAIL) {
if (llport->type == BNA_PORT_T_REGULAR)
llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
else
llport->flags &= ~BNA_LLPORT_F_ADMIN_UP;
bfa_fsm_send_event(llport, LLPORT_E_FWRESP_UP_FAIL);
} else
bfa_fsm_send_event(llport, LLPORT_E_FWRESP_UP_OK);
}
static void
bna_fw_llport_admin_down(struct bna_llport *llport)
{
struct bfi_ll_port_admin_req ll_req;
memset(&ll_req, 0, sizeof(ll_req));
ll_req.mh.msg_class = BFI_MC_LL;
ll_req.mh.msg_id = BFI_LL_H2I_PORT_ADMIN_REQ;
ll_req.mh.mtag.h2i.lpu_id = 0;
ll_req.up = BNA_STATUS_T_DISABLED;
bna_mbox_qe_fill(&llport->mbox_qe, &ll_req, sizeof(ll_req),
bna_fw_cb_llport_down, llport);
bna_mbox_send(llport->bna, &llport->mbox_qe);
}
static void
bna_fw_llport_down(struct bna_llport *llport)
{
if (llport->type == BNA_PORT_T_REGULAR)
bna_fw_llport_admin_down(llport);
}
static void
bna_fw_cb_llport_down(void *arg, int status)
{
struct bna_llport *llport = (struct bna_llport *)arg;
bfa_q_qe_init(&llport->mbox_qe.qe);
bfa_fsm_send_event(llport, LLPORT_E_FWRESP_DOWN);
}
static void
bna_port_cb_llport_stopped(struct bna_port *port,
enum bna_cb_status status)
{
bfa_wc_down(&port->chld_stop_wc);
}
static void
bna_llport_init(struct bna_llport *llport, struct bna *bna)
{
llport->flags |= BNA_LLPORT_F_ADMIN_UP;
llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
llport->type = BNA_PORT_T_REGULAR;
llport->bna = bna;
llport->link_status = BNA_LINK_DOWN;
llport->rx_started_count = 0;
llport->stop_cbfn = NULL;
bfa_q_qe_init(&llport->mbox_qe.qe);
bfa_fsm_set_state(llport, bna_llport_sm_stopped);
}
static void
bna_llport_uninit(struct bna_llport *llport)
{
llport->flags &= ~BNA_LLPORT_F_ADMIN_UP;
llport->flags &= ~BNA_LLPORT_F_PORT_ENABLED;
llport->bna = NULL;
}
static void
bna_llport_start(struct bna_llport *llport)
{
bfa_fsm_send_event(llport, LLPORT_E_START);
}
static void
bna_llport_stop(struct bna_llport *llport)
{
llport->stop_cbfn = bna_port_cb_llport_stopped;
bfa_fsm_send_event(llport, LLPORT_E_STOP);
}
static void
bna_llport_fail(struct bna_llport *llport)
{
/* Reset the physical port status to enabled */
llport->flags |= BNA_LLPORT_F_PORT_ENABLED;
bfa_fsm_send_event(llport, LLPORT_E_FAIL);
}
static int
bna_llport_state_get(struct bna_llport *llport)
{
return bfa_sm_to_state(llport_sm_table, llport->fsm);
}
void
bna_llport_rx_started(struct bna_llport *llport)
{
llport->rx_started_count++;
if (llport->rx_started_count == 1) {
llport->flags |= BNA_LLPORT_F_RX_STARTED;
if (llport_can_be_up(llport))
bfa_fsm_send_event(llport, LLPORT_E_UP);
}
}
void
bna_llport_rx_stopped(struct bna_llport *llport)
{
int llport_up = llport_is_up(llport);
llport->rx_started_count--;
if (llport->rx_started_count == 0) {
llport->flags &= ~BNA_LLPORT_F_RX_STARTED;
if (llport_up)
bfa_fsm_send_event(llport, LLPORT_E_DOWN);
}
}
/**
* PORT
*/
#define bna_port_chld_start(port)\
do {\
enum bna_tx_type tx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_TX_T_REGULAR : BNA_TX_T_LOOPBACK;\
enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
bna_llport_start(&(port)->llport);\
bna_tx_mod_start(&(port)->bna->tx_mod, tx_type);\
bna_rx_mod_start(&(port)->bna->rx_mod, rx_type);\
} while (0)
#define bna_port_chld_stop(port)\
do {\
enum bna_tx_type tx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_TX_T_REGULAR : BNA_TX_T_LOOPBACK;\
enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
bfa_wc_up(&(port)->chld_stop_wc);\
bfa_wc_up(&(port)->chld_stop_wc);\
bfa_wc_up(&(port)->chld_stop_wc);\
bna_llport_stop(&(port)->llport);\
bna_tx_mod_stop(&(port)->bna->tx_mod, tx_type);\
bna_rx_mod_stop(&(port)->bna->rx_mod, rx_type);\
} while (0)
#define bna_port_chld_fail(port)\
do {\
bna_llport_fail(&(port)->llport);\
bna_tx_mod_fail(&(port)->bna->tx_mod);\
bna_rx_mod_fail(&(port)->bna->rx_mod);\
} while (0)
#define bna_port_rx_start(port)\
do {\
enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
bna_rx_mod_start(&(port)->bna->rx_mod, rx_type);\
} while (0)
#define bna_port_rx_stop(port)\
do {\
enum bna_rx_type rx_type = ((port)->type == BNA_PORT_T_REGULAR) ?\
BNA_RX_T_REGULAR : BNA_RX_T_LOOPBACK;\
bfa_wc_up(&(port)->chld_stop_wc);\
bna_rx_mod_stop(&(port)->bna->rx_mod, rx_type);\
} while (0)
#define call_port_stop_cbfn(port, status)\
do {\
if ((port)->stop_cbfn)\
(port)->stop_cbfn((port)->stop_cbarg, status);\
(port)->stop_cbfn = NULL;\
(port)->stop_cbarg = NULL;\
} while (0)
#define call_port_pause_cbfn(port, status)\
do {\
if ((port)->pause_cbfn)\
(port)->pause_cbfn((port)->bna->bnad, status);\
(port)->pause_cbfn = NULL;\
} while (0)
#define call_port_mtu_cbfn(port, status)\
do {\
if ((port)->mtu_cbfn)\
(port)->mtu_cbfn((port)->bna->bnad, status);\
(port)->mtu_cbfn = NULL;\
} while (0)
static void bna_fw_pause_set(struct bna_port *port);
static void bna_fw_cb_pause_set(void *arg, int status);
static void bna_fw_mtu_set(struct bna_port *port);
static void bna_fw_cb_mtu_set(void *arg, int status);
enum bna_port_event {
PORT_E_START = 1,
PORT_E_STOP = 2,
PORT_E_FAIL = 3,
PORT_E_PAUSE_CFG = 4,
PORT_E_MTU_CFG = 5,
PORT_E_CHLD_STOPPED = 6,
PORT_E_FWRESP_PAUSE = 7,
PORT_E_FWRESP_MTU = 8
};
enum bna_port_state {
BNA_PORT_STOPPED = 1,
BNA_PORT_MTU_INIT_WAIT = 2,
BNA_PORT_PAUSE_INIT_WAIT = 3,
BNA_PORT_LAST_RESP_WAIT = 4,
BNA_PORT_STARTED = 5,
BNA_PORT_PAUSE_CFG_WAIT = 6,
BNA_PORT_RX_STOP_WAIT = 7,
BNA_PORT_MTU_CFG_WAIT = 8,
BNA_PORT_CHLD_STOP_WAIT = 9
};
bfa_fsm_state_decl(bna_port, stopped, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, mtu_init_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, pause_init_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, last_resp_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, started, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, pause_cfg_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, rx_stop_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, mtu_cfg_wait, struct bna_port,
enum bna_port_event);
bfa_fsm_state_decl(bna_port, chld_stop_wait, struct bna_port,
enum bna_port_event);
static struct bfa_sm_table port_sm_table[] = {
{BFA_SM(bna_port_sm_stopped), BNA_PORT_STOPPED},
{BFA_SM(bna_port_sm_mtu_init_wait), BNA_PORT_MTU_INIT_WAIT},
{BFA_SM(bna_port_sm_pause_init_wait), BNA_PORT_PAUSE_INIT_WAIT},
{BFA_SM(bna_port_sm_last_resp_wait), BNA_PORT_LAST_RESP_WAIT},
{BFA_SM(bna_port_sm_started), BNA_PORT_STARTED},
{BFA_SM(bna_port_sm_pause_cfg_wait), BNA_PORT_PAUSE_CFG_WAIT},
{BFA_SM(bna_port_sm_rx_stop_wait), BNA_PORT_RX_STOP_WAIT},
{BFA_SM(bna_port_sm_mtu_cfg_wait), BNA_PORT_MTU_CFG_WAIT},
{BFA_SM(bna_port_sm_chld_stop_wait), BNA_PORT_CHLD_STOP_WAIT}
};
static void
bna_port_sm_stopped_entry(struct bna_port *port)
{
call_port_pause_cbfn(port, BNA_CB_SUCCESS);
call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
call_port_stop_cbfn(port, BNA_CB_SUCCESS);
}
static void
bna_port_sm_stopped(struct bna_port *port, enum bna_port_event event)
{
switch (event) {
case PORT_E_START:
bfa_fsm_set_state(port, bna_port_sm_mtu_init_wait);
break;
case PORT_E_STOP:
call_port_stop_cbfn(port, BNA_CB_SUCCESS);
break;
case PORT_E_FAIL:
/* No-op */
break;
case PORT_E_PAUSE_CFG:
call_port_pause_cbfn(port, BNA_CB_SUCCESS);
break;
case PORT_E_MTU_CFG:
call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
break;
case PORT_E_CHLD_STOPPED:
/**
* This event is received due to LLPort, Tx and Rx objects
* failing
*/
/* No-op */
break;
case PORT_E_FWRESP_PAUSE:
case PORT_E_FWRESP_MTU:
/**
* These events are received due to flushing of mbox when
* device fails
*/
/* No-op */
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_mtu_init_wait_entry(struct bna_port *port)
{
bna_fw_mtu_set(port);
}
static void
bna_port_sm_mtu_init_wait(struct bna_port *port, enum bna_port_event event)
{
switch (event) {
case PORT_E_STOP:
bfa_fsm_set_state(port, bna_port_sm_last_resp_wait);
break;
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
break;
case PORT_E_PAUSE_CFG:
/* No-op */
break;
case PORT_E_MTU_CFG:
port->flags |= BNA_PORT_F_MTU_CHANGED;
break;
case PORT_E_FWRESP_MTU:
if (port->flags & BNA_PORT_F_MTU_CHANGED) {
port->flags &= ~BNA_PORT_F_MTU_CHANGED;
bna_fw_mtu_set(port);
} else {
bfa_fsm_set_state(port, bna_port_sm_pause_init_wait);
}
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_pause_init_wait_entry(struct bna_port *port)
{
bna_fw_pause_set(port);
}
static void
bna_port_sm_pause_init_wait(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_STOP:
bfa_fsm_set_state(port, bna_port_sm_last_resp_wait);
break;
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
break;
case PORT_E_PAUSE_CFG:
port->flags |= BNA_PORT_F_PAUSE_CHANGED;
break;
case PORT_E_MTU_CFG:
port->flags |= BNA_PORT_F_MTU_CHANGED;
break;
case PORT_E_FWRESP_PAUSE:
if (port->flags & BNA_PORT_F_PAUSE_CHANGED) {
port->flags &= ~BNA_PORT_F_PAUSE_CHANGED;
bna_fw_pause_set(port);
} else if (port->flags & BNA_PORT_F_MTU_CHANGED) {
port->flags &= ~BNA_PORT_F_MTU_CHANGED;
bfa_fsm_set_state(port, bna_port_sm_mtu_init_wait);
} else {
bfa_fsm_set_state(port, bna_port_sm_started);
bna_port_chld_start(port);
}
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_last_resp_wait_entry(struct bna_port *port)
{
}
static void
bna_port_sm_last_resp_wait(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_FAIL:
case PORT_E_FWRESP_PAUSE:
case PORT_E_FWRESP_MTU:
bfa_fsm_set_state(port, bna_port_sm_stopped);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_started_entry(struct bna_port *port)
{
/**
* NOTE: Do not call bna_port_chld_start() here, since it will be
* inadvertently called during pause_cfg_wait->started transition
* as well
*/
call_port_pause_cbfn(port, BNA_CB_SUCCESS);
call_port_mtu_cbfn(port, BNA_CB_SUCCESS);
}
static void
bna_port_sm_started(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_STOP:
bfa_fsm_set_state(port, bna_port_sm_chld_stop_wait);
break;
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_port_chld_fail(port);
break;
case PORT_E_PAUSE_CFG:
bfa_fsm_set_state(port, bna_port_sm_pause_cfg_wait);
break;
case PORT_E_MTU_CFG:
bfa_fsm_set_state(port, bna_port_sm_rx_stop_wait);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_pause_cfg_wait_entry(struct bna_port *port)
{
bna_fw_pause_set(port);
}
static void
bna_port_sm_pause_cfg_wait(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_port_chld_fail(port);
break;
case PORT_E_FWRESP_PAUSE:
bfa_fsm_set_state(port, bna_port_sm_started);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_rx_stop_wait_entry(struct bna_port *port)
{
bna_port_rx_stop(port);
}
static void
bna_port_sm_rx_stop_wait(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_port_chld_fail(port);
break;
case PORT_E_CHLD_STOPPED:
bfa_fsm_set_state(port, bna_port_sm_mtu_cfg_wait);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_mtu_cfg_wait_entry(struct bna_port *port)
{
bna_fw_mtu_set(port);
}
static void
bna_port_sm_mtu_cfg_wait(struct bna_port *port, enum bna_port_event event)
{
switch (event) {
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_port_chld_fail(port);
break;
case PORT_E_FWRESP_MTU:
bfa_fsm_set_state(port, bna_port_sm_started);
bna_port_rx_start(port);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_port_sm_chld_stop_wait_entry(struct bna_port *port)
{
bna_port_chld_stop(port);
}
static void
bna_port_sm_chld_stop_wait(struct bna_port *port,
enum bna_port_event event)
{
switch (event) {
case PORT_E_FAIL:
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_port_chld_fail(port);
break;
case PORT_E_CHLD_STOPPED:
bfa_fsm_set_state(port, bna_port_sm_stopped);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_fw_pause_set(struct bna_port *port)
{
struct bfi_ll_set_pause_req ll_req;
memset(&ll_req, 0, sizeof(ll_req));
ll_req.mh.msg_class = BFI_MC_LL;
ll_req.mh.msg_id = BFI_LL_H2I_SET_PAUSE_REQ;
ll_req.mh.mtag.h2i.lpu_id = 0;
ll_req.tx_pause = port->pause_config.tx_pause;
ll_req.rx_pause = port->pause_config.rx_pause;
bna_mbox_qe_fill(&port->mbox_qe, &ll_req, sizeof(ll_req),
bna_fw_cb_pause_set, port);
bna_mbox_send(port->bna, &port->mbox_qe);
}
static void
bna_fw_cb_pause_set(void *arg, int status)
{
struct bna_port *port = (struct bna_port *)arg;
bfa_q_qe_init(&port->mbox_qe.qe);
bfa_fsm_send_event(port, PORT_E_FWRESP_PAUSE);
}
void
bna_fw_mtu_set(struct bna_port *port)
{
struct bfi_ll_mtu_info_req ll_req;
bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_MTU_INFO_REQ, 0);
ll_req.mtu = htons((u16)port->mtu);
bna_mbox_qe_fill(&port->mbox_qe, &ll_req, sizeof(ll_req),
bna_fw_cb_mtu_set, port);
bna_mbox_send(port->bna, &port->mbox_qe);
}
void
bna_fw_cb_mtu_set(void *arg, int status)
{
struct bna_port *port = (struct bna_port *)arg;
bfa_q_qe_init(&port->mbox_qe.qe);
bfa_fsm_send_event(port, PORT_E_FWRESP_MTU);
}
static void
bna_port_cb_chld_stopped(void *arg)
{
struct bna_port *port = (struct bna_port *)arg;
bfa_fsm_send_event(port, PORT_E_CHLD_STOPPED);
}
static void
bna_port_init(struct bna_port *port, struct bna *bna)
{
port->bna = bna;
port->flags = 0;
port->mtu = 0;
port->type = BNA_PORT_T_REGULAR;
port->link_cbfn = bnad_cb_port_link_status;
port->chld_stop_wc.wc_resume = bna_port_cb_chld_stopped;
port->chld_stop_wc.wc_cbarg = port;
port->chld_stop_wc.wc_count = 0;
port->stop_cbfn = NULL;
port->stop_cbarg = NULL;
port->pause_cbfn = NULL;
port->mtu_cbfn = NULL;
bfa_q_qe_init(&port->mbox_qe.qe);
bfa_fsm_set_state(port, bna_port_sm_stopped);
bna_llport_init(&port->llport, bna);
}
static void
bna_port_uninit(struct bna_port *port)
{
bna_llport_uninit(&port->llport);
port->flags = 0;
port->bna = NULL;
}
static int
bna_port_state_get(struct bna_port *port)
{
return bfa_sm_to_state(port_sm_table, port->fsm);
}
static void
bna_port_start(struct bna_port *port)
{
port->flags |= BNA_PORT_F_DEVICE_READY;
if (port->flags & BNA_PORT_F_ENABLED)
bfa_fsm_send_event(port, PORT_E_START);
}
static void
bna_port_stop(struct bna_port *port)
{
port->stop_cbfn = bna_device_cb_port_stopped;
port->stop_cbarg = &port->bna->device;
port->flags &= ~BNA_PORT_F_DEVICE_READY;
bfa_fsm_send_event(port, PORT_E_STOP);
}
static void
bna_port_fail(struct bna_port *port)
{
port->flags &= ~BNA_PORT_F_DEVICE_READY;
bfa_fsm_send_event(port, PORT_E_FAIL);
}
void
bna_port_cb_tx_stopped(struct bna_port *port, enum bna_cb_status status)
{
bfa_wc_down(&port->chld_stop_wc);
}
void
bna_port_cb_rx_stopped(struct bna_port *port, enum bna_cb_status status)
{
bfa_wc_down(&port->chld_stop_wc);
}
int
bna_port_mtu_get(struct bna_port *port)
{
return port->mtu;
}
void
bna_port_enable(struct bna_port *port)
{
if (port->fsm != (bfa_sm_t)bna_port_sm_stopped)
return;
port->flags |= BNA_PORT_F_ENABLED;
if (port->flags & BNA_PORT_F_DEVICE_READY)
bfa_fsm_send_event(port, PORT_E_START);
}
void
bna_port_disable(struct bna_port *port, enum bna_cleanup_type type,
void (*cbfn)(void *, enum bna_cb_status))
{
if (type == BNA_SOFT_CLEANUP) {
(*cbfn)(port->bna->bnad, BNA_CB_SUCCESS);
return;
}
port->stop_cbfn = cbfn;
port->stop_cbarg = port->bna->bnad;
port->flags &= ~BNA_PORT_F_ENABLED;
bfa_fsm_send_event(port, PORT_E_STOP);
}
void
bna_port_pause_config(struct bna_port *port,
struct bna_pause_config *pause_config,
void (*cbfn)(struct bnad *, enum bna_cb_status))
{
port->pause_config = *pause_config;
port->pause_cbfn = cbfn;
bfa_fsm_send_event(port, PORT_E_PAUSE_CFG);
}
void
bna_port_mtu_set(struct bna_port *port, int mtu,
void (*cbfn)(struct bnad *, enum bna_cb_status))
{
port->mtu = mtu;
port->mtu_cbfn = cbfn;
bfa_fsm_send_event(port, PORT_E_MTU_CFG);
}
void
bna_port_mac_get(struct bna_port *port, mac_t *mac)
{
*mac = bfa_nw_ioc_get_mac(&port->bna->device.ioc);
}
/**
* DEVICE
*/
#define enable_mbox_intr(_device)\
do {\
u32 intr_status;\
bna_intr_status_get((_device)->bna, intr_status);\
bnad_cb_device_enable_mbox_intr((_device)->bna->bnad);\
bna_mbox_intr_enable((_device)->bna);\
} while (0)
#define disable_mbox_intr(_device)\
do {\
bna_mbox_intr_disable((_device)->bna);\
bnad_cb_device_disable_mbox_intr((_device)->bna->bnad);\
} while (0)
static const struct bna_chip_regs_offset reg_offset[] =
{{HOST_PAGE_NUM_FN0, HOSTFN0_INT_STATUS,
HOSTFN0_INT_MASK, HOST_MSIX_ERR_INDEX_FN0},
{HOST_PAGE_NUM_FN1, HOSTFN1_INT_STATUS,
HOSTFN1_INT_MASK, HOST_MSIX_ERR_INDEX_FN1},
{HOST_PAGE_NUM_FN2, HOSTFN2_INT_STATUS,
HOSTFN2_INT_MASK, HOST_MSIX_ERR_INDEX_FN2},
{HOST_PAGE_NUM_FN3, HOSTFN3_INT_STATUS,
HOSTFN3_INT_MASK, HOST_MSIX_ERR_INDEX_FN3},
};
enum bna_device_event {
DEVICE_E_ENABLE = 1,
DEVICE_E_DISABLE = 2,
DEVICE_E_IOC_READY = 3,
DEVICE_E_IOC_FAILED = 4,
DEVICE_E_IOC_DISABLED = 5,
DEVICE_E_IOC_RESET = 6,
DEVICE_E_PORT_STOPPED = 7,
};
enum bna_device_state {
BNA_DEVICE_STOPPED = 1,
BNA_DEVICE_IOC_READY_WAIT = 2,
BNA_DEVICE_READY = 3,
BNA_DEVICE_PORT_STOP_WAIT = 4,
BNA_DEVICE_IOC_DISABLE_WAIT = 5,
BNA_DEVICE_FAILED = 6
};
bfa_fsm_state_decl(bna_device, stopped, struct bna_device,
enum bna_device_event);
bfa_fsm_state_decl(bna_device, ioc_ready_wait, struct bna_device,
enum bna_device_event);
bfa_fsm_state_decl(bna_device, ready, struct bna_device,
enum bna_device_event);
bfa_fsm_state_decl(bna_device, port_stop_wait, struct bna_device,
enum bna_device_event);
bfa_fsm_state_decl(bna_device, ioc_disable_wait, struct bna_device,
enum bna_device_event);
bfa_fsm_state_decl(bna_device, failed, struct bna_device,
enum bna_device_event);
static struct bfa_sm_table device_sm_table[] = {
{BFA_SM(bna_device_sm_stopped), BNA_DEVICE_STOPPED},
{BFA_SM(bna_device_sm_ioc_ready_wait), BNA_DEVICE_IOC_READY_WAIT},
{BFA_SM(bna_device_sm_ready), BNA_DEVICE_READY},
{BFA_SM(bna_device_sm_port_stop_wait), BNA_DEVICE_PORT_STOP_WAIT},
{BFA_SM(bna_device_sm_ioc_disable_wait), BNA_DEVICE_IOC_DISABLE_WAIT},
{BFA_SM(bna_device_sm_failed), BNA_DEVICE_FAILED},
};
static void
bna_device_sm_stopped_entry(struct bna_device *device)
{
if (device->stop_cbfn)
device->stop_cbfn(device->stop_cbarg, BNA_CB_SUCCESS);
device->stop_cbfn = NULL;
device->stop_cbarg = NULL;
}
static void
bna_device_sm_stopped(struct bna_device *device,
enum bna_device_event event)
{
switch (event) {
case DEVICE_E_ENABLE:
if (device->intr_type == BNA_INTR_T_MSIX)
bna_mbox_msix_idx_set(device);
bfa_nw_ioc_enable(&device->ioc);
bfa_fsm_set_state(device, bna_device_sm_ioc_ready_wait);
break;
case DEVICE_E_DISABLE:
bfa_fsm_set_state(device, bna_device_sm_stopped);
break;
case DEVICE_E_IOC_RESET:
enable_mbox_intr(device);
break;
case DEVICE_E_IOC_FAILED:
bfa_fsm_set_state(device, bna_device_sm_failed);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_device_sm_ioc_ready_wait_entry(struct bna_device *device)
{
/**
* Do not call bfa_ioc_enable() here. It must be called in the
* previous state due to failed -> ioc_ready_wait transition.
*/
}
static void
bna_device_sm_ioc_ready_wait(struct bna_device *device,
enum bna_device_event event)
{
switch (event) {
case DEVICE_E_DISABLE:
if (device->ready_cbfn)
device->ready_cbfn(device->ready_cbarg,
BNA_CB_INTERRUPT);
device->ready_cbfn = NULL;
device->ready_cbarg = NULL;
bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
break;
case DEVICE_E_IOC_READY:
bfa_fsm_set_state(device, bna_device_sm_ready);
break;
case DEVICE_E_IOC_FAILED:
bfa_fsm_set_state(device, bna_device_sm_failed);
break;
case DEVICE_E_IOC_RESET:
enable_mbox_intr(device);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_device_sm_ready_entry(struct bna_device *device)
{
bna_mbox_mod_start(&device->bna->mbox_mod);
bna_port_start(&device->bna->port);
if (device->ready_cbfn)
device->ready_cbfn(device->ready_cbarg,
BNA_CB_SUCCESS);
device->ready_cbfn = NULL;
device->ready_cbarg = NULL;
}
static void
bna_device_sm_ready(struct bna_device *device, enum bna_device_event event)
{
switch (event) {
case DEVICE_E_DISABLE:
bfa_fsm_set_state(device, bna_device_sm_port_stop_wait);
break;
case DEVICE_E_IOC_FAILED:
bfa_fsm_set_state(device, bna_device_sm_failed);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_device_sm_port_stop_wait_entry(struct bna_device *device)
{
bna_port_stop(&device->bna->port);
}
static void
bna_device_sm_port_stop_wait(struct bna_device *device,
enum bna_device_event event)
{
switch (event) {
case DEVICE_E_PORT_STOPPED:
bna_mbox_mod_stop(&device->bna->mbox_mod);
bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
break;
case DEVICE_E_IOC_FAILED:
disable_mbox_intr(device);
bna_port_fail(&device->bna->port);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_device_sm_ioc_disable_wait_entry(struct bna_device *device)
{
bfa_nw_ioc_disable(&device->ioc);
}
static void
bna_device_sm_ioc_disable_wait(struct bna_device *device,
enum bna_device_event event)
{
switch (event) {
case DEVICE_E_IOC_DISABLED:
disable_mbox_intr(device);
bfa_fsm_set_state(device, bna_device_sm_stopped);
break;
default:
bfa_sm_fault(event);
}
}
static void
bna_device_sm_failed_entry(struct bna_device *device)
{
disable_mbox_intr(device);
bna_port_fail(&device->bna->port);
bna_mbox_mod_stop(&device->bna->mbox_mod);
if (device->ready_cbfn)
device->ready_cbfn(device->ready_cbarg,
BNA_CB_FAIL);
device->ready_cbfn = NULL;
device->ready_cbarg = NULL;
}
static void
bna_device_sm_failed(struct bna_device *device,
enum bna_device_event event)
{
switch (event) {
case DEVICE_E_DISABLE:
bfa_fsm_set_state(device, bna_device_sm_ioc_disable_wait);
break;
case DEVICE_E_IOC_RESET:
enable_mbox_intr(device);
bfa_fsm_set_state(device, bna_device_sm_ioc_ready_wait);
break;
default:
bfa_sm_fault(event);
}
}
/* IOC callback functions */
static void
bna_device_cb_iocll_ready(void *dev, enum bfa_status error)
{
struct bna_device *device = (struct bna_device *)dev;
if (error)
bfa_fsm_send_event(device, DEVICE_E_IOC_FAILED);
else
bfa_fsm_send_event(device, DEVICE_E_IOC_READY);
}
static void
bna_device_cb_iocll_disabled(void *dev)
{
struct bna_device *device = (struct bna_device *)dev;
bfa_fsm_send_event(device, DEVICE_E_IOC_DISABLED);
}
static void
bna_device_cb_iocll_failed(void *dev)
{
struct bna_device *device = (struct bna_device *)dev;
bfa_fsm_send_event(device, DEVICE_E_IOC_FAILED);
}
static void
bna_device_cb_iocll_reset(void *dev)
{
struct bna_device *device = (struct bna_device *)dev;
bfa_fsm_send_event(device, DEVICE_E_IOC_RESET);
}
static struct bfa_ioc_cbfn bfa_iocll_cbfn = {
bna_device_cb_iocll_ready,
bna_device_cb_iocll_disabled,
bna_device_cb_iocll_failed,
bna_device_cb_iocll_reset
};
/* device */
static void
bna_adv_device_init(struct bna_device *device, struct bna *bna,
struct bna_res_info *res_info)
{
u8 *kva;
u64 dma;
device->bna = bna;
kva = res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.mdl[0].kva;
/**
* Attach common modules (Diag, SFP, CEE, Port) and claim respective
* DMA memory.
*/
BNA_GET_DMA_ADDR(
&res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mdl[0].dma, dma);
kva = res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mdl[0].kva;
bfa_nw_cee_attach(&bna->cee, &device->ioc, bna);
bfa_nw_cee_mem_claim(&bna->cee, kva, dma);
kva += bfa_nw_cee_meminfo();
dma += bfa_nw_cee_meminfo();
}
static void
bna_device_init(struct bna_device *device, struct bna *bna,
struct bna_res_info *res_info)
{
u64 dma;
device->bna = bna;
/**
* Attach IOC and claim:
* 1. DMA memory for IOC attributes
* 2. Kernel memory for FW trace
*/
bfa_nw_ioc_attach(&device->ioc, device, &bfa_iocll_cbfn);
bfa_nw_ioc_pci_init(&device->ioc, &bna->pcidev, BFI_MC_LL);
BNA_GET_DMA_ADDR(
&res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mdl[0].dma, dma);
bfa_nw_ioc_mem_claim(&device->ioc,
res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mdl[0].kva,
dma);
bna_adv_device_init(device, bna, res_info);
/*
* Initialize mbox_mod only after IOC, so that mbox handler
* registration goes through
*/
device->intr_type =
res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.intr_type;
device->vector =
res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.idl[0].vector;
bna_mbox_mod_init(&bna->mbox_mod, bna);
device->ready_cbfn = device->stop_cbfn = NULL;
device->ready_cbarg = device->stop_cbarg = NULL;
bfa_fsm_set_state(device, bna_device_sm_stopped);
}
static void
bna_device_uninit(struct bna_device *device)
{
bna_mbox_mod_uninit(&device->bna->mbox_mod);
bfa_nw_ioc_detach(&device->ioc);
device->bna = NULL;
}
static void
bna_device_cb_port_stopped(void *arg, enum bna_cb_status status)
{
struct bna_device *device = (struct bna_device *)arg;
bfa_fsm_send_event(device, DEVICE_E_PORT_STOPPED);
}
static int
bna_device_status_get(struct bna_device *device)
{
return device->fsm == (bfa_fsm_t)bna_device_sm_ready;
}
void
bna_device_enable(struct bna_device *device)
{
if (device->fsm != (bfa_fsm_t)bna_device_sm_stopped) {
bnad_cb_device_enabled(device->bna->bnad, BNA_CB_BUSY);
return;
}
device->ready_cbfn = bnad_cb_device_enabled;
device->ready_cbarg = device->bna->bnad;
bfa_fsm_send_event(device, DEVICE_E_ENABLE);
}
void
bna_device_disable(struct bna_device *device, enum bna_cleanup_type type)
{
if (type == BNA_SOFT_CLEANUP) {
bnad_cb_device_disabled(device->bna->bnad, BNA_CB_SUCCESS);
return;
}
device->stop_cbfn = bnad_cb_device_disabled;
device->stop_cbarg = device->bna->bnad;
bfa_fsm_send_event(device, DEVICE_E_DISABLE);
}
static int
bna_device_state_get(struct bna_device *device)
{
return bfa_sm_to_state(device_sm_table, device->fsm);
}
const u32 bna_napi_dim_vector[BNA_LOAD_T_MAX][BNA_BIAS_T_MAX] = {
{12, 12},
{6, 10},
{5, 10},
{4, 8},
{3, 6},
{3, 6},
{2, 4},
{1, 2},
};
/* utils */
static void
bna_adv_res_req(struct bna_res_info *res_info)
{
/* DMA memory for COMMON_MODULE */
res_info[BNA_RES_MEM_T_COM].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_COM].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
res_info[BNA_RES_MEM_T_COM].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_COM].res_u.mem_info.len = ALIGN(
bfa_nw_cee_meminfo(), PAGE_SIZE);
/* Virtual memory for retreiving fw_trc */
res_info[BNA_RES_MEM_T_FWTRC].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.mem_type = BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.num = 0;
res_info[BNA_RES_MEM_T_FWTRC].res_u.mem_info.len = 0;
/* DMA memory for retreiving stats */
res_info[BNA_RES_MEM_T_STATS].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.len =
ALIGN(BFI_HW_STATS_SIZE, PAGE_SIZE);
/* Virtual memory for soft stats */
res_info[BNA_RES_MEM_T_SWSTATS].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.mem_type = BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.len =
sizeof(struct bna_sw_stats);
}
static void
bna_sw_stats_get(struct bna *bna, struct bna_sw_stats *sw_stats)
{
struct bna_tx *tx;
struct bna_txq *txq;
struct bna_rx *rx;
struct bna_rxp *rxp;
struct list_head *qe;
struct list_head *txq_qe;
struct list_head *rxp_qe;
struct list_head *mac_qe;
int i;
sw_stats->device_state = bna_device_state_get(&bna->device);
sw_stats->port_state = bna_port_state_get(&bna->port);
sw_stats->port_flags = bna->port.flags;
sw_stats->llport_state = bna_llport_state_get(&bna->port.llport);
sw_stats->priority = bna->port.priority;
i = 0;
list_for_each(qe, &bna->tx_mod.tx_active_q) {
tx = (struct bna_tx *)qe;
sw_stats->tx_stats[i].tx_state = bna_tx_state_get(tx);
sw_stats->tx_stats[i].tx_flags = tx->flags;
sw_stats->tx_stats[i].num_txqs = 0;
sw_stats->tx_stats[i].txq_bmap[0] = 0;
sw_stats->tx_stats[i].txq_bmap[1] = 0;
list_for_each(txq_qe, &tx->txq_q) {
txq = (struct bna_txq *)txq_qe;
if (txq->txq_id < 32)
sw_stats->tx_stats[i].txq_bmap[0] |=
((u32)1 << txq->txq_id);
else
sw_stats->tx_stats[i].txq_bmap[1] |=
((u32)
1 << (txq->txq_id - 32));
sw_stats->tx_stats[i].num_txqs++;
}
sw_stats->tx_stats[i].txf_id = tx->txf.txf_id;
i++;
}
sw_stats->num_active_tx = i;
i = 0;
list_for_each(qe, &bna->rx_mod.rx_active_q) {
rx = (struct bna_rx *)qe;
sw_stats->rx_stats[i].rx_state = bna_rx_state_get(rx);
sw_stats->rx_stats[i].rx_flags = rx->rx_flags;
sw_stats->rx_stats[i].num_rxps = 0;
sw_stats->rx_stats[i].num_rxqs = 0;
sw_stats->rx_stats[i].rxq_bmap[0] = 0;
sw_stats->rx_stats[i].rxq_bmap[1] = 0;
sw_stats->rx_stats[i].cq_bmap[0] = 0;
sw_stats->rx_stats[i].cq_bmap[1] = 0;
list_for_each(rxp_qe, &rx->rxp_q) {
rxp = (struct bna_rxp *)rxp_qe;
sw_stats->rx_stats[i].num_rxqs += 1;
if (rxp->type == BNA_RXP_SINGLE) {
if (rxp->rxq.single.only->rxq_id < 32) {
sw_stats->rx_stats[i].rxq_bmap[0] |=
((u32)1 <<
rxp->rxq.single.only->rxq_id);
} else {
sw_stats->rx_stats[i].rxq_bmap[1] |=
((u32)1 <<
(rxp->rxq.single.only->rxq_id - 32));
}
} else {
if (rxp->rxq.slr.large->rxq_id < 32) {
sw_stats->rx_stats[i].rxq_bmap[0] |=
((u32)1 <<
rxp->rxq.slr.large->rxq_id);
} else {
sw_stats->rx_stats[i].rxq_bmap[1] |=
((u32)1 <<
(rxp->rxq.slr.large->rxq_id - 32));
}
if (rxp->rxq.slr.small->rxq_id < 32) {
sw_stats->rx_stats[i].rxq_bmap[0] |=
((u32)1 <<
rxp->rxq.slr.small->rxq_id);
} else {
sw_stats->rx_stats[i].rxq_bmap[1] |=
((u32)1 <<
(rxp->rxq.slr.small->rxq_id - 32));
}
sw_stats->rx_stats[i].num_rxqs += 1;
}
if (rxp->cq.cq_id < 32)
sw_stats->rx_stats[i].cq_bmap[0] |=
(1 << rxp->cq.cq_id);
else
sw_stats->rx_stats[i].cq_bmap[1] |=
(1 << (rxp->cq.cq_id - 32));
sw_stats->rx_stats[i].num_rxps++;
}
sw_stats->rx_stats[i].rxf_id = rx->rxf.rxf_id;
sw_stats->rx_stats[i].rxf_state = bna_rxf_state_get(&rx->rxf);
sw_stats->rx_stats[i].rxf_oper_state = rx->rxf.rxf_oper_state;
sw_stats->rx_stats[i].num_active_ucast = 0;
if (rx->rxf.ucast_active_mac)
sw_stats->rx_stats[i].num_active_ucast++;
list_for_each(mac_qe, &rx->rxf.ucast_active_q)
sw_stats->rx_stats[i].num_active_ucast++;
sw_stats->rx_stats[i].num_active_mcast = 0;
list_for_each(mac_qe, &rx->rxf.mcast_active_q)
sw_stats->rx_stats[i].num_active_mcast++;
sw_stats->rx_stats[i].rxmode_active = rx->rxf.rxmode_active;
sw_stats->rx_stats[i].vlan_filter_status =
rx->rxf.vlan_filter_status;
memcpy(sw_stats->rx_stats[i].vlan_filter_table,
rx->rxf.vlan_filter_table,
sizeof(u32) * ((BFI_MAX_VLAN + 1) / 32));
sw_stats->rx_stats[i].rss_status = rx->rxf.rss_status;
sw_stats->rx_stats[i].hds_status = rx->rxf.hds_status;
i++;
}
sw_stats->num_active_rx = i;
}
static void
bna_fw_cb_stats_get(void *arg, int status)
{
struct bna *bna = (struct bna *)arg;
u64 *p_stats;
int i, count;
int rxf_count, txf_count;
u64 rxf_bmap, txf_bmap;
bfa_q_qe_init(&bna->mbox_qe.qe);
if (status == 0) {
p_stats = (u64 *)bna->stats.hw_stats;
count = sizeof(struct bfi_ll_stats) / sizeof(u64);
for (i = 0; i < count; i++)
p_stats[i] = cpu_to_be64(p_stats[i]);
rxf_count = 0;
rxf_bmap = (u64)bna->stats.rxf_bmap[0] |
((u64)bna->stats.rxf_bmap[1] << 32);
for (i = 0; i < BFI_LL_RXF_ID_MAX; i++)
if (rxf_bmap & ((u64)1 << i))
rxf_count++;
txf_count = 0;
txf_bmap = (u64)bna->stats.txf_bmap[0] |
((u64)bna->stats.txf_bmap[1] << 32);
for (i = 0; i < BFI_LL_TXF_ID_MAX; i++)
if (txf_bmap & ((u64)1 << i))
txf_count++;
p_stats = (u64 *)&bna->stats.hw_stats->rxf_stats[0] +
((rxf_count * sizeof(struct bfi_ll_stats_rxf) +
txf_count * sizeof(struct bfi_ll_stats_txf))/
sizeof(u64));
/* Populate the TXF stats from the firmware DMAed copy */
for (i = (BFI_LL_TXF_ID_MAX - 1); i >= 0; i--)
if (txf_bmap & ((u64)1 << i)) {
p_stats -= sizeof(struct bfi_ll_stats_txf)/
sizeof(u64);
memcpy(&bna->stats.hw_stats->txf_stats[i],
p_stats,
sizeof(struct bfi_ll_stats_txf));
}
/* Populate the RXF stats from the firmware DMAed copy */
for (i = (BFI_LL_RXF_ID_MAX - 1); i >= 0; i--)
if (rxf_bmap & ((u64)1 << i)) {
p_stats -= sizeof(struct bfi_ll_stats_rxf)/
sizeof(u64);
memcpy(&bna->stats.hw_stats->rxf_stats[i],
p_stats,
sizeof(struct bfi_ll_stats_rxf));
}
bna_sw_stats_get(bna, bna->stats.sw_stats);
bnad_cb_stats_get(bna->bnad, BNA_CB_SUCCESS, &bna->stats);
} else
bnad_cb_stats_get(bna->bnad, BNA_CB_FAIL, &bna->stats);
}
static void
bna_fw_stats_get(struct bna *bna)
{
struct bfi_ll_stats_req ll_req;
bfi_h2i_set(ll_req.mh, BFI_MC_LL, BFI_LL_H2I_STATS_GET_REQ, 0);
ll_req.stats_mask = htons(BFI_LL_STATS_ALL);
ll_req.rxf_id_mask[0] = htonl(bna->rx_mod.rxf_bmap[0]);
ll_req.rxf_id_mask[1] = htonl(bna->rx_mod.rxf_bmap[1]);
ll_req.txf_id_mask[0] = htonl(bna->tx_mod.txf_bmap[0]);
ll_req.txf_id_mask[1] = htonl(bna->tx_mod.txf_bmap[1]);
ll_req.host_buffer.a32.addr_hi = bna->hw_stats_dma.msb;
ll_req.host_buffer.a32.addr_lo = bna->hw_stats_dma.lsb;
bna_mbox_qe_fill(&bna->mbox_qe, &ll_req, sizeof(ll_req),
bna_fw_cb_stats_get, bna);
bna_mbox_send(bna, &bna->mbox_qe);
bna->stats.rxf_bmap[0] = bna->rx_mod.rxf_bmap[0];
bna->stats.rxf_bmap[1] = bna->rx_mod.rxf_bmap[1];
bna->stats.txf_bmap[0] = bna->tx_mod.txf_bmap[0];
bna->stats.txf_bmap[1] = bna->tx_mod.txf_bmap[1];
}
void
bna_stats_get(struct bna *bna)
{
if (bna_device_status_get(&bna->device))
bna_fw_stats_get(bna);
else
bnad_cb_stats_get(bna->bnad, BNA_CB_FAIL, &bna->stats);
}
/* IB */
static void
bna_ib_coalescing_timeo_set(struct bna_ib *ib, u8 coalescing_timeo)
{
ib->ib_config.coalescing_timeo = coalescing_timeo;
if (ib->start_count)
ib->door_bell.doorbell_ack = BNA_DOORBELL_IB_INT_ACK(
(u32)ib->ib_config.coalescing_timeo, 0);
}
/* RxF */
void
bna_rxf_adv_init(struct bna_rxf *rxf,
struct bna_rx *rx,
struct bna_rx_config *q_config)
{
switch (q_config->rxp_type) {
case BNA_RXP_SINGLE:
/* No-op */
break;
case BNA_RXP_SLR:
rxf->ctrl_flags |= BNA_RXF_CF_SM_LG_RXQ;
break;
case BNA_RXP_HDS:
rxf->hds_cfg.hdr_type = q_config->hds_config.hdr_type;
rxf->hds_cfg.header_size =
q_config->hds_config.header_size;
rxf->forced_offset = 0;
break;
default:
break;
}
if (q_config->rss_status == BNA_STATUS_T_ENABLED) {
rxf->ctrl_flags |= BNA_RXF_CF_RSS_ENABLE;
rxf->rss_cfg.hash_type = q_config->rss_config.hash_type;
rxf->rss_cfg.hash_mask = q_config->rss_config.hash_mask;
memcpy(&rxf->rss_cfg.toeplitz_hash_key[0],
&q_config->rss_config.toeplitz_hash_key[0],
sizeof(rxf->rss_cfg.toeplitz_hash_key));
}
}
static void
rxf_fltr_mbox_cmd(struct bna_rxf *rxf, u8 cmd, enum bna_status status)
{
struct bfi_ll_rxf_req req;
bfi_h2i_set(req.mh, BFI_MC_LL, cmd, 0);
req.rxf_id = rxf->rxf_id;
req.enable = status;
bna_mbox_qe_fill(&rxf->mbox_qe, &req, sizeof(req),
rxf_cb_cam_fltr_mbox_cmd, rxf);
bna_mbox_send(rxf->rx->bna, &rxf->mbox_qe);
}
int
rxf_process_packet_filter_ucast(struct bna_rxf *rxf)
{
struct bna_mac *mac = NULL;
struct list_head *qe;
/* Add additional MAC entries */
if (!list_empty(&rxf->ucast_pending_add_q)) {
bfa_q_deq(&rxf->ucast_pending_add_q, &qe);
bfa_q_qe_init(qe);
mac = (struct bna_mac *)qe;
rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_ADD_REQ, mac);
list_add_tail(&mac->qe, &rxf->ucast_active_q);
return 1;
}
/* Delete MAC addresses previousely added */
if (!list_empty(&rxf->ucast_pending_del_q)) {
bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
bfa_q_qe_init(qe);
mac = (struct bna_mac *)qe;
rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
return 1;
}
return 0;
}
int
rxf_process_packet_filter_promisc(struct bna_rxf *rxf)
{
struct bna *bna = rxf->rx->bna;
/* Enable/disable promiscuous mode */
if (is_promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move promisc configuration from pending -> active */
promisc_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active |= BNA_RXMODE_PROMISC;
/* Disable VLAN filter to allow all VLANs */
__rxf_vlan_filter_set(rxf, BNA_STATUS_T_DISABLED);
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
BNA_STATUS_T_ENABLED);
return 1;
} else if (is_promisc_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move promisc configuration from pending -> active */
promisc_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
bna->rxf_promisc_id = BFI_MAX_RXF;
/* Revert VLAN filter */
__rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
return 0;
}
int
rxf_process_packet_filter_allmulti(struct bna_rxf *rxf)
{
/* Enable/disable allmulti mode */
if (is_allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move allmulti configuration from pending -> active */
allmulti_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active |= BNA_RXMODE_ALLMULTI;
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
BNA_STATUS_T_ENABLED);
return 1;
} else if (is_allmulti_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move allmulti configuration from pending -> active */
allmulti_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
return 0;
}
int
rxf_clear_packet_filter_ucast(struct bna_rxf *rxf)
{
struct bna_mac *mac = NULL;
struct list_head *qe;
/* 1. delete pending ucast entries */
if (!list_empty(&rxf->ucast_pending_del_q)) {
bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
bfa_q_qe_init(qe);
mac = (struct bna_mac *)qe;
rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
return 1;
}
/* 2. clear active ucast entries; move them to pending_add_q */
if (!list_empty(&rxf->ucast_active_q)) {
bfa_q_deq(&rxf->ucast_active_q, &qe);
bfa_q_qe_init(qe);
mac = (struct bna_mac *)qe;
rxf_cam_mbox_cmd(rxf, BFI_LL_H2I_MAC_UCAST_DEL_REQ, mac);
list_add_tail(&mac->qe, &rxf->ucast_pending_add_q);
return 1;
}
return 0;
}
int
rxf_clear_packet_filter_promisc(struct bna_rxf *rxf)
{
struct bna *bna = rxf->rx->bna;
/* 6. Execute pending promisc mode disable command */
if (is_promisc_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move promisc configuration from pending -> active */
promisc_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
bna->rxf_promisc_id = BFI_MAX_RXF;
/* Revert VLAN filter */
__rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
/* 7. Clear active promisc mode; move it to pending enable */
if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
/* move promisc configuration from active -> pending */
promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
/* Revert VLAN filter */
__rxf_vlan_filter_set(rxf, rxf->vlan_filter_status);
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_RXF_PROMISCUOUS_SET_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
return 0;
}
int
rxf_clear_packet_filter_allmulti(struct bna_rxf *rxf)
{
/* 10. Execute pending allmulti mode disable command */
if (is_allmulti_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* move allmulti configuration from pending -> active */
allmulti_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
/* 11. Clear active allmulti mode; move it to pending enable */
if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
/* move allmulti configuration from active -> pending */
allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
rxf_fltr_mbox_cmd(rxf, BFI_LL_H2I_MAC_MCAST_FILTER_REQ,
BNA_STATUS_T_DISABLED);
return 1;
}
return 0;
}
void
rxf_reset_packet_filter_ucast(struct bna_rxf *rxf)
{
struct list_head *qe;
struct bna_mac *mac;
/* 1. Move active ucast entries to pending_add_q */
while (!list_empty(&rxf->ucast_active_q)) {
bfa_q_deq(&rxf->ucast_active_q, &qe);
bfa_q_qe_init(qe);
list_add_tail(qe, &rxf->ucast_pending_add_q);
}
/* 2. Throw away delete pending ucast entries */
while (!list_empty(&rxf->ucast_pending_del_q)) {
bfa_q_deq(&rxf->ucast_pending_del_q, &qe);
bfa_q_qe_init(qe);
mac = (struct bna_mac *)qe;
bna_ucam_mod_mac_put(&rxf->rx->bna->ucam_mod, mac);
}
}
void
rxf_reset_packet_filter_promisc(struct bna_rxf *rxf)
{
struct bna *bna = rxf->rx->bna;
/* 6. Clear pending promisc mode disable */
if (is_promisc_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
promisc_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
bna->rxf_promisc_id = BFI_MAX_RXF;
}
/* 7. Move promisc mode config from active -> pending */
if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_PROMISC;
}
}
void
rxf_reset_packet_filter_allmulti(struct bna_rxf *rxf)
{
/* 10. Clear pending allmulti mode disable */
if (is_allmulti_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
allmulti_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
}
/* 11. Move allmulti mode config from active -> pending */
if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
rxf->rxmode_active &= ~BNA_RXMODE_ALLMULTI;
}
}
/**
* Should only be called by bna_rxf_mode_set.
* Helps deciding if h/w configuration is needed or not.
* Returns:
* 0 = no h/w change
* 1 = need h/w change
*/
static int
rxf_promisc_enable(struct bna_rxf *rxf)
{
struct bna *bna = rxf->rx->bna;
int ret = 0;
/* There can not be any pending disable command */
/* Do nothing if pending enable or already enabled */
if (is_promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask) ||
(rxf->rxmode_active & BNA_RXMODE_PROMISC)) {
/* Schedule enable */
} else {
/* Promisc mode should not be active in the system */
promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
bna->rxf_promisc_id = rxf->rxf_id;
ret = 1;
}
return ret;
}
/**
* Should only be called by bna_rxf_mode_set.
* Helps deciding if h/w configuration is needed or not.
* Returns:
* 0 = no h/w change
* 1 = need h/w change
*/
static int
rxf_promisc_disable(struct bna_rxf *rxf)
{
struct bna *bna = rxf->rx->bna;
int ret = 0;
/* There can not be any pending disable */
/* Turn off pending enable command , if any */
if (is_promisc_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* Promisc mode should not be active */
/* system promisc state should be pending */
promisc_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
/* Remove the promisc state from the system */
bna->rxf_promisc_id = BFI_MAX_RXF;
/* Schedule disable */
} else if (rxf->rxmode_active & BNA_RXMODE_PROMISC) {
/* Promisc mode should be active in the system */
promisc_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
ret = 1;
/* Do nothing if already disabled */
} else {
}
return ret;
}
/**
* Should only be called by bna_rxf_mode_set.
* Helps deciding if h/w configuration is needed or not.
* Returns:
* 0 = no h/w change
* 1 = need h/w change
*/
static int
rxf_allmulti_enable(struct bna_rxf *rxf)
{
int ret = 0;
/* There can not be any pending disable command */
/* Do nothing if pending enable or already enabled */
if (is_allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask) ||
(rxf->rxmode_active & BNA_RXMODE_ALLMULTI)) {
/* Schedule enable */
} else {
allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
ret = 1;
}
return ret;
}
/**
* Should only be called by bna_rxf_mode_set.
* Helps deciding if h/w configuration is needed or not.
* Returns:
* 0 = no h/w change
* 1 = need h/w change
*/
static int
rxf_allmulti_disable(struct bna_rxf *rxf)
{
int ret = 0;
/* There can not be any pending disable */
/* Turn off pending enable command , if any */
if (is_allmulti_enable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask)) {
/* Allmulti mode should not be active */
allmulti_inactive(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
/* Schedule disable */
} else if (rxf->rxmode_active & BNA_RXMODE_ALLMULTI) {
allmulti_disable(rxf->rxmode_pending,
rxf->rxmode_pending_bitmask);
ret = 1;
}
return ret;
}
/* RxF <- bnad */
enum bna_cb_status
bna_rx_mode_set(struct bna_rx *rx, enum bna_rxmode new_mode,
enum bna_rxmode bitmask,
void (*cbfn)(struct bnad *, struct bna_rx *,
enum bna_cb_status))
{
struct bna_rxf *rxf = &rx->rxf;
int need_hw_config = 0;
/* Process the commands */
if (is_promisc_enable(new_mode, bitmask)) {
/* If promisc mode is already enabled elsewhere in the system */
if ((rx->bna->rxf_promisc_id != BFI_MAX_RXF) &&
(rx->bna->rxf_promisc_id != rxf->rxf_id))
goto err_return;
if (rxf_promisc_enable(rxf))
need_hw_config = 1;
} else if (is_promisc_disable(new_mode, bitmask)) {
if (rxf_promisc_disable(rxf))
need_hw_config = 1;
}
if (is_allmulti_enable(new_mode, bitmask)) {
if (rxf_allmulti_enable(rxf))
need_hw_config = 1;
} else if (is_allmulti_disable(new_mode, bitmask)) {
if (rxf_allmulti_disable(rxf))
need_hw_config = 1;
}
/* Trigger h/w if needed */
if (need_hw_config) {
rxf->cam_fltr_cbfn = cbfn;
rxf->cam_fltr_cbarg = rx->bna->bnad;
bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
} else if (cbfn)
(*cbfn)(rx->bna->bnad, rx, BNA_CB_SUCCESS);
return BNA_CB_SUCCESS;
err_return:
return BNA_CB_FAIL;
}
void
/* RxF <- bnad */
bna_rx_vlanfilter_enable(struct bna_rx *rx)
{
struct bna_rxf *rxf = &rx->rxf;
if (rxf->vlan_filter_status == BNA_STATUS_T_DISABLED) {
rxf->rxf_flags |= BNA_RXF_FL_VLAN_CONFIG_PENDING;
rxf->vlan_filter_status = BNA_STATUS_T_ENABLED;
bfa_fsm_send_event(rxf, RXF_E_CAM_FLTR_MOD);
}
}
/* Rx */
/* Rx <- bnad */
void
bna_rx_coalescing_timeo_set(struct bna_rx *rx, int coalescing_timeo)
{
struct bna_rxp *rxp;
struct list_head *qe;
list_for_each(qe, &rx->rxp_q) {
rxp = (struct bna_rxp *)qe;
rxp->cq.ccb->rx_coalescing_timeo = coalescing_timeo;
bna_ib_coalescing_timeo_set(rxp->cq.ib, coalescing_timeo);
}
}
/* Rx <- bnad */
void
bna_rx_dim_reconfig(struct bna *bna, const u32 vector[][BNA_BIAS_T_MAX])
{
int i, j;
for (i = 0; i < BNA_LOAD_T_MAX; i++)
for (j = 0; j < BNA_BIAS_T_MAX; j++)
bna->rx_mod.dim_vector[i][j] = vector[i][j];
}
/* Rx <- bnad */
void
bna_rx_dim_update(struct bna_ccb *ccb)
{
struct bna *bna = ccb->cq->rx->bna;
u32 load, bias;
u32 pkt_rt, small_rt, large_rt;
u8 coalescing_timeo;
if ((ccb->pkt_rate.small_pkt_cnt == 0) &&
(ccb->pkt_rate.large_pkt_cnt == 0))
return;
/* Arrive at preconfigured coalescing timeo value based on pkt rate */
small_rt = ccb->pkt_rate.small_pkt_cnt;
large_rt = ccb->pkt_rate.large_pkt_cnt;
pkt_rt = small_rt + large_rt;
if (pkt_rt < BNA_PKT_RATE_10K)
load = BNA_LOAD_T_LOW_4;
else if (pkt_rt < BNA_PKT_RATE_20K)
load = BNA_LOAD_T_LOW_3;
else if (pkt_rt < BNA_PKT_RATE_30K)
load = BNA_LOAD_T_LOW_2;
else if (pkt_rt < BNA_PKT_RATE_40K)
load = BNA_LOAD_T_LOW_1;
else if (pkt_rt < BNA_PKT_RATE_50K)
load = BNA_LOAD_T_HIGH_1;
else if (pkt_rt < BNA_PKT_RATE_60K)
load = BNA_LOAD_T_HIGH_2;
else if (pkt_rt < BNA_PKT_RATE_80K)
load = BNA_LOAD_T_HIGH_3;
else
load = BNA_LOAD_T_HIGH_4;
if (small_rt > (large_rt << 1))
bias = 0;
else
bias = 1;
ccb->pkt_rate.small_pkt_cnt = 0;
ccb->pkt_rate.large_pkt_cnt = 0;
coalescing_timeo = bna->rx_mod.dim_vector[load][bias];
ccb->rx_coalescing_timeo = coalescing_timeo;
/* Set it to IB */
bna_ib_coalescing_timeo_set(ccb->cq->ib, coalescing_timeo);
}
/* Tx */
/* TX <- bnad */
void
bna_tx_coalescing_timeo_set(struct bna_tx *tx, int coalescing_timeo)
{
struct bna_txq *txq;
struct list_head *qe;
list_for_each(qe, &tx->txq_q) {
txq = (struct bna_txq *)qe;
bna_ib_coalescing_timeo_set(txq->ib, coalescing_timeo);
}
}
/*
* Private data
*/
struct bna_ritseg_pool_cfg {
u32 pool_size;
u32 pool_entry_size;
};
init_ritseg_pool(ritseg_pool_cfg);
/*
* Private functions
*/
static void
bna_ucam_mod_init(struct bna_ucam_mod *ucam_mod, struct bna *bna,
struct bna_res_info *res_info)
{
int i;
ucam_mod->ucmac = (struct bna_mac *)
res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.mdl[0].kva;
INIT_LIST_HEAD(&ucam_mod->free_q);
for (i = 0; i < BFI_MAX_UCMAC; i++) {
bfa_q_qe_init(&ucam_mod->ucmac[i].qe);
list_add_tail(&ucam_mod->ucmac[i].qe, &ucam_mod->free_q);
}
ucam_mod->bna = bna;
}
static void
bna_ucam_mod_uninit(struct bna_ucam_mod *ucam_mod)
{
struct list_head *qe;
int i = 0;
list_for_each(qe, &ucam_mod->free_q)
i++;
ucam_mod->bna = NULL;
}
static void
bna_mcam_mod_init(struct bna_mcam_mod *mcam_mod, struct bna *bna,
struct bna_res_info *res_info)
{
int i;
mcam_mod->mcmac = (struct bna_mac *)
res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.mdl[0].kva;
INIT_LIST_HEAD(&mcam_mod->free_q);
for (i = 0; i < BFI_MAX_MCMAC; i++) {
bfa_q_qe_init(&mcam_mod->mcmac[i].qe);
list_add_tail(&mcam_mod->mcmac[i].qe, &mcam_mod->free_q);
}
mcam_mod->bna = bna;
}
static void
bna_mcam_mod_uninit(struct bna_mcam_mod *mcam_mod)
{
struct list_head *qe;
int i = 0;
list_for_each(qe, &mcam_mod->free_q)
i++;
mcam_mod->bna = NULL;
}
static void
bna_rit_mod_init(struct bna_rit_mod *rit_mod,
struct bna_res_info *res_info)
{
int i;
int j;
int count;
int offset;
rit_mod->rit = (struct bna_rit_entry *)
res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.mdl[0].kva;
rit_mod->rit_segment = (struct bna_rit_segment *)
res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.mdl[0].kva;
count = 0;
offset = 0;
for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
INIT_LIST_HEAD(&rit_mod->rit_seg_pool[i]);
for (j = 0; j < ritseg_pool_cfg[i].pool_size; j++) {
bfa_q_qe_init(&rit_mod->rit_segment[count].qe);
rit_mod->rit_segment[count].max_rit_size =
ritseg_pool_cfg[i].pool_entry_size;
rit_mod->rit_segment[count].rit_offset = offset;
rit_mod->rit_segment[count].rit =
&rit_mod->rit[offset];
list_add_tail(&rit_mod->rit_segment[count].qe,
&rit_mod->rit_seg_pool[i]);
count++;
offset += ritseg_pool_cfg[i].pool_entry_size;
}
}
}
/*
* Public functions
*/
/* Called during probe(), before calling bna_init() */
void
bna_res_req(struct bna_res_info *res_info)
{
bna_adv_res_req(res_info);
/* DMA memory for retrieving IOC attributes */
res_info[BNA_RES_MEM_T_ATTR].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_ATTR].res_u.mem_info.len =
ALIGN(bfa_nw_ioc_meminfo(), PAGE_SIZE);
/* DMA memory for index segment of an IB */
res_info[BNA_RES_MEM_T_IBIDX].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.mem_type = BNA_MEM_T_DMA;
res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.len =
BFI_IBIDX_SIZE * BFI_IBIDX_MAX_SEGSIZE;
res_info[BNA_RES_MEM_T_IBIDX].res_u.mem_info.num = BFI_MAX_IB;
/* Virtual memory for IB objects - stored by IB module */
res_info[BNA_RES_MEM_T_IB_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_IB_ARRAY].res_u.mem_info.len =
BFI_MAX_IB * sizeof(struct bna_ib);
/* Virtual memory for intr objects - stored by IB module */
res_info[BNA_RES_MEM_T_INTR_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_INTR_ARRAY].res_u.mem_info.len =
BFI_MAX_IB * sizeof(struct bna_intr);
/* Virtual memory for idx_seg objects - stored by IB module */
res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_IDXSEG_ARRAY].res_u.mem_info.len =
BFI_IBIDX_TOTAL_SEGS * sizeof(struct bna_ibidx_seg);
/* Virtual memory for Tx objects - stored by Tx module */
res_info[BNA_RES_MEM_T_TX_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_TX_ARRAY].res_u.mem_info.len =
BFI_MAX_TXQ * sizeof(struct bna_tx);
/* Virtual memory for TxQ - stored by Tx module */
res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_TXQ_ARRAY].res_u.mem_info.len =
BFI_MAX_TXQ * sizeof(struct bna_txq);
/* Virtual memory for Rx objects - stored by Rx module */
res_info[BNA_RES_MEM_T_RX_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_RX_ARRAY].res_u.mem_info.len =
BFI_MAX_RXQ * sizeof(struct bna_rx);
/* Virtual memory for RxPath - stored by Rx module */
res_info[BNA_RES_MEM_T_RXP_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_RXP_ARRAY].res_u.mem_info.len =
BFI_MAX_RXQ * sizeof(struct bna_rxp);
/* Virtual memory for RxQ - stored by Rx module */
res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_RXQ_ARRAY].res_u.mem_info.len =
BFI_MAX_RXQ * sizeof(struct bna_rxq);
/* Virtual memory for Unicast MAC address - stored by ucam module */
res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_UCMAC_ARRAY].res_u.mem_info.len =
BFI_MAX_UCMAC * sizeof(struct bna_mac);
/* Virtual memory for Multicast MAC address - stored by mcam module */
res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_MCMAC_ARRAY].res_u.mem_info.len =
BFI_MAX_MCMAC * sizeof(struct bna_mac);
/* Virtual memory for RIT entries */
res_info[BNA_RES_MEM_T_RIT_ENTRY].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_RIT_ENTRY].res_u.mem_info.len =
BFI_MAX_RIT_SIZE * sizeof(struct bna_rit_entry);
/* Virtual memory for RIT segment table */
res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_type = BNA_RES_T_MEM;
res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.mem_type =
BNA_MEM_T_KVA;
res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.num = 1;
res_info[BNA_RES_MEM_T_RIT_SEGMENT].res_u.mem_info.len =
BFI_RIT_TOTAL_SEGS * sizeof(struct bna_rit_segment);
/* Interrupt resource for mailbox interrupt */
res_info[BNA_RES_INTR_T_MBOX].res_type = BNA_RES_T_INTR;
res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.intr_type =
BNA_INTR_T_MSIX;
res_info[BNA_RES_INTR_T_MBOX].res_u.intr_info.num = 1;
}
/* Called during probe() */
void
bna_init(struct bna *bna, struct bnad *bnad, struct bfa_pcidev *pcidev,
struct bna_res_info *res_info)
{
bna->bnad = bnad;
bna->pcidev = *pcidev;
bna->stats.hw_stats = (struct bfi_ll_stats *)
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].kva;
bna->hw_stats_dma.msb =
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].dma.msb;
bna->hw_stats_dma.lsb =
res_info[BNA_RES_MEM_T_STATS].res_u.mem_info.mdl[0].dma.lsb;
bna->stats.sw_stats = (struct bna_sw_stats *)
res_info[BNA_RES_MEM_T_SWSTATS].res_u.mem_info.mdl[0].kva;
bna->regs.page_addr = bna->pcidev.pci_bar_kva +
reg_offset[bna->pcidev.pci_func].page_addr;
bna->regs.fn_int_status = bna->pcidev.pci_bar_kva +
reg_offset[bna->pcidev.pci_func].fn_int_status;
bna->regs.fn_int_mask = bna->pcidev.pci_bar_kva +
reg_offset[bna->pcidev.pci_func].fn_int_mask;
if (bna->pcidev.pci_func < 3)
bna->port_num = 0;
else
bna->port_num = 1;
/* Also initializes diag, cee, sfp, phy_port and mbox_mod */
bna_device_init(&bna->device, bna, res_info);
bna_port_init(&bna->port, bna);
bna_tx_mod_init(&bna->tx_mod, bna, res_info);
bna_rx_mod_init(&bna->rx_mod, bna, res_info);
bna_ib_mod_init(&bna->ib_mod, bna, res_info);
bna_rit_mod_init(&bna->rit_mod, res_info);
bna_ucam_mod_init(&bna->ucam_mod, bna, res_info);
bna_mcam_mod_init(&bna->mcam_mod, bna, res_info);
bna->rxf_promisc_id = BFI_MAX_RXF;
/* Mbox q element for posting stat request to f/w */
bfa_q_qe_init(&bna->mbox_qe.qe);
}
void
bna_uninit(struct bna *bna)
{
bna_mcam_mod_uninit(&bna->mcam_mod);
bna_ucam_mod_uninit(&bna->ucam_mod);
bna_ib_mod_uninit(&bna->ib_mod);
bna_rx_mod_uninit(&bna->rx_mod);
bna_tx_mod_uninit(&bna->tx_mod);
bna_port_uninit(&bna->port);
bna_device_uninit(&bna->device);
bna->bnad = NULL;
}
struct bna_mac *
bna_ucam_mod_mac_get(struct bna_ucam_mod *ucam_mod)
{
struct list_head *qe;
if (list_empty(&ucam_mod->free_q))
return NULL;
bfa_q_deq(&ucam_mod->free_q, &qe);
return (struct bna_mac *)qe;
}
void
bna_ucam_mod_mac_put(struct bna_ucam_mod *ucam_mod, struct bna_mac *mac)
{
list_add_tail(&mac->qe, &ucam_mod->free_q);
}
struct bna_mac *
bna_mcam_mod_mac_get(struct bna_mcam_mod *mcam_mod)
{
struct list_head *qe;
if (list_empty(&mcam_mod->free_q))
return NULL;
bfa_q_deq(&mcam_mod->free_q, &qe);
return (struct bna_mac *)qe;
}
void
bna_mcam_mod_mac_put(struct bna_mcam_mod *mcam_mod, struct bna_mac *mac)
{
list_add_tail(&mac->qe, &mcam_mod->free_q);
}
/**
* Note: This should be called in the same locking context as the call to
* bna_rit_mod_seg_get()
*/
int
bna_rit_mod_can_satisfy(struct bna_rit_mod *rit_mod, int seg_size)
{
int i;
/* Select the pool for seg_size */
for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
if (seg_size <= ritseg_pool_cfg[i].pool_entry_size)
break;
}
if (i == BFI_RIT_SEG_TOTAL_POOLS)
return 0;
if (list_empty(&rit_mod->rit_seg_pool[i]))
return 0;
return 1;
}
struct bna_rit_segment *
bna_rit_mod_seg_get(struct bna_rit_mod *rit_mod, int seg_size)
{
struct bna_rit_segment *seg;
struct list_head *qe;
int i;
/* Select the pool for seg_size */
for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
if (seg_size <= ritseg_pool_cfg[i].pool_entry_size)
break;
}
if (i == BFI_RIT_SEG_TOTAL_POOLS)
return NULL;
if (list_empty(&rit_mod->rit_seg_pool[i]))
return NULL;
bfa_q_deq(&rit_mod->rit_seg_pool[i], &qe);
seg = (struct bna_rit_segment *)qe;
bfa_q_qe_init(&seg->qe);
seg->rit_size = seg_size;
return seg;
}
void
bna_rit_mod_seg_put(struct bna_rit_mod *rit_mod,
struct bna_rit_segment *seg)
{
int i;
/* Select the pool for seg->max_rit_size */
for (i = 0; i < BFI_RIT_SEG_TOTAL_POOLS; i++) {
if (seg->max_rit_size == ritseg_pool_cfg[i].pool_entry_size)
break;
}
seg->rit_size = 0;
list_add_tail(&seg->qe, &rit_mod->rit_seg_pool[i]);
}
/*
* Linux network driver for Brocade Converged Network Adapter.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (GPL) Version 2 as
* published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/*
* Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
* All rights reserved
* www.brocade.com
*/
/**
* File for interrupt macros and functions
*/
#ifndef __BNA_HW_H__
#define __BNA_HW_H__
#include "bfi_reg.h"
/**
*
* SW imposed limits
*
*/
#ifndef BNA_BIOS_BUILD
#define BFI_MAX_TXQ 64
#define BFI_MAX_RXQ 64
#define BFI_MAX_RXF 64
#define BFI_MAX_IB 128
#define BFI_MAX_RIT_SIZE 256
#define BFI_RSS_RIT_SIZE 64
#define BFI_NONRSS_RIT_SIZE 1
#define BFI_MAX_UCMAC 256
#define BFI_MAX_MCMAC 512
#define BFI_IBIDX_SIZE 4
#define BFI_MAX_VLAN 4095
/**
* There are 2 free IB index pools:
* pool1: 120 segments of 1 index each
* pool8: 1 segment of 8 indexes
*/
#define BFI_IBIDX_POOL1_SIZE 116
#define BFI_IBIDX_POOL1_ENTRY_SIZE 1
#define BFI_IBIDX_POOL2_SIZE 2
#define BFI_IBIDX_POOL2_ENTRY_SIZE 2
#define BFI_IBIDX_POOL8_SIZE 1
#define BFI_IBIDX_POOL8_ENTRY_SIZE 8
#define BFI_IBIDX_TOTAL_POOLS 3
#define BFI_IBIDX_TOTAL_SEGS 119 /* (POOL1 + POOL2 + POOL8)_SIZE */
#define BFI_IBIDX_MAX_SEGSIZE 8
#define init_ibidx_pool(name) \
static struct bna_ibidx_pool name[BFI_IBIDX_TOTAL_POOLS] = \
{ \
{ BFI_IBIDX_POOL1_SIZE, BFI_IBIDX_POOL1_ENTRY_SIZE }, \
{ BFI_IBIDX_POOL2_SIZE, BFI_IBIDX_POOL2_ENTRY_SIZE }, \
{ BFI_IBIDX_POOL8_SIZE, BFI_IBIDX_POOL8_ENTRY_SIZE } \
}
/**
* There are 2 free RIT segment pools:
* Pool1: 192 segments of 1 RIT entry each
* Pool2: 1 segment of 64 RIT entry
*/
#define BFI_RIT_SEG_POOL1_SIZE 192
#define BFI_RIT_SEG_POOL1_ENTRY_SIZE 1
#define BFI_RIT_SEG_POOLRSS_SIZE 1
#define BFI_RIT_SEG_POOLRSS_ENTRY_SIZE 64
#define BFI_RIT_SEG_TOTAL_POOLS 2
#define BFI_RIT_TOTAL_SEGS 193 /* POOL1_SIZE + POOLRSS_SIZE */
#define init_ritseg_pool(name) \
static struct bna_ritseg_pool_cfg name[BFI_RIT_SEG_TOTAL_POOLS] = \
{ \
{ BFI_RIT_SEG_POOL1_SIZE, BFI_RIT_SEG_POOL1_ENTRY_SIZE }, \
{ BFI_RIT_SEG_POOLRSS_SIZE, BFI_RIT_SEG_POOLRSS_ENTRY_SIZE } \
}
#else /* BNA_BIOS_BUILD */
#define BFI_MAX_TXQ 1
#define BFI_MAX_RXQ 1
#define BFI_MAX_RXF 1
#define BFI_MAX_IB 2
#define BFI_MAX_RIT_SIZE 2
#define BFI_RSS_RIT_SIZE 64
#define BFI_NONRSS_RIT_SIZE 1
#define BFI_MAX_UCMAC 1
#define BFI_MAX_MCMAC 8
#define BFI_IBIDX_SIZE 4
#define BFI_MAX_VLAN 4095
/* There is one free pool: 2 segments of 1 index each */
#define BFI_IBIDX_POOL1_SIZE 2
#define BFI_IBIDX_POOL1_ENTRY_SIZE 1
#define BFI_IBIDX_TOTAL_POOLS 1
#define BFI_IBIDX_TOTAL_SEGS 2 /* POOL1_SIZE */
#define BFI_IBIDX_MAX_SEGSIZE 1
#define init_ibidx_pool(name) \
static struct bna_ibidx_pool name[BFI_IBIDX_TOTAL_POOLS] = \
{ \
{ BFI_IBIDX_POOL1_SIZE, BFI_IBIDX_POOL1_ENTRY_SIZE } \
}
#define BFI_RIT_SEG_POOL1_SIZE 1
#define BFI_RIT_SEG_POOL1_ENTRY_SIZE 1
#define BFI_RIT_SEG_TOTAL_POOLS 1
#define BFI_RIT_TOTAL_SEGS 1 /* POOL1_SIZE */
#define init_ritseg_pool(name) \
static struct bna_ritseg_pool_cfg name[BFI_RIT_SEG_TOTAL_POOLS] = \
{ \
{ BFI_RIT_SEG_POOL1_SIZE, BFI_RIT_SEG_POOL1_ENTRY_SIZE } \
}
#endif /* BNA_BIOS_BUILD */
#define BFI_RSS_HASH_KEY_LEN 10
#define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
#define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
#define BFI_MAX_INTERPKT_COUNT 0xFF
#define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
#define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
#define BFI_TX_INTERPKT_COUNT 32
#define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
#define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
#define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
#define BFI_TXQ_WI_SIZE 64 /* bytes */
#define BFI_RXQ_WI_SIZE 8 /* bytes */
#define BFI_CQ_WI_SIZE 16 /* bytes */
#define BFI_TX_MAX_WRR_QUOTA 0xFFF
#define BFI_TX_MAX_VECTORS_PER_WI 4
#define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
#define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
#define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
/* Small Q buffer size */
#define BFI_SMALL_RXBUF_SIZE 128
/* Defined separately since BFA_FLASH_DMA_BUF_SZ is in bfa_flash.c */
#define BFI_FLASH_DMA_BUF_SZ 0x010000 /* 64K DMA */
#define BFI_HW_STATS_SIZE 0x4000 /* 16K DMA */
/**
*
* HW register offsets, macros
*
*/
/* DMA Block Register Host Window Start Address */
#define DMA_BLK_REG_ADDR 0x00013000
/* DMA Block Internal Registers */
#define DMA_CTRL_REG0 (DMA_BLK_REG_ADDR + 0x000)
#define DMA_CTRL_REG1 (DMA_BLK_REG_ADDR + 0x004)
#define DMA_ERR_INT_STATUS (DMA_BLK_REG_ADDR + 0x008)
#define DMA_ERR_INT_ENABLE (DMA_BLK_REG_ADDR + 0x00c)
#define DMA_ERR_INT_STATUS_SET (DMA_BLK_REG_ADDR + 0x010)
/* APP Block Register Address Offset from BAR0 */
#define APP_BLK_REG_ADDR 0x00014000
/* Host Function Interrupt Mask Registers */
#define HOSTFN0_INT_MASK (APP_BLK_REG_ADDR + 0x004)
#define HOSTFN1_INT_MASK (APP_BLK_REG_ADDR + 0x104)
#define HOSTFN2_INT_MASK (APP_BLK_REG_ADDR + 0x304)
#define HOSTFN3_INT_MASK (APP_BLK_REG_ADDR + 0x404)
/**
* Host Function PCIe Error Registers
* Duplicates "Correctable" & "Uncorrectable"
* registers in PCIe Config space.
*/
#define FN0_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x014)
#define FN1_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x114)
#define FN2_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x314)
#define FN3_PCIE_ERR_REG (APP_BLK_REG_ADDR + 0x414)
/* Host Function Error Type Status Registers */
#define FN0_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x018)
#define FN1_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x118)
#define FN2_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x318)
#define FN3_ERR_TYPE_STATUS_REG (APP_BLK_REG_ADDR + 0x418)
/* Host Function Error Type Mask Registers */
#define FN0_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x01c)
#define FN1_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x11c)
#define FN2_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x31c)
#define FN3_ERR_TYPE_MSK_STATUS_REG (APP_BLK_REG_ADDR + 0x41c)
/* Catapult Host Semaphore Status Registers (App block) */
#define HOST_SEM_STS0_REG (APP_BLK_REG_ADDR + 0x630)
#define HOST_SEM_STS1_REG (APP_BLK_REG_ADDR + 0x634)
#define HOST_SEM_STS2_REG (APP_BLK_REG_ADDR + 0x638)
#define HOST_SEM_STS3_REG (APP_BLK_REG_ADDR + 0x63c)
#define HOST_SEM_STS4_REG (APP_BLK_REG_ADDR + 0x640)
#define HOST_SEM_STS5_REG (APP_BLK_REG_ADDR + 0x644)
#define HOST_SEM_STS6_REG (APP_BLK_REG_ADDR + 0x648)
#define HOST_SEM_STS7_REG (APP_BLK_REG_ADDR + 0x64c)
/* PCIe Misc Register */
#define PCIE_MISC_REG (APP_BLK_REG_ADDR + 0x200)
/* Temp Sensor Control Registers */
#define TEMPSENSE_CNTL_REG (APP_BLK_REG_ADDR + 0x250)
#define TEMPSENSE_STAT_REG (APP_BLK_REG_ADDR + 0x254)
/* APP Block local error registers */
#define APP_LOCAL_ERR_STAT (APP_BLK_REG_ADDR + 0x258)
#define APP_LOCAL_ERR_MSK (APP_BLK_REG_ADDR + 0x25c)
/* PCIe Link Error registers */
#define PCIE_LNK_ERR_STAT (APP_BLK_REG_ADDR + 0x260)
#define PCIE_LNK_ERR_MSK (APP_BLK_REG_ADDR + 0x264)
/**
* FCoE/FIP Ethertype Register
* 31:16 -- Chip wide value for FIP type
* 15:0 -- Chip wide value for FCoE type
*/
#define FCOE_FIP_ETH_TYPE (APP_BLK_REG_ADDR + 0x280)
/**
* Reserved Ethertype Register
* 31:16 -- Reserved
* 15:0 -- Other ethertype
*/
#define RESV_ETH_TYPE (APP_BLK_REG_ADDR + 0x284)
/**
* Host Command Status Registers
* Each set consists of 3 registers :
* clear, set, cmd
* 16 such register sets in all
* See catapult_spec.pdf for detailed functionality
* Put each type in a single macro accessed by _num ?
*/
#define HOST_CMDSTS0_CLR_REG (APP_BLK_REG_ADDR + 0x500)
#define HOST_CMDSTS0_SET_REG (APP_BLK_REG_ADDR + 0x504)
#define HOST_CMDSTS0_REG (APP_BLK_REG_ADDR + 0x508)
#define HOST_CMDSTS1_CLR_REG (APP_BLK_REG_ADDR + 0x510)
#define HOST_CMDSTS1_SET_REG (APP_BLK_REG_ADDR + 0x514)
#define HOST_CMDSTS1_REG (APP_BLK_REG_ADDR + 0x518)
#define HOST_CMDSTS2_CLR_REG (APP_BLK_REG_ADDR + 0x520)
#define HOST_CMDSTS2_SET_REG (APP_BLK_REG_ADDR + 0x524)
#define HOST_CMDSTS2_REG (APP_BLK_REG_ADDR + 0x528)
#define HOST_CMDSTS3_CLR_REG (APP_BLK_REG_ADDR + 0x530)
#define HOST_CMDSTS3_SET_REG (APP_BLK_REG_ADDR + 0x534)
#define HOST_CMDSTS3_REG (APP_BLK_REG_ADDR + 0x538)
#define HOST_CMDSTS4_CLR_REG (APP_BLK_REG_ADDR + 0x540)
#define HOST_CMDSTS4_SET_REG (APP_BLK_REG_ADDR + 0x544)
#define HOST_CMDSTS4_REG (APP_BLK_REG_ADDR + 0x548)
#define HOST_CMDSTS5_CLR_REG (APP_BLK_REG_ADDR + 0x550)
#define HOST_CMDSTS5_SET_REG (APP_BLK_REG_ADDR + 0x554)
#define HOST_CMDSTS5_REG (APP_BLK_REG_ADDR + 0x558)
#define HOST_CMDSTS6_CLR_REG (APP_BLK_REG_ADDR + 0x560)
#define HOST_CMDSTS6_SET_REG (APP_BLK_REG_ADDR + 0x564)
#define HOST_CMDSTS6_REG (APP_BLK_REG_ADDR + 0x568)
#define HOST_CMDSTS7_CLR_REG (APP_BLK_REG_ADDR + 0x570)
#define HOST_CMDSTS7_SET_REG (APP_BLK_REG_ADDR + 0x574)
#define HOST_CMDSTS7_REG (APP_BLK_REG_ADDR + 0x578)
#define HOST_CMDSTS8_CLR_REG (APP_BLK_REG_ADDR + 0x580)
#define HOST_CMDSTS8_SET_REG (APP_BLK_REG_ADDR + 0x584)
#define HOST_CMDSTS8_REG (APP_BLK_REG_ADDR + 0x588)
#define HOST_CMDSTS9_CLR_REG (APP_BLK_REG_ADDR + 0x590)
#define HOST_CMDSTS9_SET_REG (APP_BLK_REG_ADDR + 0x594)
#define HOST_CMDSTS9_REG (APP_BLK_REG_ADDR + 0x598)
#define HOST_CMDSTS10_CLR_REG (APP_BLK_REG_ADDR + 0x5A0)
#define HOST_CMDSTS10_SET_REG (APP_BLK_REG_ADDR + 0x5A4)
#define HOST_CMDSTS10_REG (APP_BLK_REG_ADDR + 0x5A8)
#define HOST_CMDSTS11_CLR_REG (APP_BLK_REG_ADDR + 0x5B0)
#define HOST_CMDSTS11_SET_REG (APP_BLK_REG_ADDR + 0x5B4)
#define HOST_CMDSTS11_REG (APP_BLK_REG_ADDR + 0x5B8)
#define HOST_CMDSTS12_CLR_REG (APP_BLK_REG_ADDR + 0x5C0)
#define HOST_CMDSTS12_SET_REG (APP_BLK_REG_ADDR + 0x5C4)
#define HOST_CMDSTS12_REG (APP_BLK_REG_ADDR + 0x5C8)
#define HOST_CMDSTS13_CLR_REG (APP_BLK_REG_ADDR + 0x5D0)
#define HOST_CMDSTS13_SET_REG (APP_BLK_REG_ADDR + 0x5D4)
#define HOST_CMDSTS13_REG (APP_BLK_REG_ADDR + 0x5D8)
#define HOST_CMDSTS14_CLR_REG (APP_BLK_REG_ADDR + 0x5E0)
#define HOST_CMDSTS14_SET_REG (APP_BLK_REG_ADDR + 0x5E4)
#define HOST_CMDSTS14_REG (APP_BLK_REG_ADDR + 0x5E8)
#define HOST_CMDSTS15_CLR_REG (APP_BLK_REG_ADDR + 0x5F0)
#define HOST_CMDSTS15_SET_REG (APP_BLK_REG_ADDR + 0x5F4)
#define HOST_CMDSTS15_REG (APP_BLK_REG_ADDR + 0x5F8)
/**
* LPU0 Block Register Address Offset from BAR0
* Range 0x18000 - 0x18033
*/
#define LPU0_BLK_REG_ADDR 0x00018000
/**
* LPU0 Registers
* Should they be directly used from host,
* except for diagnostics ?
* CTL_REG : Control register
* CMD_REG : Triggers exec. of cmd. in
* Mailbox memory
*/
#define LPU0_MBOX_CTL_REG (LPU0_BLK_REG_ADDR + 0x000)
#define LPU0_MBOX_CMD_REG (LPU0_BLK_REG_ADDR + 0x004)
#define LPU0_MBOX_LINK_0REG (LPU0_BLK_REG_ADDR + 0x008)
#define LPU1_MBOX_LINK_0REG (LPU0_BLK_REG_ADDR + 0x00c)
#define LPU0_MBOX_STATUS_0REG (LPU0_BLK_REG_ADDR + 0x010)
#define LPU1_MBOX_STATUS_0REG (LPU0_BLK_REG_ADDR + 0x014)
#define LPU0_ERR_STATUS_REG (LPU0_BLK_REG_ADDR + 0x018)
#define LPU0_ERR_SET_REG (LPU0_BLK_REG_ADDR + 0x020)
/**
* LPU1 Block Register Address Offset from BAR0
* Range 0x18400 - 0x18433
*/
#define LPU1_BLK_REG_ADDR 0x00018400
/**
* LPU1 Registers
* Same as LPU0 registers above
*/
#define LPU1_MBOX_CTL_REG (LPU1_BLK_REG_ADDR + 0x000)
#define LPU1_MBOX_CMD_REG (LPU1_BLK_REG_ADDR + 0x004)
#define LPU0_MBOX_LINK_1REG (LPU1_BLK_REG_ADDR + 0x008)
#define LPU1_MBOX_LINK_1REG (LPU1_BLK_REG_ADDR + 0x00c)
#define LPU0_MBOX_STATUS_1REG (LPU1_BLK_REG_ADDR + 0x010)
#define LPU1_MBOX_STATUS_1REG (LPU1_BLK_REG_ADDR + 0x014)
#define LPU1_ERR_STATUS_REG (LPU1_BLK_REG_ADDR + 0x018)
#define LPU1_ERR_SET_REG (LPU1_BLK_REG_ADDR + 0x020)
/**
* PSS Block Register Address Offset from BAR0
* Range 0x18800 - 0x188DB
*/
#define PSS_BLK_REG_ADDR 0x00018800
/**
* PSS Registers
* For details, see catapult_spec.pdf
* ERR_STATUS_REG : Indicates error in PSS module
* RAM_ERR_STATUS_REG : Indicates RAM module that detected error
*/
#define ERR_STATUS_SET (PSS_BLK_REG_ADDR + 0x018)
#define PSS_RAM_ERR_STATUS_REG (PSS_BLK_REG_ADDR + 0x01C)
/**
* PSS Semaphore Lock Registers, total 16
* First read when unlocked returns 0,
* and is set to 1, atomically.
* Subsequent reads returns 1.
* To clear set the value to 0.
* Range : 0x20 to 0x5c
*/
#define PSS_SEM_LOCK_REG(_num) \
(PSS_BLK_REG_ADDR + 0x020 + ((_num) << 2))
/**
* PSS Semaphore Status Registers,
* corresponding to the lock registers above
*/
#define PSS_SEM_STATUS_REG(_num) \
(PSS_BLK_REG_ADDR + 0x060 + ((_num) << 2))
/**
* Catapult CPQ Registers
* Defines for Mailbox Registers
* Used to send mailbox commands to firmware from
* host. The data part is written to the MBox
* memory, registers are used to indicate that
* a commnad is resident in memory.
*
* Note : LPU0<->LPU1 mailboxes are not listed here
*/
#define CPQ_BLK_REG_ADDR 0x00019000
#define HOSTFN0_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x130)
#define HOSTFN0_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x134)
#define LPU0_HOSTFN0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x138)
#define LPU1_HOSTFN0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x13C)
#define HOSTFN1_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x140)
#define HOSTFN1_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x144)
#define LPU0_HOSTFN1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x148)
#define LPU1_HOSTFN1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x14C)
#define HOSTFN2_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x170)
#define HOSTFN2_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x174)
#define LPU0_HOSTFN2_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x178)
#define LPU1_HOSTFN2_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x17C)
#define HOSTFN3_LPU0_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x180)
#define HOSTFN3_LPU1_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x184)
#define LPU0_HOSTFN3_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x188)
#define LPU1_HOSTFN3_MBOX1_CMD_STAT (CPQ_BLK_REG_ADDR + 0x18C)
/* Host Function Force Parity Error Registers */
#define HOSTFN0_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x120)
#define HOSTFN1_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x124)
#define HOSTFN2_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x128)
#define HOSTFN3_LPU_FORCE_PERR (CPQ_BLK_REG_ADDR + 0x12C)
/* LL Port[0|1] Halt Mask Registers */
#define LL_HALT_MSK_P0 (CPQ_BLK_REG_ADDR + 0x1A0)
#define LL_HALT_MSK_P1 (CPQ_BLK_REG_ADDR + 0x1B0)
/* LL Port[0|1] Error Mask Registers */
#define LL_ERR_MSK_P0 (CPQ_BLK_REG_ADDR + 0x1D0)
#define LL_ERR_MSK_P1 (CPQ_BLK_REG_ADDR + 0x1D4)
/* EMC FLI (Flash Controller) Block Register Address Offset from BAR0 */
#define FLI_BLK_REG_ADDR 0x0001D000
/* EMC FLI Registers */
#define FLI_CMD_REG (FLI_BLK_REG_ADDR + 0x000)
#define FLI_ADDR_REG (FLI_BLK_REG_ADDR + 0x004)
#define FLI_CTL_REG (FLI_BLK_REG_ADDR + 0x008)
#define FLI_WRDATA_REG (FLI_BLK_REG_ADDR + 0x00C)
#define FLI_RDDATA_REG (FLI_BLK_REG_ADDR + 0x010)
#define FLI_DEV_STATUS_REG (FLI_BLK_REG_ADDR + 0x014)
#define FLI_SIG_WD_REG (FLI_BLK_REG_ADDR + 0x018)
/**
* RO register
* 31:16 -- Vendor Id
* 15:0 -- Device Id
*/
#define FLI_DEV_VENDOR_REG (FLI_BLK_REG_ADDR + 0x01C)
#define FLI_ERR_STATUS_REG (FLI_BLK_REG_ADDR + 0x020)
/**
* RAD (RxAdm) Block Register Address Offset from BAR0
* RAD0 Range : 0x20000 - 0x203FF
* RAD1 Range : 0x20400 - 0x207FF
*/
#define RAD0_BLK_REG_ADDR 0x00020000
#define RAD1_BLK_REG_ADDR 0x00020400
/* RAD0 Registers */
#define RAD0_CTL_REG (RAD0_BLK_REG_ADDR + 0x000)
#define RAD0_PE_PARM_REG (RAD0_BLK_REG_ADDR + 0x004)
#define RAD0_BCN_REG (RAD0_BLK_REG_ADDR + 0x008)
/* Default function ID register */
#define RAD0_DEFAULT_REG (RAD0_BLK_REG_ADDR + 0x00C)
/* Default promiscuous ID register */
#define RAD0_PROMISC_REG (RAD0_BLK_REG_ADDR + 0x010)
#define RAD0_BCNQ_REG (RAD0_BLK_REG_ADDR + 0x014)
/*
* This register selects 1 of 8 PM Q's using
* VLAN pri, for non-BCN packets without a VLAN tag
*/
#define RAD0_DEFAULTQ_REG (RAD0_BLK_REG_ADDR + 0x018)
#define RAD0_ERR_STS (RAD0_BLK_REG_ADDR + 0x01C)
#define RAD0_SET_ERR_STS (RAD0_BLK_REG_ADDR + 0x020)
#define RAD0_ERR_INT_EN (RAD0_BLK_REG_ADDR + 0x024)
#define RAD0_FIRST_ERR (RAD0_BLK_REG_ADDR + 0x028)
#define RAD0_FORCE_ERR (RAD0_BLK_REG_ADDR + 0x02C)
#define RAD0_IF_RCVD (RAD0_BLK_REG_ADDR + 0x030)
#define RAD0_IF_RCVD_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x034)
#define RAD0_IF_RCVD_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x038)
#define RAD0_IF_RCVD_VLAN (RAD0_BLK_REG_ADDR + 0x03C)
#define RAD0_IF_RCVD_UCAST (RAD0_BLK_REG_ADDR + 0x040)
#define RAD0_IF_RCVD_UCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x044)
#define RAD0_IF_RCVD_UCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x048)
#define RAD0_IF_RCVD_UCAST_VLAN (RAD0_BLK_REG_ADDR + 0x04C)
#define RAD0_IF_RCVD_MCAST (RAD0_BLK_REG_ADDR + 0x050)
#define RAD0_IF_RCVD_MCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x054)
#define RAD0_IF_RCVD_MCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x058)
#define RAD0_IF_RCVD_MCAST_VLAN (RAD0_BLK_REG_ADDR + 0x05C)
#define RAD0_IF_RCVD_BCAST (RAD0_BLK_REG_ADDR + 0x060)
#define RAD0_IF_RCVD_BCAST_OCTETS_HIGH (RAD0_BLK_REG_ADDR + 0x064)
#define RAD0_IF_RCVD_BCAST_OCTETS_LOW (RAD0_BLK_REG_ADDR + 0x068)
#define RAD0_IF_RCVD_BCAST_VLAN (RAD0_BLK_REG_ADDR + 0x06C)
#define RAD0_DROPPED_FRAMES (RAD0_BLK_REG_ADDR + 0x070)
#define RAD0_MAC_MAN_1H (RAD0_BLK_REG_ADDR + 0x080)
#define RAD0_MAC_MAN_1L (RAD0_BLK_REG_ADDR + 0x084)
#define RAD0_MAC_MAN_2H (RAD0_BLK_REG_ADDR + 0x088)
#define RAD0_MAC_MAN_2L (RAD0_BLK_REG_ADDR + 0x08C)
#define RAD0_MAC_MAN_3H (RAD0_BLK_REG_ADDR + 0x090)
#define RAD0_MAC_MAN_3L (RAD0_BLK_REG_ADDR + 0x094)
#define RAD0_MAC_MAN_4H (RAD0_BLK_REG_ADDR + 0x098)
#define RAD0_MAC_MAN_4L (RAD0_BLK_REG_ADDR + 0x09C)
#define RAD0_LAST4_IP (RAD0_BLK_REG_ADDR + 0x100)
/* RAD1 Registers */
#define RAD1_CTL_REG (RAD1_BLK_REG_ADDR + 0x000)
#define RAD1_PE_PARM_REG (RAD1_BLK_REG_ADDR + 0x004)
#define RAD1_BCN_REG (RAD1_BLK_REG_ADDR + 0x008)
/* Default function ID register */
#define RAD1_DEFAULT_REG (RAD1_BLK_REG_ADDR + 0x00C)
/* Promiscuous function ID register */
#define RAD1_PROMISC_REG (RAD1_BLK_REG_ADDR + 0x010)
#define RAD1_BCNQ_REG (RAD1_BLK_REG_ADDR + 0x014)
/*
* This register selects 1 of 8 PM Q's using
* VLAN pri, for non-BCN packets without a VLAN tag
*/
#define RAD1_DEFAULTQ_REG (RAD1_BLK_REG_ADDR + 0x018)
#define RAD1_ERR_STS (RAD1_BLK_REG_ADDR + 0x01C)
#define RAD1_SET_ERR_STS (RAD1_BLK_REG_ADDR + 0x020)
#define RAD1_ERR_INT_EN (RAD1_BLK_REG_ADDR + 0x024)
/**
* TXA Block Register Address Offset from BAR0
* TXA0 Range : 0x21000 - 0x213FF
* TXA1 Range : 0x21400 - 0x217FF
*/
#define TXA0_BLK_REG_ADDR 0x00021000
#define TXA1_BLK_REG_ADDR 0x00021400
/* TXA Registers */
#define TXA0_CTRL_REG (TXA0_BLK_REG_ADDR + 0x000)
#define TXA1_CTRL_REG (TXA1_BLK_REG_ADDR + 0x000)
/**
* TSO Sequence # Registers (RO)
* Total 8 (for 8 queues)
* Holds the last seq.# for TSO frames
* See catapult_spec.pdf for more details
*/
#define TXA0_TSO_TCP_SEQ_REG(_num) \
(TXA0_BLK_REG_ADDR + 0x020 + ((_num) << 2))
#define TXA1_TSO_TCP_SEQ_REG(_num) \
(TXA1_BLK_REG_ADDR + 0x020 + ((_num) << 2))
/**
* TSO IP ID # Registers (RO)
* Total 8 (for 8 queues)
* Holds the last IP ID for TSO frames
* See catapult_spec.pdf for more details
*/
#define TXA0_TSO_IP_INFO_REG(_num) \
(TXA0_BLK_REG_ADDR + 0x040 + ((_num) << 2))
#define TXA1_TSO_IP_INFO_REG(_num) \
(TXA1_BLK_REG_ADDR + 0x040 + ((_num) << 2))
/**
* RXA Block Register Address Offset from BAR0
* RXA0 Range : 0x21800 - 0x21BFF
* RXA1 Range : 0x21C00 - 0x21FFF
*/
#define RXA0_BLK_REG_ADDR 0x00021800
#define RXA1_BLK_REG_ADDR 0x00021C00
/* RXA Registers */
#define RXA0_CTL_REG (RXA0_BLK_REG_ADDR + 0x040)
#define RXA1_CTL_REG (RXA1_BLK_REG_ADDR + 0x040)
/**
* PPLB Block Register Address Offset from BAR0
* PPLB0 Range : 0x22000 - 0x223FF
* PPLB1 Range : 0x22400 - 0x227FF
*/
#define PLB0_BLK_REG_ADDR 0x00022000
#define PLB1_BLK_REG_ADDR 0x00022400
/**
* PLB Registers
* Holds RL timer used time stamps in RLT tagged frames
*/
#define PLB0_ECM_TIMER_REG (PLB0_BLK_REG_ADDR + 0x05C)
#define PLB1_ECM_TIMER_REG (PLB1_BLK_REG_ADDR + 0x05C)
/* Controls the rate-limiter on each of the priority class */
#define PLB0_RL_CTL (PLB0_BLK_REG_ADDR + 0x060)
#define PLB1_RL_CTL (PLB1_BLK_REG_ADDR + 0x060)
/**
* Max byte register, total 8, 0-7
* see catapult_spec.pdf for details
*/
#define PLB0_RL_MAX_BC(_num) \
(PLB0_BLK_REG_ADDR + 0x064 + ((_num) << 2))
#define PLB1_RL_MAX_BC(_num) \
(PLB1_BLK_REG_ADDR + 0x064 + ((_num) << 2))
/**
* RL Time Unit Register for priority 0-7
* 4 bits per priority
* (2^rl_unit)*1us is the actual time period
*/
#define PLB0_RL_TU_PRIO (PLB0_BLK_REG_ADDR + 0x084)
#define PLB1_RL_TU_PRIO (PLB1_BLK_REG_ADDR + 0x084)
/**
* RL byte count register,
* bytes transmitted in (rl_unit*1)us time period
* 1 per priority, 8 in all, 0-7.
*/
#define PLB0_RL_BYTE_CNT(_num) \
(PLB0_BLK_REG_ADDR + 0x088 + ((_num) << 2))
#define PLB1_RL_BYTE_CNT(_num) \
(PLB1_BLK_REG_ADDR + 0x088 + ((_num) << 2))
/**
* RL Min factor register
* 2 bits per priority,
* 4 factors possible: 1, 0.5, 0.25, 0
* 2'b00 - 0; 2'b01 - 0.25; 2'b10 - 0.5; 2'b11 - 1
*/
#define PLB0_RL_MIN_REG (PLB0_BLK_REG_ADDR + 0x0A8)
#define PLB1_RL_MIN_REG (PLB1_BLK_REG_ADDR + 0x0A8)
/**
* RL Max factor register
* 2 bits per priority,
* 4 factors possible: 1, 0.5, 0.25, 0
* 2'b00 - 0; 2'b01 - 0.25; 2'b10 - 0.5; 2'b11 - 1
*/
#define PLB0_RL_MAX_REG (PLB0_BLK_REG_ADDR + 0x0AC)
#define PLB1_RL_MAX_REG (PLB1_BLK_REG_ADDR + 0x0AC)
/* MAC SERDES Address Paging register */
#define PLB0_EMS_ADD_REG (PLB0_BLK_REG_ADDR + 0xD0)
#define PLB1_EMS_ADD_REG (PLB1_BLK_REG_ADDR + 0xD0)
/* LL EMS Registers */
#define LL_EMS0_BLK_REG_ADDR 0x00026800
#define LL_EMS1_BLK_REG_ADDR 0x00026C00
/**
* BPC Block Register Address Offset from BAR0
* BPC0 Range : 0x23000 - 0x233FF
* BPC1 Range : 0x23400 - 0x237FF
*/
#define BPC0_BLK_REG_ADDR 0x00023000
#define BPC1_BLK_REG_ADDR 0x00023400
/**
* PMM Block Register Address Offset from BAR0
* PMM0 Range : 0x23800 - 0x23BFF
* PMM1 Range : 0x23C00 - 0x23FFF
*/
#define PMM0_BLK_REG_ADDR 0x00023800
#define PMM1_BLK_REG_ADDR 0x00023C00
/**
* HQM Block Register Address Offset from BAR0
* HQM0 Range : 0x24000 - 0x243FF
* HQM1 Range : 0x24400 - 0x247FF
*/
#define HQM0_BLK_REG_ADDR 0x00024000
#define HQM1_BLK_REG_ADDR 0x00024400
/**
* HQM Control Register
* Controls some aspects of IB
* See catapult_spec.pdf for details
*/
#define HQM0_CTL_REG (HQM0_BLK_REG_ADDR + 0x000)
#define HQM1_CTL_REG (HQM1_BLK_REG_ADDR + 0x000)
/**
* HQM Stop Q Semaphore Registers.
* Only one Queue resource can be stopped at
* any given time. This register controls access
* to the single stop Q resource.
* See catapult_spec.pdf for details
*/
#define HQM0_RXQ_STOP_SEM (HQM0_BLK_REG_ADDR + 0x028)
#define HQM0_TXQ_STOP_SEM (HQM0_BLK_REG_ADDR + 0x02C)
#define HQM1_RXQ_STOP_SEM (HQM1_BLK_REG_ADDR + 0x028)
#define HQM1_TXQ_STOP_SEM (HQM1_BLK_REG_ADDR + 0x02C)
/**
* LUT Block Register Address Offset from BAR0
* LUT0 Range : 0x25800 - 0x25BFF
* LUT1 Range : 0x25C00 - 0x25FFF
*/
#define LUT0_BLK_REG_ADDR 0x00025800
#define LUT1_BLK_REG_ADDR 0x00025C00
/**
* LUT Registers
* See catapult_spec.pdf for details
*/
#define LUT0_ERR_STS (LUT0_BLK_REG_ADDR + 0x000)
#define LUT1_ERR_STS (LUT1_BLK_REG_ADDR + 0x000)
#define LUT0_SET_ERR_STS (LUT0_BLK_REG_ADDR + 0x004)
#define LUT1_SET_ERR_STS (LUT1_BLK_REG_ADDR + 0x004)
/**
* TRC (Debug/Trace) Register Offset from BAR0
* Range : 0x26000 -- 0x263FFF
*/
#define TRC_BLK_REG_ADDR 0x00026000
/**
* TRC Registers
* See catapult_spec.pdf for details of each
*/
#define TRC_CTL_REG (TRC_BLK_REG_ADDR + 0x000)
#define TRC_MODS_REG (TRC_BLK_REG_ADDR + 0x004)
#define TRC_TRGC_REG (TRC_BLK_REG_ADDR + 0x008)
#define TRC_CNT1_REG (TRC_BLK_REG_ADDR + 0x010)
#define TRC_CNT2_REG (TRC_BLK_REG_ADDR + 0x014)
#define TRC_NXTS_REG (TRC_BLK_REG_ADDR + 0x018)
#define TRC_DIRR_REG (TRC_BLK_REG_ADDR + 0x01C)
/**
* TRC Trigger match filters, total 10
* Determines the trigger condition
*/
#define TRC_TRGM_REG(_num) \
(TRC_BLK_REG_ADDR + 0x040 + ((_num) << 2))
/**
* TRC Next State filters, total 10
* Determines the next state conditions
*/
#define TRC_NXTM_REG(_num) \
(TRC_BLK_REG_ADDR + 0x080 + ((_num) << 2))
/**
* TRC Store Match filters, total 10
* Determines the store conditions
*/
#define TRC_STRM_REG(_num) \
(TRC_BLK_REG_ADDR + 0x0C0 + ((_num) << 2))
/* DOORBELLS ACCESS */
/**
* Catapult doorbells
* Each doorbell-queue set has
* 1 RxQ, 1 TxQ, 2 IBs in that order
* Size of each entry in 32 bytes, even though only 1 word
* is used. For Non-VM case each doorbell-q set is
* separated by 128 bytes, for VM case it is separated
* by 4K bytes
* Non VM case Range : 0x38000 - 0x39FFF
* VM case Range : 0x100000 - 0x11FFFF
* The range applies to both HQMs
*/
#define HQM_DOORBELL_BLK_BASE_ADDR 0x00038000
#define HQM_DOORBELL_VM_BLK_BASE_ADDR 0x00100000
/* MEMORY ACCESS */
/**
* Catapult H/W Block Memory Access Address
* To the host a memory space of 32K (page) is visible
* at a time. The address range is from 0x08000 to 0x0FFFF
*/
#define HW_BLK_HOST_MEM_ADDR 0x08000
/**
* Catapult LUT Memory Access Page Numbers
* Range : LUT0 0xa0-0xa1
* LUT1 0xa2-0xa3
*/
#define LUT0_MEM_BLK_BASE_PG_NUM 0x000000A0
#define LUT1_MEM_BLK_BASE_PG_NUM 0x000000A2
/**
* Catapult RxFn Database Memory Block Base Offset
*
* The Rx function database exists in LUT block.
* In PCIe space this is accessible as a 256x32
* bit block. Each entry in this database is 4
* (4 byte) words. Max. entries is 64.
* Address of an entry corresponding to a function
* = base_addr + (function_no. * 16)
*/
#define RX_FNDB_RAM_BASE_OFFSET 0x0000B400
/**
* Catapult TxFn Database Memory Block Base Offset Address
*
* The Tx function database exists in LUT block.
* In PCIe space this is accessible as a 64x32
* bit block. Each entry in this database is 1
* (4 byte) word. Max. entries is 64.
* Address of an entry corresponding to a function
* = base_addr + (function_no. * 4)
*/
#define TX_FNDB_RAM_BASE_OFFSET 0x0000B800
/**
* Catapult Unicast CAM Base Offset Address
*
* Exists in LUT memory space.
* Shared by both the LL & FCoE driver.
* Size is 256x48 bits; mapped to PCIe space
* 512x32 bit blocks. For each address, bits
* are written in the order : [47:32] and then
* [31:0].
*/
#define UCAST_CAM_BASE_OFFSET 0x0000A800
/**
* Catapult Unicast RAM Base Offset Address
*
* Exists in LUT memory space.
* Shared by both the LL & FCoE driver.
* Size is 256x9 bits.
*/
#define UCAST_RAM_BASE_OFFSET 0x0000B000
/**
* Catapult Mulicast CAM Base Offset Address
*
* Exists in LUT memory space.
* Shared by both the LL & FCoE driver.
* Size is 256x48 bits; mapped to PCIe space
* 512x32 bit blocks. For each address, bits
* are written in the order : [47:32] and then
* [31:0].
*/
#define MCAST_CAM_BASE_OFFSET 0x0000A000
/**
* Catapult VLAN RAM Base Offset Address
*
* Exists in LUT memory space.
* Size is 4096x66 bits; mapped to PCIe space as
* 8192x32 bit blocks.
* All the 4K entries are within the address range
* 0x0000 to 0x8000, so in the first LUT page.
*/
#define VLAN_RAM_BASE_OFFSET 0x00000000
/**
* Catapult Tx Stats RAM Base Offset Address
*
* Exists in LUT memory space.
* Size is 1024x33 bits;
* Each Tx function has 64 bytes of space
*/
#define TX_STATS_RAM_BASE_OFFSET 0x00009000
/**
* Catapult Rx Stats RAM Base Offset Address
*
* Exists in LUT memory space.
* Size is 1024x33 bits;
* Each Rx function has 64 bytes of space
*/
#define RX_STATS_RAM_BASE_OFFSET 0x00008000
/* Catapult RXA Memory Access Page Numbers */
#define RXA0_MEM_BLK_BASE_PG_NUM 0x0000008C
#define RXA1_MEM_BLK_BASE_PG_NUM 0x0000008D
/**
* Catapult Multicast Vector Table Base Offset Address
*
* Exists in RxA memory space.
* Organized as 512x65 bit block.
* However for each entry 16 bytes allocated (power of 2)
* Total size 512*16 bytes.
* There are two logical divisions, 256 entries each :
* a) Entries 0x00 to 0xff (256) -- Approx. MVT
* Offset 0x000 to 0xFFF
* b) Entries 0x100 to 0x1ff (256) -- Exact MVT
* Offsets 0x1000 to 0x1FFF
*/
#define MCAST_APPROX_MVT_BASE_OFFSET 0x00000000
#define MCAST_EXACT_MVT_BASE_OFFSET 0x00001000
/**
* Catapult RxQ Translate Table (RIT) Base Offset Address
*
* Exists in RxA memory space
* Total no. of entries 64
* Each entry is 1 (4 byte) word.
* 31:12 -- Reserved
* 11:0 -- Two 6 bit RxQ Ids
*/
#define FUNCTION_TO_RXQ_TRANSLATE 0x00002000
/* Catapult RxAdm (RAD) Memory Access Page Numbers */
#define RAD0_MEM_BLK_BASE_PG_NUM 0x00000086
#define RAD1_MEM_BLK_BASE_PG_NUM 0x00000087
/**
* Catapult RSS Table Base Offset Address
*
* Exists in RAD memory space.
* Each entry is 352 bits, but aligned on
* 64 byte (512 bit) boundary. Accessed
* 4 byte words, the whole entry can be
* broken into 11 word accesses.
*/
#define RSS_TABLE_BASE_OFFSET 0x00000800
/**
* Catapult CPQ Block Page Number
* This value is written to the page number registers
* to access the memory associated with the mailboxes.
*/
#define CPQ_BLK_PG_NUM 0x00000005
/**
* Clarification :
* LL functions are 2 & 3; can HostFn0/HostFn1
* <-> LPU0/LPU1 memories be used ?
*/
/**
* Catapult HostFn0/HostFn1 to LPU0/LPU1 Mbox memory
* Per catapult_spec.pdf, the offset of the mbox
* memory is in the register space at an offset of 0x200
*/
#define CPQ_BLK_REG_MBOX_ADDR (CPQ_BLK_REG_ADDR + 0x200)
#define HOSTFN_LPU_MBOX (CPQ_BLK_REG_MBOX_ADDR + 0x000)
/* Catapult LPU0/LPU1 to HostFn0/HostFn1 Mbox memory */
#define LPU_HOSTFN_MBOX (CPQ_BLK_REG_MBOX_ADDR + 0x080)
/**
* Catapult HQM Block Page Number
* This is written to the page number register for
* the appropriate function to access the memory
* associated with HQM
*/
#define HQM0_BLK_PG_NUM 0x00000096
#define HQM1_BLK_PG_NUM 0x00000097
/**
* Note that TxQ and RxQ entries are interlaced
* the HQM memory, i.e RXQ0, TXQ0, RXQ1, TXQ1.. etc.
*/
#define HQM_RXTX_Q_RAM_BASE_OFFSET 0x00004000
/**
* CQ Memory
* Exists in HQM Memory space
* Each entry is 16 (4 byte) words of which
* only 12 words are used for configuration
* Total 64 entries per HQM memory space
*/
#define HQM_CQ_RAM_BASE_OFFSET 0x00006000
/**
* Interrupt Block (IB) Memory
* Exists in HQM Memory space
* Each entry is 8 (4 byte) words of which
* only 5 words are used for configuration
* Total 128 entries per HQM memory space
*/
#define HQM_IB_RAM_BASE_OFFSET 0x00001000
/**
* Index Table (IT) Memory
* Exists in HQM Memory space
* Each entry is 1 (4 byte) word which
* is used for configuration
* Total 128 entries per HQM memory space
*/
#define HQM_INDX_TBL_RAM_BASE_OFFSET 0x00002000
/**
* PSS Block Memory Page Number
* This is written to the appropriate page number
* register to access the CPU memory.
* Also known as the PSS secondary memory (SMEM).
* Range : 0x180 to 0x1CF
* See catapult_spec.pdf for details
*/
#define PSS_BLK_PG_NUM 0x00000180
/**
* Offsets of different instances of PSS SMEM
* 2.5M of continuous 1T memory space : 2 blocks
* of 1M each (32 pages each, page=32KB) and 4 smaller
* blocks of 128K each (4 pages each, page=32KB)
* PSS_LMEM_INST0 is used for firmware download
*/
#define PSS_LMEM_INST0 0x00000000
#define PSS_LMEM_INST1 0x00100000
#define PSS_LMEM_INST2 0x00200000
#define PSS_LMEM_INST3 0x00220000
#define PSS_LMEM_INST4 0x00240000
#define PSS_LMEM_INST5 0x00260000
#define BNA_PCI_REG_CT_ADDRSZ (0x40000)
#define BNA_GET_PAGE_NUM(_base_page, _offset) \
((_base_page) + ((_offset) >> 15))
#define BNA_GET_PAGE_OFFSET(_offset) \
((_offset) & 0x7fff)
#define BNA_GET_MEM_BASE_ADDR(_bar0, _base_offset) \
((_bar0) + HW_BLK_HOST_MEM_ADDR \
+ BNA_GET_PAGE_OFFSET((_base_offset)))
#define BNA_GET_VLAN_MEM_ENTRY_ADDR(_bar0, _fn_id, _vlan_id)\
(_bar0 + (HW_BLK_HOST_MEM_ADDR) \
+ (BNA_GET_PAGE_OFFSET(VLAN_RAM_BASE_OFFSET)) \
+ (((_fn_id) & 0x3f) << 9) \
+ (((_vlan_id) & 0xfe0) >> 3))
/**
*
* Interrupt related bits, flags and macros
*
*/
#define __LPU02HOST_MBOX0_STATUS_BITS 0x00100000
#define __LPU12HOST_MBOX0_STATUS_BITS 0x00200000
#define __LPU02HOST_MBOX1_STATUS_BITS 0x00400000
#define __LPU12HOST_MBOX1_STATUS_BITS 0x00800000
#define __LPU02HOST_MBOX0_MASK_BITS 0x00100000
#define __LPU12HOST_MBOX0_MASK_BITS 0x00200000
#define __LPU02HOST_MBOX1_MASK_BITS 0x00400000
#define __LPU12HOST_MBOX1_MASK_BITS 0x00800000
#define __LPU2HOST_MBOX_MASK_BITS \
(__LPU02HOST_MBOX0_MASK_BITS | __LPU02HOST_MBOX1_MASK_BITS | \
__LPU12HOST_MBOX0_MASK_BITS | __LPU12HOST_MBOX1_MASK_BITS)
#define __LPU2HOST_IB_STATUS_BITS 0x0000ffff
#define BNA_IS_LPU0_MBOX_INTR(_intr_status) \
((_intr_status) & (__LPU02HOST_MBOX0_STATUS_BITS | \
__LPU02HOST_MBOX1_STATUS_BITS))
#define BNA_IS_LPU1_MBOX_INTR(_intr_status) \
((_intr_status) & (__LPU12HOST_MBOX0_STATUS_BITS | \
__LPU12HOST_MBOX1_STATUS_BITS))
#define BNA_IS_MBOX_INTR(_intr_status) \
((_intr_status) & \
(__LPU02HOST_MBOX0_STATUS_BITS | \
__LPU02HOST_MBOX1_STATUS_BITS | \
__LPU12HOST_MBOX0_STATUS_BITS | \
__LPU12HOST_MBOX1_STATUS_BITS))
#define __EMC_ERROR_STATUS_BITS 0x00010000
#define __LPU0_ERROR_STATUS_BITS 0x00020000
#define __LPU1_ERROR_STATUS_BITS 0x00040000
#define __PSS_ERROR_STATUS_BITS 0x00080000
#define __HALT_STATUS_BITS 0x01000000
#define __EMC_ERROR_MASK_BITS 0x00010000
#define __LPU0_ERROR_MASK_BITS 0x00020000
#define __LPU1_ERROR_MASK_BITS 0x00040000
#define __PSS_ERROR_MASK_BITS 0x00080000
#define __HALT_MASK_BITS 0x01000000
#define __ERROR_MASK_BITS \
(__EMC_ERROR_MASK_BITS | __LPU0_ERROR_MASK_BITS | \
__LPU1_ERROR_MASK_BITS | __PSS_ERROR_MASK_BITS | \
__HALT_MASK_BITS)
#define BNA_IS_ERR_INTR(_intr_status) \
((_intr_status) & \
(__EMC_ERROR_STATUS_BITS | \
__LPU0_ERROR_STATUS_BITS | \
__LPU1_ERROR_STATUS_BITS | \
__PSS_ERROR_STATUS_BITS | \
__HALT_STATUS_BITS))
#define BNA_IS_MBOX_ERR_INTR(_intr_status) \
(BNA_IS_MBOX_INTR((_intr_status)) | \
BNA_IS_ERR_INTR((_intr_status)))
#define BNA_IS_INTX_DATA_INTR(_intr_status) \
((_intr_status) & __LPU2HOST_IB_STATUS_BITS)
#define BNA_INTR_STATUS_MBOX_CLR(_intr_status) \
do { \
(_intr_status) &= ~(__LPU02HOST_MBOX0_STATUS_BITS | \
__LPU02HOST_MBOX1_STATUS_BITS | \
__LPU12HOST_MBOX0_STATUS_BITS | \
__LPU12HOST_MBOX1_STATUS_BITS); \
} while (0)
#define BNA_INTR_STATUS_ERR_CLR(_intr_status) \
do { \
(_intr_status) &= ~(__EMC_ERROR_STATUS_BITS | \
__LPU0_ERROR_STATUS_BITS | \
__LPU1_ERROR_STATUS_BITS | \
__PSS_ERROR_STATUS_BITS | \
__HALT_STATUS_BITS); \
} while (0)
#define bna_intx_disable(_bna, _cur_mask) \
{ \
(_cur_mask) = readl((_bna)->regs.fn_int_mask);\
writel(0xffffffff, (_bna)->regs.fn_int_mask);\
}
#define bna_intx_enable(bna, new_mask) \
writel((new_mask), (bna)->regs.fn_int_mask)
#define bna_mbox_intr_disable(bna) \
writel((readl((bna)->regs.fn_int_mask) | \
(__LPU2HOST_MBOX_MASK_BITS | __ERROR_MASK_BITS)), \
(bna)->regs.fn_int_mask)
#define bna_mbox_intr_enable(bna) \
writel((readl((bna)->regs.fn_int_mask) & \
~(__LPU2HOST_MBOX_MASK_BITS | __ERROR_MASK_BITS)), \
(bna)->regs.fn_int_mask)
#define bna_intr_status_get(_bna, _status) \
{ \
(_status) = readl((_bna)->regs.fn_int_status); \
if ((_status)) { \
writel((_status) & ~(__LPU02HOST_MBOX0_STATUS_BITS |\
__LPU02HOST_MBOX1_STATUS_BITS |\
__LPU12HOST_MBOX0_STATUS_BITS |\
__LPU12HOST_MBOX1_STATUS_BITS), \
(_bna)->regs.fn_int_status);\
} \
}
#define bna_intr_status_get_no_clr(_bna, _status) \
(_status) = readl((_bna)->regs.fn_int_status)
#define bna_intr_mask_get(bna, mask) \
(*mask) = readl((bna)->regs.fn_int_mask)
#define bna_intr_ack(bna, intr_bmap) \
writel((intr_bmap), (bna)->regs.fn_int_status)
#define bna_ib_intx_disable(bna, ib_id) \
writel(readl((bna)->regs.fn_int_mask) | \
(1 << (ib_id)), \
(bna)->regs.fn_int_mask)
#define bna_ib_intx_enable(bna, ib_id) \
writel(readl((bna)->regs.fn_int_mask) & \
~(1 << (ib_id)), \
(bna)->regs.fn_int_mask)
#define bna_mbox_msix_idx_set(_device) \
do {\
writel(((_device)->vector & 0x000001FF), \
(_device)->bna->pcidev.pci_bar_kva + \
reg_offset[(_device)->bna->pcidev.pci_func].msix_idx);\
} while (0)
/**
*
* TxQ, RxQ, CQ related bits, offsets, macros
*
*/
#define BNA_Q_IDLE_STATE 0x00008001
#define BNA_GET_DOORBELL_BASE_ADDR(_bar0) \
((_bar0) + HQM_DOORBELL_BLK_BASE_ADDR)
#define BNA_GET_DOORBELL_ENTRY_OFFSET(_entry) \
((HQM_DOORBELL_BLK_BASE_ADDR) \
+ (_entry << 7))
#define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
(0x80000000 | ((_timeout) << 16) | (_events))
#define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
/* TxQ Entry Opcodes */
#define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
#define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
#define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
/* TxQ Entry Control Flags */
#define BNA_TXQ_WI_CF_FCOE_CRC (1 << 8)
#define BNA_TXQ_WI_CF_IPID_MODE (1 << 5)
#define BNA_TXQ_WI_CF_INS_PRIO (1 << 4)
#define BNA_TXQ_WI_CF_INS_VLAN (1 << 3)
#define BNA_TXQ_WI_CF_UDP_CKSUM (1 << 2)
#define BNA_TXQ_WI_CF_TCP_CKSUM (1 << 1)
#define BNA_TXQ_WI_CF_IP_CKSUM (1 << 0)
#define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
(((_hdr_size) << 10) | ((_offset) & 0x3FF))
/*
* Completion Q defines
*/
/* CQ Entry Flags */
#define BNA_CQ_EF_MAC_ERROR (1 << 0)
#define BNA_CQ_EF_FCS_ERROR (1 << 1)
#define BNA_CQ_EF_TOO_LONG (1 << 2)
#define BNA_CQ_EF_FC_CRC_OK (1 << 3)
#define BNA_CQ_EF_RSVD1 (1 << 4)
#define BNA_CQ_EF_L4_CKSUM_OK (1 << 5)
#define BNA_CQ_EF_L3_CKSUM_OK (1 << 6)
#define BNA_CQ_EF_HDS_HEADER (1 << 7)
#define BNA_CQ_EF_UDP (1 << 8)
#define BNA_CQ_EF_TCP (1 << 9)
#define BNA_CQ_EF_IP_OPTIONS (1 << 10)
#define BNA_CQ_EF_IPV6 (1 << 11)
#define BNA_CQ_EF_IPV4 (1 << 12)
#define BNA_CQ_EF_VLAN (1 << 13)
#define BNA_CQ_EF_RSS (1 << 14)
#define BNA_CQ_EF_RSVD2 (1 << 15)
#define BNA_CQ_EF_MCAST_MATCH (1 << 16)
#define BNA_CQ_EF_MCAST (1 << 17)
#define BNA_CQ_EF_BCAST (1 << 18)
#define BNA_CQ_EF_REMOTE (1 << 19)
#define BNA_CQ_EF_LOCAL (1 << 20)
/**
*
* Data structures
*
*/
enum txf_flags {
BFI_TXF_CF_ENABLE = 1 << 0,
BFI_TXF_CF_VLAN_FILTER = 1 << 8,
BFI_TXF_CF_VLAN_ADMIT = 1 << 9,
BFI_TXF_CF_VLAN_INSERT = 1 << 10,
BFI_TXF_CF_RSVD1 = 1 << 11,
BFI_TXF_CF_MAC_SA_CHECK = 1 << 12,
BFI_TXF_CF_VLAN_WI_BASED = 1 << 13,
BFI_TXF_CF_VSWITCH_MCAST = 1 << 14,
BFI_TXF_CF_VSWITCH_UCAST = 1 << 15,
BFI_TXF_CF_RSVD2 = 0x7F << 1
};
enum ib_flags {
BFI_IB_CF_MASTER_ENABLE = (1 << 0),
BFI_IB_CF_MSIX_MODE = (1 << 1),
BFI_IB_CF_COALESCING_MODE = (1 << 2),
BFI_IB_CF_INTER_PKT_ENABLE = (1 << 3),
BFI_IB_CF_INT_ENABLE = (1 << 4),
BFI_IB_CF_INTER_PKT_DMA = (1 << 5),
BFI_IB_CF_ACK_PENDING = (1 << 6),
BFI_IB_CF_RESERVED1 = (1 << 7)
};
enum rss_hash_type {
BFI_RSS_T_V4_TCP = (1 << 11),
BFI_RSS_T_V4_IP = (1 << 10),
BFI_RSS_T_V6_TCP = (1 << 9),
BFI_RSS_T_V6_IP = (1 << 8)
};
enum hds_header_type {
BNA_HDS_T_V4_TCP = (1 << 11),
BNA_HDS_T_V4_UDP = (1 << 10),
BNA_HDS_T_V6_TCP = (1 << 9),
BNA_HDS_T_V6_UDP = (1 << 8),
BNA_HDS_FORCED = (1 << 7),
};
enum rxf_flags {
BNA_RXF_CF_SM_LG_RXQ = (1 << 15),
BNA_RXF_CF_DEFAULT_VLAN = (1 << 14),
BNA_RXF_CF_DEFAULT_FUNCTION_ENABLE = (1 << 13),
BNA_RXF_CF_VLAN_STRIP = (1 << 12),
BNA_RXF_CF_RSS_ENABLE = (1 << 8)
};
struct bna_chip_regs_offset {
u32 page_addr;
u32 fn_int_status;
u32 fn_int_mask;
u32 msix_idx;
};
struct bna_chip_regs {
void __iomem *page_addr;
void __iomem *fn_int_status;
void __iomem *fn_int_mask;
};
struct bna_txq_mem {
u32 pg_tbl_addr_lo;
u32 pg_tbl_addr_hi;
u32 cur_q_entry_lo;
u32 cur_q_entry_hi;
u32 reserved1;
u32 reserved2;
u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
/* 15:0 ->producer pointer (index?) */
u32 entry_n_pg_size; /* 31:16->entry size */
/* 15:0 ->page size */
u32 int_blk_n_cns_ptr; /* 31:24->Int Blk Id; */
/* 23:16->Int Blk Offset */
/* 15:0 ->consumer pointer(index?) */
u32 cns_ptr2_n_q_state; /* 31:16->cons. ptr 2; 15:0-> Q state */
u32 nxt_qid_n_fid_n_pri; /* 17:10->next */
/* QId;9:3->FID;2:0->Priority */
u32 wvc_n_cquota_n_rquota; /* 31:24->WI Vector Count; */
/* 23:12->Cfg Quota; */
/* 11:0 ->Run Quota */
u32 reserved3[4];
};
struct bna_rxq_mem {
u32 pg_tbl_addr_lo;
u32 pg_tbl_addr_hi;
u32 cur_q_entry_lo;
u32 cur_q_entry_hi;
u32 reserved1;
u32 reserved2;
u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
/* 15:0 ->producer pointer (index?) */
u32 entry_n_pg_size; /* 31:16->entry size */
/* 15:0 ->page size */
u32 sg_n_cq_n_cns_ptr; /* 31:28->reserved; 27:24->sg count */
/* 23:16->CQ; */
/* 15:0->consumer pointer(index?) */
u32 buf_sz_n_q_state; /* 31:16->buffer size; 15:0-> Q state */
u32 next_qid; /* 17:10->next QId */
u32 reserved3;
u32 reserved4[4];
};
struct bna_rxtx_q_mem {
struct bna_rxq_mem rxq;
struct bna_txq_mem txq;
};
struct bna_cq_mem {
u32 pg_tbl_addr_lo;
u32 pg_tbl_addr_hi;
u32 cur_q_entry_lo;
u32 cur_q_entry_hi;
u32 reserved1;
u32 reserved2;
u32 pg_cnt_n_prd_ptr; /* 31:16->total page count */
/* 15:0 ->producer pointer (index?) */
u32 entry_n_pg_size; /* 31:16->entry size */
/* 15:0 ->page size */
u32 int_blk_n_cns_ptr; /* 31:24->Int Blk Id; */
/* 23:16->Int Blk Offset */
/* 15:0 ->consumer pointer(index?) */
u32 q_state; /* 31:16->reserved; 15:0-> Q state */
u32 reserved3[2];
u32 reserved4[4];
};
struct bna_ib_blk_mem {
u32 host_addr_lo;
u32 host_addr_hi;
u32 clsc_n_ctrl_n_msix; /* 31:24->coalescing; */
/* 23:16->coalescing cfg; */
/* 15:8 ->control; */
/* 7:0 ->msix; */
u32 ipkt_n_ent_n_idxof;
u32 ipkt_cnt_cfg_n_unacked;
u32 reserved[3];
};
struct bna_idx_tbl_mem {
u32 idx; /* !< 31:16->res;15:0->idx; */
};
struct bna_doorbell_qset {
u32 rxq[0x20 >> 2];
u32 txq[0x20 >> 2];
u32 ib0[0x20 >> 2];
u32 ib1[0x20 >> 2];
};
struct bna_rx_fndb_ram {
u32 rss_prop;
u32 size_routing_props;
u32 rit_hds_mcastq;
u32 control_flags;
};
struct bna_tx_fndb_ram {
u32 vlan_n_ctrl_flags;
};
/**
* @brief
* Structure which maps to RxFn Indirection Table (RIT)
* Size : 1 word
* See catapult_spec.pdf, RxA for details
*/
struct bna_rit_mem {
u32 rxq_ids; /* !< 31:12->res;11:0->two 6 bit RxQ Ids */
};
/**
* @brief
* Structure which maps to RSS Table entry
* Size : 16 words
* See catapult_spec.pdf, RAD for details
*/
struct bna_rss_mem {
/*
* 31:12-> res
* 11:8 -> protocol type
* 7:0 -> hash index
*/
u32 type_n_hash;
u32 hash_key[10]; /* !< 40 byte Toeplitz hash key */
u32 reserved[5];
};
/* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
struct bna_dma_addr {
u32 msb;
u32 lsb;
};
struct bna_txq_wi_vector {
u16 reserved;
u16 length; /* Only 14 LSB are valid */
struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
};
typedef u16 bna_txq_wi_opcode_t;
typedef u16 bna_txq_wi_ctrl_flag_t;
/**
* TxQ Entry Structure
*
* BEWARE: Load values into this structure with correct endianess.
*/
struct bna_txq_entry {
union {
struct {
u8 reserved;
u8 num_vectors; /* number of vectors present */
bna_txq_wi_opcode_t opcode; /* Either */
/* BNA_TXQ_WI_SEND or */
/* BNA_TXQ_WI_SEND_LSO */
bna_txq_wi_ctrl_flag_t flags; /* OR of all the flags */
u16 l4_hdr_size_n_offset;
u16 vlan_tag;
u16 lso_mss; /* Only 14 LSB are valid */
u32 frame_length; /* Only 24 LSB are valid */
} wi;
struct {
u16 reserved;
bna_txq_wi_opcode_t opcode; /* Must be */
/* BNA_TXQ_WI_EXTENSION */
u32 reserved2[3]; /* Place holder for */
/* removed vector (12 bytes) */
} wi_ext;
} hdr;
struct bna_txq_wi_vector vector[4];
};
#define wi_hdr hdr.wi
#define wi_ext_hdr hdr.wi_ext
/* RxQ Entry Structure */
struct bna_rxq_entry { /* Rx-Buffer */
struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
};
typedef u32 bna_cq_e_flag_t;
/* CQ Entry Structure */
struct bna_cq_entry {
bna_cq_e_flag_t flags;
u16 vlan_tag;
u16 length;
u32 rss_hash;
u8 valid;
u8 reserved1;
u8 reserved2;
u8 rxq_id;
};
#endif /* __BNA_HW_H__ */
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment