Commit efa916af authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'for-5.15/dm-changes' of...

Merge tag 'for-5.15/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm

Pull device mapper updates from Mike Snitzer:

 - Add DM infrastructure for IMA-based remote attestion. These changes
   are the basis for deploying DM-based storage in a "cloud" that must
   validate configurations end-users run to maintain trust. These DM
   changes allow supported DM targets' configurations to be measured via
   IMA. But the policy and enforcement (of which configurations are
   valid) is managed by something outside the kernel (e.g. Keylime).

 - Fix DM crypt scalability regression on systems with many cpus due to
   percpu_counter spinlock contention in crypt_page_alloc().

 - Use in_hardirq() instead of deprecated in_irq() in DM crypt.

 - Add event counters to DM writecache to allow users to further assess
   how the writecache is performing.

 - Various code cleanup in DM writecache's main IO mapping function.

* tag 'for-5.15/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
  dm crypt: use in_hardirq() instead of deprecated in_irq()
  dm ima: update dm documentation for ima measurement support
  dm ima: update dm target attributes for ima measurements
  dm ima: add a warning in dm_init if duplicate ima events are not measured
  dm ima: prefix ima event name related to device mapper with dm_
  dm ima: add version info to dm related events in ima log
  dm ima: prefix dm table hashes in ima log with hash algorithm
  dm crypt: Avoid percpu_counter spinlock contention in crypt_page_alloc()
  dm: add documentation for IMA measurement support
  dm: update target status functions to support IMA measurement
  dm ima: measure data on device rename
  dm ima: measure data on table clear
  dm ima: measure data on device remove
  dm ima: measure data on device resume
  dm ima: measure data on table load
  dm writecache: add event counters
  dm writecache: report invalid return from writecache_map helpers
  dm writecache: further writecache_map() cleanup
  dm writecache: factor out writecache_map_remap_origin()
  dm writecache: split up writecache_map() to improve code readability
parents a998a62b d3703ef3
======
dm-ima
======
For a given system, various external services/infrastructure tools
(including the attestation service) interact with it - both during the
setup and during rest of the system run-time. They share sensitive data
and/or execute critical workload on that system. The external services
may want to verify the current run-time state of the relevant kernel
subsystems before fully trusting the system with business-critical
data/workload.
Device mapper plays a critical role on a given system by providing
various important functionalities to the block devices using various
target types like crypt, verity, integrity etc. Each of these target
types’ functionalities can be configured with various attributes.
The attributes chosen to configure these target types can significantly
impact the security profile of the block device, and in-turn, of the
system itself. For instance, the type of encryption algorithm and the
key size determines the strength of encryption for a given block device.
Therefore, verifying the current state of various block devices as well
as their various target attributes is crucial for external services before
fully trusting the system with business-critical data/workload.
IMA kernel subsystem provides the necessary functionality for
device mapper to measure the state and configuration of
various block devices -
- by device mapper itself, from within the kernel,
- in a tamper resistant way,
- and re-measured - triggered on state/configuration change.
Setting the IMA Policy:
=======================
For IMA to measure the data on a given system, the IMA policy on the
system needs to be updated to have following line, and the system needs
to be restarted for the measurements to take effect.
::
/etc/ima/ima-policy
measure func=CRITICAL_DATA label=device-mapper template=ima-buf
The measurements will be reflected in the IMA logs, which are located at:
::
/sys/kernel/security/integrity/ima/ascii_runtime_measurements
/sys/kernel/security/integrity/ima/binary_runtime_measurements
Then IMA ASCII measurement log has the following format:
::
<PCR> <TEMPLATE_DATA_DIGEST> <TEMPLATE_NAME> <TEMPLATE_DATA>
PCR := Platform Configuration Register, in which the values are registered.
This is applicable if TPM chip is in use.
TEMPLATE_DATA_DIGEST := Template data digest of the IMA record.
TEMPLATE_NAME := Template name that registered the integrity value (e.g. ima-buf).
TEMPLATE_DATA := <ALG> ":" <EVENT_DIGEST> <EVENT_NAME> <EVENT_DATA>
It contains data for the specific event to be measured,
in a given template data format.
ALG := Algorithm to compute event digest
EVENT_DIGEST := Digest of the event data
EVENT_NAME := Description of the event (e.g. 'dm_table_load').
EVENT_DATA := The event data to be measured.
|
| *NOTE #1:*
| The DM target data measured by IMA subsystem can alternatively
be queried from userspace by setting DM_IMA_MEASUREMENT_FLAG with
DM_TABLE_STATUS_CMD.
|
| *NOTE #2:*
| The Kernel configuration CONFIG_IMA_DISABLE_HTABLE allows measurement of duplicate records.
| To support recording duplicate IMA events in the IMA log, the Kernel needs to be configured with
CONFIG_IMA_DISABLE_HTABLE=y.
Supported Device States:
========================
Following device state changes will trigger IMA measurements:
1. Table load
#. Device resume
#. Device remove
#. Table clear
#. Device rename
1. Table load:
---------------
When a new table is loaded in a device's inactive table slot,
the device information and target specific details from the
targets in the table are measured.
The IMA measurement log has the following format for 'dm_table_load':
::
EVENT_NAME := "dm_table_load"
EVENT_DATA := <dm_version_str> ";" <device_metadata> ";" <table_load_data>
dm_version_str := "dm_version=" <N> "." <N> "." <N>
Same as Device Mapper driver version.
device_metadata := <device_name> "," <device_uuid> "," <device_major> "," <device_minor> ","
<minor_count> "," <num_device_targets> ";"
device_name := "name=" <dm-device-name>
device_uuid := "uuid=" <dm-device-uuid>
device_major := "major=" <N>
device_minor := "minor=" <N>
minor_count := "minor_count=" <N>
num_device_targets := "num_targets=" <N>
dm-device-name := Name of the device. If it contains special characters like '\', ',', ';',
they are prefixed with '\'.
dm-device-uuid := UUID of the device. If it contains special characters like '\', ',', ';',
they are prefixed with '\'.
table_load_data := <target_data>
Represents the data (as name=value pairs) from various targets in the table,
which is being loaded into the DM device's inactive table slot.
target_data := <target_data_row> | <target_data><target_data_row>
target_data_row := <target_index> "," <target_begin> "," <target_len> "," <target_name> ","
<target_version> "," <target_attributes> ";"
target_index := "target_index=" <N>
Represents nth target in the table (from 0 to N-1 targets specified in <num_device_targets>)
If all the data for N targets doesn't fit in the given buffer - then the data that fits
in the buffer (say from target 0 to x) is measured in a given IMA event.
The remaining data from targets x+1 to N-1 is measured in the subsequent IMA events,
with the same format as that of 'dm_table_load'
i.e. <dm_version_str> ";" <device_metadata> ";" <table_load_data>.
target_begin := "target_begin=" <N>
target_len := "target_len=" <N>
target_name := Name of the target. 'linear', 'crypt', 'integrity' etc.
The targets that are supported for IMA measurements are documented below in the
'Supported targets' section.
target_version := "target_version=" <N> "." <N> "." <N>
target_attributes := Data containing comma separated list of name=value pairs of target specific attributes.
For instance, if a linear device is created with the following table entries,
# dmsetup create linear1
0 2 linear /dev/loop0 512
2 2 linear /dev/loop0 512
4 2 linear /dev/loop0 512
6 2 linear /dev/loop0 512
Then IMA ASCII measurement log will have the following entry:
(converted from ASCII to text for readability)
10 a8c5ff755561c7a28146389d1514c318592af49a ima-buf sha256:4d73481ecce5eadba8ab084640d85bb9ca899af4d0a122989252a76efadc5b72
dm_table_load
dm_version=4.45.0;
name=linear1,uuid=,major=253,minor=0,minor_count=1,num_targets=4;
target_index=0,target_begin=0,target_len=2,target_name=linear,target_version=1.4.0,device_name=7:0,start=512;
target_index=1,target_begin=2,target_len=2,target_name=linear,target_version=1.4.0,device_name=7:0,start=512;
target_index=2,target_begin=4,target_len=2,target_name=linear,target_version=1.4.0,device_name=7:0,start=512;
target_index=3,target_begin=6,target_len=2,target_name=linear,target_version=1.4.0,device_name=7:0,start=512;
2. Device resume:
------------------
When a suspended device is resumed, the device information and the hash of the
data from previous load of an active table are measured.
The IMA measurement log has the following format for 'dm_device_resume':
::
EVENT_NAME := "dm_device_resume"
EVENT_DATA := <dm_version_str> ";" <device_metadata> ";" <active_table_hash> ";" <current_device_capacity> ";"
dm_version_str := As described in the 'Table load' section above.
device_metadata := As described in the 'Table load' section above.
active_table_hash := "active_table_hash=" <table_hash_alg> ":" <table_hash>
Rerpresents the hash of the IMA data being measured for the
active table for the device.
table_hash_alg := Algorithm used to compute the hash.
table_hash := Hash of the (<dm_version_str> ";" <device_metadata> ";" <table_load_data> ";")
as described in the 'dm_table_load' above.
Note: If the table_load data spans across multiple IMA 'dm_table_load'
events for a given device, the hash is computed combining all the event data
i.e. (<dm_version_str> ";" <device_metadata> ";" <table_load_data> ";")
across all those events.
current_device_capacity := "current_device_capacity=" <N>
For instance, if a linear device is resumed with the following command,
#dmsetup resume linear1
then IMA ASCII measurement log will have an entry with:
(converted from ASCII to text for readability)
10 56c00cc062ffc24ccd9ac2d67d194af3282b934e ima-buf sha256:e7d12c03b958b4e0e53e7363a06376be88d98a1ac191fdbd3baf5e4b77f329b6
dm_device_resume
dm_version=4.45.0;
name=linear1,uuid=,major=253,minor=0,minor_count=1,num_targets=4;
active_table_hash=sha256:4d73481ecce5eadba8ab084640d85bb9ca899af4d0a122989252a76efadc5b72;current_device_capacity=8;
3. Device remove:
------------------
When a device is removed, the device information and a sha256 hash of the
data from an active and inactive table are measured.
The IMA measurement log has the following format for 'dm_device_remove':
::
EVENT_NAME := "dm_device_remove"
EVENT_DATA := <dm_version_str> ";" <device_active_metadata> ";" <device_inactive_metadata> ";"
<active_table_hash> "," <inactive_table_hash> "," <remove_all> ";" <current_device_capacity> ";"
dm_version_str := As described in the 'Table load' section above.
device_active_metadata := Device metadata that reflects the currently loaded active table.
The format is same as 'device_metadata' described in the 'Table load' section above.
device_inactive_metadata := Device metadata that reflects the inactive table.
The format is same as 'device_metadata' described in the 'Table load' section above.
active_table_hash := Hash of the currently loaded active table.
The format is same as 'active_table_hash' described in the 'Device resume' section above.
inactive_table_hash := Hash of the inactive table.
The format is same as 'active_table_hash' described in the 'Device resume' section above.
remove_all := "remove_all=" <yes_no>
yes_no := "y" | "n"
current_device_capacity := "current_device_capacity=" <N>
For instance, if a linear device is removed with the following command,
#dmsetup remove l1
then IMA ASCII measurement log will have the following entry:
(converted from ASCII to text for readability)
10 790e830a3a7a31590824ac0642b3b31c2d0e8b38 ima-buf sha256:ab9f3c959367a8f5d4403d6ce9c3627dadfa8f9f0e7ec7899299782388de3840
dm_device_remove
dm_version=4.45.0;
device_active_metadata=name=l1,uuid=,major=253,minor=2,minor_count=1,num_targets=2;
device_inactive_metadata=name=l1,uuid=,major=253,minor=2,minor_count=1,num_targets=1;
active_table_hash=sha256:4a7e62efaebfc86af755831998b7db6f59b60d23c9534fb16a4455907957953a,
inactive_table_hash=sha256:9d79c175bc2302d55a183e8f50ad4bafd60f7692fd6249e5fd213e2464384b86,remove_all=n;
current_device_capacity=2048;
4. Table clear:
----------------
When an inactive table is cleared from the device, the device information and a sha256 hash of the
data from an inactive table are measured.
The IMA measurement log has the following format for 'dm_table_clear':
::
EVENT_NAME := "dm_table_clear"
EVENT_DATA := <dm_version_str> ";" <device_inactive_metadata> ";" <inactive_table_hash> ";" <current_device_capacity> ";"
dm_version_str := As described in the 'Table load' section above.
device_inactive_metadata := Device metadata that was captured during the load time inactive table being cleared.
The format is same as 'device_metadata' described in the 'Table load' section above.
inactive_table_hash := Hash of the inactive table being cleared from the device.
The format is same as 'active_table_hash' described in the 'Device resume' section above.
current_device_capacity := "current_device_capacity=" <N>
For instance, if a linear device's inactive table is cleared,
#dmsetup clear l1
then IMA ASCII measurement log will have an entry with:
(converted from ASCII to text for readability)
10 77d347408f557f68f0041acb0072946bb2367fe5 ima-buf sha256:42f9ca22163fdfa548e6229dece2959bc5ce295c681644240035827ada0e1db5
dm_table_clear
dm_version=4.45.0;
name=l1,uuid=,major=253,minor=2,minor_count=1,num_targets=1;
inactive_table_hash=sha256:75c0dc347063bf474d28a9907037eba060bfe39d8847fc0646d75e149045d545;current_device_capacity=1024;
5. Device rename:
------------------
When an device's NAME or UUID is changed, the device information and the new NAME and UUID
are measured.
The IMA measurement log has the following format for 'dm_device_rename':
::
EVENT_NAME := "dm_device_rename"
EVENT_DATA := <dm_version_str> ";" <device_active_metadata> ";" <new_device_name> "," <new_device_uuid> ";" <current_device_capacity> ";"
dm_version_str := As described in the 'Table load' section above.
device_active_metadata := Device metadata that reflects the currently loaded active table.
The format is same as 'device_metadata' described in the 'Table load' section above.
new_device_name := "new_name=" <dm-device-name>
dm-device-name := Same as <dm-device-name> described in 'Table load' section above
new_device_uuid := "new_uuid=" <dm-device-uuid>
dm-device-uuid := Same as <dm-device-uuid> described in 'Table load' section above
current_device_capacity := "current_device_capacity=" <N>
E.g 1: if a linear device's name is changed with the following command,
#dmsetup rename linear1 --setuuid 1234-5678
then IMA ASCII measurement log will have an entry with:
(converted from ASCII to text for readability)
10 8b0423209b4c66ac1523f4c9848c9b51ee332f48 ima-buf sha256:6847b7258134189531db593e9230b257c84f04038b5a18fd2e1473860e0569ac
dm_device_rename
dm_version=4.45.0;
name=linear1,uuid=,major=253,minor=2,minor_count=1,num_targets=1;new_name=linear1,new_uuid=1234-5678;
current_device_capacity=1024;
E.g 2: if a linear device's name is changed with the following command,
# dmsetup rename linear1 linear=2
then IMA ASCII measurement log will have an entry with:
(converted from ASCII to text for readability)
10 bef70476b99c2bdf7136fae033aa8627da1bf76f ima-buf sha256:8c6f9f53b9ef9dc8f92a2f2cca8910e622543d0f0d37d484870cb16b95111402
dm_device_rename
dm_version=4.45.0;
name=linear1,uuid=1234-5678,major=253,minor=2,minor_count=1,num_targets=1;
new_name=linear\=2,new_uuid=1234-5678;
current_device_capacity=1024;
Supported targets:
==================
Following targets are supported to measure their data using IMA:
1. cache
#. crypt
#. integrity
#. linear
#. mirror
#. multipath
#. raid
#. snapshot
#. striped
#. verity
1. cache
---------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'cache' target.
::
target_attributes := <target_name> "," <target_version> "," <metadata_mode> "," <cache_metadata_device> ","
<cache_device> "," <cache_origin_device> "," <writethrough> "," <writeback> ","
<passthrough> "," <no_discard_passdown> ";"
target_name := "target_name=cache"
target_version := "target_version=" <N> "." <N> "." <N>
metadata_mode := "metadata_mode=" <cache_metadata_mode>
cache_metadata_mode := "fail" | "ro" | "rw"
cache_device := "cache_device=" <cache_device_name_string>
cache_origin_device := "cache_origin_device=" <cache_origin_device_string>
writethrough := "writethrough=" <yes_no>
writeback := "writeback=" <yes_no>
passthrough := "passthrough=" <yes_no>
no_discard_passdown := "no_discard_passdown=" <yes_no>
yes_no := "y" | "n"
E.g.
When a 'cache' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'cache' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;name=cache1,uuid=cache_uuid,major=253,minor=2,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=28672,target_name=cache,target_version=2.2.0,metadata_mode=rw,
cache_metadata_device=253:4,cache_device=253:3,cache_origin_device=253:5,writethrough=y,writeback=n,
passthrough=n,metadata2=y,no_discard_passdown=n;
2. crypt
---------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'crypt' target.
::
target_attributes := <target_name> "," <target_version> "," <allow_discards> "," <same_cpu_crypt> ","
<submit_from_crypt_cpus> "," <no_read_workqueue> "," <no_write_workqueue> ","
<iv_large_sectors> "," <iv_large_sectors> "," [<integrity_tag_size> ","] [<cipher_auth> ","]
[<sector_size> ","] [<cipher_string> ","] <key_size> "," <key_parts> ","
<key_extra_size> "," <key_mac_size> ";"
target_name := "target_name=crypt"
target_version := "target_version=" <N> "." <N> "." <N>
allow_discards := "allow_discards=" <yes_no>
same_cpu_crypt := "same_cpu_crypt=" <yes_no>
submit_from_crypt_cpus := "submit_from_crypt_cpus=" <yes_no>
no_read_workqueue := "no_read_workqueue=" <yes_no>
no_write_workqueue := "no_write_workqueue=" <yes_no>
iv_large_sectors := "iv_large_sectors=" <yes_no>
integrity_tag_size := "integrity_tag_size=" <N>
cipher_auth := "cipher_auth=" <string>
sector_size := "sector_size=" <N>
cipher_string := "cipher_string="
key_size := "key_size=" <N>
key_parts := "key_parts=" <N>
key_extra_size := "key_extra_size=" <N>
key_mac_size := "key_mac_size=" <N>
yes_no := "y" | "n"
E.g.
When a 'crypt' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'crypt' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=crypt1,uuid=crypt_uuid1,major=253,minor=0,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=1953125,target_name=crypt,target_version=1.23.0,
allow_discards=y,same_cpu=n,submit_from_crypt_cpus=n,no_read_workqueue=n,no_write_workqueue=n,
iv_large_sectors=n,cipher_string=aes-xts-plain64,key_size=32,key_parts=1,key_extra_size=0,key_mac_size=0;
3. integrity
-------------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'integrity' target.
::
target_attributes := <target_name> "," <target_version> "," <dev_name> "," <start>
<tag_size> "," <mode> "," [<meta_device> ","] [<block_size> ","] <recalculate> ","
<allow_discards> "," <fix_padding> "," <fix_hmac> "," <legacy_recalculate> ","
<journal_sectors> "," <interleave_sectors> "," <buffer_sectors> ";"
target_name := "target_name=integrity"
target_version := "target_version=" <N> "." <N> "." <N>
dev_name := "dev_name=" <device_name_str>
start := "start=" <N>
tag_size := "tag_size=" <N>
mode := "mode=" <integrity_mode_str>
integrity_mode_str := "J" | "B" | "D" | "R"
meta_device := "meta_device=" <meta_device_str>
block_size := "block_size=" <N>
recalculate := "recalculate=" <yes_no>
allow_discards := "allow_discards=" <yes_no>
fix_padding := "fix_padding=" <yes_no>
fix_hmac := "fix_hmac=" <yes_no>
legacy_recalculate := "legacy_recalculate=" <yes_no>
journal_sectors := "journal_sectors=" <N>
interleave_sectors := "interleave_sectors=" <N>
buffer_sectors := "buffer_sectors=" <N>
yes_no := "y" | "n"
E.g.
When a 'integrity' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'integrity' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=integrity1,uuid=,major=253,minor=1,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=7856,target_name=integrity,target_version=1.10.0,
dev_name=253:0,start=0,tag_size=32,mode=J,recalculate=n,allow_discards=n,fix_padding=n,
fix_hmac=n,legacy_recalculate=n,journal_sectors=88,interleave_sectors=32768,buffer_sectors=128;
4. linear
----------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'linear' target.
::
target_attributes := <target_name> "," <target_version> "," <device_name> <,> <start> ";"
target_name := "target_name=linear"
target_version := "target_version=" <N> "." <N> "." <N>
device_name := "device_name=" <linear_device_name_str>
start := "start=" <N>
E.g.
When a 'linear' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'linear' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=linear1,uuid=linear_uuid1,major=253,minor=2,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=28672,target_name=linear,target_version=1.4.0,
device_name=253:1,start=2048;
5. mirror
----------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'mirror' target.
::
target_attributes := <target_name> "," <target_version> "," <nr_mirrors> ","
<mirror_device_data> "," <handle_errors> "," <keep_log> "," <log_type_status> ";"
target_name := "target_name=mirror"
target_version := "target_version=" <N> "." <N> "." <N>
nr_mirrors := "nr_mirrors=" <NR>
mirror_device_data := <mirror_device_row> | <mirror_device_data><mirror_device_row>
mirror_device_row is repeated <NR> times - for <NR> described in <nr_mirrors>.
mirror_device_row := <mirror_device_name> "," <mirror_device_status>
mirror_device_name := "mirror_device_" <X> "=" <mirror_device_name_str>
where <X> ranges from 0 to (<NR> -1) - for <NR> described in <nr_mirrors>.
mirror_device_status := "mirror_device_" <X> "_status=" <mirror_device_status_char>
where <X> ranges from 0 to (<NR> -1) - for <NR> described in <nr_mirrors>.
mirror_device_status_char := "A" | "F" | "D" | "S" | "R" | "U"
handle_errors := "handle_errors=" <yes_no>
keep_log := "keep_log=" <yes_no>
log_type_status := "log_type_status=" <log_type_status_str>
yes_no := "y" | "n"
E.g.
When a 'mirror' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'mirror' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=mirror1,uuid=mirror_uuid1,major=253,minor=6,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=2048,target_name=mirror,target_version=1.14.0,nr_mirrors=2,
mirror_device_0=253:4,mirror_device_0_status=A,
mirror_device_1=253:5,mirror_device_1_status=A,
handle_errors=y,keep_log=n,log_type_status=;
6. multipath
-------------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'multipath' target.
::
target_attributes := <target_name> "," <target_version> "," <nr_priority_groups>
["," <pg_state> "," <priority_groups> "," <priority_group_paths>] ";"
target_name := "target_name=multipath"
target_version := "target_version=" <N> "." <N> "." <N>
nr_priority_groups := "nr_priority_groups=" <NPG>
priority_groups := <priority_groups_row>|<priority_groups_row><priority_groups>
priority_groups_row := "pg_state_" <X> "=" <pg_state_str> "," "nr_pgpaths_" <X> "=" <NPGP> ","
"path_selector_name_" <X> "=" <string> "," <priority_group_paths>
where <X> ranges from 0 to (<NPG> -1) - for <NPG> described in <nr_priority_groups>.
pg_state_str := "E" | "A" | "D"
<priority_group_paths> := <priority_group_paths_row> | <priority_group_paths_row><priority_group_paths>
priority_group_paths_row := "path_name_" <X> "_" <Y> "=" <string> "," "is_active_" <X> "_" <Y> "=" <is_active_str>
"fail_count_" <X> "_" <Y> "=" <N> "," "path_selector_status_" <X> "_" <Y> "=" <path_selector_status_str>
where <X> ranges from 0 to (<NPG> -1) - for <NPG> described in <nr_priority_groups>,
and <Y> ranges from 0 to (<NPGP> -1) - for <NPGP> described in <priority_groups_row>.
is_active_str := "A" | "F"
E.g.
When a 'multipath' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'multipath' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=mp,uuid=,major=253,minor=0,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=2097152,target_name=multipath,target_version=1.14.0,nr_priority_groups=2,
pg_state_0=E,nr_pgpaths_0=2,path_selector_name_0=queue-length,
path_name_0_0=8:16,is_active_0_0=A,fail_count_0_0=0,path_selector_status_0_0=,
path_name_0_1=8:32,is_active_0_1=A,fail_count_0_1=0,path_selector_status_0_1=,
pg_state_1=E,nr_pgpaths_1=2,path_selector_name_1=queue-length,
path_name_1_0=8:48,is_active_1_0=A,fail_count_1_0=0,path_selector_status_1_0=,
path_name_1_1=8:64,is_active_1_1=A,fail_count_1_1=0,path_selector_status_1_1=;
7. raid
--------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'raid' target.
::
target_attributes := <target_name> "," <target_version> "," <raid_type> "," <raid_disks> "," <raid_state>
<raid_device_status> ["," journal_dev_mode] ";"
target_name := "target_name=raid"
target_version := "target_version=" <N> "." <N> "." <N>
raid_type := "raid_type=" <raid_type_str>
raid_disks := "raid_disks=" <NRD>
raid_state := "raid_state=" <raid_state_str>
raid_state_str := "frozen" | "reshape" |"resync" | "check" | "repair" | "recover" | "idle" |"undef"
raid_device_status := <raid_device_status_row> | <raid_device_status_row><raid_device_status>
<raid_device_status_row> is repeated <NRD> times - for <NRD> described in <raid_disks>.
raid_device_status_row := "raid_device_" <X> "_status=" <raid_device_status_str>
where <X> ranges from 0 to (<NRD> -1) - for <NRD> described in <raid_disks>.
raid_device_status_str := "A" | "D" | "a" | "-"
journal_dev_mode := "journal_dev_mode=" <journal_dev_mode_str>
journal_dev_mode_str := "writethrough" | "writeback" | "invalid"
E.g.
When a 'raid' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'raid' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=raid_LV1,uuid=uuid_raid_LV1,major=253,minor=12,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=2048,target_name=raid,target_version=1.15.1,
raid_type=raid10,raid_disks=4,raid_state=idle,
raid_device_0_status=A,
raid_device_1_status=A,
raid_device_2_status=A,
raid_device_3_status=A;
8. snapshot
------------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'snapshot' target.
::
target_attributes := <target_name> "," <target_version> "," <snap_origin_name> ","
<snap_cow_name> "," <snap_valid> "," <snap_merge_failed> "," <snapshot_overflowed> ";"
target_name := "target_name=snapshot"
target_version := "target_version=" <N> "." <N> "." <N>
snap_origin_name := "snap_origin_name=" <string>
snap_cow_name := "snap_cow_name=" <string>
snap_valid := "snap_valid=" <yes_no>
snap_merge_failed := "snap_merge_failed=" <yes_no>
snapshot_overflowed := "snapshot_overflowed=" <yes_no>
yes_no := "y" | "n"
E.g.
When a 'snapshot' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'snapshot' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=snap1,uuid=snap_uuid1,major=253,minor=13,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=4096,target_name=snapshot,target_version=1.16.0,
snap_origin_name=253:11,snap_cow_name=253:12,snap_valid=y,snap_merge_failed=n,snapshot_overflowed=n;
9. striped
-----------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'striped' target.
::
target_attributes := <target_name> "," <target_version> "," <stripes> "," <chunk_size> ","
<stripe_data> ";"
target_name := "target_name=striped"
target_version := "target_version=" <N> "." <N> "." <N>
stripes := "stripes=" <NS>
chunk_size := "chunk_size=" <N>
stripe_data := <stripe_data_row>|<stripe_data><stripe_data_row>
stripe_data_row := <stripe_device_name> "," <stripe_physical_start> "," <stripe_status>
stripe_device_name := "stripe_" <X> "_device_name=" <stripe_device_name_str>
where <X> ranges from 0 to (<NS> -1) - for <NS> described in <stripes>.
stripe_physical_start := "stripe_" <X> "_physical_start=" <N>
where <X> ranges from 0 to (<NS> -1) - for <NS> described in <stripes>.
stripe_status := "stripe_" <X> "_status=" <stripe_status_str>
where <X> ranges from 0 to (<NS> -1) - for <NS> described in <stripes>.
stripe_status_str := "D" | "A"
E.g.
When a 'striped' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'striped' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=striped1,uuid=striped_uuid1,major=253,minor=5,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=640,target_name=striped,target_version=1.6.0,stripes=2,chunk_size=64,
stripe_0_device_name=253:0,stripe_0_physical_start=2048,stripe_0_status=A,
stripe_1_device_name=253:3,stripe_1_physical_start=2048,stripe_1_status=A;
10. verity
----------
The 'target_attributes' (described as part of EVENT_DATA in 'Table load'
section above) has the following data format for 'verity' target.
::
target_attributes := <target_name> "," <target_version> "," <hash_failed> "," <verity_version> ","
<data_device_name> "," <hash_device_name> "," <verity_algorithm> "," <root_digest> ","
<salt> "," <ignore_zero_blocks> "," <check_at_most_once> ["," <root_hash_sig_key_desc>]
["," <verity_mode>] ";"
target_name := "target_name=verity"
target_version := "target_version=" <N> "." <N> "." <N>
hash_failed := "hash_failed=" <hash_failed_str>
hash_failed_str := "C" | "V"
verity_version := "verity_version=" <verity_version_str>
data_device_name := "data_device_name=" <data_device_name_str>
hash_device_name := "hash_device_name=" <hash_device_name_str>
verity_algorithm := "verity_algorithm=" <verity_algorithm_str>
root_digest := "root_digest=" <root_digest_str>
salt := "salt=" <salt_str>
salt_str := "-" <verity_salt_str>
ignore_zero_blocks := "ignore_zero_blocks=" <yes_no>
check_at_most_once := "check_at_most_once=" <yes_no>
root_hash_sig_key_desc := "root_hash_sig_key_desc="
verity_mode := "verity_mode=" <verity_mode_str>
verity_mode_str := "ignore_corruption" | "restart_on_corruption" | "panic_on_corruption" | "invalid"
yes_no := "y" | "n"
E.g.
When a 'verity' target is loaded, then IMA ASCII measurement log will have an entry
similar to the following, depicting what 'verity' attributes are measured in EVENT_DATA
for 'dm_table_load' event.
(converted from ASCII to text for readability)
dm_version=4.45.0;
name=test-verity,uuid=,major=253,minor=2,minor_count=1,num_targets=1;
target_index=0,target_begin=0,target_len=1953120,target_name=verity,target_version=1.8.0,hash_failed=V,
verity_version=1,data_device_name=253:1,hash_device_name=253:0,verity_algorithm=sha256,
root_digest=29cb87e60ce7b12b443ba6008266f3e41e93e403d7f298f8e3f316b29ff89c5e,
salt=e48da609055204e89ae53b655ca2216dd983cf3cb829f34f63a297d106d53e2d,
ignore_zero_blocks=n,check_at_most_once=n;
...@@ -13,6 +13,7 @@ Device Mapper ...@@ -13,6 +13,7 @@ Device Mapper
dm-dust dm-dust
dm-ebs dm-ebs
dm-flakey dm-flakey
dm-ima
dm-init dm-init
dm-integrity dm-integrity
dm-io dm-io
......
...@@ -78,13 +78,23 @@ Status: ...@@ -78,13 +78,23 @@ Status:
2. the number of blocks 2. the number of blocks
3. the number of free blocks 3. the number of free blocks
4. the number of blocks under writeback 4. the number of blocks under writeback
5. the number of read requests
6. the number of read requests that hit the cache
7. the number of write requests
8. the number of write requests that hit uncommitted block
9. the number of write requests that hit committed block
10. the number of write requests that bypass the cache
11. the number of write requests that are allocated in the cache
12. the number of write requests that are blocked on the freelist
13. the number of flush requests
14. the number of discard requests
Messages: Messages:
flush flush
flush the cache device. The message returns successfully Flush the cache device. The message returns successfully
if the cache device was flushed without an error if the cache device was flushed without an error
flush_on_suspend flush_on_suspend
flush the cache device on next suspend. Use this message Flush the cache device on next suspend. Use this message
when you are going to remove the cache device. The proper when you are going to remove the cache device. The proper
sequence for removing the cache device is: sequence for removing the cache device is:
...@@ -98,3 +108,5 @@ Messages: ...@@ -98,3 +108,5 @@ Messages:
6. the cache device is now inactive and it can be deleted 6. the cache device is now inactive and it can be deleted
cleaner cleaner
See above "cleaner" constructor documentation. See above "cleaner" constructor documentation.
clear_stats
Clear the statistics that are reported on the status line
...@@ -96,6 +96,10 @@ ifeq ($(CONFIG_BLK_DEV_ZONED),y) ...@@ -96,6 +96,10 @@ ifeq ($(CONFIG_BLK_DEV_ZONED),y)
dm-mod-objs += dm-zone.o dm-mod-objs += dm-zone.o
endif endif
ifeq ($(CONFIG_IMA),y)
dm-mod-objs += dm-ima.o
endif
ifeq ($(CONFIG_DM_VERITY_FEC),y) ifeq ($(CONFIG_DM_VERITY_FEC),y)
dm-verity-objs += dm-verity-fec.o dm-verity-objs += dm-verity-fec.o
endif endif
......
...@@ -3122,6 +3122,30 @@ static void cache_status(struct dm_target *ti, status_type_t type, ...@@ -3122,6 +3122,30 @@ static void cache_status(struct dm_target *ti, status_type_t type,
DMEMIT(" %s", cache->ctr_args[i]); DMEMIT(" %s", cache->ctr_args[i]);
if (cache->nr_ctr_args) if (cache->nr_ctr_args)
DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
if (get_cache_mode(cache) == CM_FAIL)
DMEMIT(",metadata_mode=fail");
else if (get_cache_mode(cache) == CM_READ_ONLY)
DMEMIT(",metadata_mode=ro");
else
DMEMIT(",metadata_mode=rw");
format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
DMEMIT(",cache_metadata_device=%s", buf);
format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
DMEMIT(",cache_device=%s", buf);
format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
DMEMIT(",cache_origin_device=%s", buf);
DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
DMEMIT(";");
break;
} }
return; return;
......
...@@ -1499,6 +1499,11 @@ static void clone_status(struct dm_target *ti, status_type_t type, ...@@ -1499,6 +1499,11 @@ static void clone_status(struct dm_target *ti, status_type_t type,
for (i = 0; i < clone->nr_ctr_args; i++) for (i = 0; i < clone->nr_ctr_args; i++)
DMEMIT(" %s", clone->ctr_args[i]); DMEMIT(" %s", clone->ctr_args[i]);
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return; return;
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
#include <trace/events/block.h> #include <trace/events/block.h>
#include "dm.h" #include "dm.h"
#include "dm-ima.h"
#define DM_RESERVED_MAX_IOS 1024 #define DM_RESERVED_MAX_IOS 1024
...@@ -119,6 +120,10 @@ struct mapped_device { ...@@ -119,6 +120,10 @@ struct mapped_device {
unsigned int nr_zones; unsigned int nr_zones;
unsigned int *zwp_offset; unsigned int *zwp_offset;
#endif #endif
#ifdef CONFIG_IMA
struct dm_ima_measurements ima;
#endif
}; };
/* /*
......
...@@ -2223,11 +2223,11 @@ static void kcryptd_queue_crypt(struct dm_crypt_io *io) ...@@ -2223,11 +2223,11 @@ static void kcryptd_queue_crypt(struct dm_crypt_io *io)
if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
(bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
/* /*
* in_irq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
* irqs_disabled(): the kernel may run some IO completion from the idle thread, but * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
* it is being executed with irqs disabled. * it is being executed with irqs disabled.
*/ */
if (in_irq() || irqs_disabled()) { if (in_hardirq() || irqs_disabled()) {
tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work); tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
tasklet_schedule(&io->tasklet); tasklet_schedule(&io->tasklet);
return; return;
...@@ -2661,7 +2661,12 @@ static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) ...@@ -2661,7 +2661,12 @@ static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
struct crypt_config *cc = pool_data; struct crypt_config *cc = pool_data;
struct page *page; struct page *page;
if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) && /*
* Note, percpu_counter_read_positive() may over (and under) estimate
* the current usage by at most (batch - 1) * num_online_cpus() pages,
* but avoids potential spinlock contention of an exact result.
*/
if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
likely(gfp_mask & __GFP_NORETRY)) likely(gfp_mask & __GFP_NORETRY))
return NULL; return NULL;
...@@ -3485,7 +3490,34 @@ static void crypt_status(struct dm_target *ti, status_type_t type, ...@@ -3485,7 +3490,34 @@ static void crypt_status(struct dm_target *ti, status_type_t type,
if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
DMEMIT(" iv_large_sectors"); DMEMIT(" iv_large_sectors");
} }
break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
'y' : 'n');
DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
'y' : 'n');
DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
'y' : 'n');
DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
'y' : 'n');
if (cc->on_disk_tag_size)
DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
cc->on_disk_tag_size, cc->cipher_auth);
if (cc->sector_size != (1 << SECTOR_SHIFT))
DMEMIT(",sector_size=%d", cc->sector_size);
if (cc->cipher_string)
DMEMIT(",cipher_string=%s", cc->cipher_string);
DMEMIT(",key_size=%u", cc->key_size);
DMEMIT(",key_parts=%u", cc->key_parts);
DMEMIT(",key_extra_size=%u", cc->key_extra_size);
DMEMIT(",key_mac_size=%u", cc->key_mac_size);
DMEMIT(";");
break; break;
} }
} }
......
...@@ -326,6 +326,10 @@ static void delay_status(struct dm_target *ti, status_type_t type, ...@@ -326,6 +326,10 @@ static void delay_status(struct dm_target *ti, status_type_t type,
DMEMIT_DELAY_CLASS(&dc->flush); DMEMIT_DELAY_CLASS(&dc->flush);
} }
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -527,6 +527,10 @@ static void dust_status(struct dm_target *ti, status_type_t type, ...@@ -527,6 +527,10 @@ static void dust_status(struct dm_target *ti, status_type_t type,
DMEMIT("%s %llu %u", dd->dev->name, DMEMIT("%s %llu %u", dd->dev->name,
(unsigned long long)dd->start, dd->blksz); (unsigned long long)dd->start, dd->blksz);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -401,6 +401,9 @@ static void ebs_status(struct dm_target *ti, status_type_t type, ...@@ -401,6 +401,9 @@ static void ebs_status(struct dm_target *ti, status_type_t type,
snprintf(result, maxlen, ec->u_bs_set ? "%s %llu %u %u" : "%s %llu %u", snprintf(result, maxlen, ec->u_bs_set ? "%s %llu %u %u" : "%s %llu %u",
ec->dev->name, (unsigned long long) ec->start, ec->e_bs, ec->u_bs); ec->dev->name, (unsigned long long) ec->start, ec->e_bs, ec->u_bs);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -1644,6 +1644,10 @@ static void era_status(struct dm_target *ti, status_type_t type, ...@@ -1644,6 +1644,10 @@ static void era_status(struct dm_target *ti, status_type_t type,
format_dev_t(buf, era->origin_dev->bdev->bd_dev); format_dev_t(buf, era->origin_dev->bdev->bd_dev);
DMEMIT("%s %u", buf, era->sectors_per_block); DMEMIT("%s %u", buf, era->sectors_per_block);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return; return;
......
...@@ -440,6 +440,10 @@ static void flakey_status(struct dm_target *ti, status_type_t type, ...@@ -440,6 +440,10 @@ static void flakey_status(struct dm_target *ti, status_type_t type,
fc->corrupt_bio_value, fc->corrupt_bio_flags); fc->corrupt_bio_value, fc->corrupt_bio_flags);
break; break;
case STATUSTYPE_IMA:
result[0] = '\0';
break;
} }
} }
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Microsoft Corporation
*
* Author: Tushar Sugandhi <tusharsu@linux.microsoft.com>
*
* File: dm-ima.c
* Enables IMA measurements for DM targets
*/
#include "dm-core.h"
#include "dm-ima.h"
#include <linux/ima.h>
#include <crypto/hash.h>
#include <linux/crypto.h>
#include <crypto/hash_info.h>
#define DM_MSG_PREFIX "ima"
/*
* Internal function to prefix separator characters in input buffer with escape
* character, so that they don't interfere with the construction of key-value pairs,
* and clients can split the key1=val1,key2=val2,key3=val3; pairs properly.
*/
static void fix_separator_chars(char **buf)
{
int l = strlen(*buf);
int i, j, sp = 0;
for (i = 0; i < l; i++)
if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',')
sp++;
if (!sp)
return;
for (i = l-1, j = i+sp; i >= 0; i--) {
(*buf)[j--] = (*buf)[i];
if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',')
(*buf)[j--] = '\\';
}
}
/*
* Internal function to allocate memory for IMA measurements.
*/
static void *dm_ima_alloc(size_t len, gfp_t flags, bool noio)
{
unsigned int noio_flag;
void *ptr;
if (noio)
noio_flag = memalloc_noio_save();
ptr = kzalloc(len, flags);
if (noio)
memalloc_noio_restore(noio_flag);
return ptr;
}
/*
* Internal function to allocate and copy name and uuid for IMA measurements.
*/
static int dm_ima_alloc_and_copy_name_uuid(struct mapped_device *md, char **dev_name,
char **dev_uuid, bool noio)
{
int r;
*dev_name = dm_ima_alloc(DM_NAME_LEN*2, GFP_KERNEL, noio);
if (!(*dev_name)) {
r = -ENOMEM;
goto error;
}
*dev_uuid = dm_ima_alloc(DM_UUID_LEN*2, GFP_KERNEL, noio);
if (!(*dev_uuid)) {
r = -ENOMEM;
goto error;
}
r = dm_copy_name_and_uuid(md, *dev_name, *dev_uuid);
if (r)
goto error;
fix_separator_chars(dev_name);
fix_separator_chars(dev_uuid);
return 0;
error:
kfree(*dev_name);
kfree(*dev_uuid);
*dev_name = NULL;
*dev_uuid = NULL;
return r;
}
/*
* Internal function to allocate and copy device data for IMA measurements.
*/
static int dm_ima_alloc_and_copy_device_data(struct mapped_device *md, char **device_data,
unsigned int num_targets, bool noio)
{
char *dev_name = NULL, *dev_uuid = NULL;
int r;
r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio);
if (r)
return r;
*device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
if (!(*device_data)) {
r = -ENOMEM;
goto error;
}
scnprintf(*device_data, DM_IMA_DEVICE_BUF_LEN,
"name=%s,uuid=%s,major=%d,minor=%d,minor_count=%d,num_targets=%u;",
dev_name, dev_uuid, md->disk->major, md->disk->first_minor,
md->disk->minors, num_targets);
error:
kfree(dev_name);
kfree(dev_uuid);
return r;
}
/*
* Internal wrapper function to call IMA to measure DM data.
*/
static void dm_ima_measure_data(const char *event_name, const void *buf, size_t buf_len,
bool noio)
{
unsigned int noio_flag;
if (noio)
noio_flag = memalloc_noio_save();
ima_measure_critical_data(DM_NAME, event_name, buf, buf_len, false);
if (noio)
memalloc_noio_restore(noio_flag);
}
/*
* Internal function to allocate and copy current device capacity for IMA measurements.
*/
static int dm_ima_alloc_and_copy_capacity_str(struct mapped_device *md, char **capacity_str,
bool noio)
{
sector_t capacity;
capacity = get_capacity(md->disk);
*capacity_str = dm_ima_alloc(DM_IMA_DEVICE_CAPACITY_BUF_LEN, GFP_KERNEL, noio);
if (!(*capacity_str))
return -ENOMEM;
scnprintf(*capacity_str, DM_IMA_DEVICE_BUF_LEN, "current_device_capacity=%llu;",
capacity);
return 0;
}
/*
* Initialize/reset the dm ima related data structure variables.
*/
void dm_ima_reset_data(struct mapped_device *md)
{
memset(&(md->ima), 0, sizeof(md->ima));
md->ima.dm_version_str_len = strlen(DM_IMA_VERSION_STR);
}
/*
* Build up the IMA data for each target, and finally measure.
*/
void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags)
{
size_t device_data_buf_len, target_metadata_buf_len, target_data_buf_len, l = 0;
char *target_metadata_buf = NULL, *target_data_buf = NULL, *digest_buf = NULL;
char *ima_buf = NULL, *device_data_buf = NULL;
int digest_size, last_target_measured = -1, r;
status_type_t type = STATUSTYPE_IMA;
size_t cur_total_buf_len = 0;
unsigned int num_targets, i;
SHASH_DESC_ON_STACK(shash, NULL);
struct crypto_shash *tfm = NULL;
u8 *digest = NULL;
bool noio = false;
/*
* In below hash_alg_prefix_len assignment +1 is for the additional char (':'),
* when prefixing the hash value with the hash algorithm name. e.g. sha256:<hash_value>.
*/
const size_t hash_alg_prefix_len = strlen(DM_IMA_TABLE_HASH_ALG) + 1;
char table_load_event_name[] = "dm_table_load";
ima_buf = dm_ima_alloc(DM_IMA_MEASUREMENT_BUF_LEN, GFP_KERNEL, noio);
if (!ima_buf)
return;
target_metadata_buf = dm_ima_alloc(DM_IMA_TARGET_METADATA_BUF_LEN, GFP_KERNEL, noio);
if (!target_metadata_buf)
goto error;
target_data_buf = dm_ima_alloc(DM_IMA_TARGET_DATA_BUF_LEN, GFP_KERNEL, noio);
if (!target_data_buf)
goto error;
num_targets = dm_table_get_num_targets(table);
if (dm_ima_alloc_and_copy_device_data(table->md, &device_data_buf, num_targets, noio))
goto error;
tfm = crypto_alloc_shash(DM_IMA_TABLE_HASH_ALG, 0, 0);
if (IS_ERR(tfm))
goto error;
shash->tfm = tfm;
digest_size = crypto_shash_digestsize(tfm);
digest = dm_ima_alloc(digest_size, GFP_KERNEL, noio);
if (!digest)
goto error;
r = crypto_shash_init(shash);
if (r)
goto error;
memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len);
l += table->md->ima.dm_version_str_len;
device_data_buf_len = strlen(device_data_buf);
memcpy(ima_buf + l, device_data_buf, device_data_buf_len);
l += device_data_buf_len;
for (i = 0; i < num_targets; i++) {
struct dm_target *ti = dm_table_get_target(table, i);
if (!ti)
goto error;
last_target_measured = 0;
/*
* First retrieve the target metadata.
*/
scnprintf(target_metadata_buf, DM_IMA_TARGET_METADATA_BUF_LEN,
"target_index=%d,target_begin=%llu,target_len=%llu,",
i, ti->begin, ti->len);
target_metadata_buf_len = strlen(target_metadata_buf);
/*
* Then retrieve the actual target data.
*/
if (ti->type->status)
ti->type->status(ti, type, status_flags, target_data_buf,
DM_IMA_TARGET_DATA_BUF_LEN);
else
target_data_buf[0] = '\0';
target_data_buf_len = strlen(target_data_buf);
/*
* Check if the total data can fit into the IMA buffer.
*/
cur_total_buf_len = l + target_metadata_buf_len + target_data_buf_len;
/*
* IMA measurements for DM targets are best-effort.
* If the total data buffered so far, including the current target,
* is too large to fit into DM_IMA_MEASUREMENT_BUF_LEN, measure what
* we have in the current buffer, and continue measuring the remaining
* targets by prefixing the device metadata again.
*/
if (unlikely(cur_total_buf_len >= DM_IMA_MEASUREMENT_BUF_LEN)) {
dm_ima_measure_data(table_load_event_name, ima_buf, l, noio);
r = crypto_shash_update(shash, (const u8 *)ima_buf, l);
if (r < 0)
goto error;
memset(ima_buf, 0, DM_IMA_MEASUREMENT_BUF_LEN);
l = 0;
/*
* Each new "dm_table_load" entry in IMA log should have device data
* prefix, so that multiple records from the same "dm_table_load" for
* a given device can be linked together.
*/
memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len);
l += table->md->ima.dm_version_str_len;
memcpy(ima_buf + l, device_data_buf, device_data_buf_len);
l += device_data_buf_len;
/*
* If this iteration of the for loop turns out to be the last target
* in the table, dm_ima_measure_data("dm_table_load", ...) doesn't need
* to be called again, just the hash needs to be finalized.
* "last_target_measured" tracks this state.
*/
last_target_measured = 1;
}
/*
* Fill-in all the target metadata, so that multiple targets for the same
* device can be linked together.
*/
memcpy(ima_buf + l, target_metadata_buf, target_metadata_buf_len);
l += target_metadata_buf_len;
memcpy(ima_buf + l, target_data_buf, target_data_buf_len);
l += target_data_buf_len;
}
if (!last_target_measured) {
dm_ima_measure_data(table_load_event_name, ima_buf, l, noio);
r = crypto_shash_update(shash, (const u8 *)ima_buf, l);
if (r < 0)
goto error;
}
/*
* Finalize the table hash, and store it in table->md->ima.inactive_table.hash,
* so that the table data can be verified against the future device state change
* events, e.g. resume, rename, remove, table-clear etc.
*/
r = crypto_shash_final(shash, digest);
if (r < 0)
goto error;
digest_buf = dm_ima_alloc((digest_size*2) + hash_alg_prefix_len + 1, GFP_KERNEL, noio);
if (!digest_buf)
goto error;
snprintf(digest_buf, hash_alg_prefix_len + 1, "%s:", DM_IMA_TABLE_HASH_ALG);
for (i = 0; i < digest_size; i++)
snprintf((digest_buf + hash_alg_prefix_len + (i*2)), 3, "%02x", digest[i]);
if (table->md->ima.active_table.hash != table->md->ima.inactive_table.hash)
kfree(table->md->ima.inactive_table.hash);
table->md->ima.inactive_table.hash = digest_buf;
table->md->ima.inactive_table.hash_len = strlen(digest_buf);
table->md->ima.inactive_table.num_targets = num_targets;
if (table->md->ima.active_table.device_metadata !=
table->md->ima.inactive_table.device_metadata)
kfree(table->md->ima.inactive_table.device_metadata);
table->md->ima.inactive_table.device_metadata = device_data_buf;
table->md->ima.inactive_table.device_metadata_len = device_data_buf_len;
goto exit;
error:
kfree(digest_buf);
kfree(device_data_buf);
exit:
kfree(digest);
if (tfm)
crypto_free_shash(tfm);
kfree(ima_buf);
kfree(target_metadata_buf);
kfree(target_data_buf);
}
/*
* Measure IMA data on device resume.
*/
void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap)
{
char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
char active[] = "active_table_hash=";
unsigned int active_len = strlen(active), capacity_len = 0;
unsigned int l = 0;
bool noio = true;
bool nodata = true;
int r;
device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
if (!device_table_data)
return;
r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
if (r)
goto error;
memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
l += md->ima.dm_version_str_len;
if (swap) {
if (md->ima.active_table.hash != md->ima.inactive_table.hash)
kfree(md->ima.active_table.hash);
md->ima.active_table.hash = NULL;
md->ima.active_table.hash_len = 0;
if (md->ima.active_table.device_metadata !=
md->ima.inactive_table.device_metadata)
kfree(md->ima.active_table.device_metadata);
md->ima.active_table.device_metadata = NULL;
md->ima.active_table.device_metadata_len = 0;
md->ima.active_table.num_targets = 0;
if (md->ima.inactive_table.hash) {
md->ima.active_table.hash = md->ima.inactive_table.hash;
md->ima.active_table.hash_len = md->ima.inactive_table.hash_len;
md->ima.inactive_table.hash = NULL;
md->ima.inactive_table.hash_len = 0;
}
if (md->ima.inactive_table.device_metadata) {
md->ima.active_table.device_metadata =
md->ima.inactive_table.device_metadata;
md->ima.active_table.device_metadata_len =
md->ima.inactive_table.device_metadata_len;
md->ima.active_table.num_targets = md->ima.inactive_table.num_targets;
md->ima.inactive_table.device_metadata = NULL;
md->ima.inactive_table.device_metadata_len = 0;
md->ima.inactive_table.num_targets = 0;
}
}
if (md->ima.active_table.device_metadata) {
memcpy(device_table_data + l, md->ima.active_table.device_metadata,
md->ima.active_table.device_metadata_len);
l += md->ima.active_table.device_metadata_len;
nodata = false;
}
if (md->ima.active_table.hash) {
memcpy(device_table_data + l, active, active_len);
l += active_len;
memcpy(device_table_data + l, md->ima.active_table.hash,
md->ima.active_table.hash_len);
l += md->ima.active_table.hash_len;
memcpy(device_table_data + l, ";", 1);
l++;
nodata = false;
}
if (nodata) {
r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio);
if (r)
goto error;
scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
"%sname=%s,uuid=%s;device_resume=no_data;",
DM_IMA_VERSION_STR, dev_name, dev_uuid);
l += strlen(device_table_data);
}
capacity_len = strlen(capacity_str);
memcpy(device_table_data + l, capacity_str, capacity_len);
l += capacity_len;
dm_ima_measure_data("dm_device_resume", device_table_data, l, noio);
kfree(dev_name);
kfree(dev_uuid);
error:
kfree(capacity_str);
kfree(device_table_data);
}
/*
* Measure IMA data on remove.
*/
void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all)
{
char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
char active_table_str[] = "active_table_hash=";
char inactive_table_str[] = "inactive_table_hash=";
char device_active_str[] = "device_active_metadata=";
char device_inactive_str[] = "device_inactive_metadata=";
char remove_all_str[] = "remove_all=";
unsigned int active_table_len = strlen(active_table_str);
unsigned int inactive_table_len = strlen(inactive_table_str);
unsigned int device_active_len = strlen(device_active_str);
unsigned int device_inactive_len = strlen(device_inactive_str);
unsigned int remove_all_len = strlen(remove_all_str);
unsigned int capacity_len = 0;
unsigned int l = 0;
bool noio = true;
bool nodata = true;
int r;
device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN*2, GFP_KERNEL, noio);
if (!device_table_data)
goto exit;
r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
if (r) {
kfree(device_table_data);
goto exit;
}
memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
l += md->ima.dm_version_str_len;
if (md->ima.active_table.device_metadata) {
memcpy(device_table_data + l, device_active_str, device_active_len);
l += device_active_len;
memcpy(device_table_data + l, md->ima.active_table.device_metadata,
md->ima.active_table.device_metadata_len);
l += md->ima.active_table.device_metadata_len;
nodata = false;
}
if (md->ima.inactive_table.device_metadata) {
memcpy(device_table_data + l, device_inactive_str, device_inactive_len);
l += device_inactive_len;
memcpy(device_table_data + l, md->ima.inactive_table.device_metadata,
md->ima.inactive_table.device_metadata_len);
l += md->ima.inactive_table.device_metadata_len;
nodata = false;
}
if (md->ima.active_table.hash) {
memcpy(device_table_data + l, active_table_str, active_table_len);
l += active_table_len;
memcpy(device_table_data + l, md->ima.active_table.hash,
md->ima.active_table.hash_len);
l += md->ima.active_table.hash_len;
memcpy(device_table_data + l, ",", 1);
l++;
nodata = false;
}
if (md->ima.inactive_table.hash) {
memcpy(device_table_data + l, inactive_table_str, inactive_table_len);
l += inactive_table_len;
memcpy(device_table_data + l, md->ima.inactive_table.hash,
md->ima.inactive_table.hash_len);
l += md->ima.inactive_table.hash_len;
memcpy(device_table_data + l, ",", 1);
l++;
nodata = false;
}
/*
* In case both active and inactive tables, and corresponding
* device metadata is cleared/missing - record the name and uuid
* in IMA measurements.
*/
if (nodata) {
if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio))
goto error;
scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
"%sname=%s,uuid=%s;device_remove=no_data;",
DM_IMA_VERSION_STR, dev_name, dev_uuid);
l += strlen(device_table_data);
}
memcpy(device_table_data + l, remove_all_str, remove_all_len);
l += remove_all_len;
memcpy(device_table_data + l, remove_all ? "y;" : "n;", 2);
l += 2;
capacity_len = strlen(capacity_str);
memcpy(device_table_data + l, capacity_str, capacity_len);
l += capacity_len;
dm_ima_measure_data("dm_device_remove", device_table_data, l, noio);
error:
kfree(device_table_data);
kfree(capacity_str);
exit:
kfree(md->ima.active_table.device_metadata);
if (md->ima.active_table.device_metadata !=
md->ima.inactive_table.device_metadata)
kfree(md->ima.inactive_table.device_metadata);
kfree(md->ima.active_table.hash);
if (md->ima.active_table.hash != md->ima.inactive_table.hash)
kfree(md->ima.inactive_table.hash);
dm_ima_reset_data(md);
kfree(dev_name);
kfree(dev_uuid);
}
/*
* Measure ima data on table clear.
*/
void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map)
{
unsigned int l = 0, capacity_len = 0;
char *device_table_data = NULL, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
char inactive_str[] = "inactive_table_hash=";
unsigned int inactive_len = strlen(inactive_str);
bool noio = true;
bool nodata = true;
int r;
device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
if (!device_table_data)
return;
r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
if (r)
goto error1;
memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
l += md->ima.dm_version_str_len;
if (md->ima.inactive_table.device_metadata_len &&
md->ima.inactive_table.hash_len) {
memcpy(device_table_data + l, md->ima.inactive_table.device_metadata,
md->ima.inactive_table.device_metadata_len);
l += md->ima.inactive_table.device_metadata_len;
memcpy(device_table_data + l, inactive_str, inactive_len);
l += inactive_len;
memcpy(device_table_data + l, md->ima.inactive_table.hash,
md->ima.inactive_table.hash_len);
l += md->ima.inactive_table.hash_len;
memcpy(device_table_data + l, ";", 1);
l++;
nodata = false;
}
if (nodata) {
if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio))
goto error2;
scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
"%sname=%s,uuid=%s;table_clear=no_data;",
DM_IMA_VERSION_STR, dev_name, dev_uuid);
l += strlen(device_table_data);
}
capacity_len = strlen(capacity_str);
memcpy(device_table_data + l, capacity_str, capacity_len);
l += capacity_len;
dm_ima_measure_data("dm_table_clear", device_table_data, l, noio);
if (new_map) {
if (md->ima.inactive_table.hash &&
md->ima.inactive_table.hash != md->ima.active_table.hash)
kfree(md->ima.inactive_table.hash);
md->ima.inactive_table.hash = NULL;
md->ima.inactive_table.hash_len = 0;
if (md->ima.inactive_table.device_metadata &&
md->ima.inactive_table.device_metadata != md->ima.active_table.device_metadata)
kfree(md->ima.inactive_table.device_metadata);
md->ima.inactive_table.device_metadata = NULL;
md->ima.inactive_table.device_metadata_len = 0;
md->ima.inactive_table.num_targets = 0;
if (md->ima.active_table.hash) {
md->ima.inactive_table.hash = md->ima.active_table.hash;
md->ima.inactive_table.hash_len = md->ima.active_table.hash_len;
}
if (md->ima.active_table.device_metadata) {
md->ima.inactive_table.device_metadata =
md->ima.active_table.device_metadata;
md->ima.inactive_table.device_metadata_len =
md->ima.active_table.device_metadata_len;
md->ima.inactive_table.num_targets =
md->ima.active_table.num_targets;
}
}
kfree(dev_name);
kfree(dev_uuid);
error2:
kfree(capacity_str);
error1:
kfree(device_table_data);
}
/*
* Measure IMA data on device rename.
*/
void dm_ima_measure_on_device_rename(struct mapped_device *md)
{
char *old_device_data = NULL, *new_device_data = NULL, *combined_device_data = NULL;
char *new_dev_name = NULL, *new_dev_uuid = NULL, *capacity_str = NULL;
bool noio = true;
int r;
if (dm_ima_alloc_and_copy_device_data(md, &new_device_data,
md->ima.active_table.num_targets, noio))
return;
if (dm_ima_alloc_and_copy_name_uuid(md, &new_dev_name, &new_dev_uuid, noio))
goto error;
combined_device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN * 2, GFP_KERNEL, noio);
if (!combined_device_data)
goto error;
r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
if (r)
goto error;
old_device_data = md->ima.active_table.device_metadata;
md->ima.active_table.device_metadata = new_device_data;
md->ima.active_table.device_metadata_len = strlen(new_device_data);
scnprintf(combined_device_data, DM_IMA_DEVICE_BUF_LEN * 2,
"%s%snew_name=%s,new_uuid=%s;%s", DM_IMA_VERSION_STR, old_device_data,
new_dev_name, new_dev_uuid, capacity_str);
dm_ima_measure_data("dm_device_rename", combined_device_data, strlen(combined_device_data),
noio);
goto exit;
error:
kfree(new_device_data);
exit:
kfree(capacity_str);
kfree(combined_device_data);
kfree(old_device_data);
kfree(new_dev_name);
kfree(new_dev_uuid);
}
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2021 Microsoft Corporation
*
* Author: Tushar Sugandhi <tusharsu@linux.microsoft.com>
*
* File: dm-ima.h
* Header file for device mapper IMA measurements.
*/
#ifndef DM_IMA_H
#define DM_IMA_H
#define DM_IMA_MEASUREMENT_BUF_LEN 4096
#define DM_IMA_DEVICE_BUF_LEN 1024
#define DM_IMA_TARGET_METADATA_BUF_LEN 128
#define DM_IMA_TARGET_DATA_BUF_LEN 2048
#define DM_IMA_DEVICE_CAPACITY_BUF_LEN 128
#define DM_IMA_TABLE_HASH_ALG "sha256"
#define __dm_ima_stringify(s) #s
#define __dm_ima_str(s) __dm_ima_stringify(s)
#define DM_IMA_VERSION_STR "dm_version=" \
__dm_ima_str(DM_VERSION_MAJOR) "." \
__dm_ima_str(DM_VERSION_MINOR) "." \
__dm_ima_str(DM_VERSION_PATCHLEVEL) ";"
#ifdef CONFIG_IMA
struct dm_ima_device_table_metadata {
/*
* Contains data specific to the device which is common across
* all the targets in the table (e.g. name, uuid, major, minor, etc).
* The values are stored in comma separated list of key1=val1,key2=val2;
* pairs delimited by a semicolon at the end of the list.
*/
char *device_metadata;
unsigned int device_metadata_len;
unsigned int num_targets;
/*
* Contains the sha256 hashes of the IMA measurements of the target
* attributes' key-value pairs from the active/inactive tables.
*/
char *hash;
unsigned int hash_len;
};
/*
* This structure contains device metadata, and table hash for
* active and inactive tables for ima measurements.
*/
struct dm_ima_measurements {
struct dm_ima_device_table_metadata active_table;
struct dm_ima_device_table_metadata inactive_table;
unsigned int dm_version_str_len;
};
void dm_ima_reset_data(struct mapped_device *md);
void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags);
void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap);
void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all);
void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map);
void dm_ima_measure_on_device_rename(struct mapped_device *md);
#else
static inline void dm_ima_reset_data(struct mapped_device *md) {}
static inline void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags) {}
static inline void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap) {}
static inline void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all) {}
static inline void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map) {}
static inline void dm_ima_measure_on_device_rename(struct mapped_device *md) {}
#endif /* CONFIG_IMA */
#endif /* DM_IMA_H */
...@@ -3306,6 +3306,30 @@ static void dm_integrity_status(struct dm_target *ti, status_type_t type, ...@@ -3306,6 +3306,30 @@ static void dm_integrity_status(struct dm_target *ti, status_type_t type,
EMIT_ALG(journal_mac_alg, "journal_mac"); EMIT_ALG(journal_mac_alg, "journal_mac");
break; break;
} }
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
ic->dev->name, ic->start, ic->tag_size, ic->mode);
if (ic->meta_dev)
DMEMIT(",meta_device=%s", ic->meta_dev->name);
if (ic->sectors_per_block != 1)
DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
'y' : 'n');
DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
DMEMIT(",fix_padding=%c",
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
DMEMIT(",fix_hmac=%c",
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
DMEMIT(";");
break;
} }
} }
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
*/ */
#include "dm-core.h" #include "dm-core.h"
#include "dm-ima.h"
#include <linux/module.h> #include <linux/module.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/miscdevice.h> #include <linux/miscdevice.h>
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <linux/compat.h> #include <linux/compat.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/ima.h>
#define DM_MSG_PREFIX "ioctl" #define DM_MSG_PREFIX "ioctl"
#define DM_DRIVER_EMAIL "dm-devel@redhat.com" #define DM_DRIVER_EMAIL "dm-devel@redhat.com"
...@@ -347,6 +348,7 @@ static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool ...@@ -347,6 +348,7 @@ static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool
dm_sync_table(md); dm_sync_table(md);
dm_table_destroy(t); dm_table_destroy(t);
} }
dm_ima_measure_on_device_remove(md, true);
dm_put(md); dm_put(md);
if (likely(keep_open_devices)) if (likely(keep_open_devices))
dm_destroy(md); dm_destroy(md);
...@@ -483,6 +485,9 @@ static struct mapped_device *dm_hash_rename(struct dm_ioctl *param, ...@@ -483,6 +485,9 @@ static struct mapped_device *dm_hash_rename(struct dm_ioctl *param,
param->flags |= DM_UEVENT_GENERATED_FLAG; param->flags |= DM_UEVENT_GENERATED_FLAG;
md = hc->md; md = hc->md;
dm_ima_measure_on_device_rename(md);
up_write(&_hash_lock); up_write(&_hash_lock);
kfree(old_name); kfree(old_name);
...@@ -981,6 +986,8 @@ static int dev_remove(struct file *filp, struct dm_ioctl *param, size_t param_si ...@@ -981,6 +986,8 @@ static int dev_remove(struct file *filp, struct dm_ioctl *param, size_t param_si
param->flags &= ~DM_DEFERRED_REMOVE; param->flags &= ~DM_DEFERRED_REMOVE;
dm_ima_measure_on_device_remove(md, false);
if (!dm_kobject_uevent(md, KOBJ_REMOVE, param->event_nr)) if (!dm_kobject_uevent(md, KOBJ_REMOVE, param->event_nr))
param->flags |= DM_UEVENT_GENERATED_FLAG; param->flags |= DM_UEVENT_GENERATED_FLAG;
...@@ -1159,9 +1166,13 @@ static int do_resume(struct dm_ioctl *param) ...@@ -1159,9 +1166,13 @@ static int do_resume(struct dm_ioctl *param)
if (dm_suspended_md(md)) { if (dm_suspended_md(md)) {
r = dm_resume(md); r = dm_resume(md);
if (!r && !dm_kobject_uevent(md, KOBJ_CHANGE, param->event_nr)) if (!r) {
dm_ima_measure_on_device_resume(md, new_map ? true : false);
if (!dm_kobject_uevent(md, KOBJ_CHANGE, param->event_nr))
param->flags |= DM_UEVENT_GENERATED_FLAG; param->flags |= DM_UEVENT_GENERATED_FLAG;
} }
}
/* /*
* Since dm_swap_table synchronizes RCU, nobody should be in * Since dm_swap_table synchronizes RCU, nobody should be in
...@@ -1224,6 +1235,8 @@ static void retrieve_status(struct dm_table *table, ...@@ -1224,6 +1235,8 @@ static void retrieve_status(struct dm_table *table,
if (param->flags & DM_STATUS_TABLE_FLAG) if (param->flags & DM_STATUS_TABLE_FLAG)
type = STATUSTYPE_TABLE; type = STATUSTYPE_TABLE;
else if (param->flags & DM_IMA_MEASUREMENT_FLAG)
type = STATUSTYPE_IMA;
else else
type = STATUSTYPE_INFO; type = STATUSTYPE_INFO;
...@@ -1425,6 +1438,8 @@ static int table_load(struct file *filp, struct dm_ioctl *param, size_t param_si ...@@ -1425,6 +1438,8 @@ static int table_load(struct file *filp, struct dm_ioctl *param, size_t param_si
if (r) if (r)
goto err_unlock_md_type; goto err_unlock_md_type;
dm_ima_measure_on_table_load(t, STATUSTYPE_IMA);
immutable_target_type = dm_get_immutable_target_type(md); immutable_target_type = dm_get_immutable_target_type(md);
if (immutable_target_type && if (immutable_target_type &&
(immutable_target_type != dm_table_get_immutable_target_type(t)) && (immutable_target_type != dm_table_get_immutable_target_type(t)) &&
...@@ -1493,6 +1508,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s ...@@ -1493,6 +1508,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s
struct hash_cell *hc; struct hash_cell *hc;
struct mapped_device *md; struct mapped_device *md;
struct dm_table *old_map = NULL; struct dm_table *old_map = NULL;
bool has_new_map = false;
down_write(&_hash_lock); down_write(&_hash_lock);
...@@ -1506,6 +1522,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s ...@@ -1506,6 +1522,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s
if (hc->new_map) { if (hc->new_map) {
old_map = hc->new_map; old_map = hc->new_map;
hc->new_map = NULL; hc->new_map = NULL;
has_new_map = true;
} }
param->flags &= ~DM_INACTIVE_PRESENT_FLAG; param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
...@@ -1517,6 +1534,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s ...@@ -1517,6 +1534,7 @@ static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_s
dm_sync_table(md); dm_sync_table(md);
dm_table_destroy(old_map); dm_table_destroy(old_map);
} }
dm_ima_measure_on_table_clear(md, has_new_map);
dm_put(md); dm_put(md);
return 0; return 0;
......
...@@ -106,6 +106,7 @@ static void linear_status(struct dm_target *ti, status_type_t type, ...@@ -106,6 +106,7 @@ static void linear_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen) unsigned status_flags, char *result, unsigned maxlen)
{ {
struct linear_c *lc = (struct linear_c *) ti->private; struct linear_c *lc = (struct linear_c *) ti->private;
size_t sz = 0;
switch (type) { switch (type) {
case STATUSTYPE_INFO: case STATUSTYPE_INFO:
...@@ -113,7 +114,12 @@ static void linear_status(struct dm_target *ti, status_type_t type, ...@@ -113,7 +114,12 @@ static void linear_status(struct dm_target *ti, status_type_t type,
break; break;
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
snprintf(result, maxlen, "%s %llu", lc->dev->name, DMEMIT("%s %llu", lc->dev->name, (unsigned long long)lc->start);
break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",device_name=%s,start=%llu;", lc->dev->name,
(unsigned long long)lc->start); (unsigned long long)lc->start);
break; break;
} }
......
...@@ -820,6 +820,9 @@ static int userspace_status(struct dm_dirty_log *log, status_type_t status_type, ...@@ -820,6 +820,9 @@ static int userspace_status(struct dm_dirty_log *log, status_type_t status_type,
DMEMIT("integrated_flush "); DMEMIT("integrated_flush ");
DMEMIT("%s ", table_args); DMEMIT("%s ", table_args);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return (r) ? 0 : (int)sz; return (r) ? 0 : (int)sz;
} }
......
...@@ -834,6 +834,10 @@ static void log_writes_status(struct dm_target *ti, status_type_t type, ...@@ -834,6 +834,10 @@ static void log_writes_status(struct dm_target *ti, status_type_t type,
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT("%s %s", lc->dev->name, lc->logdev->name); DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -793,6 +793,11 @@ static int core_status(struct dm_dirty_log *log, status_type_t status, ...@@ -793,6 +793,11 @@ static int core_status(struct dm_dirty_log *log, status_type_t status,
DMEMIT("%s %u %u ", log->type->name, DMEMIT("%s %u %u ", log->type->name,
lc->sync == DEFAULTSYNC ? 1 : 2, lc->region_size); lc->sync == DEFAULTSYNC ? 1 : 2, lc->region_size);
DMEMIT_SYNC; DMEMIT_SYNC;
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return sz; return sz;
...@@ -817,6 +822,11 @@ static int disk_status(struct dm_dirty_log *log, status_type_t status, ...@@ -817,6 +822,11 @@ static int disk_status(struct dm_dirty_log *log, status_type_t status,
lc->sync == DEFAULTSYNC ? 2 : 3, lc->log_dev->name, lc->sync == DEFAULTSYNC ? 2 : 3, lc->log_dev->name,
lc->region_size); lc->region_size);
DMEMIT_SYNC; DMEMIT_SYNC;
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return sz; return sz;
......
...@@ -1790,7 +1790,7 @@ static void multipath_resume(struct dm_target *ti) ...@@ -1790,7 +1790,7 @@ static void multipath_resume(struct dm_target *ti)
static void multipath_status(struct dm_target *ti, status_type_t type, static void multipath_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen) unsigned status_flags, char *result, unsigned maxlen)
{ {
int sz = 0; int sz = 0, pg_counter, pgpath_counter;
unsigned long flags; unsigned long flags;
struct multipath *m = ti->private; struct multipath *m = ti->private;
struct priority_group *pg; struct priority_group *pg;
...@@ -1904,6 +1904,44 @@ static void multipath_status(struct dm_target *ti, status_type_t type, ...@@ -1904,6 +1904,44 @@ static void multipath_status(struct dm_target *ti, status_type_t type,
} }
} }
break; break;
case STATUSTYPE_IMA:
sz = 0; /*reset the result pointer*/
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups);
pg_counter = 0;
list_for_each_entry(pg, &m->priority_groups, list) {
if (pg->bypassed)
state = 'D'; /* Disabled */
else if (pg == m->current_pg)
state = 'A'; /* Currently Active */
else
state = 'E'; /* Enabled */
DMEMIT(",pg_state_%d=%c", pg_counter, state);
DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths);
DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name);
pgpath_counter = 0;
list_for_each_entry(p, &pg->pgpaths, list) {
DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u",
pg_counter, pgpath_counter, p->path.dev->name,
pg_counter, pgpath_counter, p->is_active ? 'A' : 'F',
pg_counter, pgpath_counter, p->fail_count);
if (pg->ps.type->status) {
DMEMIT(",path_selector_status_%d_%d=",
pg_counter, pgpath_counter);
sz += pg->ps.type->status(&pg->ps, &p->path,
type, result + sz,
maxlen - sz);
}
pgpath_counter++;
}
pg_counter++;
}
DMEMIT(";");
break;
} }
spin_unlock_irqrestore(&m->lock, flags); spin_unlock_irqrestore(&m->lock, flags);
......
...@@ -255,6 +255,9 @@ static int hst_status(struct path_selector *ps, struct dm_path *path, ...@@ -255,6 +255,9 @@ static int hst_status(struct path_selector *ps, struct dm_path *path,
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT("0 "); DMEMIT("0 ");
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -170,6 +170,9 @@ static int ioa_status(struct path_selector *ps, struct dm_path *path, ...@@ -170,6 +170,9 @@ static int ioa_status(struct path_selector *ps, struct dm_path *path,
pi = path->pscontext; pi = path->pscontext;
DMEMIT("%*pb ", cpumask_pr_args(pi->cpumask)); DMEMIT("%*pb ", cpumask_pr_args(pi->cpumask));
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return sz; return sz;
......
...@@ -102,6 +102,9 @@ static int ql_status(struct path_selector *ps, struct dm_path *path, ...@@ -102,6 +102,9 @@ static int ql_status(struct path_selector *ps, struct dm_path *path,
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT("%u ", pi->repeat_count); DMEMIT("%u ", pi->repeat_count);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -100,6 +100,10 @@ static int rr_status(struct path_selector *ps, struct dm_path *path, ...@@ -100,6 +100,10 @@ static int rr_status(struct path_selector *ps, struct dm_path *path,
pi = path->pscontext; pi = path->pscontext;
DMEMIT("%u ", pi->repeat_count); DMEMIT("%u ", pi->repeat_count);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -99,6 +99,9 @@ static int st_status(struct path_selector *ps, struct dm_path *path, ...@@ -99,6 +99,9 @@ static int st_status(struct path_selector *ps, struct dm_path *path,
DMEMIT("%u %u ", pi->repeat_count, DMEMIT("%u %u ", pi->repeat_count,
pi->relative_throughput); pi->relative_throughput);
break; break;
case STATUSTYPE_IMA:
result[0] = '\0';
break;
} }
} }
......
...@@ -3671,6 +3671,45 @@ static void raid_status(struct dm_target *ti, status_type_t type, ...@@ -3671,6 +3671,45 @@ static void raid_status(struct dm_target *ti, status_type_t type,
for (i = 0; i < rs->raid_disks; i++) for (i = 0; i < rs->raid_disks; i++)
DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
__get_dev_name(rs->dev[i].data_dev)); __get_dev_name(rs->dev[i].data_dev));
break;
case STATUSTYPE_IMA:
rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
if (!rt)
return;
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
/* Access most recent mddev properties for status output */
smp_rmb();
recovery = rs->md.recovery;
state = decipher_sync_action(mddev, recovery);
DMEMIT(",raid_state=%s", sync_str(state));
for (i = 0; i < rs->raid_disks; i++) {
DMEMIT(",raid_device_%d_status=", i);
DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
}
if (rt_is_raid456(rt)) {
DMEMIT(",journal_dev_mode=");
switch (rs->journal_dev.mode) {
case R5C_JOURNAL_MODE_WRITE_THROUGH:
DMEMIT("%s",
_raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
break;
case R5C_JOURNAL_MODE_WRITE_BACK:
DMEMIT("%s",
_raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
break;
default:
DMEMIT("invalid");
break;
}
}
DMEMIT(";");
break;
} }
} }
......
...@@ -1435,6 +1435,23 @@ static void mirror_status(struct dm_target *ti, status_type_t type, ...@@ -1435,6 +1435,23 @@ static void mirror_status(struct dm_target *ti, status_type_t type,
} }
break; break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",nr_mirrors=%d", ms->nr_mirrors);
for (m = 0; m < ms->nr_mirrors; m++) {
DMEMIT(",mirror_device_%d=%s", m, ms->mirror[m].dev->name);
DMEMIT(",mirror_device_%d_status=%c",
m, device_status_char(&(ms->mirror[m])));
}
DMEMIT(",handle_errors=%c", errors_handled(ms) ? 'y' : 'n');
DMEMIT(",keep_log=%c", keep_log(ms) ? 'y' : 'n');
DMEMIT(",log_type_status=");
sz += log->type->status(log, type, result+sz, maxlen-sz);
DMEMIT(";");
break;
} }
} }
......
...@@ -908,6 +908,10 @@ static unsigned persistent_status(struct dm_exception_store *store, ...@@ -908,6 +908,10 @@ static unsigned persistent_status(struct dm_exception_store *store,
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT(" %s %llu", store->userspace_supports_overflow ? "PO" : "P", DMEMIT(" %s %llu", store->userspace_supports_overflow ? "PO" : "P",
(unsigned long long)store->chunk_size); (unsigned long long)store->chunk_size);
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return sz; return sz;
......
...@@ -95,6 +95,10 @@ static unsigned transient_status(struct dm_exception_store *store, ...@@ -95,6 +95,10 @@ static unsigned transient_status(struct dm_exception_store *store,
break; break;
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT(" N %llu", (unsigned long long)store->chunk_size); DMEMIT(" N %llu", (unsigned long long)store->chunk_size);
break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return sz; return sz;
......
...@@ -2390,6 +2390,16 @@ static void snapshot_status(struct dm_target *ti, status_type_t type, ...@@ -2390,6 +2390,16 @@ static void snapshot_status(struct dm_target *ti, status_type_t type,
DMEMIT(" discard_passdown_origin"); DMEMIT(" discard_passdown_origin");
} }
break; break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",snap_origin_name=%s", snap->origin->name);
DMEMIT(",snap_cow_name=%s", snap->cow->name);
DMEMIT(",snap_valid=%c", snap->valid ? 'y' : 'n');
DMEMIT(",snap_merge_failed=%c", snap->merge_failed ? 'y' : 'n');
DMEMIT(",snapshot_overflowed=%c", snap->snapshot_overflowed ? 'y' : 'n');
DMEMIT(";");
break;
} }
} }
...@@ -2734,6 +2744,9 @@ static void origin_status(struct dm_target *ti, status_type_t type, ...@@ -2734,6 +2744,9 @@ static void origin_status(struct dm_target *ti, status_type_t type,
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
snprintf(result, maxlen, "%s", o->dev->name); snprintf(result, maxlen, "%s", o->dev->name);
break; break;
case STATUSTYPE_IMA:
result[0] = '\0';
break;
} }
} }
......
...@@ -428,6 +428,21 @@ static void stripe_status(struct dm_target *ti, status_type_t type, ...@@ -428,6 +428,21 @@ static void stripe_status(struct dm_target *ti, status_type_t type,
DMEMIT(" %s %llu", sc->stripe[i].dev->name, DMEMIT(" %s %llu", sc->stripe[i].dev->name,
(unsigned long long)sc->stripe[i].physical_start); (unsigned long long)sc->stripe[i].physical_start);
break; break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",stripes=%d,chunk_size=%llu", sc->stripes,
(unsigned long long)sc->chunk_size);
for (i = 0; i < sc->stripes; i++) {
DMEMIT(",stripe_%d_device_name=%s", i, sc->stripe[i].dev->name);
DMEMIT(",stripe_%d_physical_start=%llu", i,
(unsigned long long)sc->stripe[i].physical_start);
DMEMIT(",stripe_%d_status=%c", i,
atomic_read(&(sc->stripe[i].error_count)) ? 'D' : 'A');
}
DMEMIT(";");
break;
} }
} }
......
...@@ -504,6 +504,10 @@ static void switch_status(struct dm_target *ti, status_type_t type, ...@@ -504,6 +504,10 @@ static void switch_status(struct dm_target *ti, status_type_t type,
DMEMIT(" %s %llu", sctx->path_list[path_nr].dmdev->name, DMEMIT(" %s %llu", sctx->path_list[path_nr].dmdev->name,
(unsigned long long)sctx->path_list[path_nr].start); (unsigned long long)sctx->path_list[path_nr].start);
break; break;
case STATUSTYPE_IMA:
result[0] = '\0';
break;
} }
} }
......
...@@ -4012,6 +4012,10 @@ static void pool_status(struct dm_target *ti, status_type_t type, ...@@ -4012,6 +4012,10 @@ static void pool_status(struct dm_target *ti, status_type_t type,
(unsigned long long)pt->low_water_blocks); (unsigned long long)pt->low_water_blocks);
emit_flags(&pt->requested_pf, result, sz, maxlen); emit_flags(&pt->requested_pf, result, sz, maxlen);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return; return;
...@@ -4423,6 +4427,10 @@ static void thin_status(struct dm_target *ti, status_type_t type, ...@@ -4423,6 +4427,10 @@ static void thin_status(struct dm_target *ti, status_type_t type,
if (tc->origin_dev) if (tc->origin_dev)
DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -156,6 +156,10 @@ static void unstripe_status(struct dm_target *ti, status_type_t type, ...@@ -156,6 +156,10 @@ static void unstripe_status(struct dm_target *ti, status_type_t type,
uc->stripes, (unsigned long long)uc->chunk_size, uc->unstripe, uc->stripes, (unsigned long long)uc->chunk_size, uc->unstripe,
uc->dev->name, (unsigned long long)uc->physical_start); uc->dev->name, (unsigned long long)uc->physical_start);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
......
...@@ -772,6 +772,49 @@ static void verity_status(struct dm_target *ti, status_type_t type, ...@@ -772,6 +772,49 @@ static void verity_status(struct dm_target *ti, status_type_t type,
DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
" %s", v->signature_key_desc); " %s", v->signature_key_desc);
break; break;
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
DMEMIT(",verity_version=%u", v->version);
DMEMIT(",data_device_name=%s", v->data_dev->name);
DMEMIT(",hash_device_name=%s", v->hash_dev->name);
DMEMIT(",verity_algorithm=%s", v->alg_name);
DMEMIT(",root_digest=");
for (x = 0; x < v->digest_size; x++)
DMEMIT("%02x", v->root_digest[x]);
DMEMIT(",salt=");
if (!v->salt_size)
DMEMIT("-");
else
for (x = 0; x < v->salt_size; x++)
DMEMIT("%02x", v->salt[x]);
DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
if (v->signature_key_desc)
DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
if (v->mode != DM_VERITY_MODE_EIO) {
DMEMIT(",verity_mode=");
switch (v->mode) {
case DM_VERITY_MODE_LOGGING:
DMEMIT(DM_VERITY_OPT_LOGGING);
break;
case DM_VERITY_MODE_RESTART:
DMEMIT(DM_VERITY_OPT_RESTART);
break;
case DM_VERITY_MODE_PANIC:
DMEMIT(DM_VERITY_OPT_PANIC);
break;
default:
DMEMIT("invalid");
}
}
DMEMIT(";");
break;
} }
} }
......
...@@ -206,6 +206,19 @@ struct dm_writecache { ...@@ -206,6 +206,19 @@ struct dm_writecache {
struct bio_set bio_set; struct bio_set bio_set;
mempool_t copy_pool; mempool_t copy_pool;
struct {
unsigned long long reads;
unsigned long long read_hits;
unsigned long long writes;
unsigned long long write_hits_uncommitted;
unsigned long long write_hits_committed;
unsigned long long writes_around;
unsigned long long writes_allocate;
unsigned long long writes_blocked_on_freelist;
unsigned long long flushes;
unsigned long long discards;
} stats;
}; };
#define WB_LIST_INLINE 16 #define WB_LIST_INLINE 16
...@@ -1157,6 +1170,18 @@ static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache ...@@ -1157,6 +1170,18 @@ static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache
return 0; return 0;
} }
static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
{
if (argc != 1)
return -EINVAL;
wc_lock(wc);
memset(&wc->stats, 0, sizeof wc->stats);
wc_unlock(wc);
return 0;
}
static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
char *result, unsigned maxlen) char *result, unsigned maxlen)
{ {
...@@ -1169,6 +1194,8 @@ static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, ...@@ -1169,6 +1194,8 @@ static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
r = process_flush_on_suspend_mesg(argc, argv, wc); r = process_flush_on_suspend_mesg(argc, argv, wc);
else if (!strcasecmp(argv[0], "cleaner")) else if (!strcasecmp(argv[0], "cleaner"))
r = process_cleaner_mesg(argc, argv, wc); r = process_cleaner_mesg(argc, argv, wc);
else if (!strcasecmp(argv[0], "clear_stats"))
r = process_clear_stats_mesg(argc, argv, wc);
else else
DMERR("unrecognised message received: %s", argv[0]); DMERR("unrecognised message received: %s", argv[0]);
...@@ -1293,129 +1320,60 @@ static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) ...@@ -1293,129 +1320,60 @@ static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
bio_list_add(&wc->flush_list, bio); bio_list_add(&wc->flush_list, bio);
} }
static int writecache_map(struct dm_target *ti, struct bio *bio) enum wc_map_op {
{ WC_MAP_SUBMIT,
struct wc_entry *e; WC_MAP_REMAP,
struct dm_writecache *wc = ti->private; WC_MAP_REMAP_ORIGIN,
WC_MAP_RETURN,
bio->bi_private = NULL; WC_MAP_ERROR,
};
wc_lock(wc);
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { static enum wc_map_op writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
if (writecache_has_error(wc)) struct wc_entry *e)
goto unlock_error; {
if (WC_MODE_PMEM(wc)) { if (e) {
writecache_flush(wc); sector_t next_boundary =
if (writecache_has_error(wc)) read_original_sector(wc, e) - bio->bi_iter.bi_sector;
goto unlock_error; if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
if (unlikely(wc->cleaner) || unlikely(wc->metadata_only)) dm_accept_partial_bio(bio, next_boundary);
goto unlock_remap_origin;
goto unlock_submit;
} else {
if (dm_bio_get_target_bio_nr(bio))
goto unlock_remap_origin;
writecache_offload_bio(wc, bio);
goto unlock_return;
}
} }
bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); return WC_MAP_REMAP_ORIGIN;
}
if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
(wc->block_size / 512 - 1)) != 0)) {
DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
(unsigned long long)bio->bi_iter.bi_sector,
bio->bi_iter.bi_size, wc->block_size);
goto unlock_error;
}
if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
if (writecache_has_error(wc)) {
goto unlock_error; enum wc_map_op map_op;
if (WC_MODE_PMEM(wc)) { struct wc_entry *e;
writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
goto unlock_remap_origin;
} else {
writecache_offload_bio(wc, bio);
goto unlock_return;
}
}
if (bio_data_dir(bio) == READ) {
read_next_block: read_next_block:
wc->stats.reads++;
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
wc->stats.read_hits++;
if (WC_MODE_PMEM(wc)) { if (WC_MODE_PMEM(wc)) {
bio_copy_block(wc, bio, memory_data(wc, e)); bio_copy_block(wc, bio, memory_data(wc, e));
if (bio->bi_iter.bi_size) if (bio->bi_iter.bi_size)
goto read_next_block; goto read_next_block;
goto unlock_submit; map_op = WC_MAP_SUBMIT;
} else { } else {
dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
bio_set_dev(bio, wc->ssd_dev->bdev); bio_set_dev(bio, wc->ssd_dev->bdev);
bio->bi_iter.bi_sector = cache_sector(wc, e); bio->bi_iter.bi_sector = cache_sector(wc, e);
if (!writecache_entry_is_committed(wc, e)) if (!writecache_entry_is_committed(wc, e))
writecache_wait_for_ios(wc, WRITE); writecache_wait_for_ios(wc, WRITE);
goto unlock_remap; map_op = WC_MAP_REMAP;
} }
} else { } else {
if (e) { map_op = writecache_map_remap_origin(wc, bio, e);
sector_t next_boundary =
read_original_sector(wc, e) - bio->bi_iter.bi_sector;
if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
dm_accept_partial_bio(bio, next_boundary);
}
}
goto unlock_remap_origin;
} }
} else {
do { return map_op;
bool found_entry = false; }
bool search_used = false;
if (writecache_has_error(wc)) static enum wc_map_op writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
goto unlock_error; struct wc_entry *e, bool search_used)
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); {
if (e) {
if (!writecache_entry_is_committed(wc, e)) {
search_used = true;
goto bio_copy;
}
if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
wc->overwrote_committed = true;
search_used = true;
goto bio_copy;
}
found_entry = true;
} else {
if (unlikely(wc->cleaner) ||
(wc->metadata_only && !(bio->bi_opf & REQ_META)))
goto direct_write;
}
e = writecache_pop_from_freelist(wc, (sector_t)-1);
if (unlikely(!e)) {
if (!WC_MODE_PMEM(wc) && !found_entry) {
direct_write:
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
if (e) {
sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
BUG_ON(!next_boundary);
if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
dm_accept_partial_bio(bio, next_boundary);
}
}
goto unlock_remap_origin;
}
writecache_wait_on_freelist(wc);
continue;
}
write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
writecache_insert_entry(wc, e);
wc->uncommitted_blocks++;
bio_copy:
if (WC_MODE_PMEM(wc)) {
bio_copy_block(wc, bio, memory_data(wc, e));
} else {
unsigned bio_size = wc->block_size; unsigned bio_size = wc->block_size;
sector_t start_cache_sec = cache_sector(wc, e); sector_t start_cache_sec = cache_sector(wc, e);
sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT); sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
...@@ -1460,19 +1418,145 @@ static int writecache_map(struct dm_target *ti, struct bio *bio) ...@@ -1460,19 +1418,145 @@ static int writecache_map(struct dm_target *ti, struct bio *bio)
} else { } else {
writecache_schedule_autocommit(wc); writecache_schedule_autocommit(wc);
} }
goto unlock_remap;
return WC_MAP_REMAP;
}
static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
{
struct wc_entry *e;
do {
bool found_entry = false;
bool search_used = false;
wc->stats.writes++;
if (writecache_has_error(wc))
return WC_MAP_ERROR;
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
if (e) {
if (!writecache_entry_is_committed(wc, e)) {
wc->stats.write_hits_uncommitted++;
search_used = true;
goto bio_copy;
} }
wc->stats.write_hits_committed++;
if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
wc->overwrote_committed = true;
search_used = true;
goto bio_copy;
}
found_entry = true;
} else {
if (unlikely(wc->cleaner) ||
(wc->metadata_only && !(bio->bi_opf & REQ_META)))
goto direct_write;
}
e = writecache_pop_from_freelist(wc, (sector_t)-1);
if (unlikely(!e)) {
if (!WC_MODE_PMEM(wc) && !found_entry) {
direct_write:
wc->stats.writes_around++;
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
return writecache_map_remap_origin(wc, bio, e);
}
wc->stats.writes_blocked_on_freelist++;
writecache_wait_on_freelist(wc);
continue;
}
write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
writecache_insert_entry(wc, e);
wc->uncommitted_blocks++;
wc->stats.writes_allocate++;
bio_copy:
if (WC_MODE_PMEM(wc))
bio_copy_block(wc, bio, memory_data(wc, e));
else
return writecache_bio_copy_ssd(wc, bio, e, search_used);
} while (bio->bi_iter.bi_size); } while (bio->bi_iter.bi_size);
if (unlikely(bio->bi_opf & REQ_FUA || if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
wc->uncommitted_blocks >= wc->autocommit_blocks))
writecache_flush(wc); writecache_flush(wc);
else else
writecache_schedule_autocommit(wc); writecache_schedule_autocommit(wc);
goto unlock_submit;
return WC_MAP_SUBMIT;
}
static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
{
if (writecache_has_error(wc))
return WC_MAP_ERROR;
if (WC_MODE_PMEM(wc)) {
wc->stats.flushes++;
writecache_flush(wc);
if (writecache_has_error(wc))
return WC_MAP_ERROR;
else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
return WC_MAP_REMAP_ORIGIN;
return WC_MAP_SUBMIT;
} }
/* SSD: */
if (dm_bio_get_target_bio_nr(bio))
return WC_MAP_REMAP_ORIGIN;
wc->stats.flushes++;
writecache_offload_bio(wc, bio);
return WC_MAP_RETURN;
}
unlock_remap_origin: static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
{
wc->stats.discards++;
if (writecache_has_error(wc))
return WC_MAP_ERROR;
if (WC_MODE_PMEM(wc)) {
writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
return WC_MAP_REMAP_ORIGIN;
}
/* SSD: */
writecache_offload_bio(wc, bio);
return WC_MAP_RETURN;
}
static int writecache_map(struct dm_target *ti, struct bio *bio)
{
struct dm_writecache *wc = ti->private;
enum wc_map_op map_op;
bio->bi_private = NULL;
wc_lock(wc);
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
map_op = writecache_map_flush(wc, bio);
goto done;
}
bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
(wc->block_size / 512 - 1)) != 0)) {
DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
(unsigned long long)bio->bi_iter.bi_sector,
bio->bi_iter.bi_size, wc->block_size);
map_op = WC_MAP_ERROR;
goto done;
}
if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
map_op = writecache_map_discard(wc, bio);
goto done;
}
if (bio_data_dir(bio) == READ)
map_op = writecache_map_read(wc, bio);
else
map_op = writecache_map_write(wc, bio);
done:
switch (map_op) {
case WC_MAP_REMAP_ORIGIN:
if (likely(wc->pause != 0)) { if (likely(wc->pause != 0)) {
if (bio_op(bio) == REQ_OP_WRITE) { if (bio_op(bio) == REQ_OP_WRITE) {
dm_iot_io_begin(&wc->iot, 1); dm_iot_io_begin(&wc->iot, 1);
...@@ -1483,26 +1567,31 @@ static int writecache_map(struct dm_target *ti, struct bio *bio) ...@@ -1483,26 +1567,31 @@ static int writecache_map(struct dm_target *ti, struct bio *bio)
wc_unlock(wc); wc_unlock(wc);
return DM_MAPIO_REMAPPED; return DM_MAPIO_REMAPPED;
unlock_remap: case WC_MAP_REMAP:
/* make sure that writecache_end_io decrements bio_in_progress: */ /* make sure that writecache_end_io decrements bio_in_progress: */
bio->bi_private = (void *)1; bio->bi_private = (void *)1;
atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
wc_unlock(wc); wc_unlock(wc);
return DM_MAPIO_REMAPPED; return DM_MAPIO_REMAPPED;
unlock_submit: case WC_MAP_SUBMIT:
wc_unlock(wc); wc_unlock(wc);
bio_endio(bio); bio_endio(bio);
return DM_MAPIO_SUBMITTED; return DM_MAPIO_SUBMITTED;
unlock_return: case WC_MAP_RETURN:
wc_unlock(wc); wc_unlock(wc);
return DM_MAPIO_SUBMITTED; return DM_MAPIO_SUBMITTED;
unlock_error: case WC_MAP_ERROR:
wc_unlock(wc); wc_unlock(wc);
bio_io_error(bio); bio_io_error(bio);
return DM_MAPIO_SUBMITTED; return DM_MAPIO_SUBMITTED;
default:
BUG();
return -1;
}
} }
static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
...@@ -2568,9 +2657,20 @@ static void writecache_status(struct dm_target *ti, status_type_t type, ...@@ -2568,9 +2657,20 @@ static void writecache_status(struct dm_target *ti, status_type_t type,
switch (type) { switch (type) {
case STATUSTYPE_INFO: case STATUSTYPE_INFO:
DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
writecache_has_error(wc),
(unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
(unsigned long long)wc->writeback_size); (unsigned long long)wc->writeback_size,
wc->stats.reads,
wc->stats.read_hits,
wc->stats.writes,
wc->stats.write_hits_uncommitted,
wc->stats.write_hits_committed,
wc->stats.writes_around,
wc->stats.writes_allocate,
wc->stats.writes_blocked_on_freelist,
wc->stats.flushes,
wc->stats.discards);
break; break;
case STATUSTYPE_TABLE: case STATUSTYPE_TABLE:
DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
...@@ -2623,12 +2723,15 @@ static void writecache_status(struct dm_target *ti, status_type_t type, ...@@ -2623,12 +2723,15 @@ static void writecache_status(struct dm_target *ti, status_type_t type,
if (wc->pause_set) if (wc->pause_set)
DMEMIT(" pause_writeback %u", wc->pause_value); DMEMIT(" pause_writeback %u", wc->pause_value);
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
} }
static struct target_type writecache_target = { static struct target_type writecache_target = {
.name = "writecache", .name = "writecache",
.version = {1, 5, 0}, .version = {1, 6, 0},
.module = THIS_MODULE, .module = THIS_MODULE,
.ctr = writecache_ctr, .ctr = writecache_ctr,
.dtr = writecache_dtr, .dtr = writecache_dtr,
......
...@@ -1119,6 +1119,9 @@ static void dmz_status(struct dm_target *ti, status_type_t type, ...@@ -1119,6 +1119,9 @@ static void dmz_status(struct dm_target *ti, status_type_t type,
DMEMIT(" %s", buf); DMEMIT(" %s", buf);
} }
break; break;
case STATUSTYPE_IMA:
*result = '\0';
break;
} }
return; return;
} }
......
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include "dm-core.h" #include "dm-core.h"
#include "dm-rq.h" #include "dm-rq.h"
#include "dm-uevent.h" #include "dm-uevent.h"
#include "dm-ima.h"
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
...@@ -261,9 +262,13 @@ static void (*_exits[])(void) = { ...@@ -261,9 +262,13 @@ static void (*_exits[])(void) = {
static int __init dm_init(void) static int __init dm_init(void)
{ {
const int count = ARRAY_SIZE(_inits); const int count = ARRAY_SIZE(_inits);
int r, i; int r, i;
#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
" Duplicate IMA measurements will not be recorded in the IMA log.");
#endif
for (i = 0; i < count; i++) { for (i = 0; i < count; i++) {
r = _inits[i](); r = _inits[i]();
if (r) if (r)
...@@ -271,8 +276,7 @@ static int __init dm_init(void) ...@@ -271,8 +276,7 @@ static int __init dm_init(void)
} }
return 0; return 0;
bad:
bad:
while (i--) while (i--)
_exits[i](); _exits[i]();
...@@ -1997,6 +2001,8 @@ int dm_create(int minor, struct mapped_device **result) ...@@ -1997,6 +2001,8 @@ int dm_create(int minor, struct mapped_device **result)
if (!md) if (!md)
return -ENXIO; return -ENXIO;
dm_ima_reset_data(md);
*result = md; *result = md;
return 0; return 0;
} }
......
...@@ -31,7 +31,7 @@ enum dm_queue_mode { ...@@ -31,7 +31,7 @@ enum dm_queue_mode {
DM_TYPE_DAX_BIO_BASED = 3, DM_TYPE_DAX_BIO_BASED = 3,
}; };
typedef enum { STATUSTYPE_INFO, STATUSTYPE_TABLE } status_type_t; typedef enum { STATUSTYPE_INFO, STATUSTYPE_TABLE, STATUSTYPE_IMA } status_type_t;
union map_info { union map_info {
void *ptr; void *ptr;
...@@ -602,6 +602,10 @@ void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm); ...@@ -602,6 +602,10 @@ void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm);
#define DMEMIT(x...) sz += ((sz >= maxlen) ? \ #define DMEMIT(x...) sz += ((sz >= maxlen) ? \
0 : scnprintf(result + sz, maxlen - sz, x)) 0 : scnprintf(result + sz, maxlen - sz, x))
#define DMEMIT_TARGET_NAME_VERSION(y) \
DMEMIT("target_name=%s,target_version=%u.%u.%u", \
(y)->name, (y)->version[0], (y)->version[1], (y)->version[2])
/* /*
* Definitions of return values from target end_io function. * Definitions of return values from target end_io function.
*/ */
......
...@@ -376,4 +376,10 @@ enum { ...@@ -376,4 +376,10 @@ enum {
*/ */
#define DM_INTERNAL_SUSPEND_FLAG (1 << 18) /* Out */ #define DM_INTERNAL_SUSPEND_FLAG (1 << 18) /* Out */
/*
* If set, returns in the in buffer passed by UM, the raw table information
* that would be measured by IMA subsystem on device state change.
*/
#define DM_IMA_MEASUREMENT_FLAG (1 << 19) /* In */
#endif /* _LINUX_DM_IOCTL_H */ #endif /* _LINUX_DM_IOCTL_H */
...@@ -985,6 +985,7 @@ void ima_measure_critical_data(const char *event_label, ...@@ -985,6 +985,7 @@ void ima_measure_critical_data(const char *event_label,
CRITICAL_DATA, 0, event_label, CRITICAL_DATA, 0, event_label,
hash); hash);
} }
EXPORT_SYMBOL_GPL(ima_measure_critical_data);
static int __init init_ima(void) static int __init init_ima(void)
{ {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment