Commit f0d438e4 authored by Radim Krčmář's avatar Radim Krčmář

Merge tag 'kvm-arm-for-v4.15' of...

Merge tag 'kvm-arm-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next

KVM/ARM Changes for v4.15

Changes include:
 - Optimized arch timer handling for KVM/ARM
 - Improvements to the VGIC ITS code and introduction of an ITS reset
   ioctl
 - Unification of the 32-bit fault injection logic
 - More exact external abort matching logic
parents 6d6ab940 a2b83133
......@@ -33,6 +33,10 @@ Groups:
request the initialization of the ITS, no additional parameter in
kvm_device_attr.addr.
KVM_DEV_ARM_ITS_CTRL_RESET
reset the ITS, no additional parameter in kvm_device_attr.addr.
See "ITS Reset State" section.
KVM_DEV_ARM_ITS_SAVE_TABLES
save the ITS table data into guest RAM, at the location provisioned
by the guest in corresponding registers/table entries.
......@@ -157,3 +161,19 @@ Then vcpus can be started.
- pINTID is the physical LPI ID; if zero, it means the entry is not valid
and other fields are not meaningful.
- ICID is the collection ID
ITS Reset State:
----------------
RESET returns the ITS to the same state that it was when first created and
initialized. When the RESET command returns, the following things are
guaranteed:
- The ITS is not enabled and quiescent
GITS_CTLR.Enabled = 0 .Quiescent=1
- There is no internally cached state
- No collection or device table are used
GITS_BASER<n>.Valid = 0
- GITS_CBASER = 0, GITS_CREADR = 0, GITS_CWRITER = 0
- The ABI version is unchanged and remains the one set when the ITS
device was first created.
......@@ -68,6 +68,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
extern void __kvm_timer_set_cntvoff(u32 cntvoff_low, u32 cntvoff_high);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern void __init_stage2_translation(void);
......
......@@ -25,7 +25,22 @@
#include <asm/kvm_arm.h>
#include <asm/cputype.h>
/* arm64 compatibility macros */
#define COMPAT_PSR_MODE_ABT ABT_MODE
#define COMPAT_PSR_MODE_UND UND_MODE
#define COMPAT_PSR_T_BIT PSR_T_BIT
#define COMPAT_PSR_I_BIT PSR_I_BIT
#define COMPAT_PSR_A_BIT PSR_A_BIT
#define COMPAT_PSR_E_BIT PSR_E_BIT
#define COMPAT_PSR_IT_MASK PSR_IT_MASK
unsigned long *vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num);
static inline unsigned long *vcpu_reg32(struct kvm_vcpu *vcpu, u8 reg_num)
{
return vcpu_reg(vcpu, reg_num);
}
unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu);
static inline unsigned long vcpu_get_reg(struct kvm_vcpu *vcpu,
......@@ -42,10 +57,25 @@ static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
bool kvm_condition_valid32(const struct kvm_vcpu *vcpu);
void kvm_skip_instr32(struct kvm_vcpu *vcpu, bool is_wide_instr);
void kvm_inject_undefined(struct kvm_vcpu *vcpu);
void kvm_inject_undef32(struct kvm_vcpu *vcpu);
void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_pabt32(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_vabt(struct kvm_vcpu *vcpu);
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
static inline void kvm_inject_undefined(struct kvm_vcpu *vcpu)
{
kvm_inject_undef32(vcpu);
}
static inline void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
kvm_inject_dabt32(vcpu, addr);
}
static inline void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
kvm_inject_pabt32(vcpu, addr);
}
static inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu)
{
......@@ -203,7 +233,7 @@ static inline u8 kvm_vcpu_trap_get_fault_type(struct kvm_vcpu *vcpu)
static inline bool kvm_vcpu_dabt_isextabt(struct kvm_vcpu *vcpu)
{
switch (kvm_vcpu_trap_get_fault_type(vcpu)) {
switch (kvm_vcpu_trap_get_fault(vcpu)) {
case FSC_SEA:
case FSC_SEA_TTW0:
case FSC_SEA_TTW1:
......
......@@ -98,8 +98,8 @@
#define cntvoff_el2 CNTVOFF
#define cnthctl_el2 CNTHCTL
void __timer_save_state(struct kvm_vcpu *vcpu);
void __timer_restore_state(struct kvm_vcpu *vcpu);
void __timer_enable_traps(struct kvm_vcpu *vcpu);
void __timer_disable_traps(struct kvm_vcpu *vcpu);
void __vgic_v2_save_state(struct kvm_vcpu *vcpu);
void __vgic_v2_restore_state(struct kvm_vcpu *vcpu);
......
......@@ -151,6 +151,12 @@ struct kvm_arch_memory_slot {
(__ARM_CP15_REG(op1, 0, crm, 0) | KVM_REG_SIZE_U64)
#define ARM_CP15_REG64(...) __ARM_CP15_REG64(__VA_ARGS__)
/* PL1 Physical Timer Registers */
#define KVM_REG_ARM_PTIMER_CTL ARM_CP15_REG32(0, 14, 2, 1)
#define KVM_REG_ARM_PTIMER_CNT ARM_CP15_REG64(0, 14)
#define KVM_REG_ARM_PTIMER_CVAL ARM_CP15_REG64(2, 14)
/* Virtual Timer Registers */
#define KVM_REG_ARM_TIMER_CTL ARM_CP15_REG32(0, 14, 3, 1)
#define KVM_REG_ARM_TIMER_CNT ARM_CP15_REG64(1, 14)
#define KVM_REG_ARM_TIMER_CVAL ARM_CP15_REG64(3, 14)
......@@ -215,6 +221,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
#define KVM_DEV_ARM_ITS_CTRL_RESET 4
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24
......
......@@ -165,145 +165,6 @@ unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu)
* Inject exceptions into the guest
*/
static u32 exc_vector_base(struct kvm_vcpu *vcpu)
{
u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
u32 vbar = vcpu_cp15(vcpu, c12_VBAR);
if (sctlr & SCTLR_V)
return 0xffff0000;
else /* always have security exceptions */
return vbar;
}
/*
* Switch to an exception mode, updating both CPSR and SPSR. Follow
* the logic described in AArch32.EnterMode() from the ARMv8 ARM.
*/
static void kvm_update_psr(struct kvm_vcpu *vcpu, unsigned long mode)
{
unsigned long cpsr = *vcpu_cpsr(vcpu);
u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
*vcpu_cpsr(vcpu) = (cpsr & ~MODE_MASK) | mode;
switch (mode) {
case FIQ_MODE:
*vcpu_cpsr(vcpu) |= PSR_F_BIT;
/* Fall through */
case ABT_MODE:
case IRQ_MODE:
*vcpu_cpsr(vcpu) |= PSR_A_BIT;
/* Fall through */
default:
*vcpu_cpsr(vcpu) |= PSR_I_BIT;
}
*vcpu_cpsr(vcpu) &= ~(PSR_IT_MASK | PSR_J_BIT | PSR_E_BIT | PSR_T_BIT);
if (sctlr & SCTLR_TE)
*vcpu_cpsr(vcpu) |= PSR_T_BIT;
if (sctlr & SCTLR_EE)
*vcpu_cpsr(vcpu) |= PSR_E_BIT;
/* Note: These now point to the mode banked copies */
*vcpu_spsr(vcpu) = cpsr;
}
/**
* kvm_inject_undefined - inject an undefined exception into the guest
* @vcpu: The VCPU to receive the undefined exception
*
* It is assumed that this code is called from the VCPU thread and that the
* VCPU therefore is not currently executing guest code.
*
* Modelled after TakeUndefInstrException() pseudocode.
*/
void kvm_inject_undefined(struct kvm_vcpu *vcpu)
{
unsigned long cpsr = *vcpu_cpsr(vcpu);
bool is_thumb = (cpsr & PSR_T_BIT);
u32 vect_offset = 4;
u32 return_offset = (is_thumb) ? 2 : 4;
kvm_update_psr(vcpu, UND_MODE);
*vcpu_reg(vcpu, 14) = *vcpu_pc(vcpu) - return_offset;
/* Branch to exception vector */
*vcpu_pc(vcpu) = exc_vector_base(vcpu) + vect_offset;
}
/*
* Modelled after TakeDataAbortException() and TakePrefetchAbortException
* pseudocode.
*/
static void inject_abt(struct kvm_vcpu *vcpu, bool is_pabt, unsigned long addr)
{
unsigned long cpsr = *vcpu_cpsr(vcpu);
bool is_thumb = (cpsr & PSR_T_BIT);
u32 vect_offset;
u32 return_offset = (is_thumb) ? 4 : 0;
bool is_lpae;
kvm_update_psr(vcpu, ABT_MODE);
*vcpu_reg(vcpu, 14) = *vcpu_pc(vcpu) + return_offset;
if (is_pabt)
vect_offset = 12;
else
vect_offset = 16;
/* Branch to exception vector */
*vcpu_pc(vcpu) = exc_vector_base(vcpu) + vect_offset;
if (is_pabt) {
/* Set IFAR and IFSR */
vcpu_cp15(vcpu, c6_IFAR) = addr;
is_lpae = (vcpu_cp15(vcpu, c2_TTBCR) >> 31);
/* Always give debug fault for now - should give guest a clue */
if (is_lpae)
vcpu_cp15(vcpu, c5_IFSR) = 1 << 9 | 0x22;
else
vcpu_cp15(vcpu, c5_IFSR) = 2;
} else { /* !iabt */
/* Set DFAR and DFSR */
vcpu_cp15(vcpu, c6_DFAR) = addr;
is_lpae = (vcpu_cp15(vcpu, c2_TTBCR) >> 31);
/* Always give debug fault for now - should give guest a clue */
if (is_lpae)
vcpu_cp15(vcpu, c5_DFSR) = 1 << 9 | 0x22;
else
vcpu_cp15(vcpu, c5_DFSR) = 2;
}
}
/**
* kvm_inject_dabt - inject a data abort into the guest
* @vcpu: The VCPU to receive the undefined exception
* @addr: The address to report in the DFAR
*
* It is assumed that this code is called from the VCPU thread and that the
* VCPU therefore is not currently executing guest code.
*/
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
inject_abt(vcpu, false, addr);
}
/**
* kvm_inject_pabt - inject a prefetch abort into the guest
* @vcpu: The VCPU to receive the undefined exception
* @addr: The address to report in the DFAR
*
* It is assumed that this code is called from the VCPU thread and that the
* VCPU therefore is not currently executing guest code.
*/
void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
inject_abt(vcpu, true, addr);
}
/**
* kvm_inject_vabt - inject an async abort / SError into the guest
* @vcpu: The VCPU to receive the exception
......
......@@ -174,7 +174,7 @@ int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
__activate_vm(vcpu);
__vgic_restore_state(vcpu);
__timer_restore_state(vcpu);
__timer_enable_traps(vcpu);
__sysreg_restore_state(guest_ctxt);
__banked_restore_state(guest_ctxt);
......@@ -191,7 +191,8 @@ int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
__banked_save_state(guest_ctxt);
__sysreg_save_state(guest_ctxt);
__timer_save_state(vcpu);
__timer_disable_traps(vcpu);
__vgic_save_state(vcpu);
__deactivate_traps(vcpu);
......@@ -237,7 +238,7 @@ void __hyp_text __noreturn __hyp_panic(int cause)
vcpu = (struct kvm_vcpu *)read_sysreg(HTPIDR);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
__timer_save_state(vcpu);
__timer_disable_traps(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__banked_restore_state(host_ctxt);
......
......@@ -52,6 +52,7 @@ struct arch_timer_erratum_workaround {
const char *desc;
u32 (*read_cntp_tval_el0)(void);
u32 (*read_cntv_tval_el0)(void);
u64 (*read_cntpct_el0)(void);
u64 (*read_cntvct_el0)(void);
int (*set_next_event_phys)(unsigned long, struct clock_event_device *);
int (*set_next_event_virt)(unsigned long, struct clock_event_device *);
......@@ -148,11 +149,8 @@ static inline void arch_timer_set_cntkctl(u32 cntkctl)
static inline u64 arch_counter_get_cntpct(void)
{
/*
* AArch64 kernel and user space mandate the use of CNTVCT.
*/
BUG();
return 0;
isb();
return arch_timer_reg_read_stable(cntpct_el0);
}
static inline u64 arch_counter_get_cntvct(void)
......
......@@ -55,6 +55,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
extern void __kvm_timer_set_cntvoff(u32 cntvoff_low, u32 cntvoff_high);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern u64 __vgic_v3_get_ich_vtr_el2(void);
......
......@@ -41,6 +41,9 @@ void kvm_inject_undefined(struct kvm_vcpu *vcpu);
void kvm_inject_vabt(struct kvm_vcpu *vcpu);
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_undef32(struct kvm_vcpu *vcpu);
void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_inject_pabt32(struct kvm_vcpu *vcpu, unsigned long addr);
static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu)
{
......@@ -237,7 +240,7 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
static inline bool kvm_vcpu_dabt_isextabt(const struct kvm_vcpu *vcpu)
{
switch (kvm_vcpu_trap_get_fault_type(vcpu)) {
switch (kvm_vcpu_trap_get_fault(vcpu)) {
case FSC_SEA:
case FSC_SEA_TTW0:
case FSC_SEA_TTW1:
......
......@@ -129,8 +129,8 @@ void __vgic_v3_save_state(struct kvm_vcpu *vcpu);
void __vgic_v3_restore_state(struct kvm_vcpu *vcpu);
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu);
void __timer_save_state(struct kvm_vcpu *vcpu);
void __timer_restore_state(struct kvm_vcpu *vcpu);
void __timer_enable_traps(struct kvm_vcpu *vcpu);
void __timer_disable_traps(struct kvm_vcpu *vcpu);
void __sysreg_save_host_state(struct kvm_cpu_context *ctxt);
void __sysreg_restore_host_state(struct kvm_cpu_context *ctxt);
......
......@@ -22,7 +22,7 @@
* Use the current timer as a cycle counter since this is what we use for
* the delay loop.
*/
#define get_cycles() arch_counter_get_cntvct()
#define get_cycles() arch_timer_read_counter()
#include <asm-generic/timex.h>
......
......@@ -195,6 +195,12 @@ struct kvm_arch_memory_slot {
#define ARM64_SYS_REG(...) (__ARM64_SYS_REG(__VA_ARGS__) | KVM_REG_SIZE_U64)
/* Physical Timer EL0 Registers */
#define KVM_REG_ARM_PTIMER_CTL ARM64_SYS_REG(3, 3, 14, 2, 1)
#define KVM_REG_ARM_PTIMER_CVAL ARM64_SYS_REG(3, 3, 14, 2, 2)
#define KVM_REG_ARM_PTIMER_CNT ARM64_SYS_REG(3, 3, 14, 0, 1)
/* EL0 Virtual Timer Registers */
#define KVM_REG_ARM_TIMER_CTL ARM64_SYS_REG(3, 3, 14, 3, 1)
#define KVM_REG_ARM_TIMER_CNT ARM64_SYS_REG(3, 3, 14, 3, 2)
#define KVM_REG_ARM_TIMER_CVAL ARM64_SYS_REG(3, 3, 14, 0, 2)
......@@ -227,6 +233,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_ITS_SAVE_TABLES 1
#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2
#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3
#define KVM_DEV_ARM_ITS_CTRL_RESET 4
/* Device Control API on vcpu fd */
#define KVM_ARM_VCPU_PMU_V3_CTRL 0
......
......@@ -298,7 +298,7 @@ int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
__activate_vm(vcpu);
__vgic_restore_state(vcpu);
__timer_restore_state(vcpu);
__timer_enable_traps(vcpu);
/*
* We must restore the 32-bit state before the sysregs, thanks
......@@ -368,7 +368,7 @@ int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
__sysreg_save_guest_state(guest_ctxt);
__sysreg32_save_state(vcpu);
__timer_save_state(vcpu);
__timer_disable_traps(vcpu);
__vgic_save_state(vcpu);
__deactivate_traps(vcpu);
......@@ -436,7 +436,7 @@ void __hyp_text __noreturn __hyp_panic(void)
vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
__timer_save_state(vcpu);
__timer_disable_traps(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_host_state(host_ctxt);
......
......@@ -33,74 +33,6 @@
#define LOWER_EL_AArch64_VECTOR 0x400
#define LOWER_EL_AArch32_VECTOR 0x600
static void prepare_fault32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset)
{
unsigned long cpsr;
unsigned long new_spsr_value = *vcpu_cpsr(vcpu);
bool is_thumb = (new_spsr_value & COMPAT_PSR_T_BIT);
u32 return_offset = (is_thumb) ? 4 : 0;
u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
cpsr = mode | COMPAT_PSR_I_BIT;
if (sctlr & (1 << 30))
cpsr |= COMPAT_PSR_T_BIT;
if (sctlr & (1 << 25))
cpsr |= COMPAT_PSR_E_BIT;
*vcpu_cpsr(vcpu) = cpsr;
/* Note: These now point to the banked copies */
*vcpu_spsr(vcpu) = new_spsr_value;
*vcpu_reg32(vcpu, 14) = *vcpu_pc(vcpu) + return_offset;
/* Branch to exception vector */
if (sctlr & (1 << 13))
vect_offset += 0xffff0000;
else /* always have security exceptions */
vect_offset += vcpu_cp15(vcpu, c12_VBAR);
*vcpu_pc(vcpu) = vect_offset;
}
static void inject_undef32(struct kvm_vcpu *vcpu)
{
prepare_fault32(vcpu, COMPAT_PSR_MODE_UND, 4);
}
/*
* Modelled after TakeDataAbortException() and TakePrefetchAbortException
* pseudocode.
*/
static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt,
unsigned long addr)
{
u32 vect_offset;
u32 *far, *fsr;
bool is_lpae;
if (is_pabt) {
vect_offset = 12;
far = &vcpu_cp15(vcpu, c6_IFAR);
fsr = &vcpu_cp15(vcpu, c5_IFSR);
} else { /* !iabt */
vect_offset = 16;
far = &vcpu_cp15(vcpu, c6_DFAR);
fsr = &vcpu_cp15(vcpu, c5_DFSR);
}
prepare_fault32(vcpu, COMPAT_PSR_MODE_ABT | COMPAT_PSR_A_BIT, vect_offset);
*far = addr;
/* Give the guest an IMPLEMENTATION DEFINED exception */
is_lpae = (vcpu_cp15(vcpu, c2_TTBCR) >> 31);
if (is_lpae)
*fsr = 1 << 9 | 0x34;
else
*fsr = 0x14;
}
enum exception_type {
except_type_sync = 0,
except_type_irq = 0x80,
......@@ -197,7 +129,7 @@ static void inject_undef64(struct kvm_vcpu *vcpu)
void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
if (!(vcpu->arch.hcr_el2 & HCR_RW))
inject_abt32(vcpu, false, addr);
kvm_inject_dabt32(vcpu, addr);
else
inject_abt64(vcpu, false, addr);
}
......@@ -213,7 +145,7 @@ void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
{
if (!(vcpu->arch.hcr_el2 & HCR_RW))
inject_abt32(vcpu, true, addr);
kvm_inject_pabt32(vcpu, addr);
else
inject_abt64(vcpu, true, addr);
}
......@@ -227,7 +159,7 @@ void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
void kvm_inject_undefined(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.hcr_el2 & HCR_RW))
inject_undef32(vcpu);
kvm_inject_undef32(vcpu);
else
inject_undef64(vcpu);
}
......
......@@ -841,13 +841,16 @@ static bool access_cntp_tval(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
u64 now = kvm_phys_timer_read();
u64 cval;
if (p->is_write)
ptimer->cnt_cval = p->regval + now;
else
p->regval = ptimer->cnt_cval - now;
if (p->is_write) {
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
p->regval + now);
} else {
cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
p->regval = cval - now;
}
return true;
}
......@@ -856,24 +859,10 @@ static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (p->is_write) {
/* ISTATUS bit is read-only */
ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
} else {
u64 now = kvm_phys_timer_read();
p->regval = ptimer->cnt_ctl;
/*
* Set ISTATUS bit if it's expired.
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
* regardless of ENABLE bit for our implementation convenience.
*/
if (ptimer->cnt_cval <= now)
p->regval |= ARCH_TIMER_CTRL_IT_STAT;
}
if (p->is_write)
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
else
p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
return true;
}
......@@ -882,12 +871,10 @@ static bool access_cntp_cval(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (p->is_write)
ptimer->cnt_cval = p->regval;
kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
else
p->regval = ptimer->cnt_cval;
p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
return true;
}
......
......@@ -158,6 +158,7 @@ u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
EXPORT_SYMBOL_GPL(arch_timer_read_counter);
static u64 arch_counter_read(struct clocksource *cs)
{
......@@ -217,6 +218,11 @@ static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
return __fsl_a008585_read_reg(cntv_tval_el0);
}
static u64 notrace fsl_a008585_read_cntpct_el0(void)
{
return __fsl_a008585_read_reg(cntpct_el0);
}
static u64 notrace fsl_a008585_read_cntvct_el0(void)
{
return __fsl_a008585_read_reg(cntvct_el0);
......@@ -258,6 +264,11 @@ static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
return __hisi_161010101_read_reg(cntv_tval_el0);
}
static u64 notrace hisi_161010101_read_cntpct_el0(void)
{
return __hisi_161010101_read_reg(cntpct_el0);
}
static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
return __hisi_161010101_read_reg(cntvct_el0);
......@@ -288,6 +299,15 @@ static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntpct_el0(void)
{
u64 old, new;
old = read_sysreg(cntpct_el0);
new = read_sysreg(cntpct_el0);
return (((old ^ new) >> 32) & 1) ? old : new;
}
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
u64 old, new;
......@@ -310,16 +330,19 @@ static void erratum_set_next_event_tval_generic(const int access, unsigned long
struct clock_event_device *clk)
{
unsigned long ctrl;
u64 cval = evt + arch_counter_get_cntvct();
u64 cval;
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
if (access == ARCH_TIMER_PHYS_ACCESS)
if (access == ARCH_TIMER_PHYS_ACCESS) {
cval = evt + arch_counter_get_cntpct();
write_sysreg(cval, cntp_cval_el0);
else
} else {
cval = evt + arch_counter_get_cntvct();
write_sysreg(cval, cntv_cval_el0);
}
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
......@@ -346,6 +369,7 @@ static const struct arch_timer_erratum_workaround ool_workarounds[] = {
.desc = "Freescale erratum a005858",
.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
......@@ -358,6 +382,7 @@ static const struct arch_timer_erratum_workaround ool_workarounds[] = {
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
......@@ -368,6 +393,7 @@ static const struct arch_timer_erratum_workaround ool_workarounds[] = {
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
......@@ -378,6 +404,7 @@ static const struct arch_timer_erratum_workaround ool_workarounds[] = {
.match_type = ate_match_local_cap_id,
.id = (void *)ARM64_WORKAROUND_858921,
.desc = "ARM erratum 858921",
.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
},
#endif
......@@ -890,7 +917,7 @@ static void __init arch_counter_register(unsigned type)
/* Register the CP15 based counter if we have one */
if (type & ARCH_TIMER_TYPE_CP15) {
if (IS_ENABLED(CONFIG_ARM64) ||
if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
arch_timer_read_counter = arch_counter_get_cntvct;
else
......
......@@ -1228,7 +1228,9 @@ static int __init gic_of_init(struct device_node *node, struct device_node *pare
goto out_unmap_rdist;
gic_populate_ppi_partitions(node);
gic_of_setup_kvm_info(node);
if (static_key_true(&supports_deactivate))
gic_of_setup_kvm_info(node);
return 0;
out_unmap_rdist:
......@@ -1517,7 +1519,9 @@ gic_acpi_init(struct acpi_subtable_header *header, const unsigned long end)
goto out_fwhandle_free;
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
gic_acpi_setup_kvm_info();
if (static_key_true(&supports_deactivate))
gic_acpi_setup_kvm_info();
return 0;
......
......@@ -1367,7 +1367,8 @@ static void __init gic_of_setup_kvm_info(struct device_node *node)
if (ret)
return;
gic_set_kvm_info(&gic_v2_kvm_info);
if (static_key_true(&supports_deactivate))
gic_set_kvm_info(&gic_v2_kvm_info);
}
int __init
......@@ -1599,7 +1600,8 @@ static int __init gic_v2_acpi_init(struct acpi_subtable_header *header,
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(NULL, gic_data[0].domain);
gic_acpi_setup_kvm_info();
if (static_key_true(&supports_deactivate))
gic_acpi_setup_kvm_info();
return 0;
}
......
......@@ -31,8 +31,15 @@ struct arch_timer_context {
/* Timer IRQ */
struct kvm_irq_level irq;
/* Active IRQ state caching */
bool active_cleared_last;
/*
* We have multiple paths which can save/restore the timer state
* onto the hardware, so we need some way of keeping track of
* where the latest state is.
*
* loaded == true: State is loaded on the hardware registers.
* loaded == false: State is stored in memory.
*/
bool loaded;
/* Virtual offset */
u64 cntvoff;
......@@ -43,13 +50,13 @@ struct arch_timer_cpu {
struct arch_timer_context ptimer;
/* Background timer used when the guest is not running */
struct hrtimer timer;
struct hrtimer bg_timer;
/* Work queued with the above timer expires */
struct work_struct expired;
/* Background timer active */
bool armed;
/* Physical timer emulation */
struct hrtimer phys_timer;
/* Is the timer enabled */
bool enabled;
......@@ -59,7 +66,6 @@ int kvm_timer_hyp_init(void);
int kvm_timer_enable(struct kvm_vcpu *vcpu);
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu);
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu);
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu);
void kvm_timer_update_run(struct kvm_vcpu *vcpu);
......@@ -72,16 +78,22 @@ int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu);
void kvm_timer_schedule(struct kvm_vcpu *vcpu);
void kvm_timer_unschedule(struct kvm_vcpu *vcpu);
u64 kvm_phys_timer_read(void);
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu);
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu);
void kvm_timer_init_vhe(void);
#define vcpu_vtimer(v) (&(v)->arch.timer_cpu.vtimer)
#define vcpu_ptimer(v) (&(v)->arch.timer_cpu.ptimer)
void enable_el1_phys_timer_access(void);
void disable_el1_phys_timer_access(void);
#endif
......@@ -25,11 +25,6 @@
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#ifndef CONFIG_ARM64
#define COMPAT_PSR_T_BIT PSR_T_BIT
#define COMPAT_PSR_IT_MASK PSR_IT_MASK
#endif
/*
* stolen from arch/arm/kernel/opcodes.c
*
......@@ -150,3 +145,95 @@ void __hyp_text kvm_skip_instr32(struct kvm_vcpu *vcpu, bool is_wide_instr)
*vcpu_pc(vcpu) += 4;
kvm_adjust_itstate(vcpu);
}
/*
* Table taken from ARMv8 ARM DDI0487B-B, table G1-10.
*/
static const u8 return_offsets[8][2] = {
[0] = { 0, 0 }, /* Reset, unused */
[1] = { 4, 2 }, /* Undefined */
[2] = { 0, 0 }, /* SVC, unused */
[3] = { 4, 4 }, /* Prefetch abort */
[4] = { 8, 8 }, /* Data abort */
[5] = { 0, 0 }, /* HVC, unused */
[6] = { 4, 4 }, /* IRQ, unused */
[7] = { 4, 4 }, /* FIQ, unused */
};
static void prepare_fault32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset)
{
unsigned long cpsr;
unsigned long new_spsr_value = *vcpu_cpsr(vcpu);
bool is_thumb = (new_spsr_value & COMPAT_PSR_T_BIT);
u32 return_offset = return_offsets[vect_offset >> 2][is_thumb];
u32 sctlr = vcpu_cp15(vcpu, c1_SCTLR);
cpsr = mode | COMPAT_PSR_I_BIT;
if (sctlr & (1 << 30))
cpsr |= COMPAT_PSR_T_BIT;
if (sctlr & (1 << 25))
cpsr |= COMPAT_PSR_E_BIT;
*vcpu_cpsr(vcpu) = cpsr;
/* Note: These now point to the banked copies */
*vcpu_spsr(vcpu) = new_spsr_value;
*vcpu_reg32(vcpu, 14) = *vcpu_pc(vcpu) + return_offset;
/* Branch to exception vector */
if (sctlr & (1 << 13))
vect_offset += 0xffff0000;
else /* always have security exceptions */
vect_offset += vcpu_cp15(vcpu, c12_VBAR);
*vcpu_pc(vcpu) = vect_offset;
}
void kvm_inject_undef32(struct kvm_vcpu *vcpu)
{
prepare_fault32(vcpu, COMPAT_PSR_MODE_UND, 4);
}
/*
* Modelled after TakeDataAbortException() and TakePrefetchAbortException
* pseudocode.
*/
static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt,
unsigned long addr)
{
u32 vect_offset;
u32 *far, *fsr;
bool is_lpae;
if (is_pabt) {
vect_offset = 12;
far = &vcpu_cp15(vcpu, c6_IFAR);
fsr = &vcpu_cp15(vcpu, c5_IFSR);
} else { /* !iabt */
vect_offset = 16;
far = &vcpu_cp15(vcpu, c6_DFAR);
fsr = &vcpu_cp15(vcpu, c5_DFSR);
}
prepare_fault32(vcpu, COMPAT_PSR_MODE_ABT | COMPAT_PSR_A_BIT, vect_offset);
*far = addr;
/* Give the guest an IMPLEMENTATION DEFINED exception */
is_lpae = (vcpu_cp15(vcpu, c2_TTBCR) >> 31);
if (is_lpae)
*fsr = 1 << 9 | 0x34;
else
*fsr = 0x14;
}
void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr)
{
inject_abt32(vcpu, false, addr);
}
void kvm_inject_pabt32(struct kvm_vcpu *vcpu, unsigned long addr)
{
inject_abt32(vcpu, true, addr);
}
......@@ -46,49 +46,68 @@ static const struct kvm_irq_level default_vtimer_irq = {
.level = 1,
};
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu_vtimer(vcpu)->active_cleared_last = false;
}
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx);
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
u64 kvm_phys_timer_read(void)
{
return timecounter->cc->read(timecounter->cc);
}
static bool timer_is_armed(struct arch_timer_cpu *timer)
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
{
return timer->armed;
hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
HRTIMER_MODE_ABS);
}
/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
{
timer->armed = true;
hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
HRTIMER_MODE_ABS);
hrtimer_cancel(hrt);
if (work)
cancel_work_sync(work);
}
static void timer_disarm(struct arch_timer_cpu *timer)
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
{
if (timer_is_armed(timer)) {
hrtimer_cancel(&timer->timer);
cancel_work_sync(&timer->expired);
timer->armed = false;
}
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* When using a userspace irqchip with the architected timers, we must
* prevent continuously exiting from the guest, and therefore mask the
* physical interrupt by disabling it on the host interrupt controller
* when the virtual level is high, such that the guest can make
* forward progress. Once we detect the output level being
* de-asserted, we unmask the interrupt again so that we exit from the
* guest when the timer fires.
*/
if (vtimer->irq.level)
disable_percpu_irq(host_vtimer_irq);
else
enable_percpu_irq(host_vtimer_irq, 0);
}
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
struct arch_timer_context *vtimer;
if (!vcpu) {
pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
return IRQ_NONE;
}
vtimer = vcpu_vtimer(vcpu);
if (!vtimer->irq.level) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
if (kvm_timer_irq_can_fire(vtimer))
kvm_timer_update_irq(vcpu, true, vtimer);
}
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_vtimer_update_mask_user(vcpu);
/*
* We disable the timer in the world switch and let it be
* handled by kvm_timer_sync_hwstate(). Getting a timer
* interrupt at this point is a sure sign of some major
* breakage.
*/
pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
return IRQ_HANDLED;
}
......@@ -158,13 +177,13 @@ static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
return min(min_virt, min_phys);
}
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_cpu *timer;
struct kvm_vcpu *vcpu;
u64 ns;
timer = container_of(hrt, struct arch_timer_cpu, timer);
timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
/*
......@@ -182,7 +201,33 @@ static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
return HRTIMER_NORESTART;
}
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_context *ptimer;
struct arch_timer_cpu *timer;
struct kvm_vcpu *vcpu;
u64 ns;
timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
ptimer = vcpu_ptimer(vcpu);
/*
* Check that the timer has really expired from the guest's
* PoV (NTP on the host may have forced it to expire
* early). If not ready, schedule for a later time.
*/
ns = kvm_timer_compute_delta(ptimer);
if (unlikely(ns)) {
hrtimer_forward_now(hrt, ns_to_ktime(ns));
return HRTIMER_RESTART;
}
kvm_timer_update_irq(vcpu, true, ptimer);
return HRTIMER_NORESTART;
}
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
{
u64 cval, now;
......@@ -195,6 +240,25 @@ bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
return cval <= now;
}
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (vtimer->irq.level || ptimer->irq.level)
return true;
/*
* When this is called from withing the wait loop of kvm_vcpu_block(),
* the software view of the timer state is up to date (timer->loaded
* is false), and so we can simply check if the timer should fire now.
*/
if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
return true;
return kvm_timer_should_fire(ptimer);
}
/*
* Reflect the timer output level into the kvm_run structure
*/
......@@ -218,7 +282,6 @@ static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
{
int ret;
timer_ctx->active_cleared_last = false;
timer_ctx->irq.level = new_level;
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
timer_ctx->irq.level);
......@@ -232,9 +295,29 @@ static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
}
}
/* Schedule the background timer for the emulated timer. */
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/*
* If the timer can fire now we have just raised the IRQ line and we
* don't need to have a soft timer scheduled for the future. If the
* timer cannot fire at all, then we also don't need a soft timer.
*/
if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
soft_timer_cancel(&timer->phys_timer, NULL);
return;
}
soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
}
/*
* Check if there was a change in the timer state (should we raise or lower
* the line level to the GIC).
* Check if there was a change in the timer state, so that we should either
* raise or lower the line level to the GIC or schedule a background timer to
* emulate the physical timer.
*/
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
{
......@@ -242,12 +325,6 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
/*
* If userspace modified the timer registers via SET_ONE_REG before
* the vgic was initialized, we mustn't set the vtimer->irq.level value
* because the guest would never see the interrupt. Instead wait
* until we call this function from kvm_timer_flush_hwstate.
*/
if (unlikely(!timer->enabled))
return;
......@@ -256,22 +333,32 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
phys_timer_emulate(vcpu);
}
/* Schedule the background timer for the emulated timer. */
static void kvm_timer_emulate(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer_ctx)
static void vtimer_save_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
unsigned long flags;
if (kvm_timer_should_fire(timer_ctx))
return;
local_irq_save(flags);
if (!kvm_timer_irq_can_fire(timer_ctx))
return;
if (!vtimer->loaded)
goto out;
/* The timer has not yet expired, schedule a background timer */
timer_arm(timer, kvm_timer_compute_delta(timer_ctx));
if (timer->enabled) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
}
/* Disable the virtual timer */
write_sysreg_el0(0, cntv_ctl);
vtimer->loaded = false;
out:
local_irq_restore(flags);
}
/*
......@@ -285,7 +372,7 @@ void kvm_timer_schedule(struct kvm_vcpu *vcpu)
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
BUG_ON(timer_is_armed(timer));
vtimer_save_state(vcpu);
/*
* No need to schedule a background timer if any guest timer has
......@@ -306,70 +393,97 @@ void kvm_timer_schedule(struct kvm_vcpu *vcpu)
* The guest timers have not yet expired, schedule a background timer.
* Set the earliest expiration time among the guest timers.
*/
timer_arm(timer, kvm_timer_earliest_exp(vcpu));
soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
}
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
unsigned long flags;
local_irq_save(flags);
if (vtimer->loaded)
goto out;
if (timer->enabled) {
write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
isb();
write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
}
vtimer->loaded = true;
out:
local_irq_restore(flags);
}
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
timer_disarm(timer);
vtimer_restore_state(vcpu);
soft_timer_cancel(&timer->bg_timer, &timer->expired);
}
static void set_cntvoff(u64 cntvoff)
{
u32 low = lower_32_bits(cntvoff);
u32 high = upper_32_bits(cntvoff);
/*
* Since kvm_call_hyp doesn't fully support the ARM PCS especially on
* 32-bit systems, but rather passes register by register shifted one
* place (we put the function address in r0/x0), we cannot simply pass
* a 64-bit value as an argument, but have to split the value in two
* 32-bit halves.
*/
kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}
static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu)
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
bool phys_active;
int ret;
/*
* If we enter the guest with the virtual input level to the VGIC
* asserted, then we have already told the VGIC what we need to, and
* we don't need to exit from the guest until the guest deactivates
* the already injected interrupt, so therefore we should set the
* hardware active state to prevent unnecessary exits from the guest.
*
* Also, if we enter the guest with the virtual timer interrupt active,
* then it must be active on the physical distributor, because we set
* the HW bit and the guest must be able to deactivate the virtual and
* physical interrupt at the same time.
*
* Conversely, if the virtual input level is deasserted and the virtual
* interrupt is not active, then always clear the hardware active state
* to ensure that hardware interrupts from the timer triggers a guest
* exit.
*/
phys_active = vtimer->irq.level ||
kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
/*
* We want to avoid hitting the (re)distributor as much as
* possible, as this is a potentially expensive MMIO access
* (not to mention locks in the irq layer), and a solution for
* this is to cache the "active" state in memory.
*
* Things to consider: we cannot cache an "active set" state,
* because the HW can change this behind our back (it becomes
* "clear" in the HW). We must then restrict the caching to
* the "clear" state.
*
* The cache is invalidated on:
* - vcpu put, indicating that the HW cannot be trusted to be
* in a sane state on the next vcpu load,
* - any change in the interrupt state
*
* Usage conditions:
* - cached value is "active clear"
* - value to be programmed is "active clear"
*/
if (vtimer->active_cleared_last && !phys_active)
return;
kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
ret = irq_set_irqchip_state(host_vtimer_irq,
IRQCHIP_STATE_ACTIVE,
phys_active);
WARN_ON(ret);
}
vtimer->active_cleared_last = !phys_active;
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
kvm_vtimer_update_mask_user(vcpu);
}
void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
if (unlikely(!timer->enabled))
return;
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_timer_vcpu_load_user(vcpu);
else
kvm_timer_vcpu_load_vgic(vcpu);
set_cntvoff(vtimer->cntvoff);
vtimer_restore_state(vcpu);
if (has_vhe())
disable_el1_phys_timer_access();
/* Set the background timer for the physical timer emulation. */
phys_timer_emulate(vcpu);
}
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
......@@ -389,48 +503,60 @@ bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
ptimer->irq.level != plevel;
}
static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu)
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
if (unlikely(!timer->enabled))
return;
if (has_vhe())
enable_el1_phys_timer_access();
vtimer_save_state(vcpu);
/*
* To prevent continuously exiting from the guest, we mask the
* physical interrupt such that the guest can make forward progress.
* Once we detect the output level being deasserted, we unmask the
* interrupt again so that we exit from the guest when the timer
* fires.
*/
if (vtimer->irq.level)
disable_percpu_irq(host_vtimer_irq);
else
enable_percpu_irq(host_vtimer_irq, 0);
* Cancel the physical timer emulation, because the only case where we
* need it after a vcpu_put is in the context of a sleeping VCPU, and
* in that case we already factor in the deadline for the physical
* timer when scheduling the bg_timer.
*
* In any case, we re-schedule the hrtimer for the physical timer when
* coming back to the VCPU thread in kvm_timer_vcpu_load().
*/
soft_timer_cancel(&timer->phys_timer, NULL);
/*
* The kernel may decide to run userspace after calling vcpu_put, so
* we reset cntvoff to 0 to ensure a consistent read between user
* accesses to the virtual counter and kernel access to the physical
* counter.
*/
set_cntvoff(0);
}
/**
* kvm_timer_flush_hwstate - prepare timers before running the vcpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the host,
* and inject an interrupt if that was the case, making sure the timer is
* masked or disabled on the host so that we keep executing. Also schedule a
* software timer for the physical timer if it is enabled.
*/
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
if (unlikely(!timer->enabled))
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
kvm_vtimer_update_mask_user(vcpu);
return;
}
kvm_timer_update_state(vcpu);
/* Set the background timer for the physical timer emulation. */
kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_timer_flush_hwstate_user(vcpu);
else
kvm_timer_flush_hwstate_vgic(vcpu);
/*
* If the guest disabled the timer without acking the interrupt, then
* we must make sure the physical and virtual active states are in
* sync by deactivating the physical interrupt, because otherwise we
* wouldn't see the next timer interrupt in the host.
*/
if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
int ret;
ret = irq_set_irqchip_state(host_vtimer_irq,
IRQCHIP_STATE_ACTIVE,
false);
WARN_ON(ret);
}
}
/**
......@@ -442,19 +568,21 @@ void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
*/
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
/*
* This is to cancel the background timer for the physical timer
* emulation if it is set.
*/
timer_disarm(timer);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* The guest could have modified the timer registers or the timer
* could have expired, update the timer state.
* If we entered the guest with the vtimer output asserted we have to
* check if the guest has modified the timer so that we should lower
* the line at this point.
*/
kvm_timer_update_state(vcpu);
if (vtimer->irq.level) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
if (!kvm_timer_should_fire(vtimer)) {
kvm_timer_update_irq(vcpu, false, vtimer);
unmask_vtimer_irq(vcpu);
}
}
}
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
......@@ -505,8 +633,11 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
vcpu_ptimer(vcpu)->cntvoff = 0;
INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->timer.function = kvm_timer_expire;
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->bg_timer.function = kvm_bg_timer_expire;
hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->phys_timer.function = kvm_phys_timer_expire;
vtimer->irq.irq = default_vtimer_irq.irq;
ptimer->irq.irq = default_ptimer_irq.irq;
......@@ -520,10 +651,11 @@ static void kvm_timer_init_interrupt(void *info)
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
vtimer->cnt_ctl = value;
vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
break;
case KVM_REG_ARM_TIMER_CNT:
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
......@@ -531,6 +663,13 @@ int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
case KVM_REG_ARM_TIMER_CVAL:
vtimer->cnt_cval = value;
break;
case KVM_REG_ARM_PTIMER_CTL:
ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
break;
case KVM_REG_ARM_PTIMER_CVAL:
ptimer->cnt_cval = value;
break;
default:
return -1;
}
......@@ -539,17 +678,38 @@ int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
return 0;
}
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
/*
* Set ISTATUS bit if it's expired.
* Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
* regardless of ENABLE bit for our implementation convenience.
*/
if (!kvm_timer_compute_delta(timer))
return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
else
return timer->cnt_ctl;
}
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
return vtimer->cnt_ctl;
return read_timer_ctl(vtimer);
case KVM_REG_ARM_TIMER_CNT:
return kvm_phys_timer_read() - vtimer->cntvoff;
case KVM_REG_ARM_TIMER_CVAL:
return vtimer->cnt_cval;
case KVM_REG_ARM_PTIMER_CTL:
return read_timer_ctl(ptimer);
case KVM_REG_ARM_PTIMER_CVAL:
return ptimer->cnt_cval;
case KVM_REG_ARM_PTIMER_CNT:
return kvm_phys_timer_read();
}
return (u64)-1;
}
......@@ -602,11 +762,20 @@ int kvm_timer_hyp_init(void)
return err;
}
err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
goto out_free_irq;
}
kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
"kvm/arm/timer:starting", kvm_timer_starting_cpu,
kvm_timer_dying_cpu);
return 0;
out_free_irq:
free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
return err;
}
......@@ -615,7 +784,8 @@ void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
timer_disarm(timer);
soft_timer_cancel(&timer->bg_timer, &timer->expired);
soft_timer_cancel(&timer->phys_timer, NULL);
kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
}
......@@ -691,7 +861,11 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
return ret;
no_vgic:
preempt_disable();
timer->enabled = 1;
kvm_timer_vcpu_load_vgic(vcpu);
preempt_enable();
return 0;
}
......
......@@ -307,8 +307,7 @@ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
kvm_timer_should_fire(vcpu_ptimer(vcpu));
return kvm_timer_is_pending(vcpu);
}
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
......@@ -354,18 +353,18 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
kvm_arm_set_running_vcpu(vcpu);
kvm_vgic_load(vcpu);
kvm_timer_vcpu_load(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_timer_vcpu_put(vcpu);
kvm_vgic_put(vcpu);
vcpu->cpu = -1;
kvm_arm_set_running_vcpu(NULL);
kvm_timer_vcpu_put(vcpu);
}
static void vcpu_power_off(struct kvm_vcpu *vcpu)
......@@ -654,11 +653,10 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
kvm_pmu_flush_hwstate(vcpu);
kvm_timer_flush_hwstate(vcpu);
kvm_vgic_flush_hwstate(vcpu);
local_irq_disable();
kvm_vgic_flush_hwstate(vcpu);
/*
* If we have a singal pending, or need to notify a userspace
* irqchip about timer or PMU level changes, then we exit (and
......@@ -683,10 +681,10 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
kvm_request_pending(vcpu)) {
vcpu->mode = OUTSIDE_GUEST_MODE;
local_irq_enable();
kvm_pmu_sync_hwstate(vcpu);
kvm_timer_sync_hwstate(vcpu);
kvm_vgic_sync_hwstate(vcpu);
local_irq_enable();
preempt_enable();
continue;
}
......@@ -709,6 +707,27 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
kvm_arm_clear_debug(vcpu);
/*
* We must sync the PMU state before the vgic state so
* that the vgic can properly sample the updated state of the
* interrupt line.
*/
kvm_pmu_sync_hwstate(vcpu);
/*
* Sync the vgic state before syncing the timer state because
* the timer code needs to know if the virtual timer
* interrupts are active.
*/
kvm_vgic_sync_hwstate(vcpu);
/*
* Sync the timer hardware state before enabling interrupts as
* we don't want vtimer interrupts to race with syncing the
* timer virtual interrupt state.
*/
kvm_timer_sync_hwstate(vcpu);
/*
* We may have taken a host interrupt in HYP mode (ie
* while executing the guest). This interrupt is still
......@@ -732,16 +751,6 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
guest_exit();
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
/*
* We must sync the PMU and timer state before the vgic state so
* that the vgic can properly sample the updated state of the
* interrupt line.
*/
kvm_pmu_sync_hwstate(vcpu);
kvm_timer_sync_hwstate(vcpu);
kvm_vgic_sync_hwstate(vcpu);
preempt_enable();
ret = handle_exit(vcpu, run, ret);
......
......@@ -21,58 +21,48 @@
#include <asm/kvm_hyp.h>
/* vcpu is already in the HYP VA space */
void __hyp_text __timer_save_state(struct kvm_vcpu *vcpu)
void __hyp_text __kvm_timer_set_cntvoff(u32 cntvoff_low, u32 cntvoff_high)
{
u64 cntvoff = (u64)cntvoff_high << 32 | cntvoff_low;
write_sysreg(cntvoff, cntvoff_el2);
}
void __hyp_text enable_el1_phys_timer_access(void)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
u64 val;
if (timer->enabled) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
}
/* Allow physical timer/counter access for the host */
val = read_sysreg(cnthctl_el2);
val |= CNTHCTL_EL1PCTEN | CNTHCTL_EL1PCEN;
write_sysreg(val, cnthctl_el2);
}
/* Disable the virtual timer */
write_sysreg_el0(0, cntv_ctl);
void __hyp_text disable_el1_phys_timer_access(void)
{
u64 val;
/*
* Disallow physical timer access for the guest
* Physical counter access is allowed
*/
val = read_sysreg(cnthctl_el2);
val &= ~CNTHCTL_EL1PCEN;
val |= CNTHCTL_EL1PCTEN;
write_sysreg(val, cnthctl_el2);
}
void __hyp_text __timer_disable_traps(struct kvm_vcpu *vcpu)
{
/*
* We don't need to do this for VHE since the host kernel runs in EL2
* with HCR_EL2.TGE ==1, which makes those bits have no impact.
*/
if (!has_vhe()) {
/* Allow physical timer/counter access for the host */
val = read_sysreg(cnthctl_el2);
val |= CNTHCTL_EL1PCTEN | CNTHCTL_EL1PCEN;
write_sysreg(val, cnthctl_el2);
}
/* Clear cntvoff for the host */
write_sysreg(0, cntvoff_el2);
if (!has_vhe())
enable_el1_phys_timer_access();
}
void __hyp_text __timer_restore_state(struct kvm_vcpu *vcpu)
void __hyp_text __timer_enable_traps(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
u64 val;
/* Those bits are already configured at boot on VHE-system */
if (!has_vhe()) {
/*
* Disallow physical timer access for the guest
* Physical counter access is allowed
*/
val = read_sysreg(cnthctl_el2);
val &= ~CNTHCTL_EL1PCEN;
val |= CNTHCTL_EL1PCTEN;
write_sysreg(val, cnthctl_el2);
}
if (timer->enabled) {
write_sysreg(vtimer->cntvoff, cntvoff_el2);
write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
isb();
write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
}
if (!has_vhe())
disable_el1_phys_timer_access();
}
......@@ -278,6 +278,7 @@ static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
u8 prop;
int ret;
unsigned long flags;
ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
&prop, 1);
......@@ -285,15 +286,15 @@ static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
if (ret)
return ret;
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
irq->priority = LPI_PROP_PRIORITY(prop);
irq->enabled = LPI_PROP_ENABLE_BIT(prop);
vgic_queue_irq_unlock(kvm, irq);
vgic_queue_irq_unlock(kvm, irq, flags);
} else {
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
}
return 0;
......@@ -393,6 +394,7 @@ static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
int ret = 0;
u32 *intids;
int nr_irqs, i;
unsigned long flags;
nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
if (nr_irqs < 0)
......@@ -420,9 +422,9 @@ static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
}
irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = pendmask & (1U << bit_nr);
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......@@ -515,6 +517,7 @@ static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
{
struct kvm_vcpu *vcpu;
struct its_ite *ite;
unsigned long flags;
if (!its->enabled)
return -EBUSY;
......@@ -530,9 +533,9 @@ static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
if (!vcpu->arch.vgic_cpu.lpis_enabled)
return -EBUSY;
spin_lock(&ite->irq->irq_lock);
spin_lock_irqsave(&ite->irq->irq_lock, flags);
ite->irq->pending_latch = true;
vgic_queue_irq_unlock(kvm, ite->irq);
vgic_queue_irq_unlock(kvm, ite->irq, flags);
return 0;
}
......@@ -894,7 +897,7 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
}
/* Requires the its_lock to be held. */
static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
{
struct its_ite *ite, *temp;
......@@ -910,6 +913,24 @@ static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
kfree(device);
}
/* its lock must be held */
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
{
struct its_device *cur, *temp;
list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
vgic_its_free_device(kvm, cur);
}
/* its lock must be held */
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
{
struct its_collection *cur, *temp;
list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
vgic_its_free_collection(its, cur->collection_id);
}
/* Must be called with its_lock mutex held */
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
u32 device_id, gpa_t itt_addr,
......@@ -957,7 +978,7 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
* by removing the mapping and re-establishing it.
*/
if (device)
vgic_its_unmap_device(kvm, device);
vgic_its_free_device(kvm, device);
/*
* The spec does not say whether unmapping a not-mapped device
......@@ -1410,7 +1431,7 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm,
unsigned long val)
{
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
u64 entry_size, device_type;
u64 entry_size, table_type;
u64 reg, *regptr, clearbits = 0;
/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
......@@ -1421,12 +1442,12 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm,
case 0:
regptr = &its->baser_device_table;
entry_size = abi->dte_esz;
device_type = GITS_BASER_TYPE_DEVICE;
table_type = GITS_BASER_TYPE_DEVICE;
break;
case 1:
regptr = &its->baser_coll_table;
entry_size = abi->cte_esz;
device_type = GITS_BASER_TYPE_COLLECTION;
table_type = GITS_BASER_TYPE_COLLECTION;
clearbits = GITS_BASER_INDIRECT;
break;
default:
......@@ -1438,10 +1459,24 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm,
reg &= ~clearbits;
reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
reg |= device_type << GITS_BASER_TYPE_SHIFT;
reg |= table_type << GITS_BASER_TYPE_SHIFT;
reg = vgic_sanitise_its_baser(reg);
*regptr = reg;
if (!(reg & GITS_BASER_VALID)) {
/* Take the its_lock to prevent a race with a save/restore */
mutex_lock(&its->its_lock);
switch (table_type) {
case GITS_BASER_TYPE_DEVICE:
vgic_its_free_device_list(kvm, its);
break;
case GITS_BASER_TYPE_COLLECTION:
vgic_its_free_collection_list(kvm, its);
break;
}
mutex_unlock(&its->its_lock);
}
}
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
......@@ -1612,46 +1647,17 @@ static int vgic_its_create(struct kvm_device *dev, u32 type)
return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
}
static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
{
struct its_ite *ite, *tmp;
list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
its_free_ite(kvm, ite);
list_del(&dev->dev_list);
kfree(dev);
}
static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
struct kvm *kvm = kvm_dev->kvm;
struct vgic_its *its = kvm_dev->private;
struct list_head *cur, *temp;
/*
* We may end up here without the lists ever having been initialized.
* Check this and bail out early to avoid dereferencing a NULL pointer.
*/
if (!its->device_list.next)
return;
mutex_lock(&its->its_lock);
list_for_each_safe(cur, temp, &its->device_list) {
struct its_device *dev;
dev = list_entry(cur, struct its_device, dev_list);
vgic_its_free_device(kvm, dev);
}
vgic_its_free_device_list(kvm, its);
vgic_its_free_collection_list(kvm, its);
list_for_each_safe(cur, temp, &its->collection_list) {
struct its_collection *coll;
coll = list_entry(cur, struct its_collection, coll_list);
list_del(cur);
kfree(coll);
}
mutex_unlock(&its->its_lock);
kfree(its);
}
......@@ -2267,29 +2273,13 @@ static int vgic_its_restore_collection_table(struct vgic_its *its)
*/
static int vgic_its_save_tables_v0(struct vgic_its *its)
{
struct kvm *kvm = its->dev->kvm;
int ret;
mutex_lock(&kvm->lock);
mutex_lock(&its->its_lock);
if (!lock_all_vcpus(kvm)) {
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return -EBUSY;
}
ret = vgic_its_save_device_tables(its);
if (ret)
goto out;
ret = vgic_its_save_collection_table(its);
return ret;
out:
unlock_all_vcpus(kvm);
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return ret;
return vgic_its_save_collection_table(its);
}
/**
......@@ -2299,29 +2289,13 @@ static int vgic_its_save_tables_v0(struct vgic_its *its)
*/
static int vgic_its_restore_tables_v0(struct vgic_its *its)
{
struct kvm *kvm = its->dev->kvm;
int ret;
mutex_lock(&kvm->lock);
mutex_lock(&its->its_lock);
if (!lock_all_vcpus(kvm)) {
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return -EBUSY;
}
ret = vgic_its_restore_collection_table(its);
if (ret)
goto out;
ret = vgic_its_restore_device_tables(its);
out:
unlock_all_vcpus(kvm);
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return ret;
return ret;
return vgic_its_restore_device_tables(its);
}
static int vgic_its_commit_v0(struct vgic_its *its)
......@@ -2340,6 +2314,19 @@ static int vgic_its_commit_v0(struct vgic_its *its)
return 0;
}
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
{
/* We need to keep the ABI specific field values */
its->baser_coll_table &= ~GITS_BASER_VALID;
its->baser_device_table &= ~GITS_BASER_VALID;
its->cbaser = 0;
its->creadr = 0;
its->cwriter = 0;
its->enabled = 0;
vgic_its_free_device_list(kvm, its);
vgic_its_free_collection_list(kvm, its);
}
static int vgic_its_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
......@@ -2354,6 +2341,8 @@ static int vgic_its_has_attr(struct kvm_device *dev,
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
case KVM_DEV_ARM_ITS_CTRL_RESET:
return 0;
case KVM_DEV_ARM_ITS_SAVE_TABLES:
return 0;
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
......@@ -2366,6 +2355,41 @@ static int vgic_its_has_attr(struct kvm_device *dev,
return -ENXIO;
}
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
{
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
int ret = 0;
if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
return 0;
mutex_lock(&kvm->lock);
mutex_lock(&its->its_lock);
if (!lock_all_vcpus(kvm)) {
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return -EBUSY;
}
switch (attr) {
case KVM_DEV_ARM_ITS_CTRL_RESET:
vgic_its_reset(kvm, its);
break;
case KVM_DEV_ARM_ITS_SAVE_TABLES:
ret = abi->save_tables(its);
break;
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
ret = abi->restore_tables(its);
break;
}
unlock_all_vcpus(kvm);
mutex_unlock(&its->its_lock);
mutex_unlock(&kvm->lock);
return ret;
}
static int vgic_its_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
......@@ -2391,19 +2415,8 @@ static int vgic_its_set_attr(struct kvm_device *dev,
return vgic_register_its_iodev(dev->kvm, its, addr);
}
case KVM_DEV_ARM_VGIC_GRP_CTRL: {
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
/* Nothing to do */
return 0;
case KVM_DEV_ARM_ITS_SAVE_TABLES:
return abi->save_tables(its);
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
return abi->restore_tables(its);
}
}
case KVM_DEV_ARM_VGIC_GRP_CTRL:
return vgic_its_ctrl(dev->kvm, its, attr->attr);
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
u64 reg;
......
......@@ -74,6 +74,7 @@ static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
int mode = (val >> 24) & 0x03;
int c;
struct kvm_vcpu *vcpu;
unsigned long flags;
switch (mode) {
case 0x0: /* as specified by targets */
......@@ -97,11 +98,11 @@ static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = true;
irq->source |= 1U << source_vcpu->vcpu_id;
vgic_queue_irq_unlock(source_vcpu->kvm, irq);
vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
vgic_put_irq(source_vcpu->kvm, irq);
}
}
......@@ -131,6 +132,7 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
int i;
unsigned long flags;
/* GICD_ITARGETSR[0-7] are read-only */
if (intid < VGIC_NR_PRIVATE_IRQS)
......@@ -140,13 +142,13 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
int target;
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->targets = (val >> (i * 8)) & cpu_mask;
target = irq->targets ? __ffs(irq->targets) : 0;
irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -174,17 +176,18 @@ static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
{
u32 intid = addr & 0x0f;
int i;
unsigned long flags;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->source &= ~((val >> (i * 8)) & 0xff);
if (!irq->source)
irq->pending_latch = false;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -195,19 +198,20 @@ static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
{
u32 intid = addr & 0x0f;
int i;
unsigned long flags;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->source |= (val >> (i * 8)) & 0xff;
if (irq->source) {
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
} else {
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
}
vgic_put_irq(vcpu->kvm, irq);
}
......
......@@ -129,6 +129,7 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
{
int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq;
unsigned long flags;
/* The upper word is WI for us since we don't implement Aff3. */
if (addr & 4)
......@@ -139,13 +140,13 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
if (!irq)
return;
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
/* We only care about and preserve Aff0, Aff1 and Aff2. */
irq->mpidr = val & GENMASK(23, 0);
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......@@ -241,11 +242,12 @@ static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for (i = 0; i < len * 8; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
if (test_bit(i, &val)) {
/*
* pending_latch is set irrespective of irq type
......@@ -253,10 +255,10 @@ static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
* restore irq config before pending info.
*/
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
} else {
irq->pending_latch = false;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
}
vgic_put_irq(vcpu->kvm, irq);
......@@ -799,6 +801,7 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
int sgi, c;
int vcpu_id = vcpu->vcpu_id;
bool broadcast;
unsigned long flags;
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
......@@ -837,10 +840,10 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......
......@@ -69,13 +69,14 @@ void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->enabled = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......@@ -87,15 +88,16 @@ void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->enabled = false;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -126,14 +128,15 @@ void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -144,15 +147,16 @@ void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
int i;
unsigned long flags;
for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = false;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -181,7 +185,8 @@ static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
bool new_active_state)
{
struct kvm_vcpu *requester_vcpu;
spin_lock(&irq->irq_lock);
unsigned long flags;
spin_lock_irqsave(&irq->irq_lock, flags);
/*
* The vcpu parameter here can mean multiple things depending on how
......@@ -216,9 +221,9 @@ static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
irq->active = new_active_state;
if (new_active_state)
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
else
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
}
/*
......@@ -352,14 +357,15 @@ void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
int i;
unsigned long flags;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
/* Narrow the priority range to what we actually support */
irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......@@ -390,6 +396,7 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
int i;
unsigned long flags;
for (i = 0; i < len * 4; i++) {
struct vgic_irq *irq;
......@@ -404,14 +411,14 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
continue;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
if (test_bit(i * 2 + 1, &val))
irq->config = VGIC_CONFIG_EDGE;
else
irq->config = VGIC_CONFIG_LEVEL;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
}
......@@ -443,6 +450,7 @@ void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
{
int i;
int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
unsigned long flags;
for (i = 0; i < 32; i++) {
struct vgic_irq *irq;
......@@ -459,12 +467,12 @@ void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
* restore irq config before line level.
*/
new_level = !!(val & (1U << i));
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->line_level = new_level;
if (new_level)
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
else
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......
......@@ -62,6 +62,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
int lr;
unsigned long flags;
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
......@@ -77,7 +78,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
/* Always preserve the active bit */
irq->active = !!(val & GICH_LR_ACTIVE_BIT);
......@@ -104,7 +105,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
irq->pending_latch = false;
}
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......
......@@ -44,6 +44,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
unsigned long flags;
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
......@@ -66,7 +67,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
if (!irq) /* An LPI could have been unmapped. */
continue;
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
......@@ -94,7 +95,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
irq->pending_latch = false;
}
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
......@@ -278,6 +279,7 @@ int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
......@@ -296,13 +298,13 @@ int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
status = val & (1 << bit_nr);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
/* clear consumed data */
......
......@@ -53,6 +53,10 @@ struct vgic_global kvm_vgic_global_state __ro_after_init = {
* vcpuX->vcpu_id < vcpuY->vcpu_id:
* spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
* spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
*
* Since the VGIC must support injecting virtual interrupts from ISRs, we have
* to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
* spinlocks for any lock that may be taken while injecting an interrupt.
*/
/*
......@@ -261,7 +265,8 @@ static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owne
* Needs to be entered with the IRQ lock already held, but will return
* with all locks dropped.
*/
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
unsigned long flags)
{
struct kvm_vcpu *vcpu;
......@@ -279,7 +284,7 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
* not need to be inserted into an ap_list and there is also
* no more work for us to do.
*/
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
/*
* We have to kick the VCPU here, because we could be
......@@ -301,11 +306,11 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
* We must unlock the irq lock to take the ap_list_lock where
* we are going to insert this new pending interrupt.
*/
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
/* someone can do stuff here, which we re-check below */
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
spin_lock(&irq->irq_lock);
/*
......@@ -322,9 +327,9 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
spin_unlock(&irq->irq_lock);
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
goto retry;
}
......@@ -337,7 +342,7 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
irq->vcpu = vcpu;
spin_unlock(&irq->irq_lock);
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
kvm_vcpu_kick(vcpu);
......@@ -367,6 +372,7 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
{
struct kvm_vcpu *vcpu;
struct vgic_irq *irq;
unsigned long flags;
int ret;
trace_vgic_update_irq_pending(cpuid, intid, level);
......@@ -383,11 +389,11 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
if (!irq)
return -EINVAL;
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
if (!vgic_validate_injection(irq, level, owner)) {
/* Nothing to see here, move along... */
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(kvm, irq);
return 0;
}
......@@ -397,7 +403,7 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
else
irq->pending_latch = true;
vgic_queue_irq_unlock(kvm, irq);
vgic_queue_irq_unlock(kvm, irq, flags);
vgic_put_irq(kvm, irq);
return 0;
......@@ -406,15 +412,16 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq)
{
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, virt_irq);
unsigned long flags;
BUG_ON(!irq);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->hw = true;
irq->hwintid = phys_irq;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return 0;
......@@ -423,6 +430,7 @@ int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq)
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq)
{
struct vgic_irq *irq;
unsigned long flags;
if (!vgic_initialized(vcpu->kvm))
return -EAGAIN;
......@@ -430,12 +438,12 @@ int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq)
irq = vgic_get_irq(vcpu->kvm, vcpu, virt_irq);
BUG_ON(!irq);
spin_lock(&irq->irq_lock);
spin_lock_irqsave(&irq->irq_lock, flags);
irq->hw = false;
irq->hwintid = 0;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return 0;
......@@ -486,9 +494,10 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq, *tmp;
unsigned long flags;
retry:
spin_lock(&vgic_cpu->ap_list_lock);
spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
......@@ -528,7 +537,7 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
/* This interrupt looks like it has to be migrated. */
spin_unlock(&irq->irq_lock);
spin_unlock(&vgic_cpu->ap_list_lock);
spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
/*
* Ensure locking order by always locking the smallest
......@@ -542,7 +551,7 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
vcpuB = vcpu;
}
spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
spin_lock_irqsave(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
SINGLE_DEPTH_NESTING);
spin_lock(&irq->irq_lock);
......@@ -566,11 +575,11 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
spin_unlock(&irq->irq_lock);
spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
spin_unlock_irqrestore(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
goto retry;
}
spin_unlock(&vgic_cpu->ap_list_lock);
spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
}
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
......@@ -703,6 +712,8 @@ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
return;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
vgic_flush_lr_state(vcpu);
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
......@@ -735,11 +746,12 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq;
bool pending = false;
unsigned long flags;
if (!vcpu->kvm->arch.vgic.enabled)
return false;
spin_lock(&vgic_cpu->ap_list_lock);
spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
spin_lock(&irq->irq_lock);
......@@ -750,7 +762,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
break;
}
spin_unlock(&vgic_cpu->ap_list_lock);
spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
return pending;
}
......@@ -776,10 +788,14 @@ bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq)
{
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, virt_irq);
bool map_is_active;
unsigned long flags;
spin_lock(&irq->irq_lock);
if (!vgic_initialized(vcpu->kvm))
return false;
spin_lock_irqsave(&irq->irq_lock, flags);
map_is_active = irq->hw && irq->active;
spin_unlock(&irq->irq_lock);
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return map_is_active;
......
......@@ -140,7 +140,8 @@ vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
u32 intid);
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq);
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq);
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
unsigned long flags);
void vgic_kick_vcpus(struct kvm *kvm);
int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment