Commit f5dcb680 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC driver updates from Kevin Hilman:
 "Some of these are for drivers/soc, where we're now putting
  SoC-specific drivers these days.  Some are for other driver subsystems
  where we have received acks from the appropriate maintainers.

  Some highlights:

   - simple-mfd: document DT bindings and misc updates
   - migrate mach-berlin to simple-mfd for clock, pinctrl and reset
   - memory: support for Tegra132 SoC
   - memory: introduce tegra EMC driver for scaling memory frequency
   - misc. updates for ARM CCI and CCN busses"

* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (48 commits)
  drivers: soc: sunxi: Introduce SoC driver to map SRAMs
  arm-cci: Add aliases for PMU events
  arm-cci: Add CCI-500 PMU support
  arm-cci: Sanitise CCI400 PMU driver specific code
  arm-cci: Abstract handling for CCI events
  arm-cci: Abstract out the PMU counter details
  arm-cci: Cleanup PMU driver code
  arm-cci: Do not enable CCI-400 PMU by default
  firmware: qcom: scm: Add HDCP Support
  ARM: berlin: add an ADC node for the BG2Q
  ARM: berlin: remove useless chip and system ctrl compatibles
  clk: berlin: drop direct of_iomap of nodes reg property
  ARM: berlin: move BG2Q clock node
  ARM: berlin: move BG2CD clock node
  ARM: berlin: move BG2 clock node
  clk: berlin: prepare simple-mfd conversion
  pinctrl: berlin: drop SoC stub provided regmap
  ARM: berlin: move pinctrl to simple-mfd nodes
  pinctrl: berlin: prepare to use regmap provided by syscon
  reset: berlin: drop arch_initcall initialization
  ...
parents 3d9f96d8 4af34b57
...@@ -33,20 +33,23 @@ directory, with first 8 configurable by user and additional ...@@ -33,20 +33,23 @@ directory, with first 8 configurable by user and additional
Cycle counter is described by a "type" value 0xff and does Cycle counter is described by a "type" value 0xff and does
not require any other settings. not require any other settings.
The driver also provides a "cpumask" sysfs attribute, which contains
a single CPU ID, of the processor which will be used to handle all
the CCN PMU events. It is recommended that the user space tools
request the events on this processor (if not, the perf_event->cpu value
will be overwritten anyway). In case of this processor being offlined,
the events are migrated to another one and the attribute is updated.
Example of perf tool use: Example of perf tool use:
/ # perf list | grep ccn / # perf list | grep ccn
ccn/cycles/ [Kernel PMU event] ccn/cycles/ [Kernel PMU event]
<...> <...>
ccn/xp_valid_flit/ [Kernel PMU event] ccn/xp_valid_flit,xp=?,port=?,vc=?,dir=?/ [Kernel PMU event]
<...> <...>
/ # perf stat -C 0 -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \ / # perf stat -a -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \
sleep 1 sleep 1
The driver does not support sampling, therefore "perf record" will The driver does not support sampling, therefore "perf record" will
not work. Also notice that only single cpu is being selected not work. Per-task (without "-a") perf sessions are not supported.
("-C 0") - this is because perf framework does not support
"non-CPU related" counters (yet?) so system-wide session ("-a")
would try (and in most cases fail) to set up the same event
per each CPU.
...@@ -31,8 +31,9 @@ specific to ARM. ...@@ -31,8 +31,9 @@ specific to ARM.
- compatible - compatible
Usage: required Usage: required
Value type: <string> Value type: <string>
Definition: must be set to Definition: must contain one of the following:
"arm,cci-400" "arm,cci-400"
"arm,cci-500"
- reg - reg
Usage: required Usage: required
...@@ -99,6 +100,7 @@ specific to ARM. ...@@ -99,6 +100,7 @@ specific to ARM.
"arm,cci-400-pmu,r1" "arm,cci-400-pmu,r1"
"arm,cci-400-pmu" - DEPRECATED, permitted only where OS has "arm,cci-400-pmu" - DEPRECATED, permitted only where OS has
secure acces to CCI registers secure acces to CCI registers
"arm,cci-500-pmu,r0"
- reg: - reg:
Usage: required Usage: required
Value type: Integer cells. A register entry, expressed Value type: Integer cells. A register entry, expressed
......
NVIDIA Tegra Memory Controller device tree bindings NVIDIA Tegra Memory Controller device tree bindings
=================================================== ===================================================
memory-controller node
----------------------
Required properties: Required properties:
- compatible: Should be "nvidia,tegra<chip>-mc" - compatible: Should be "nvidia,tegra<chip>-mc"
- reg: Physical base address and length of the controller's registers. - reg: Physical base address and length of the controller's registers.
...@@ -15,9 +18,49 @@ Required properties: ...@@ -15,9 +18,49 @@ Required properties:
This device implements an IOMMU that complies with the generic IOMMU binding. This device implements an IOMMU that complies with the generic IOMMU binding.
See ../iommu/iommu.txt for details. See ../iommu/iommu.txt for details.
Example: emc-timings subnode
-------- -------------------
The node should contain a "emc-timings" subnode for each supported RAM type (see field RAM_CODE in
register PMC_STRAPPING_OPT_A).
Required properties for "emc-timings" nodes :
- nvidia,ram-code : Should contain the value of RAM_CODE this timing set is used for.
timing subnode
--------------
Each "emc-timings" node should contain a subnode for every supported EMC clock rate.
Required properties for timing nodes :
- clock-frequency : Should contain the memory clock rate in Hz.
- nvidia,emem-configuration : Values to be written to the EMEM register block. For the Tegra124 SoC
(see section "15.6.1 MC Registers" in the TRM), these are the registers whose values need to be
specified, according to the board documentation:
MC_EMEM_ARB_CFG
MC_EMEM_ARB_OUTSTANDING_REQ
MC_EMEM_ARB_TIMING_RCD
MC_EMEM_ARB_TIMING_RP
MC_EMEM_ARB_TIMING_RC
MC_EMEM_ARB_TIMING_RAS
MC_EMEM_ARB_TIMING_FAW
MC_EMEM_ARB_TIMING_RRD
MC_EMEM_ARB_TIMING_RAP2PRE
MC_EMEM_ARB_TIMING_WAP2PRE
MC_EMEM_ARB_TIMING_R2R
MC_EMEM_ARB_TIMING_W2W
MC_EMEM_ARB_TIMING_R2W
MC_EMEM_ARB_TIMING_W2R
MC_EMEM_ARB_DA_TURNS
MC_EMEM_ARB_DA_COVERS
MC_EMEM_ARB_MISC0
MC_EMEM_ARB_MISC1
MC_EMEM_ARB_RING1_THROTTLE
Example SoC include file:
/ {
mc: memory-controller@0,70019000 { mc: memory-controller@0,70019000 {
compatible = "nvidia,tegra124-mc"; compatible = "nvidia,tegra124-mc";
reg = <0x0 0x70019000 0x0 0x1000>; reg = <0x0 0x70019000 0x0 0x1000>;
...@@ -34,3 +77,40 @@ Example: ...@@ -34,3 +77,40 @@ Example:
... ...
iommus = <&mc TEGRA_SWGROUP_SDMMC1A>; iommus = <&mc TEGRA_SWGROUP_SDMMC1A>;
}; };
};
Example board file:
/ {
memory-controller@0,70019000 {
emc-timings-3 {
nvidia,ram-code = <3>;
timing-12750000 {
clock-frequency = <12750000>;
nvidia,emem-configuration = <
0x40040001 /* MC_EMEM_ARB_CFG */
0x8000000a /* MC_EMEM_ARB_OUTSTANDING_REQ */
0x00000001 /* MC_EMEM_ARB_TIMING_RCD */
0x00000001 /* MC_EMEM_ARB_TIMING_RP */
0x00000002 /* MC_EMEM_ARB_TIMING_RC */
0x00000000 /* MC_EMEM_ARB_TIMING_RAS */
0x00000002 /* MC_EMEM_ARB_TIMING_FAW */
0x00000001 /* MC_EMEM_ARB_TIMING_RRD */
0x00000002 /* MC_EMEM_ARB_TIMING_RAP2PRE */
0x00000008 /* MC_EMEM_ARB_TIMING_WAP2PRE */
0x00000003 /* MC_EMEM_ARB_TIMING_R2R */
0x00000002 /* MC_EMEM_ARB_TIMING_W2W */
0x00000003 /* MC_EMEM_ARB_TIMING_R2W */
0x00000006 /* MC_EMEM_ARB_TIMING_W2R */
0x06030203 /* MC_EMEM_ARB_DA_TURNS */
0x000a0402 /* MC_EMEM_ARB_DA_COVERS */
0x77e30303 /* MC_EMEM_ARB_MISC0 */
0x70000f03 /* MC_EMEM_ARB_MISC1 */
0x001f0000 /* MC_EMEM_ARB_RING1_THROTTLE */
>;
};
};
};
};
NVIDIA Tegra124 SoC EMC (external memory controller)
====================================================
Required properties :
- compatible : Should be "nvidia,tegra124-emc".
- reg : physical base address and length of the controller's registers.
- nvidia,memory-controller : phandle of the MC driver.
The node should contain a "emc-timings" subnode for each supported RAM type
(see field RAM_CODE in register PMC_STRAPPING_OPT_A), with its unit address
being its RAM_CODE.
Required properties for "emc-timings" nodes :
- nvidia,ram-code : Should contain the value of RAM_CODE this timing set is
used for.
Each "emc-timings" node should contain a "timing" subnode for every supported
EMC clock rate. The "timing" subnodes should have the clock rate in Hz as
their unit address.
Required properties for "timing" nodes :
- clock-frequency : Should contain the memory clock rate in Hz.
- The following properties contain EMC timing characterization values
(specified in the board documentation) :
- nvidia,emc-auto-cal-config : EMC_AUTO_CAL_CONFIG
- nvidia,emc-auto-cal-config2 : EMC_AUTO_CAL_CONFIG2
- nvidia,emc-auto-cal-config3 : EMC_AUTO_CAL_CONFIG3
- nvidia,emc-auto-cal-interval : EMC_AUTO_CAL_INTERVAL
- nvidia,emc-bgbias-ctl0 : EMC_BGBIAS_CTL0
- nvidia,emc-cfg : EMC_CFG
- nvidia,emc-cfg-2 : EMC_CFG_2
- nvidia,emc-ctt-term-ctrl : EMC_CTT_TERM_CTRL
- nvidia,emc-mode-1 : Mode Register 1
- nvidia,emc-mode-2 : Mode Register 2
- nvidia,emc-mode-4 : Mode Register 4
- nvidia,emc-mode-reset : Mode Register 0
- nvidia,emc-mrs-wait-cnt : EMC_MRS_WAIT_CNT
- nvidia,emc-sel-dpd-ctrl : EMC_SEL_DPD_CTRL
- nvidia,emc-xm2dqspadctrl2 : EMC_XM2DQSPADCTRL2
- nvidia,emc-zcal-cnt-long : EMC_ZCAL_WAIT_CNT after clock change
- nvidia,emc-zcal-interval : EMC_ZCAL_INTERVAL
- nvidia,emc-configuration : EMC timing characterization data. These are the
registers (see section "15.6.2 EMC Registers" in the TRM) whose values need to
be specified, according to the board documentation:
EMC_RC
EMC_RFC
EMC_RFC_SLR
EMC_RAS
EMC_RP
EMC_R2W
EMC_W2R
EMC_R2P
EMC_W2P
EMC_RD_RCD
EMC_WR_RCD
EMC_RRD
EMC_REXT
EMC_WEXT
EMC_WDV
EMC_WDV_MASK
EMC_QUSE
EMC_QUSE_WIDTH
EMC_IBDLY
EMC_EINPUT
EMC_EINPUT_DURATION
EMC_PUTERM_EXTRA
EMC_PUTERM_WIDTH
EMC_PUTERM_ADJ
EMC_CDB_CNTL_1
EMC_CDB_CNTL_2
EMC_CDB_CNTL_3
EMC_QRST
EMC_QSAFE
EMC_RDV
EMC_RDV_MASK
EMC_REFRESH
EMC_BURST_REFRESH_NUM
EMC_PRE_REFRESH_REQ_CNT
EMC_PDEX2WR
EMC_PDEX2RD
EMC_PCHG2PDEN
EMC_ACT2PDEN
EMC_AR2PDEN
EMC_RW2PDEN
EMC_TXSR
EMC_TXSRDLL
EMC_TCKE
EMC_TCKESR
EMC_TPD
EMC_TFAW
EMC_TRPAB
EMC_TCLKSTABLE
EMC_TCLKSTOP
EMC_TREFBW
EMC_FBIO_CFG6
EMC_ODT_WRITE
EMC_ODT_READ
EMC_FBIO_CFG5
EMC_CFG_DIG_DLL
EMC_CFG_DIG_DLL_PERIOD
EMC_DLL_XFORM_DQS0
EMC_DLL_XFORM_DQS1
EMC_DLL_XFORM_DQS2
EMC_DLL_XFORM_DQS3
EMC_DLL_XFORM_DQS4
EMC_DLL_XFORM_DQS5
EMC_DLL_XFORM_DQS6
EMC_DLL_XFORM_DQS7
EMC_DLL_XFORM_DQS8
EMC_DLL_XFORM_DQS9
EMC_DLL_XFORM_DQS10
EMC_DLL_XFORM_DQS11
EMC_DLL_XFORM_DQS12
EMC_DLL_XFORM_DQS13
EMC_DLL_XFORM_DQS14
EMC_DLL_XFORM_DQS15
EMC_DLL_XFORM_QUSE0
EMC_DLL_XFORM_QUSE1
EMC_DLL_XFORM_QUSE2
EMC_DLL_XFORM_QUSE3
EMC_DLL_XFORM_QUSE4
EMC_DLL_XFORM_QUSE5
EMC_DLL_XFORM_QUSE6
EMC_DLL_XFORM_QUSE7
EMC_DLL_XFORM_ADDR0
EMC_DLL_XFORM_ADDR1
EMC_DLL_XFORM_ADDR2
EMC_DLL_XFORM_ADDR3
EMC_DLL_XFORM_ADDR4
EMC_DLL_XFORM_ADDR5
EMC_DLL_XFORM_QUSE8
EMC_DLL_XFORM_QUSE9
EMC_DLL_XFORM_QUSE10
EMC_DLL_XFORM_QUSE11
EMC_DLL_XFORM_QUSE12
EMC_DLL_XFORM_QUSE13
EMC_DLL_XFORM_QUSE14
EMC_DLL_XFORM_QUSE15
EMC_DLI_TRIM_TXDQS0
EMC_DLI_TRIM_TXDQS1
EMC_DLI_TRIM_TXDQS2
EMC_DLI_TRIM_TXDQS3
EMC_DLI_TRIM_TXDQS4
EMC_DLI_TRIM_TXDQS5
EMC_DLI_TRIM_TXDQS6
EMC_DLI_TRIM_TXDQS7
EMC_DLI_TRIM_TXDQS8
EMC_DLI_TRIM_TXDQS9
EMC_DLI_TRIM_TXDQS10
EMC_DLI_TRIM_TXDQS11
EMC_DLI_TRIM_TXDQS12
EMC_DLI_TRIM_TXDQS13
EMC_DLI_TRIM_TXDQS14
EMC_DLI_TRIM_TXDQS15
EMC_DLL_XFORM_DQ0
EMC_DLL_XFORM_DQ1
EMC_DLL_XFORM_DQ2
EMC_DLL_XFORM_DQ3
EMC_DLL_XFORM_DQ4
EMC_DLL_XFORM_DQ5
EMC_DLL_XFORM_DQ6
EMC_DLL_XFORM_DQ7
EMC_XM2CMDPADCTRL
EMC_XM2CMDPADCTRL4
EMC_XM2CMDPADCTRL5
EMC_XM2DQPADCTRL2
EMC_XM2DQPADCTRL3
EMC_XM2CLKPADCTRL
EMC_XM2CLKPADCTRL2
EMC_XM2COMPPADCTRL
EMC_XM2VTTGENPADCTRL
EMC_XM2VTTGENPADCTRL2
EMC_XM2VTTGENPADCTRL3
EMC_XM2DQSPADCTRL3
EMC_XM2DQSPADCTRL4
EMC_XM2DQSPADCTRL5
EMC_XM2DQSPADCTRL6
EMC_DSR_VTTGEN_DRV
EMC_TXDSRVTTGEN
EMC_FBIO_SPARE
EMC_ZCAL_WAIT_CNT
EMC_MRS_WAIT_CNT2
EMC_CTT
EMC_CTT_DURATION
EMC_CFG_PIPE
EMC_DYN_SELF_REF_CONTROL
EMC_QPOP
Example SoC include file:
/ {
emc@0,7001b000 {
compatible = "nvidia,tegra124-emc";
reg = <0x0 0x7001b000 0x0 0x1000>;
nvidia,memory-controller = <&mc>;
};
};
Example board file:
/ {
emc@0,7001b000 {
emc-timings-3 {
nvidia,ram-code = <3>;
timing-12750000 {
clock-frequency = <12750000>;
nvidia,emc-zcal-cnt-long = <0x00000042>;
nvidia,emc-auto-cal-interval = <0x001fffff>;
nvidia,emc-ctt-term-ctrl = <0x00000802>;
nvidia,emc-cfg = <0x73240000>;
nvidia,emc-cfg-2 = <0x000008c5>;
nvidia,emc-sel-dpd-ctrl = <0x00040128>;
nvidia,emc-bgbias-ctl0 = <0x00000008>;
nvidia,emc-auto-cal-config = <0xa1430000>;
nvidia,emc-auto-cal-config2 = <0x00000000>;
nvidia,emc-auto-cal-config3 = <0x00000000>;
nvidia,emc-mode-reset = <0x80001221>;
nvidia,emc-mode-1 = <0x80100003>;
nvidia,emc-mode-2 = <0x80200008>;
nvidia,emc-mode-4 = <0x00000000>;
nvidia,emc-configuration = <
0x00000000 /* EMC_RC */
0x00000003 /* EMC_RFC */
0x00000000 /* EMC_RFC_SLR */
0x00000000 /* EMC_RAS */
0x00000000 /* EMC_RP */
0x00000004 /* EMC_R2W */
0x0000000a /* EMC_W2R */
0x00000003 /* EMC_R2P */
0x0000000b /* EMC_W2P */
0x00000000 /* EMC_RD_RCD */
0x00000000 /* EMC_WR_RCD */
0x00000003 /* EMC_RRD */
0x00000003 /* EMC_REXT */
0x00000000 /* EMC_WEXT */
0x00000006 /* EMC_WDV */
0x00000006 /* EMC_WDV_MASK */
0x00000006 /* EMC_QUSE */
0x00000002 /* EMC_QUSE_WIDTH */
0x00000000 /* EMC_IBDLY */
0x00000005 /* EMC_EINPUT */
0x00000005 /* EMC_EINPUT_DURATION */
0x00010000 /* EMC_PUTERM_EXTRA */
0x00000003 /* EMC_PUTERM_WIDTH */
0x00000000 /* EMC_PUTERM_ADJ */
0x00000000 /* EMC_CDB_CNTL_1 */
0x00000000 /* EMC_CDB_CNTL_2 */
0x00000000 /* EMC_CDB_CNTL_3 */
0x00000004 /* EMC_QRST */
0x0000000c /* EMC_QSAFE */
0x0000000d /* EMC_RDV */
0x0000000f /* EMC_RDV_MASK */
0x00000060 /* EMC_REFRESH */
0x00000000 /* EMC_BURST_REFRESH_NUM */
0x00000018 /* EMC_PRE_REFRESH_REQ_CNT */
0x00000002 /* EMC_PDEX2WR */
0x00000002 /* EMC_PDEX2RD */
0x00000001 /* EMC_PCHG2PDEN */
0x00000000 /* EMC_ACT2PDEN */
0x00000007 /* EMC_AR2PDEN */
0x0000000f /* EMC_RW2PDEN */
0x00000005 /* EMC_TXSR */
0x00000005 /* EMC_TXSRDLL */
0x00000004 /* EMC_TCKE */
0x00000005 /* EMC_TCKESR */
0x00000004 /* EMC_TPD */
0x00000000 /* EMC_TFAW */
0x00000000 /* EMC_TRPAB */
0x00000005 /* EMC_TCLKSTABLE */
0x00000005 /* EMC_TCLKSTOP */
0x00000064 /* EMC_TREFBW */
0x00000000 /* EMC_FBIO_CFG6 */
0x00000000 /* EMC_ODT_WRITE */
0x00000000 /* EMC_ODT_READ */
0x106aa298 /* EMC_FBIO_CFG5 */
0x002c00a0 /* EMC_CFG_DIG_DLL */
0x00008000 /* EMC_CFG_DIG_DLL_PERIOD */
0x00064000 /* EMC_DLL_XFORM_DQS0 */
0x00064000 /* EMC_DLL_XFORM_DQS1 */
0x00064000 /* EMC_DLL_XFORM_DQS2 */
0x00064000 /* EMC_DLL_XFORM_DQS3 */
0x00064000 /* EMC_DLL_XFORM_DQS4 */
0x00064000 /* EMC_DLL_XFORM_DQS5 */
0x00064000 /* EMC_DLL_XFORM_DQS6 */
0x00064000 /* EMC_DLL_XFORM_DQS7 */
0x00064000 /* EMC_DLL_XFORM_DQS8 */
0x00064000 /* EMC_DLL_XFORM_DQS9 */
0x00064000 /* EMC_DLL_XFORM_DQS10 */
0x00064000 /* EMC_DLL_XFORM_DQS11 */
0x00064000 /* EMC_DLL_XFORM_DQS12 */
0x00064000 /* EMC_DLL_XFORM_DQS13 */
0x00064000 /* EMC_DLL_XFORM_DQS14 */
0x00064000 /* EMC_DLL_XFORM_DQS15 */
0x00000000 /* EMC_DLL_XFORM_QUSE0 */
0x00000000 /* EMC_DLL_XFORM_QUSE1 */
0x00000000 /* EMC_DLL_XFORM_QUSE2 */
0x00000000 /* EMC_DLL_XFORM_QUSE3 */
0x00000000 /* EMC_DLL_XFORM_QUSE4 */
0x00000000 /* EMC_DLL_XFORM_QUSE5 */
0x00000000 /* EMC_DLL_XFORM_QUSE6 */
0x00000000 /* EMC_DLL_XFORM_QUSE7 */
0x00000000 /* EMC_DLL_XFORM_ADDR0 */
0x00000000 /* EMC_DLL_XFORM_ADDR1 */
0x00000000 /* EMC_DLL_XFORM_ADDR2 */
0x00000000 /* EMC_DLL_XFORM_ADDR3 */
0x00000000 /* EMC_DLL_XFORM_ADDR4 */
0x00000000 /* EMC_DLL_XFORM_ADDR5 */
0x00000000 /* EMC_DLL_XFORM_QUSE8 */
0x00000000 /* EMC_DLL_XFORM_QUSE9 */
0x00000000 /* EMC_DLL_XFORM_QUSE10 */
0x00000000 /* EMC_DLL_XFORM_QUSE11 */
0x00000000 /* EMC_DLL_XFORM_QUSE12 */
0x00000000 /* EMC_DLL_XFORM_QUSE13 */
0x00000000 /* EMC_DLL_XFORM_QUSE14 */
0x00000000 /* EMC_DLL_XFORM_QUSE15 */
0x00000000 /* EMC_DLI_TRIM_TXDQS0 */
0x00000000 /* EMC_DLI_TRIM_TXDQS1 */
0x00000000 /* EMC_DLI_TRIM_TXDQS2 */
0x00000000 /* EMC_DLI_TRIM_TXDQS3 */
0x00000000 /* EMC_DLI_TRIM_TXDQS4 */
0x00000000 /* EMC_DLI_TRIM_TXDQS5 */
0x00000000 /* EMC_DLI_TRIM_TXDQS6 */
0x00000000 /* EMC_DLI_TRIM_TXDQS7 */
0x00000000 /* EMC_DLI_TRIM_TXDQS8 */
0x00000000 /* EMC_DLI_TRIM_TXDQS9 */
0x00000000 /* EMC_DLI_TRIM_TXDQS10 */
0x00000000 /* EMC_DLI_TRIM_TXDQS11 */
0x00000000 /* EMC_DLI_TRIM_TXDQS12 */
0x00000000 /* EMC_DLI_TRIM_TXDQS13 */
0x00000000 /* EMC_DLI_TRIM_TXDQS14 */
0x00000000 /* EMC_DLI_TRIM_TXDQS15 */
0x000fc000 /* EMC_DLL_XFORM_DQ0 */
0x000fc000 /* EMC_DLL_XFORM_DQ1 */
0x000fc000 /* EMC_DLL_XFORM_DQ2 */
0x000fc000 /* EMC_DLL_XFORM_DQ3 */
0x0000fc00 /* EMC_DLL_XFORM_DQ4 */
0x0000fc00 /* EMC_DLL_XFORM_DQ5 */
0x0000fc00 /* EMC_DLL_XFORM_DQ6 */
0x0000fc00 /* EMC_DLL_XFORM_DQ7 */
0x10000280 /* EMC_XM2CMDPADCTRL */
0x00000000 /* EMC_XM2CMDPADCTRL4 */
0x00111111 /* EMC_XM2CMDPADCTRL5 */
0x00000000 /* EMC_XM2DQPADCTRL2 */
0x00000000 /* EMC_XM2DQPADCTRL3 */
0x77ffc081 /* EMC_XM2CLKPADCTRL */
0x00000e0e /* EMC_XM2CLKPADCTRL2 */
0x81f1f108 /* EMC_XM2COMPPADCTRL */
0x07070004 /* EMC_XM2VTTGENPADCTRL */
0x0000003f /* EMC_XM2VTTGENPADCTRL2 */
0x016eeeee /* EMC_XM2VTTGENPADCTRL3 */
0x51451400 /* EMC_XM2DQSPADCTRL3 */
0x00514514 /* EMC_XM2DQSPADCTRL4 */
0x00514514 /* EMC_XM2DQSPADCTRL5 */
0x51451400 /* EMC_XM2DQSPADCTRL6 */
0x0000003f /* EMC_DSR_VTTGEN_DRV */
0x00000007 /* EMC_TXDSRVTTGEN */
0x00000000 /* EMC_FBIO_SPARE */
0x00000042 /* EMC_ZCAL_WAIT_CNT */
0x000e000e /* EMC_MRS_WAIT_CNT2 */
0x00000000 /* EMC_CTT */
0x00000003 /* EMC_CTT_DURATION */
0x0000f2f3 /* EMC_CFG_PIPE */
0x800001c5 /* EMC_DYN_SELF_REF_CONTROL */
0x0000000a /* EMC_QPOP */
>;
};
};
};
};
Multi-Function Devices (MFD)
These devices comprise a nexus for heterogeneous hardware blocks containing
more than one non-unique yet varying hardware functionality.
A typical MFD can be:
- A mixed signal ASIC on an external bus, sometimes a PMIC (Power Management
Integrated Circuit) that is manufactured in a lower technology node (rough
silicon) that handles analog drivers for things like audio amplifiers, LED
drivers, level shifters, PHY (physical interfaces to things like USB or
ethernet), regulators etc.
- A range of memory registers containing "miscellaneous system registers" also
known as a system controller "syscon" or any other memory range containing a
mix of unrelated hardware devices.
Optional properties:
- compatible : "simple-mfd" - this signifies that the operating system should
consider all subnodes of the MFD device as separate devices akin to how
"simple-bus" inidicates when to see subnodes as children for a simple
memory-mapped bus. For more complex devices, when the nexus driver has to
probe registers to figure out what child devices exist etc, this should not
be used. In the latter case the child devices will be determined by the
operating system.
Example:
foo@1000 {
compatible = "syscon", "simple-mfd";
reg = <0x01000 0x1000>;
led@08.0 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x01>;
label = "myled";
default-state = "on";
};
};
...@@ -10,3 +10,5 @@ Required properties: ...@@ -10,3 +10,5 @@ Required properties:
The second entry gives the physical address and length of the The second entry gives the physical address and length of the
registers indicating the strapping options. registers indicating the strapping options.
Optional properties:
- nvidia,long-ram-code: If present, the RAM code is long (4 bit). If not, short (2 bit).
Allwinnner SoC SRAM controllers
-----------------------------------------------------
The SRAM controller found on most Allwinner devices is represented by
a regular node for the SRAM controller itself, with sub-nodes
reprensenting the SRAM handled by the SRAM controller.
Controller Node
---------------
Required properties:
- compatible : "allwinner,sun4i-a10-sram-controller"
- reg : sram controller register offset + length
SRAM nodes
----------
Each SRAM is described using the mmio-sram bindings documented in
Documentation/devicetree/bindings/misc/sram.txt
Each SRAM will have SRAM sections that are going to be handled by the
SRAM controller as subnodes. These sections are represented following
once again the representation described in the mmio-sram binding.
The valid sections compatible are:
- allwinner,sun4i-a10-sram-a3-a4
- allwinner,sun4i-a10-sram-d
Devices using SRAM sections
---------------------------
Some devices need to request to the SRAM controller to map an SRAM for
their exclusive use.
The relationship between such a device and an SRAM section is
expressed through the allwinner,sram property, that will take a
phandle and an argument.
This valid values for this argument are:
- 0: CPU
- 1: Device
Example
-------
sram-controller@01c00000 {
compatible = "allwinner,sun4i-a10-sram-controller";
reg = <0x01c00000 0x30>;
#address-cells = <1>;
#size-cells = <1>;
ranges;
sram_a: sram@00000000 {
compatible = "mmio-sram";
reg = <0x00000000 0xc000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x00000000 0xc000>;
emac_sram: sram-section@8000 {
compatible = "allwinner,sun4i-a10-sram-a3-a4";
reg = <0x8000 0x4000>;
status = "disabled";
};
};
};
emac: ethernet@01c0b000 {
compatible = "allwinner,sun4i-a10-emac";
...
allwinner,sram = <&emac_sram 1>;
};
...@@ -114,7 +114,7 @@ soc { ...@@ -114,7 +114,7 @@ soc {
ranges; ranges;
syscon: syscon@10000000 { syscon: syscon@10000000 {
compatible = "arm,realview-pb1176-syscon", "syscon"; compatible = "arm,realview-pb1176-syscon", "syscon", "simple-mfd";
reg = <0x10000000 0x1000>; reg = <0x10000000 0x1000>;
led@08.0 { led@08.0 {
......
...@@ -84,7 +84,7 @@ soc { ...@@ -84,7 +84,7 @@ soc {
sdhci0: sdhci@ab0000 { sdhci0: sdhci@ab0000 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab0000 0x200>; reg = <0xab0000 0x200>;
clocks = <&chip CLKID_SDIO0XIN>, <&chip CLKID_SDIO0>; clocks = <&chip_clk CLKID_SDIO0XIN>, <&chip_clk CLKID_SDIO0>;
clock-names = "io", "core"; clock-names = "io", "core";
interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled"; status = "disabled";
...@@ -93,7 +93,7 @@ sdhci0: sdhci@ab0000 { ...@@ -93,7 +93,7 @@ sdhci0: sdhci@ab0000 {
sdhci1: sdhci@ab0800 { sdhci1: sdhci@ab0800 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab0800 0x200>; reg = <0xab0800 0x200>;
clocks = <&chip CLKID_SDIO1XIN>, <&chip CLKID_SDIO1>; clocks = <&chip_clk CLKID_SDIO1XIN>, <&chip_clk CLKID_SDIO1>;
clock-names = "io", "core"; clock-names = "io", "core";
interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled"; status = "disabled";
...@@ -103,7 +103,7 @@ sdhci2: sdhci@ab1000 { ...@@ -103,7 +103,7 @@ sdhci2: sdhci@ab1000 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab1000 0x200>; reg = <0xab1000 0x200>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_NFC_ECC>, <&chip CLKID_NFC>; clocks = <&chip_clk CLKID_NFC_ECC>, <&chip_clk CLKID_NFC>;
clock-names = "io", "core"; clock-names = "io", "core";
pinctrl-0 = <&emmc_pmux>; pinctrl-0 = <&emmc_pmux>;
pinctrl-names = "default"; pinctrl-names = "default";
...@@ -133,13 +133,13 @@ local-timer@ad0600 { ...@@ -133,13 +133,13 @@ local-timer@ad0600 {
compatible = "arm,cortex-a9-twd-timer"; compatible = "arm,cortex-a9-twd-timer";
reg = <0xad0600 0x20>; reg = <0xad0600 0x20>;
interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(2) | IRQ_TYPE_LEVEL_HIGH)>; interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(2) | IRQ_TYPE_LEVEL_HIGH)>;
clocks = <&chip CLKID_TWD>; clocks = <&chip_clk CLKID_TWD>;
}; };
eth1: ethernet@b90000 { eth1: ethernet@b90000 {
compatible = "marvell,pxa168-eth"; compatible = "marvell,pxa168-eth";
reg = <0xb90000 0x10000>; reg = <0xb90000 0x10000>;
clocks = <&chip CLKID_GETH1>; clocks = <&chip_clk CLKID_GETH1>;
interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
/* set by bootloader */ /* set by bootloader */
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
...@@ -162,7 +162,7 @@ cpu-ctrl@dd0000 { ...@@ -162,7 +162,7 @@ cpu-ctrl@dd0000 {
eth0: ethernet@e50000 { eth0: ethernet@e50000 {
compatible = "marvell,pxa168-eth"; compatible = "marvell,pxa168-eth";
reg = <0xe50000 0x10000>; reg = <0xe50000 0x10000>;
clocks = <&chip CLKID_GETH0>; clocks = <&chip_clk CLKID_GETH0>;
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
/* set by bootloader */ /* set by bootloader */
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
...@@ -261,7 +261,7 @@ timer0: timer@2c00 { ...@@ -261,7 +261,7 @@ timer0: timer@2c00 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c00 0x14>; reg = <0x2c00 0x14>;
interrupts = <8>; interrupts = <8>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "okay"; status = "okay";
}; };
...@@ -270,7 +270,7 @@ timer1: timer@2c14 { ...@@ -270,7 +270,7 @@ timer1: timer@2c14 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c14 0x14>; reg = <0x2c14 0x14>;
interrupts = <9>; interrupts = <9>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "okay"; status = "okay";
}; };
...@@ -279,7 +279,7 @@ timer2: timer@2c28 { ...@@ -279,7 +279,7 @@ timer2: timer@2c28 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c28 0x14>; reg = <0x2c28 0x14>;
interrupts = <10>; interrupts = <10>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -288,7 +288,7 @@ timer3: timer@2c3c { ...@@ -288,7 +288,7 @@ timer3: timer@2c3c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c3c 0x14>; reg = <0x2c3c 0x14>;
interrupts = <11>; interrupts = <11>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -297,7 +297,7 @@ timer4: timer@2c50 { ...@@ -297,7 +297,7 @@ timer4: timer@2c50 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c50 0x14>; reg = <0x2c50 0x14>;
interrupts = <12>; interrupts = <12>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -306,7 +306,7 @@ timer5: timer@2c64 { ...@@ -306,7 +306,7 @@ timer5: timer@2c64 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c64 0x14>; reg = <0x2c64 0x14>;
interrupts = <13>; interrupts = <13>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -315,7 +315,7 @@ timer6: timer@2c78 { ...@@ -315,7 +315,7 @@ timer6: timer@2c78 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c78 0x14>; reg = <0x2c78 0x14>;
interrupts = <14>; interrupts = <14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -324,7 +324,7 @@ timer7: timer@2c8c { ...@@ -324,7 +324,7 @@ timer7: timer@2c8c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c8c 0x14>; reg = <0x2c8c 0x14>;
interrupts = <15>; interrupts = <15>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -343,7 +343,7 @@ ahci: sata@e90000 { ...@@ -343,7 +343,7 @@ ahci: sata@e90000 {
compatible = "marvell,berlin2-ahci", "generic-ahci"; compatible = "marvell,berlin2-ahci", "generic-ahci";
reg = <0xe90000 0x1000>; reg = <0xe90000 0x1000>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_SATA>; clocks = <&chip_clk CLKID_SATA>;
#address-cells = <1>; #address-cells = <1>;
#size-cells = <0>; #size-cells = <0>;
...@@ -363,7 +363,7 @@ sata1: sata-port@1 { ...@@ -363,7 +363,7 @@ sata1: sata-port@1 {
sata_phy: phy@e900a0 { sata_phy: phy@e900a0 {
compatible = "marvell,berlin2-sata-phy"; compatible = "marvell,berlin2-sata-phy";
reg = <0xe900a0 0x200>; reg = <0xe900a0 0x200>;
clocks = <&chip CLKID_SATA>; clocks = <&chip_clk CLKID_SATA>;
#address-cells = <1>; #address-cells = <1>;
#size-cells = <0>; #size-cells = <0>;
#phy-cells = <1>; #phy-cells = <1>;
...@@ -379,16 +379,28 @@ sata-phy@1 { ...@@ -379,16 +379,28 @@ sata-phy@1 {
}; };
chip: chip-control@ea0000 { chip: chip-control@ea0000 {
compatible = "marvell,berlin2-chip-ctrl"; compatible = "simple-mfd", "syscon";
#clock-cells = <1>;
#reset-cells = <2>;
reg = <0xea0000 0x400>; reg = <0xea0000 0x400>;
clocks = <&refclk>;
clock-names = "refclk";
emmc_pmux: emmc-pmux { chip_clk: clock {
groups = "G26"; compatible = "marvell,berlin2-clk";
function = "emmc"; #clock-cells = <1>;
clocks = <&refclk>;
clock-names = "refclk";
};
soc_pinctrl: pin-controller {
compatible = "marvell,berlin2-soc-pinctrl";
emmc_pmux: emmc-pmux {
groups = "G26";
function = "emmc";
};
};
chip_rst: reset {
compatible = "marvell,berlin2-reset";
#reset-cells = <2>;
}; };
}; };
...@@ -470,22 +482,24 @@ uart2: serial@b000 { ...@@ -470,22 +482,24 @@ uart2: serial@b000 {
}; };
sysctrl: system-controller@d000 { sysctrl: system-controller@d000 {
compatible = "marvell,berlin2-system-ctrl"; compatible = "simple-mfd", "syscon";
reg = <0xd000 0x100>; reg = <0xd000 0x100>;
uart0_pmux: uart0-pmux { sys_pinctrl: pin-controller {
groups = "GSM4"; compatible = "marvell,berlin2-system-pinctrl";
function = "uart0"; uart0_pmux: uart0-pmux {
}; groups = "GSM4";
function = "uart0";
uart1_pmux: uart1-pmux { };
groups = "GSM5";
function = "uart1"; uart1_pmux: uart1-pmux {
}; groups = "GSM5";
function = "uart1";
uart2_pmux: uart2-pmux { };
groups = "GSM3"; uart2_pmux: uart2-pmux {
function = "uart2"; groups = "GSM3";
function = "uart2";
};
}; };
}; };
......
...@@ -81,7 +81,7 @@ pmu { ...@@ -81,7 +81,7 @@ pmu {
sdhci0: sdhci@ab0000 { sdhci0: sdhci@ab0000 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab0000 0x200>; reg = <0xab0000 0x200>;
clocks = <&chip CLKID_SDIO0XIN>, <&chip CLKID_SDIO0>; clocks = <&chip_clk CLKID_SDIO0XIN>, <&chip_clk CLKID_SDIO0>;
clock-names = "io", "core"; clock-names = "io", "core";
interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled"; status = "disabled";
...@@ -105,14 +105,14 @@ local-timer@ad0600 { ...@@ -105,14 +105,14 @@ local-timer@ad0600 {
compatible = "arm,cortex-a9-twd-timer"; compatible = "arm,cortex-a9-twd-timer";
reg = <0xad0600 0x20>; reg = <0xad0600 0x20>;
interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(1) | IRQ_TYPE_LEVEL_HIGH)>; interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(1) | IRQ_TYPE_LEVEL_HIGH)>;
clocks = <&chip CLKID_TWD>; clocks = <&chip_clk CLKID_TWD>;
}; };
usb_phy0: usb-phy@b74000 { usb_phy0: usb-phy@b74000 {
compatible = "marvell,berlin2cd-usb-phy"; compatible = "marvell,berlin2cd-usb-phy";
reg = <0xb74000 0x128>; reg = <0xb74000 0x128>;
#phy-cells = <0>; #phy-cells = <0>;
resets = <&chip 0x178 23>; resets = <&chip_rst 0x178 23>;
status = "disabled"; status = "disabled";
}; };
...@@ -120,14 +120,14 @@ usb_phy1: usb-phy@b78000 { ...@@ -120,14 +120,14 @@ usb_phy1: usb-phy@b78000 {
compatible = "marvell,berlin2cd-usb-phy"; compatible = "marvell,berlin2cd-usb-phy";
reg = <0xb78000 0x128>; reg = <0xb78000 0x128>;
#phy-cells = <0>; #phy-cells = <0>;
resets = <&chip 0x178 24>; resets = <&chip_rst 0x178 24>;
status = "disabled"; status = "disabled";
}; };
eth1: ethernet@b90000 { eth1: ethernet@b90000 {
compatible = "marvell,pxa168-eth"; compatible = "marvell,pxa168-eth";
reg = <0xb90000 0x10000>; reg = <0xb90000 0x10000>;
clocks = <&chip CLKID_GETH1>; clocks = <&chip_clk CLKID_GETH1>;
interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
/* set by bootloader */ /* set by bootloader */
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
...@@ -145,7 +145,7 @@ ethphy1: ethernet-phy@0 { ...@@ -145,7 +145,7 @@ ethphy1: ethernet-phy@0 {
eth0: ethernet@e50000 { eth0: ethernet@e50000 {
compatible = "marvell,pxa168-eth"; compatible = "marvell,pxa168-eth";
reg = <0xe50000 0x10000>; reg = <0xe50000 0x10000>;
clocks = <&chip CLKID_GETH0>; clocks = <&chip_clk CLKID_GETH0>;
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
/* set by bootloader */ /* set by bootloader */
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
...@@ -244,7 +244,7 @@ timer0: timer@2c00 { ...@@ -244,7 +244,7 @@ timer0: timer@2c00 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c00 0x14>; reg = <0x2c00 0x14>;
interrupts = <8>; interrupts = <8>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "okay"; status = "okay";
}; };
...@@ -253,7 +253,7 @@ timer1: timer@2c14 { ...@@ -253,7 +253,7 @@ timer1: timer@2c14 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c14 0x14>; reg = <0x2c14 0x14>;
interrupts = <9>; interrupts = <9>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "okay"; status = "okay";
}; };
...@@ -262,7 +262,7 @@ timer2: timer@2c28 { ...@@ -262,7 +262,7 @@ timer2: timer@2c28 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c28 0x14>; reg = <0x2c28 0x14>;
interrupts = <10>; interrupts = <10>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -271,7 +271,7 @@ timer3: timer@2c3c { ...@@ -271,7 +271,7 @@ timer3: timer@2c3c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c3c 0x14>; reg = <0x2c3c 0x14>;
interrupts = <11>; interrupts = <11>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -280,7 +280,7 @@ timer4: timer@2c50 { ...@@ -280,7 +280,7 @@ timer4: timer@2c50 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c50 0x14>; reg = <0x2c50 0x14>;
interrupts = <12>; interrupts = <12>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -289,7 +289,7 @@ timer5: timer@2c64 { ...@@ -289,7 +289,7 @@ timer5: timer@2c64 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c64 0x14>; reg = <0x2c64 0x14>;
interrupts = <13>; interrupts = <13>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -298,7 +298,7 @@ timer6: timer@2c78 { ...@@ -298,7 +298,7 @@ timer6: timer@2c78 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c78 0x14>; reg = <0x2c78 0x14>;
interrupts = <14>; interrupts = <14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -307,7 +307,7 @@ timer7: timer@2c8c { ...@@ -307,7 +307,7 @@ timer7: timer@2c8c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c8c 0x14>; reg = <0x2c8c 0x14>;
interrupts = <15>; interrupts = <15>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -323,16 +323,28 @@ aic: interrupt-controller@3000 { ...@@ -323,16 +323,28 @@ aic: interrupt-controller@3000 {
}; };
chip: chip-control@ea0000 { chip: chip-control@ea0000 {
compatible = "marvell,berlin2cd-chip-ctrl"; compatible = "simple-mfd", "syscon";
#clock-cells = <1>;
#reset-cells = <2>;
reg = <0xea0000 0x400>; reg = <0xea0000 0x400>;
clocks = <&refclk>;
clock-names = "refclk";
uart0_pmux: uart0-pmux { chip_clk: clock {
groups = "G6"; compatible = "marvell,berlin2-clk";
function = "uart0"; #clock-cells = <1>;
clocks = <&refclk>;
clock-names = "refclk";
};
soc_pinctrl: pin-controller {
compatible = "marvell,berlin2cd-soc-pinctrl";
uart0_pmux: uart0-pmux {
groups = "G6";
function = "uart0";
};
};
chip_rst: reset {
compatible = "marvell,berlin2-reset";
#reset-cells = <2>;
}; };
}; };
...@@ -340,7 +352,7 @@ usb0: usb@ed0000 { ...@@ -340,7 +352,7 @@ usb0: usb@ed0000 {
compatible = "chipidea,usb2"; compatible = "chipidea,usb2";
reg = <0xed0000 0x200>; reg = <0xed0000 0x200>;
interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_USB0>; clocks = <&chip_clk CLKID_USB0>;
phys = <&usb_phy0>; phys = <&usb_phy0>;
phy-names = "usb-phy"; phy-names = "usb-phy";
status = "disabled"; status = "disabled";
...@@ -350,7 +362,7 @@ usb1: usb@ee0000 { ...@@ -350,7 +362,7 @@ usb1: usb@ee0000 {
compatible = "chipidea,usb2"; compatible = "chipidea,usb2";
reg = <0xee0000 0x200>; reg = <0xee0000 0x200>;
interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_USB1>; clocks = <&chip_clk CLKID_USB1>;
phys = <&usb_phy1>; phys = <&usb_phy1>;
phy-names = "usb-phy"; phy-names = "usb-phy";
status = "disabled"; status = "disabled";
...@@ -417,8 +429,12 @@ uart1: serial@a000 { ...@@ -417,8 +429,12 @@ uart1: serial@a000 {
}; };
sysctrl: system-controller@d000 { sysctrl: system-controller@d000 {
compatible = "marvell,berlin2cd-system-ctrl"; compatible = "simple-mfd", "syscon";
reg = <0xd000 0x100>; reg = <0xd000 0x100>;
sys_pinctrl: pin-controller {
compatible = "marvell,berlin2cd-system-pinctrl";
};
}; };
sic: interrupt-controller@e000 { sic: interrupt-controller@e000 {
......
...@@ -102,7 +102,7 @@ pmu { ...@@ -102,7 +102,7 @@ pmu {
sdhci0: sdhci@ab0000 { sdhci0: sdhci@ab0000 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab0000 0x200>; reg = <0xab0000 0x200>;
clocks = <&chip CLKID_SDIO1XIN>; clocks = <&chip_clk CLKID_SDIO1XIN>;
interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled"; status = "disabled";
}; };
...@@ -110,7 +110,7 @@ sdhci0: sdhci@ab0000 { ...@@ -110,7 +110,7 @@ sdhci0: sdhci@ab0000 {
sdhci1: sdhci@ab0800 { sdhci1: sdhci@ab0800 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab0800 0x200>; reg = <0xab0800 0x200>;
clocks = <&chip CLKID_SDIO1XIN>; clocks = <&chip_clk CLKID_SDIO1XIN>;
interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled"; status = "disabled";
}; };
...@@ -119,7 +119,7 @@ sdhci2: sdhci@ab1000 { ...@@ -119,7 +119,7 @@ sdhci2: sdhci@ab1000 {
compatible = "mrvl,pxav3-mmc"; compatible = "mrvl,pxav3-mmc";
reg = <0xab1000 0x200>; reg = <0xab1000 0x200>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_NFC_ECC>, <&chip CLKID_NFC>; clocks = <&chip_clk CLKID_NFC_ECC>, <&chip_clk CLKID_NFC>;
clock-names = "io", "core"; clock-names = "io", "core";
status = "disabled"; status = "disabled";
}; };
...@@ -140,7 +140,7 @@ scu: snoop-control-unit@ad0000 { ...@@ -140,7 +140,7 @@ scu: snoop-control-unit@ad0000 {
local-timer@ad0600 { local-timer@ad0600 {
compatible = "arm,cortex-a9-twd-timer"; compatible = "arm,cortex-a9-twd-timer";
reg = <0xad0600 0x20>; reg = <0xad0600 0x20>;
clocks = <&chip CLKID_TWD>; clocks = <&chip_clk CLKID_TWD>;
interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>; interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
}; };
...@@ -155,7 +155,7 @@ usb_phy2: phy@a2f400 { ...@@ -155,7 +155,7 @@ usb_phy2: phy@a2f400 {
compatible = "marvell,berlin2-usb-phy"; compatible = "marvell,berlin2-usb-phy";
reg = <0xa2f400 0x128>; reg = <0xa2f400 0x128>;
#phy-cells = <0>; #phy-cells = <0>;
resets = <&chip 0x104 14>; resets = <&chip_rst 0x104 14>;
status = "disabled"; status = "disabled";
}; };
...@@ -163,7 +163,7 @@ usb2: usb@a30000 { ...@@ -163,7 +163,7 @@ usb2: usb@a30000 {
compatible = "chipidea,usb2"; compatible = "chipidea,usb2";
reg = <0xa30000 0x10000>; reg = <0xa30000 0x10000>;
interrupts = <GIC_SPI 52 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 52 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_USB2>; clocks = <&chip_clk CLKID_USB2>;
phys = <&usb_phy2>; phys = <&usb_phy2>;
phy-names = "usb-phy"; phy-names = "usb-phy";
status = "disabled"; status = "disabled";
...@@ -173,7 +173,7 @@ usb_phy0: phy@b74000 { ...@@ -173,7 +173,7 @@ usb_phy0: phy@b74000 {
compatible = "marvell,berlin2-usb-phy"; compatible = "marvell,berlin2-usb-phy";
reg = <0xb74000 0x128>; reg = <0xb74000 0x128>;
#phy-cells = <0>; #phy-cells = <0>;
resets = <&chip 0x104 12>; resets = <&chip_rst 0x104 12>;
status = "disabled"; status = "disabled";
}; };
...@@ -181,14 +181,14 @@ usb_phy1: phy@b78000 { ...@@ -181,14 +181,14 @@ usb_phy1: phy@b78000 {
compatible = "marvell,berlin2-usb-phy"; compatible = "marvell,berlin2-usb-phy";
reg = <0xb78000 0x128>; reg = <0xb78000 0x128>;
#phy-cells = <0>; #phy-cells = <0>;
resets = <&chip 0x104 13>; resets = <&chip_rst 0x104 13>;
status = "disabled"; status = "disabled";
}; };
eth0: ethernet@b90000 { eth0: ethernet@b90000 {
compatible = "marvell,pxa168-eth"; compatible = "marvell,pxa168-eth";
reg = <0xb90000 0x10000>; reg = <0xb90000 0x10000>;
clocks = <&chip CLKID_GETH0>; clocks = <&chip_clk CLKID_GETH0>;
interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
/* set by bootloader */ /* set by bootloader */
local-mac-address = [00 00 00 00 00 00]; local-mac-address = [00 00 00 00 00 00];
...@@ -295,7 +295,7 @@ i2c0: i2c@1400 { ...@@ -295,7 +295,7 @@ i2c0: i2c@1400 {
reg = <0x1400 0x100>; reg = <0x1400 0x100>;
interrupt-parent = <&aic>; interrupt-parent = <&aic>;
interrupts = <4>; interrupts = <4>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
pinctrl-0 = <&twsi0_pmux>; pinctrl-0 = <&twsi0_pmux>;
pinctrl-names = "default"; pinctrl-names = "default";
status = "disabled"; status = "disabled";
...@@ -308,7 +308,7 @@ i2c1: i2c@1800 { ...@@ -308,7 +308,7 @@ i2c1: i2c@1800 {
reg = <0x1800 0x100>; reg = <0x1800 0x100>;
interrupt-parent = <&aic>; interrupt-parent = <&aic>;
interrupts = <5>; interrupts = <5>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
pinctrl-0 = <&twsi1_pmux>; pinctrl-0 = <&twsi1_pmux>;
pinctrl-names = "default"; pinctrl-names = "default";
status = "disabled"; status = "disabled";
...@@ -317,7 +317,7 @@ i2c1: i2c@1800 { ...@@ -317,7 +317,7 @@ i2c1: i2c@1800 {
timer0: timer@2c00 { timer0: timer@2c00 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c00 0x14>; reg = <0x2c00 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
interrupts = <8>; interrupts = <8>;
}; };
...@@ -325,14 +325,14 @@ timer0: timer@2c00 { ...@@ -325,14 +325,14 @@ timer0: timer@2c00 {
timer1: timer@2c14 { timer1: timer@2c14 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c14 0x14>; reg = <0x2c14 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
}; };
timer2: timer@2c28 { timer2: timer@2c28 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c28 0x14>; reg = <0x2c28 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -340,7 +340,7 @@ timer2: timer@2c28 { ...@@ -340,7 +340,7 @@ timer2: timer@2c28 {
timer3: timer@2c3c { timer3: timer@2c3c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c3c 0x14>; reg = <0x2c3c 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -348,7 +348,7 @@ timer3: timer@2c3c { ...@@ -348,7 +348,7 @@ timer3: timer@2c3c {
timer4: timer@2c50 { timer4: timer@2c50 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c50 0x14>; reg = <0x2c50 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -356,7 +356,7 @@ timer4: timer@2c50 { ...@@ -356,7 +356,7 @@ timer4: timer@2c50 {
timer5: timer@2c64 { timer5: timer@2c64 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c64 0x14>; reg = <0x2c64 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -364,7 +364,7 @@ timer5: timer@2c64 { ...@@ -364,7 +364,7 @@ timer5: timer@2c64 {
timer6: timer@2c78 { timer6: timer@2c78 {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c78 0x14>; reg = <0x2c78 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -372,7 +372,7 @@ timer6: timer@2c78 { ...@@ -372,7 +372,7 @@ timer6: timer@2c78 {
timer7: timer@2c8c { timer7: timer@2c8c {
compatible = "snps,dw-apb-timer"; compatible = "snps,dw-apb-timer";
reg = <0x2c8c 0x14>; reg = <0x2c8c 0x14>;
clocks = <&chip CLKID_CFG>; clocks = <&chip_clk CLKID_CFG>;
clock-names = "timer"; clock-names = "timer";
status = "disabled"; status = "disabled";
}; };
...@@ -388,21 +388,33 @@ aic: interrupt-controller@3800 { ...@@ -388,21 +388,33 @@ aic: interrupt-controller@3800 {
}; };
chip: chip-control@ea0000 { chip: chip-control@ea0000 {
compatible = "marvell,berlin2q-chip-ctrl"; compatible = "simple-mfd", "syscon";
#clock-cells = <1>;
#reset-cells = <2>;
reg = <0xea0000 0x400>, <0xdd0170 0x10>; reg = <0xea0000 0x400>, <0xdd0170 0x10>;
clocks = <&refclk>;
clock-names = "refclk";
twsi0_pmux: twsi0-pmux { chip_clk: clock {
groups = "G6"; compatible = "marvell,berlin2q-clk";
function = "twsi0"; #clock-cells = <1>;
clocks = <&refclk>;
clock-names = "refclk";
}; };
twsi1_pmux: twsi1-pmux { soc_pinctrl: pin-controller {
groups = "G7"; compatible = "marvell,berlin2q-soc-pinctrl";
function = "twsi1";
twsi0_pmux: twsi0-pmux {
groups = "G6";
function = "twsi0";
};
twsi1_pmux: twsi1-pmux {
groups = "G7";
function = "twsi1";
};
};
chip_rst: reset {
compatible = "marvell,berlin2-reset";
#reset-cells = <2>;
}; };
}; };
...@@ -410,7 +422,7 @@ ahci: sata@e90000 { ...@@ -410,7 +422,7 @@ ahci: sata@e90000 {
compatible = "marvell,berlin2q-ahci", "generic-ahci"; compatible = "marvell,berlin2q-ahci", "generic-ahci";
reg = <0xe90000 0x1000>; reg = <0xe90000 0x1000>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_SATA>; clocks = <&chip_clk CLKID_SATA>;
#address-cells = <1>; #address-cells = <1>;
#size-cells = <0>; #size-cells = <0>;
...@@ -430,7 +442,7 @@ sata1: sata-port@1 { ...@@ -430,7 +442,7 @@ sata1: sata-port@1 {
sata_phy: phy@e900a0 { sata_phy: phy@e900a0 {
compatible = "marvell,berlin2q-sata-phy"; compatible = "marvell,berlin2q-sata-phy";
reg = <0xe900a0 0x200>; reg = <0xe900a0 0x200>;
clocks = <&chip CLKID_SATA>; clocks = <&chip_clk CLKID_SATA>;
#address-cells = <1>; #address-cells = <1>;
#size-cells = <0>; #size-cells = <0>;
#phy-cells = <1>; #phy-cells = <1>;
...@@ -449,7 +461,7 @@ usb0: usb@ed0000 { ...@@ -449,7 +461,7 @@ usb0: usb@ed0000 {
compatible = "chipidea,usb2"; compatible = "chipidea,usb2";
reg = <0xed0000 0x10000>; reg = <0xed0000 0x10000>;
interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_USB0>; clocks = <&chip_clk CLKID_USB0>;
phys = <&usb_phy0>; phys = <&usb_phy0>;
phy-names = "usb-phy"; phy-names = "usb-phy";
status = "disabled"; status = "disabled";
...@@ -459,7 +471,7 @@ usb1: usb@ee0000 { ...@@ -459,7 +471,7 @@ usb1: usb@ee0000 {
compatible = "chipidea,usb2"; compatible = "chipidea,usb2";
reg = <0xee0000 0x10000>; reg = <0xee0000 0x10000>;
interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>; interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&chip CLKID_USB1>; clocks = <&chip_clk CLKID_USB1>;
phys = <&usb_phy1>; phys = <&usb_phy1>;
phy-names = "usb-phy"; phy-names = "usb-phy";
status = "disabled"; status = "disabled";
...@@ -554,27 +566,37 @@ porte: gpio-port@4 { ...@@ -554,27 +566,37 @@ porte: gpio-port@4 {
}; };
sysctrl: pin-controller@d000 { sysctrl: pin-controller@d000 {
compatible = "marvell,berlin2q-system-ctrl"; compatible = "simple-mfd", "syscon";
reg = <0xd000 0x100>; reg = <0xd000 0x100>;
uart0_pmux: uart0-pmux { sys_pinctrl: pin-controller {
groups = "GSM12"; compatible = "marvell,berlin2q-system-pinctrl";
function = "uart0";
};
uart1_pmux: uart1-pmux { uart0_pmux: uart0-pmux {
groups = "GSM14"; groups = "GSM12";
function = "uart1"; function = "uart0";
}; };
uart1_pmux: uart1-pmux {
groups = "GSM14";
function = "uart1";
};
twsi2_pmux: twsi2-pmux {
groups = "GSM13";
function = "twsi2";
};
twsi2_pmux: twsi2-pmux { twsi3_pmux: twsi3-pmux {
groups = "GSM13"; groups = "GSM14";
function = "twsi2"; function = "twsi3";
};
}; };
twsi3_pmux: twsi3-pmux { adc: adc {
groups = "GSM14"; compatible = "marvell,berlin2-adc";
function = "twsi3"; interrupts = <12>, <14>;
interrupt-names = "adc", "tsen";
}; };
}; };
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
/ { / {
core-module@10000000 { core-module@10000000 {
compatible = "arm,core-module-integrator", "syscon"; compatible = "arm,core-module-integrator", "syscon", "simple-mfd";
reg = <0x10000000 0x200>; reg = <0x10000000 0x200>;
/* Use core module LED to indicate CPU load */ /* Use core module LED to indicate CPU load */
...@@ -95,7 +95,7 @@ kmi@19000000 { ...@@ -95,7 +95,7 @@ kmi@19000000 {
syscon { syscon {
/* Debug registers mapped as syscon */ /* Debug registers mapped as syscon */
compatible = "syscon"; compatible = "syscon", "simple-mfd";
reg = <0x1a000000 0x10>; reg = <0x1a000000 0x10>;
led@04.0 { led@04.0 {
......
...@@ -6,6 +6,7 @@ menuconfig ARCH_BERLIN ...@@ -6,6 +6,7 @@ menuconfig ARCH_BERLIN
select DW_APB_ICTL select DW_APB_ICTL
select DW_APB_TIMER_OF select DW_APB_TIMER_OF
select GENERIC_IRQ_CHIP select GENERIC_IRQ_CHIP
select MFD_SYSCON
select PINCTRL select PINCTRL
if ARCH_BERLIN if ARCH_BERLIN
......
...@@ -138,6 +138,74 @@ v2m_sysctl: sysctl@020000 { ...@@ -138,6 +138,74 @@ v2m_sysctl: sysctl@020000 {
clock-output-names = "timerclken0", "timerclken1", "timerclken2", "timerclken3"; clock-output-names = "timerclken0", "timerclken1", "timerclken2", "timerclken3";
}; };
apbregs@010000 {
compatible = "syscon", "simple-mfd";
reg = <0x010000 0x1000>;
led@08.0 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x01>;
label = "vexpress:0";
linux,default-trigger = "heartbeat";
default-state = "on";
};
led@08.1 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x02>;
label = "vexpress:1";
linux,default-trigger = "mmc0";
default-state = "off";
};
led@08.2 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x04>;
label = "vexpress:2";
linux,default-trigger = "cpu0";
default-state = "off";
};
led@08.3 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x08>;
label = "vexpress:3";
linux,default-trigger = "cpu1";
default-state = "off";
};
led@08.4 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x10>;
label = "vexpress:4";
linux,default-trigger = "cpu2";
default-state = "off";
};
led@08.5 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x20>;
label = "vexpress:5";
linux,default-trigger = "cpu3";
default-state = "off";
};
led@08.6 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x40>;
label = "vexpress:6";
default-state = "off";
};
led@08.7 {
compatible = "register-bit-led";
offset = <0x08>;
mask = <0x80>;
label = "vexpress:7";
default-state = "off";
};
};
mmci@050000 { mmci@050000 {
compatible = "arm,pl180", "arm,primecell"; compatible = "arm,pl180", "arm,primecell";
reg = <0x050000 0x1000>; reg = <0x050000 0x1000>;
......
...@@ -139,6 +139,12 @@ CONFIG_MMC_ARMMMCI=y ...@@ -139,6 +139,12 @@ CONFIG_MMC_ARMMMCI=y
CONFIG_MMC_SDHCI=y CONFIG_MMC_SDHCI=y
CONFIG_MMC_SDHCI_PLTFM=y CONFIG_MMC_SDHCI_PLTFM=y
CONFIG_MMC_SPI=y CONFIG_MMC_SPI=y
CONFIG_NEW_LEDS=y
CONFIG_LEDS_CLASS=y
CONFIG_LEDS_SYSCON=y
CONFIG_LEDS_TRIGGERS=y
CONFIG_LEDS_TRIGGER_HEARTBEAT=y
CONFIG_LEDS_TRIGGER_CPU=y
CONFIG_RTC_CLASS=y CONFIG_RTC_CLASS=y
CONFIG_RTC_DRV_EFI=y CONFIG_RTC_DRV_EFI=y
CONFIG_RTC_DRV_XGENE=y CONFIG_RTC_DRV_XGENE=y
......
...@@ -7,21 +7,24 @@ menu "Bus devices" ...@@ -7,21 +7,24 @@ menu "Bus devices"
config ARM_CCI config ARM_CCI
bool bool
config ARM_CCI_PMU
bool
select ARM_CCI
config ARM_CCI400_COMMON config ARM_CCI400_COMMON
bool bool
select ARM_CCI select ARM_CCI
config ARM_CCI400_PMU config ARM_CCI400_PMU
bool "ARM CCI400 PMU support" bool "ARM CCI400 PMU support"
default y depends on (ARM && CPU_V7) || ARM64
depends on ARM || ARM64 depends on PERF_EVENTS
depends on HW_PERF_EVENTS
select ARM_CCI400_COMMON select ARM_CCI400_COMMON
select ARM_CCI_PMU
help help
Support for PMU events monitoring on the ARM CCI cache coherent Support for PMU events monitoring on the ARM CCI-400 (cache coherent
interconnect. interconnect). CCI-400 supports counting events related to the
connected slave/master interfaces.
If unsure, say Y
config ARM_CCI400_PORT_CTRL config ARM_CCI400_PORT_CTRL
bool bool
...@@ -31,6 +34,20 @@ config ARM_CCI400_PORT_CTRL ...@@ -31,6 +34,20 @@ config ARM_CCI400_PORT_CTRL
Low level power management driver for CCI400 cache coherent Low level power management driver for CCI400 cache coherent
interconnect for ARM platforms. interconnect for ARM platforms.
config ARM_CCI500_PMU
bool "ARM CCI500 PMU support"
default y
depends on (ARM && CPU_V7) || ARM64
depends on PERF_EVENTS
select ARM_CCI_PMU
help
Support for PMU events monitoring on the ARM CCI-500 cache coherent
interconnect. CCI-500 provides 8 independent event counters, which
can count events pertaining to the slave/master interfaces as well
as the internal events to the CCI.
If unsure, say Y
config ARM_CCN config ARM_CCN
bool "ARM CCN driver support" bool "ARM CCN driver support"
depends on ARM || ARM64 depends on ARM || ARM64
......
...@@ -51,13 +51,16 @@ static const struct cci_nb_ports cci400_ports = { ...@@ -51,13 +51,16 @@ static const struct cci_nb_ports cci400_ports = {
static const struct of_device_id arm_cci_matches[] = { static const struct of_device_id arm_cci_matches[] = {
#ifdef CONFIG_ARM_CCI400_COMMON #ifdef CONFIG_ARM_CCI400_COMMON
{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA }, {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
#endif
#ifdef CONFIG_ARM_CCI500_PMU
{ .compatible = "arm,cci-500", },
#endif #endif
{}, {},
}; };
#ifdef CONFIG_ARM_CCI400_PMU #ifdef CONFIG_ARM_CCI_PMU
#define DRIVER_NAME "CCI-400" #define DRIVER_NAME "ARM-CCI"
#define DRIVER_NAME_PMU DRIVER_NAME " PMU" #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
#define CCI_PMCR 0x0100 #define CCI_PMCR 0x0100
...@@ -77,20 +80,21 @@ static const struct of_device_id arm_cci_matches[] = { ...@@ -77,20 +80,21 @@ static const struct of_device_id arm_cci_matches[] = {
#define CCI_PMU_OVRFLW_FLAG 1 #define CCI_PMU_OVRFLW_FLAG 1
#define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K) #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
#define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
#define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
#define CCI_PMU_EVENT_MASK 0xffUL #define CCI_PMU_MAX_HW_CNTRS(model) \
#define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
#define CCI_PMU_EVENT_CODE(event) (event & 0x1f)
#define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */
/* Types of interfaces that can generate events */ /* Types of interfaces that can generate events */
enum { enum {
CCI_IF_SLAVE, CCI_IF_SLAVE,
CCI_IF_MASTER, CCI_IF_MASTER,
#ifdef CONFIG_ARM_CCI500_PMU
CCI_IF_GLOBAL,
#endif
CCI_IF_MAX, CCI_IF_MAX,
}; };
...@@ -100,14 +104,30 @@ struct event_range { ...@@ -100,14 +104,30 @@ struct event_range {
}; };
struct cci_pmu_hw_events { struct cci_pmu_hw_events {
struct perf_event *events[CCI_PMU_MAX_HW_EVENTS]; struct perf_event **events;
unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)]; unsigned long *used_mask;
raw_spinlock_t pmu_lock; raw_spinlock_t pmu_lock;
}; };
struct cci_pmu;
/*
* struct cci_pmu_model:
* @fixed_hw_cntrs - Number of fixed event counters
* @num_hw_cntrs - Maximum number of programmable event counters
* @cntr_size - Size of an event counter mapping
*/
struct cci_pmu_model { struct cci_pmu_model {
char *name; char *name;
u32 fixed_hw_cntrs;
u32 num_hw_cntrs;
u32 cntr_size;
u64 nformat_attrs;
u64 nevent_attrs;
struct dev_ext_attribute *format_attrs;
struct dev_ext_attribute *event_attrs;
struct event_range event_ranges[CCI_IF_MAX]; struct event_range event_ranges[CCI_IF_MAX];
int (*validate_hw_event)(struct cci_pmu *, unsigned long);
int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
}; };
static struct cci_pmu_model cci_pmu_models[]; static struct cci_pmu_model cci_pmu_models[];
...@@ -116,33 +136,59 @@ struct cci_pmu { ...@@ -116,33 +136,59 @@ struct cci_pmu {
void __iomem *base; void __iomem *base;
struct pmu pmu; struct pmu pmu;
int nr_irqs; int nr_irqs;
int irqs[CCI_PMU_MAX_HW_EVENTS]; int *irqs;
unsigned long active_irqs; unsigned long active_irqs;
const struct cci_pmu_model *model; const struct cci_pmu_model *model;
struct cci_pmu_hw_events hw_events; struct cci_pmu_hw_events hw_events;
struct platform_device *plat_device; struct platform_device *plat_device;
int num_events; int num_cntrs;
atomic_t active_events; atomic_t active_events;
struct mutex reserve_mutex; struct mutex reserve_mutex;
struct notifier_block cpu_nb;
cpumask_t cpus; cpumask_t cpus;
}; };
static struct cci_pmu *pmu;
#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
enum cci_models {
#ifdef CONFIG_ARM_CCI400_PMU
CCI400_R0,
CCI400_R1,
#endif
#ifdef CONFIG_ARM_CCI500_PMU
CCI500_R0,
#endif
CCI_MODEL_MAX
};
static ssize_t cci_pmu_format_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t cci_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }
#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
/* CCI400 PMU Specific definitions */
#ifdef CONFIG_ARM_CCI400_PMU
/* Port ids */ /* Port ids */
#define CCI_PORT_S0 0 #define CCI400_PORT_S0 0
#define CCI_PORT_S1 1 #define CCI400_PORT_S1 1
#define CCI_PORT_S2 2 #define CCI400_PORT_S2 2
#define CCI_PORT_S3 3 #define CCI400_PORT_S3 3
#define CCI_PORT_S4 4 #define CCI400_PORT_S4 4
#define CCI_PORT_M0 5 #define CCI400_PORT_M0 5
#define CCI_PORT_M1 6 #define CCI400_PORT_M1 6
#define CCI_PORT_M2 7 #define CCI400_PORT_M2 7
#define CCI_REV_R0 0 #define CCI400_R1_PX 5
#define CCI_REV_R1 1
#define CCI_REV_R1_PX 5
/* /*
* Instead of an event id to monitor CCI cycles, a dedicated counter is * Instead of an event id to monitor CCI cycles, a dedicated counter is
...@@ -150,12 +196,11 @@ static struct cci_pmu *pmu; ...@@ -150,12 +196,11 @@ static struct cci_pmu *pmu;
* make use of this event in hardware. * make use of this event in hardware.
*/ */
enum cci400_perf_events { enum cci400_perf_events {
CCI_PMU_CYCLES = 0xff CCI400_PMU_CYCLES = 0xff
}; };
#define CCI_PMU_CYCLE_CNTR_IDX 0 #define CCI400_PMU_CYCLE_CNTR_IDX 0
#define CCI_PMU_CNTR0_IDX 1 #define CCI400_PMU_CNTR0_IDX 1
#define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
/* /*
* CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
...@@ -169,37 +214,173 @@ enum cci400_perf_events { ...@@ -169,37 +214,173 @@ enum cci400_perf_events {
* the different revisions and are used to validate the event to be monitored. * the different revisions and are used to validate the event to be monitored.
*/ */
#define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00 #define CCI400_PMU_EVENT_MASK 0xffUL
#define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13 #define CCI400_PMU_EVENT_SOURCE_SHIFT 5
#define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7
#define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a #define CCI400_PMU_EVENT_CODE_SHIFT 0
#define CCI400_PMU_EVENT_CODE_MASK 0x1f
#define CCI400_PMU_EVENT_SOURCE(event) \
((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
CCI400_PMU_EVENT_SOURCE_MASK)
#define CCI400_PMU_EVENT_CODE(event) \
((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
#define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
#define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
#define CCI400_R0_MASTER_PORT_MIN_EV 0x14
#define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
#define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
#define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
#define CCI400_R1_MASTER_PORT_MIN_EV 0x00
#define CCI400_R1_MASTER_PORT_MAX_EV 0x11
#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
(unsigned long)_config)
static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
static struct dev_ext_attribute cci400_pmu_format_attrs[] = {
CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
};
static struct dev_ext_attribute cci400_r0_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
/* Special event for cycles counter */
CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
};
static struct dev_ext_attribute cci400_r1_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
/* Special event for cycles counter */
CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
};
#define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
#define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14 struct device_attribute *attr, char *buf)
#define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00 {
#define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11 struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
}
static int pmu_validate_hw_event(unsigned long hw_event) static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
struct cci_pmu_hw_events *hw,
unsigned long cci_event)
{ {
u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event); int idx;
u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
/* cycles event idx is fixed */
if (cci_event == CCI400_PMU_CYCLES) {
if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
return -EAGAIN;
return CCI400_PMU_CYCLE_CNTR_IDX;
}
for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
if (!test_and_set_bit(idx, hw->used_mask))
return idx;
/* No counters available */
return -EAGAIN;
}
static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
{
u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
int if_type; int if_type;
if (hw_event & ~CCI_PMU_EVENT_MASK) if (hw_event & ~CCI400_PMU_EVENT_MASK)
return -ENOENT; return -ENOENT;
if (hw_event == CCI400_PMU_CYCLES)
return hw_event;
switch (ev_source) { switch (ev_source) {
case CCI_PORT_S0: case CCI400_PORT_S0:
case CCI_PORT_S1: case CCI400_PORT_S1:
case CCI_PORT_S2: case CCI400_PORT_S2:
case CCI_PORT_S3: case CCI400_PORT_S3:
case CCI_PORT_S4: case CCI400_PORT_S4:
/* Slave Interface */ /* Slave Interface */
if_type = CCI_IF_SLAVE; if_type = CCI_IF_SLAVE;
break; break;
case CCI_PORT_M0: case CCI400_PORT_M0:
case CCI_PORT_M1: case CCI400_PORT_M1:
case CCI_PORT_M2: case CCI400_PORT_M2:
/* Master Interface */ /* Master Interface */
if_type = CCI_IF_MASTER; if_type = CCI_IF_MASTER;
break; break;
...@@ -207,87 +388,291 @@ static int pmu_validate_hw_event(unsigned long hw_event) ...@@ -207,87 +388,291 @@ static int pmu_validate_hw_event(unsigned long hw_event)
return -ENOENT; return -ENOENT;
} }
if (ev_code >= pmu->model->event_ranges[if_type].min && if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
ev_code <= pmu->model->event_ranges[if_type].max) ev_code <= cci_pmu->model->event_ranges[if_type].max)
return hw_event; return hw_event;
return -ENOENT; return -ENOENT;
} }
static int probe_cci_revision(void) static int probe_cci400_revision(void)
{ {
int rev; int rev;
rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
rev >>= CCI_PID2_REV_SHIFT; rev >>= CCI_PID2_REV_SHIFT;
if (rev < CCI_REV_R1_PX) if (rev < CCI400_R1_PX)
return CCI_REV_R0; return CCI400_R0;
else else
return CCI_REV_R1; return CCI400_R1;
} }
static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
{ {
if (platform_has_secure_cci_access()) if (platform_has_secure_cci_access())
return &cci_pmu_models[probe_cci_revision()]; return &cci_pmu_models[probe_cci400_revision()];
return NULL; return NULL;
} }
#else /* !CONFIG_ARM_CCI400_PMU */
static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
{
return NULL;
}
#endif /* CONFIG_ARM_CCI400_PMU */
#ifdef CONFIG_ARM_CCI500_PMU
/*
* CCI500 provides 8 independent event counters that can count
* any of the events available.
*
* CCI500 PMU event id is an 9-bit value made of two parts.
* bits [8:5] - Source for the event
* 0x0-0x6 - Slave interfaces
* 0x8-0xD - Master interfaces
* 0xf - Global Events
* 0x7,0xe - Reserved
*
* bits [4:0] - Event code (specific to type of interface)
*/
/* Port ids */
#define CCI500_PORT_S0 0x0
#define CCI500_PORT_S1 0x1
#define CCI500_PORT_S2 0x2
#define CCI500_PORT_S3 0x3
#define CCI500_PORT_S4 0x4
#define CCI500_PORT_S5 0x5
#define CCI500_PORT_S6 0x6
#define CCI500_PORT_M0 0x8
#define CCI500_PORT_M1 0x9
#define CCI500_PORT_M2 0xa
#define CCI500_PORT_M3 0xb
#define CCI500_PORT_M4 0xc
#define CCI500_PORT_M5 0xd
#define CCI500_PORT_GLOBAL 0xf
#define CCI500_PMU_EVENT_MASK 0x1ffUL
#define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5
#define CCI500_PMU_EVENT_SOURCE_MASK 0xf
#define CCI500_PMU_EVENT_CODE_SHIFT 0x0
#define CCI500_PMU_EVENT_CODE_MASK 0x1f
#define CCI500_PMU_EVENT_SOURCE(event) \
((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
#define CCI500_PMU_EVENT_CODE(event) \
((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
#define CCI500_SLAVE_PORT_MIN_EV 0x00
#define CCI500_SLAVE_PORT_MAX_EV 0x1f
#define CCI500_MASTER_PORT_MIN_EV 0x00
#define CCI500_MASTER_PORT_MAX_EV 0x06
#define CCI500_GLOBAL_PORT_MIN_EV 0x00
#define CCI500_GLOBAL_PORT_MAX_EV 0x0f
#define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
(unsigned long) _config)
static ssize_t cci500_pmu_global_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
static struct dev_ext_attribute cci500_pmu_format_attrs[] = {
CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
};
static struct dev_ext_attribute cci500_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
/* Global events */
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
};
static ssize_t cci500_pmu_global_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
/* Global events have single fixed source code */
return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
(unsigned long)eattr->var, CCI500_PORT_GLOBAL);
}
static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
unsigned long hw_event)
{
u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event);
u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event);
int if_type;
if (hw_event & ~CCI500_PMU_EVENT_MASK)
return -ENOENT;
switch (ev_source) {
case CCI500_PORT_S0:
case CCI500_PORT_S1:
case CCI500_PORT_S2:
case CCI500_PORT_S3:
case CCI500_PORT_S4:
case CCI500_PORT_S5:
case CCI500_PORT_S6:
if_type = CCI_IF_SLAVE;
break;
case CCI500_PORT_M0:
case CCI500_PORT_M1:
case CCI500_PORT_M2:
case CCI500_PORT_M3:
case CCI500_PORT_M4:
case CCI500_PORT_M5:
if_type = CCI_IF_MASTER;
break;
case CCI500_PORT_GLOBAL:
if_type = CCI_IF_GLOBAL;
break;
default:
return -ENOENT;
}
if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
ev_code <= cci_pmu->model->event_ranges[if_type].max)
return hw_event;
return -ENOENT;
}
#endif /* CONFIG_ARM_CCI500_PMU */
static ssize_t cci_pmu_format_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
}
static ssize_t cci_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
/* source parameter is mandatory for normal PMU events */
return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
(unsigned long)eattr->var);
}
static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
{ {
return CCI_PMU_CYCLE_CNTR_IDX <= idx && return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
idx <= CCI_PMU_CNTR_LAST(cci_pmu);
} }
static u32 pmu_read_register(int idx, unsigned int offset) static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
{ {
return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); return readl_relaxed(cci_pmu->base +
CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
} }
static void pmu_write_register(u32 value, int idx, unsigned int offset) static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
int idx, unsigned int offset)
{ {
return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); return writel_relaxed(value, cci_pmu->base +
CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
} }
static void pmu_disable_counter(int idx) static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
{ {
pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL); pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
} }
static void pmu_enable_counter(int idx) static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
{ {
pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL); pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
} }
static void pmu_set_event(int idx, unsigned long event) static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
{ {
pmu_write_register(event, idx, CCI_PMU_EVT_SEL); pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
} }
/*
* Returns the number of programmable counters actually implemented
* by the cci
*/
static u32 pmu_get_max_counters(void) static u32 pmu_get_max_counters(void)
{ {
u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) & return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
/* add 1 for cycle counter */
return n_cnts + 1;
} }
static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
{ {
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct hw_perf_event *hw_event = &event->hw; unsigned long cci_event = event->hw.config_base;
unsigned long cci_event = hw_event->config_base;
int idx; int idx;
if (cci_event == CCI_PMU_CYCLES) { if (cci_pmu->model->get_event_idx)
if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask)) return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
return -EAGAIN;
return CCI_PMU_CYCLE_CNTR_IDX; /* Generic code to find an unused idx from the mask */
} for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
if (!test_and_set_bit(idx, hw->used_mask)) if (!test_and_set_bit(idx, hw->used_mask))
return idx; return idx;
...@@ -297,18 +682,13 @@ static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *ev ...@@ -297,18 +682,13 @@ static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *ev
static int pmu_map_event(struct perf_event *event) static int pmu_map_event(struct perf_event *event)
{ {
int mapping; struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
unsigned long config = event->attr.config;
if (event->attr.type < PERF_TYPE_MAX) if (event->attr.type < PERF_TYPE_MAX ||
!cci_pmu->model->validate_hw_event)
return -ENOENT; return -ENOENT;
if (config == CCI_PMU_CYCLES) return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
mapping = config;
else
mapping = pmu_validate_hw_event(config);
return mapping;
} }
static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
...@@ -319,7 +699,7 @@ static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) ...@@ -319,7 +699,7 @@ static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
if (unlikely(!pmu_device)) if (unlikely(!pmu_device))
return -ENODEV; return -ENODEV;
if (pmu->nr_irqs < 1) { if (cci_pmu->nr_irqs < 1) {
dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
return -ENODEV; return -ENODEV;
} }
...@@ -331,16 +711,16 @@ static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) ...@@ -331,16 +711,16 @@ static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
* *
* This should allow handling of non-unique interrupt for the counters. * This should allow handling of non-unique interrupt for the counters.
*/ */
for (i = 0; i < pmu->nr_irqs; i++) { for (i = 0; i < cci_pmu->nr_irqs; i++) {
int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED, int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
"arm-cci-pmu", cci_pmu); "arm-cci-pmu", cci_pmu);
if (err) { if (err) {
dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
pmu->irqs[i]); cci_pmu->irqs[i]);
return err; return err;
} }
set_bit(i, &pmu->active_irqs); set_bit(i, &cci_pmu->active_irqs);
} }
return 0; return 0;
...@@ -350,11 +730,11 @@ static void pmu_free_irq(struct cci_pmu *cci_pmu) ...@@ -350,11 +730,11 @@ static void pmu_free_irq(struct cci_pmu *cci_pmu)
{ {
int i; int i;
for (i = 0; i < pmu->nr_irqs; i++) { for (i = 0; i < cci_pmu->nr_irqs; i++) {
if (!test_and_clear_bit(i, &pmu->active_irqs)) if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
continue; continue;
free_irq(pmu->irqs[i], cci_pmu); free_irq(cci_pmu->irqs[i], cci_pmu);
} }
} }
...@@ -369,7 +749,7 @@ static u32 pmu_read_counter(struct perf_event *event) ...@@ -369,7 +749,7 @@ static u32 pmu_read_counter(struct perf_event *event)
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
return 0; return 0;
} }
value = pmu_read_register(idx, CCI_PMU_CNTR); value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
return value; return value;
} }
...@@ -383,7 +763,7 @@ static void pmu_write_counter(struct perf_event *event, u32 value) ...@@ -383,7 +763,7 @@ static void pmu_write_counter(struct perf_event *event, u32 value)
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
else else
pmu_write_register(value, idx, CCI_PMU_CNTR); pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
} }
static u64 pmu_event_update(struct perf_event *event) static u64 pmu_event_update(struct perf_event *event)
...@@ -427,7 +807,7 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev) ...@@ -427,7 +807,7 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
{ {
unsigned long flags; unsigned long flags;
struct cci_pmu *cci_pmu = dev; struct cci_pmu *cci_pmu = dev;
struct cci_pmu_hw_events *events = &pmu->hw_events; struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
int idx, handled = IRQ_NONE; int idx, handled = IRQ_NONE;
raw_spin_lock_irqsave(&events->pmu_lock, flags); raw_spin_lock_irqsave(&events->pmu_lock, flags);
...@@ -436,7 +816,7 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev) ...@@ -436,7 +816,7 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
* This should work regardless of whether we have per-counter overflow * This should work regardless of whether we have per-counter overflow
* interrupt or a combined overflow interrupt. * interrupt or a combined overflow interrupt.
*/ */
for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
struct perf_event *event = events->events[idx]; struct perf_event *event = events->events[idx];
struct hw_perf_event *hw_counter; struct hw_perf_event *hw_counter;
...@@ -446,11 +826,12 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev) ...@@ -446,11 +826,12 @@ static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
hw_counter = &event->hw; hw_counter = &event->hw;
/* Did this counter overflow? */ /* Did this counter overflow? */
if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) & if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
CCI_PMU_OVRFLW_FLAG)) CCI_PMU_OVRFLW_FLAG))
continue; continue;
pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
CCI_PMU_OVRFLW);
pmu_event_update(event); pmu_event_update(event);
pmu_event_set_period(event); pmu_event_set_period(event);
...@@ -492,7 +873,7 @@ static void cci_pmu_enable(struct pmu *pmu) ...@@ -492,7 +873,7 @@ static void cci_pmu_enable(struct pmu *pmu)
{ {
struct cci_pmu *cci_pmu = to_cci_pmu(pmu); struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events); int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
unsigned long flags; unsigned long flags;
u32 val; u32 val;
...@@ -523,6 +904,16 @@ static void cci_pmu_disable(struct pmu *pmu) ...@@ -523,6 +904,16 @@ static void cci_pmu_disable(struct pmu *pmu)
raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
} }
/*
* Check if the idx represents a non-programmable counter.
* All the fixed event counters are mapped before the programmable
* counters.
*/
static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
{
return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
}
static void cci_pmu_start(struct perf_event *event, int pmu_flags) static void cci_pmu_start(struct perf_event *event, int pmu_flags)
{ {
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
...@@ -547,12 +938,12 @@ static void cci_pmu_start(struct perf_event *event, int pmu_flags) ...@@ -547,12 +938,12 @@ static void cci_pmu_start(struct perf_event *event, int pmu_flags)
raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
/* Configure the event to count, unless you are counting cycles */ /* Configure the counter unless you are counting a fixed event */
if (idx != CCI_PMU_CYCLE_CNTR_IDX) if (!pmu_fixed_hw_idx(cci_pmu, idx))
pmu_set_event(idx, hwc->config_base); pmu_set_event(cci_pmu, idx, hwc->config_base);
pmu_event_set_period(event); pmu_event_set_period(event);
pmu_enable_counter(idx); pmu_enable_counter(cci_pmu, idx);
raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
} }
...@@ -575,7 +966,7 @@ static void cci_pmu_stop(struct perf_event *event, int pmu_flags) ...@@ -575,7 +966,7 @@ static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
* We always reprogram the counter, so ignore PERF_EF_UPDATE. See * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
* cci_pmu_start() * cci_pmu_start()
*/ */
pmu_disable_counter(idx); pmu_disable_counter(cci_pmu, idx);
pmu_event_update(event); pmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
} }
...@@ -655,13 +1046,16 @@ static int ...@@ -655,13 +1046,16 @@ static int
validate_group(struct perf_event *event) validate_group(struct perf_event *event)
{ {
struct perf_event *sibling, *leader = event->group_leader; struct perf_event *sibling, *leader = event->group_leader;
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
struct cci_pmu_hw_events fake_pmu = { struct cci_pmu_hw_events fake_pmu = {
/* /*
* Initialise the fake PMU. We only need to populate the * Initialise the fake PMU. We only need to populate the
* used_mask for the purposes of validation. * used_mask for the purposes of validation.
*/ */
.used_mask = { 0 }, .used_mask = mask,
}; };
memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
if (!validate_event(event->pmu, &fake_pmu, leader)) if (!validate_event(event->pmu, &fake_pmu, leader))
return -EINVAL; return -EINVAL;
...@@ -779,20 +1173,27 @@ static int cci_pmu_event_init(struct perf_event *event) ...@@ -779,20 +1173,27 @@ static int cci_pmu_event_init(struct perf_event *event)
return err; return err;
} }
static ssize_t pmu_attr_cpumask_show(struct device *dev, static ssize_t pmu_cpumask_attr_show(struct device *dev,
struct device_attribute *attr, char *buf) struct device_attribute *attr, char *buf)
{ {
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
struct cci_pmu *cci_pmu = eattr->var;
int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
cpumask_pr_args(&pmu->cpus)); cpumask_pr_args(&cci_pmu->cpus));
buf[n++] = '\n'; buf[n++] = '\n';
buf[n] = '\0'; buf[n] = '\0';
return n; return n;
} }
static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL); static struct dev_ext_attribute pmu_cpumask_attr = {
__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL),
NULL, /* Populated in cci_pmu_init */
};
static struct attribute *pmu_attrs[] = { static struct attribute *pmu_attrs[] = {
&dev_attr_cpumask.attr, &pmu_cpumask_attr.attr.attr,
NULL, NULL,
}; };
...@@ -800,14 +1201,78 @@ static struct attribute_group pmu_attr_group = { ...@@ -800,14 +1201,78 @@ static struct attribute_group pmu_attr_group = {
.attrs = pmu_attrs, .attrs = pmu_attrs,
}; };
static struct attribute_group pmu_format_attr_group = {
.name = "format",
.attrs = NULL, /* Filled in cci_pmu_init_attrs */
};
static struct attribute_group pmu_event_attr_group = {
.name = "events",
.attrs = NULL, /* Filled in cci_pmu_init_attrs */
};
static const struct attribute_group *pmu_attr_groups[] = { static const struct attribute_group *pmu_attr_groups[] = {
&pmu_attr_group, &pmu_attr_group,
&pmu_format_attr_group,
&pmu_event_attr_group,
NULL NULL
}; };
static struct attribute **alloc_attrs(struct platform_device *pdev,
int n, struct dev_ext_attribute *source)
{
int i;
struct attribute **attrs;
/* Alloc n + 1 (for terminating NULL) */
attrs = devm_kcalloc(&pdev->dev, n + 1, sizeof(struct attribute *),
GFP_KERNEL);
if (!attrs)
return attrs;
for(i = 0; i < n; i++)
attrs[i] = &source[i].attr.attr;
return attrs;
}
static int cci_pmu_init_attrs(struct cci_pmu *cci_pmu, struct platform_device *pdev)
{
const struct cci_pmu_model *model = cci_pmu->model;
struct attribute **attrs;
/*
* All allocations below are managed, hence doesn't need to be
* free'd explicitly in case of an error.
*/
if (model->nevent_attrs) {
attrs = alloc_attrs(pdev, model->nevent_attrs,
model->event_attrs);
if (!attrs)
return -ENOMEM;
pmu_event_attr_group.attrs = attrs;
}
if (model->nformat_attrs) {
attrs = alloc_attrs(pdev, model->nformat_attrs,
model->format_attrs);
if (!attrs)
return -ENOMEM;
pmu_format_attr_group.attrs = attrs;
}
pmu_cpumask_attr.var = cci_pmu;
return 0;
}
static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
{ {
char *name = cci_pmu->model->name; char *name = cci_pmu->model->name;
u32 num_cntrs;
int rc;
rc = cci_pmu_init_attrs(cci_pmu, pdev);
if (rc)
return rc;
cci_pmu->pmu = (struct pmu) { cci_pmu->pmu = (struct pmu) {
.name = cci_pmu->model->name, .name = cci_pmu->model->name,
.task_ctx_nr = perf_invalid_context, .task_ctx_nr = perf_invalid_context,
...@@ -823,7 +1288,15 @@ static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) ...@@ -823,7 +1288,15 @@ static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
}; };
cci_pmu->plat_device = pdev; cci_pmu->plat_device = pdev;
cci_pmu->num_events = pmu_get_max_counters(); num_cntrs = pmu_get_max_counters();
if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
dev_warn(&pdev->dev,
"PMU implements more counters(%d) than supported by"
" the model(%d), truncated.",
num_cntrs, cci_pmu->model->num_hw_cntrs);
num_cntrs = cci_pmu->model->num_hw_cntrs;
}
cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
return perf_pmu_register(&cci_pmu->pmu, name, -1); return perf_pmu_register(&cci_pmu->pmu, name, -1);
} }
...@@ -831,12 +1304,14 @@ static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) ...@@ -831,12 +1304,14 @@ static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
static int cci_pmu_cpu_notifier(struct notifier_block *self, static int cci_pmu_cpu_notifier(struct notifier_block *self,
unsigned long action, void *hcpu) unsigned long action, void *hcpu)
{ {
struct cci_pmu *cci_pmu = container_of(self,
struct cci_pmu, cpu_nb);
unsigned int cpu = (long)hcpu; unsigned int cpu = (long)hcpu;
unsigned int target; unsigned int target;
switch (action & ~CPU_TASKS_FROZEN) { switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE:
if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus)) if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
break; break;
target = cpumask_any_but(cpu_online_mask, cpu); target = cpumask_any_but(cpu_online_mask, cpu);
if (target < 0) // UP, last CPU if (target < 0) // UP, last CPU
...@@ -845,7 +1320,7 @@ static int cci_pmu_cpu_notifier(struct notifier_block *self, ...@@ -845,7 +1320,7 @@ static int cci_pmu_cpu_notifier(struct notifier_block *self,
* TODO: migrate context once core races on event->ctx have * TODO: migrate context once core races on event->ctx have
* been fixed. * been fixed.
*/ */
cpumask_set_cpu(target, &pmu->cpus); cpumask_set_cpu(target, &cci_pmu->cpus);
default: default:
break; break;
} }
...@@ -853,57 +1328,103 @@ static int cci_pmu_cpu_notifier(struct notifier_block *self, ...@@ -853,57 +1328,103 @@ static int cci_pmu_cpu_notifier(struct notifier_block *self,
return NOTIFY_OK; return NOTIFY_OK;
} }
static struct notifier_block cci_pmu_cpu_nb = {
.notifier_call = cci_pmu_cpu_notifier,
/*
* to migrate uncore events, our notifier should be executed
* before perf core's notifier.
*/
.priority = CPU_PRI_PERF + 1,
};
static struct cci_pmu_model cci_pmu_models[] = { static struct cci_pmu_model cci_pmu_models[] = {
[CCI_REV_R0] = { #ifdef CONFIG_ARM_CCI400_PMU
[CCI400_R0] = {
.name = "CCI_400", .name = "CCI_400",
.fixed_hw_cntrs = 1, /* Cycle counter */
.num_hw_cntrs = 4,
.cntr_size = SZ_4K,
.format_attrs = cci400_pmu_format_attrs,
.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
.event_attrs = cci400_r0_pmu_event_attrs,
.nevent_attrs = ARRAY_SIZE(cci400_r0_pmu_event_attrs),
.event_ranges = { .event_ranges = {
[CCI_IF_SLAVE] = { [CCI_IF_SLAVE] = {
CCI_REV_R0_SLAVE_PORT_MIN_EV, CCI400_R0_SLAVE_PORT_MIN_EV,
CCI_REV_R0_SLAVE_PORT_MAX_EV, CCI400_R0_SLAVE_PORT_MAX_EV,
}, },
[CCI_IF_MASTER] = { [CCI_IF_MASTER] = {
CCI_REV_R0_MASTER_PORT_MIN_EV, CCI400_R0_MASTER_PORT_MIN_EV,
CCI_REV_R0_MASTER_PORT_MAX_EV, CCI400_R0_MASTER_PORT_MAX_EV,
}, },
}, },
.validate_hw_event = cci400_validate_hw_event,
.get_event_idx = cci400_get_event_idx,
}, },
[CCI_REV_R1] = { [CCI400_R1] = {
.name = "CCI_400_r1", .name = "CCI_400_r1",
.fixed_hw_cntrs = 1, /* Cycle counter */
.num_hw_cntrs = 4,
.cntr_size = SZ_4K,
.format_attrs = cci400_pmu_format_attrs,
.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
.event_attrs = cci400_r1_pmu_event_attrs,
.nevent_attrs = ARRAY_SIZE(cci400_r1_pmu_event_attrs),
.event_ranges = { .event_ranges = {
[CCI_IF_SLAVE] = { [CCI_IF_SLAVE] = {
CCI_REV_R1_SLAVE_PORT_MIN_EV, CCI400_R1_SLAVE_PORT_MIN_EV,
CCI_REV_R1_SLAVE_PORT_MAX_EV, CCI400_R1_SLAVE_PORT_MAX_EV,
}, },
[CCI_IF_MASTER] = { [CCI_IF_MASTER] = {
CCI_REV_R1_MASTER_PORT_MIN_EV, CCI400_R1_MASTER_PORT_MIN_EV,
CCI_REV_R1_MASTER_PORT_MAX_EV, CCI400_R1_MASTER_PORT_MAX_EV,
}, },
}, },
.validate_hw_event = cci400_validate_hw_event,
.get_event_idx = cci400_get_event_idx,
}, },
#endif
#ifdef CONFIG_ARM_CCI500_PMU
[CCI500_R0] = {
.name = "CCI_500",
.fixed_hw_cntrs = 0,
.num_hw_cntrs = 8,
.cntr_size = SZ_64K,
.format_attrs = cci500_pmu_format_attrs,
.nformat_attrs = ARRAY_SIZE(cci500_pmu_format_attrs),
.event_attrs = cci500_pmu_event_attrs,
.nevent_attrs = ARRAY_SIZE(cci500_pmu_event_attrs),
.event_ranges = {
[CCI_IF_SLAVE] = {
CCI500_SLAVE_PORT_MIN_EV,
CCI500_SLAVE_PORT_MAX_EV,
},
[CCI_IF_MASTER] = {
CCI500_MASTER_PORT_MIN_EV,
CCI500_MASTER_PORT_MAX_EV,
},
[CCI_IF_GLOBAL] = {
CCI500_GLOBAL_PORT_MIN_EV,
CCI500_GLOBAL_PORT_MAX_EV,
},
},
.validate_hw_event = cci500_validate_hw_event,
},
#endif
}; };
static const struct of_device_id arm_cci_pmu_matches[] = { static const struct of_device_id arm_cci_pmu_matches[] = {
#ifdef CONFIG_ARM_CCI400_PMU
{ {
.compatible = "arm,cci-400-pmu", .compatible = "arm,cci-400-pmu",
.data = NULL, .data = NULL,
}, },
{ {
.compatible = "arm,cci-400-pmu,r0", .compatible = "arm,cci-400-pmu,r0",
.data = &cci_pmu_models[CCI_REV_R0], .data = &cci_pmu_models[CCI400_R0],
}, },
{ {
.compatible = "arm,cci-400-pmu,r1", .compatible = "arm,cci-400-pmu,r1",
.data = &cci_pmu_models[CCI_REV_R1], .data = &cci_pmu_models[CCI400_R1],
},
#endif
#ifdef CONFIG_ARM_CCI500_PMU
{
.compatible = "arm,cci-500-pmu,r0",
.data = &cci_pmu_models[CCI500_R0],
}, },
#endif
{}, {},
}; };
...@@ -932,68 +1453,114 @@ static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) ...@@ -932,68 +1453,114 @@ static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
return false; return false;
} }
static int cci_pmu_probe(struct platform_device *pdev) static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
{ {
struct resource *res; struct cci_pmu *cci_pmu;
int i, ret, irq;
const struct cci_pmu_model *model; const struct cci_pmu_model *model;
/*
* All allocations are devm_* hence we don't have to free
* them explicitly on an error, as it would end up in driver
* detach.
*/
model = get_cci_model(pdev); model = get_cci_model(pdev);
if (!model) { if (!model) {
dev_warn(&pdev->dev, "CCI PMU version not supported\n"); dev_warn(&pdev->dev, "CCI PMU version not supported\n");
return -ENODEV; return ERR_PTR(-ENODEV);
} }
pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
if (!pmu) if (!cci_pmu)
return -ENOMEM; return ERR_PTR(-ENOMEM);
cci_pmu->model = model;
cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
sizeof(*cci_pmu->irqs), GFP_KERNEL);
if (!cci_pmu->irqs)
return ERR_PTR(-ENOMEM);
cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
CCI_PMU_MAX_HW_CNTRS(model),
sizeof(*cci_pmu->hw_events.events),
GFP_KERNEL);
if (!cci_pmu->hw_events.events)
return ERR_PTR(-ENOMEM);
cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
sizeof(*cci_pmu->hw_events.used_mask),
GFP_KERNEL);
if (!cci_pmu->hw_events.used_mask)
return ERR_PTR(-ENOMEM);
return cci_pmu;
}
static int cci_pmu_probe(struct platform_device *pdev)
{
struct resource *res;
struct cci_pmu *cci_pmu;
int i, ret, irq;
cci_pmu = cci_pmu_alloc(pdev);
if (IS_ERR(cci_pmu))
return PTR_ERR(cci_pmu);
pmu->model = model;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pmu->base = devm_ioremap_resource(&pdev->dev, res); cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pmu->base)) if (IS_ERR(cci_pmu->base))
return -ENOMEM; return -ENOMEM;
/* /*
* CCI PMU has 5 overflow signals - one per counter; but some may be tied * CCI PMU has one overflow interrupt per counter; but some may be tied
* together to a common interrupt. * together to a common interrupt.
*/ */
pmu->nr_irqs = 0; cci_pmu->nr_irqs = 0;
for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) { for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
irq = platform_get_irq(pdev, i); irq = platform_get_irq(pdev, i);
if (irq < 0) if (irq < 0)
break; break;
if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs)) if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
continue; continue;
pmu->irqs[pmu->nr_irqs++] = irq; cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
} }
/* /*
* Ensure that the device tree has as many interrupts as the number * Ensure that the device tree has as many interrupts as the number
* of counters. * of counters.
*/ */
if (i < CCI_PMU_MAX_HW_EVENTS) { if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
i, CCI_PMU_MAX_HW_EVENTS); i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
return -EINVAL; return -EINVAL;
} }
raw_spin_lock_init(&pmu->hw_events.pmu_lock); raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
mutex_init(&pmu->reserve_mutex); mutex_init(&cci_pmu->reserve_mutex);
atomic_set(&pmu->active_events, 0); atomic_set(&cci_pmu->active_events, 0);
cpumask_set_cpu(smp_processor_id(), &pmu->cpus); cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
cci_pmu->cpu_nb = (struct notifier_block) {
.notifier_call = cci_pmu_cpu_notifier,
/*
* to migrate uncore events, our notifier should be executed
* before perf core's notifier.
*/
.priority = CPU_PRI_PERF + 1,
};
ret = register_cpu_notifier(&cci_pmu_cpu_nb); ret = register_cpu_notifier(&cci_pmu->cpu_nb);
if (ret) if (ret)
return ret; return ret;
ret = cci_pmu_init(pmu, pdev); ret = cci_pmu_init(cci_pmu, pdev);
if (ret) if (ret) {
unregister_cpu_notifier(&cci_pmu->cpu_nb);
return ret; return ret;
}
pr_info("ARM %s PMU driver probed", pmu->model->name); pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
return 0; return 0;
} }
...@@ -1032,14 +1599,14 @@ static int __init cci_platform_init(void) ...@@ -1032,14 +1599,14 @@ static int __init cci_platform_init(void)
return platform_driver_register(&cci_platform_driver); return platform_driver_register(&cci_platform_driver);
} }
#else /* !CONFIG_ARM_CCI400_PMU */ #else /* !CONFIG_ARM_CCI_PMU */
static int __init cci_platform_init(void) static int __init cci_platform_init(void)
{ {
return 0; return 0;
} }
#endif /* CONFIG_ARM_CCI400_PMU */ #endif /* CONFIG_ARM_CCI_PMU */
#ifdef CONFIG_ARM_CCI400_PORT_CTRL #ifdef CONFIG_ARM_CCI400_PORT_CTRL
......
...@@ -166,13 +166,17 @@ struct arm_ccn_dt { ...@@ -166,13 +166,17 @@ struct arm_ccn_dt {
struct hrtimer hrtimer; struct hrtimer hrtimer;
cpumask_t cpu;
struct notifier_block cpu_nb;
struct pmu pmu; struct pmu pmu;
}; };
struct arm_ccn { struct arm_ccn {
struct device *dev; struct device *dev;
void __iomem *base; void __iomem *base;
unsigned irq_used:1; unsigned int irq;
unsigned sbas_present:1; unsigned sbas_present:1;
unsigned sbsx_present:1; unsigned sbsx_present:1;
...@@ -212,7 +216,7 @@ static int arm_ccn_node_to_xp_port(int node) ...@@ -212,7 +216,7 @@ static int arm_ccn_node_to_xp_port(int node)
static void arm_ccn_pmu_config_set(u64 *config, u32 node_xp, u32 type, u32 port) static void arm_ccn_pmu_config_set(u64 *config, u32 node_xp, u32 type, u32 port)
{ {
*config &= ~((0xff << 0) | (0xff << 8) | (0xff << 24)); *config &= ~((0xff << 0) | (0xff << 8) | (0x3 << 24));
*config |= (node_xp << 0) | (type << 8) | (port << 24); *config |= (node_xp << 0) | (type << 8) | (port << 24);
} }
...@@ -336,6 +340,23 @@ static ssize_t arm_ccn_pmu_event_show(struct device *dev, ...@@ -336,6 +340,23 @@ static ssize_t arm_ccn_pmu_event_show(struct device *dev,
if (event->mask) if (event->mask)
res += snprintf(buf + res, PAGE_SIZE - res, ",mask=0x%x", res += snprintf(buf + res, PAGE_SIZE - res, ",mask=0x%x",
event->mask); event->mask);
/* Arguments required by an event */
switch (event->type) {
case CCN_TYPE_CYCLES:
break;
case CCN_TYPE_XP:
res += snprintf(buf + res, PAGE_SIZE - res,
",xp=?,port=?,vc=?,dir=?");
if (event->event == CCN_EVENT_WATCHPOINT)
res += snprintf(buf + res, PAGE_SIZE - res,
",cmp_l=?,cmp_h=?,mask=?");
break;
default:
res += snprintf(buf + res, PAGE_SIZE - res, ",node=?");
break;
}
res += snprintf(buf + res, PAGE_SIZE - res, "\n"); res += snprintf(buf + res, PAGE_SIZE - res, "\n");
return res; return res;
...@@ -521,6 +542,25 @@ static struct attribute_group arm_ccn_pmu_cmp_mask_attr_group = { ...@@ -521,6 +542,25 @@ static struct attribute_group arm_ccn_pmu_cmp_mask_attr_group = {
.attrs = arm_ccn_pmu_cmp_mask_attrs, .attrs = arm_ccn_pmu_cmp_mask_attrs,
}; };
static ssize_t arm_ccn_pmu_cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct arm_ccn *ccn = pmu_to_arm_ccn(dev_get_drvdata(dev));
return cpumap_print_to_pagebuf(true, buf, &ccn->dt.cpu);
}
static struct device_attribute arm_ccn_pmu_cpumask_attr =
__ATTR(cpumask, S_IRUGO, arm_ccn_pmu_cpumask_show, NULL);
static struct attribute *arm_ccn_pmu_cpumask_attrs[] = {
&arm_ccn_pmu_cpumask_attr.attr,
NULL,
};
static struct attribute_group arm_ccn_pmu_cpumask_attr_group = {
.attrs = arm_ccn_pmu_cpumask_attrs,
};
/* /*
* Default poll period is 10ms, which is way over the top anyway, * Default poll period is 10ms, which is way over the top anyway,
...@@ -542,6 +582,7 @@ static const struct attribute_group *arm_ccn_pmu_attr_groups[] = { ...@@ -542,6 +582,7 @@ static const struct attribute_group *arm_ccn_pmu_attr_groups[] = {
&arm_ccn_pmu_events_attr_group, &arm_ccn_pmu_events_attr_group,
&arm_ccn_pmu_format_attr_group, &arm_ccn_pmu_format_attr_group,
&arm_ccn_pmu_cmp_mask_attr_group, &arm_ccn_pmu_cmp_mask_attr_group,
&arm_ccn_pmu_cpumask_attr_group,
NULL NULL
}; };
...@@ -587,7 +628,65 @@ static int arm_ccn_pmu_type_eq(u32 a, u32 b) ...@@ -587,7 +628,65 @@ static int arm_ccn_pmu_type_eq(u32 a, u32 b)
return 0; return 0;
} }
static void arm_ccn_pmu_event_destroy(struct perf_event *event) static int arm_ccn_pmu_event_alloc(struct perf_event *event)
{
struct arm_ccn *ccn = pmu_to_arm_ccn(event->pmu);
struct hw_perf_event *hw = &event->hw;
u32 node_xp, type, event_id;
struct arm_ccn_component *source;
int bit;
node_xp = CCN_CONFIG_NODE(event->attr.config);
type = CCN_CONFIG_TYPE(event->attr.config);
event_id = CCN_CONFIG_EVENT(event->attr.config);
/* Allocate the cycle counter */
if (type == CCN_TYPE_CYCLES) {
if (test_and_set_bit(CCN_IDX_PMU_CYCLE_COUNTER,
ccn->dt.pmu_counters_mask))
return -EAGAIN;
hw->idx = CCN_IDX_PMU_CYCLE_COUNTER;
ccn->dt.pmu_counters[CCN_IDX_PMU_CYCLE_COUNTER].event = event;
return 0;
}
/* Allocate an event counter */
hw->idx = arm_ccn_pmu_alloc_bit(ccn->dt.pmu_counters_mask,
CCN_NUM_PMU_EVENT_COUNTERS);
if (hw->idx < 0) {
dev_dbg(ccn->dev, "No more counters available!\n");
return -EAGAIN;
}
if (type == CCN_TYPE_XP)
source = &ccn->xp[node_xp];
else
source = &ccn->node[node_xp];
ccn->dt.pmu_counters[hw->idx].source = source;
/* Allocate an event source or a watchpoint */
if (type == CCN_TYPE_XP && event_id == CCN_EVENT_WATCHPOINT)
bit = arm_ccn_pmu_alloc_bit(source->xp.dt_cmp_mask,
CCN_NUM_XP_WATCHPOINTS);
else
bit = arm_ccn_pmu_alloc_bit(source->pmu_events_mask,
CCN_NUM_PMU_EVENTS);
if (bit < 0) {
dev_dbg(ccn->dev, "No more event sources/watchpoints on node/XP %d!\n",
node_xp);
clear_bit(hw->idx, ccn->dt.pmu_counters_mask);
return -EAGAIN;
}
hw->config_base = bit;
ccn->dt.pmu_counters[hw->idx].event = event;
return 0;
}
static void arm_ccn_pmu_event_release(struct perf_event *event)
{ {
struct arm_ccn *ccn = pmu_to_arm_ccn(event->pmu); struct arm_ccn *ccn = pmu_to_arm_ccn(event->pmu);
struct hw_perf_event *hw = &event->hw; struct hw_perf_event *hw = &event->hw;
...@@ -616,15 +715,14 @@ static int arm_ccn_pmu_event_init(struct perf_event *event) ...@@ -616,15 +715,14 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
struct arm_ccn *ccn; struct arm_ccn *ccn;
struct hw_perf_event *hw = &event->hw; struct hw_perf_event *hw = &event->hw;
u32 node_xp, type, event_id; u32 node_xp, type, event_id;
int valid, bit; int valid;
struct arm_ccn_component *source;
int i; int i;
struct perf_event *sibling;
if (event->attr.type != event->pmu->type) if (event->attr.type != event->pmu->type)
return -ENOENT; return -ENOENT;
ccn = pmu_to_arm_ccn(event->pmu); ccn = pmu_to_arm_ccn(event->pmu);
event->destroy = arm_ccn_pmu_event_destroy;
if (hw->sample_period) { if (hw->sample_period) {
dev_warn(ccn->dev, "Sampling not supported!\n"); dev_warn(ccn->dev, "Sampling not supported!\n");
...@@ -642,6 +740,16 @@ static int arm_ccn_pmu_event_init(struct perf_event *event) ...@@ -642,6 +740,16 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
dev_warn(ccn->dev, "Can't provide per-task data!\n"); dev_warn(ccn->dev, "Can't provide per-task data!\n");
return -EOPNOTSUPP; return -EOPNOTSUPP;
} }
/*
* Many perf core operations (eg. events rotation) operate on a
* single CPU context. This is obvious for CPU PMUs, where one
* expects the same sets of events being observed on all CPUs,
* but can lead to issues for off-core PMUs, like CCN, where each
* event could be theoretically assigned to a different CPU. To
* mitigate this, we enforce CPU assignment to one, selected
* processor (the one described in the "cpumask" attribute).
*/
event->cpu = cpumask_first(&ccn->dt.cpu);
node_xp = CCN_CONFIG_NODE(event->attr.config); node_xp = CCN_CONFIG_NODE(event->attr.config);
type = CCN_CONFIG_TYPE(event->attr.config); type = CCN_CONFIG_TYPE(event->attr.config);
...@@ -711,48 +819,20 @@ static int arm_ccn_pmu_event_init(struct perf_event *event) ...@@ -711,48 +819,20 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
node_xp, type, port); node_xp, type, port);
} }
/* Allocate the cycle counter */ /*
if (type == CCN_TYPE_CYCLES) { * We must NOT create groups containing mixed PMUs, although software
if (test_and_set_bit(CCN_IDX_PMU_CYCLE_COUNTER, * events are acceptable (for example to create a CCN group
ccn->dt.pmu_counters_mask)) * periodically read when a hrtimer aka cpu-clock leader triggers).
return -EAGAIN; */
if (event->group_leader->pmu != event->pmu &&
hw->idx = CCN_IDX_PMU_CYCLE_COUNTER; !is_software_event(event->group_leader))
ccn->dt.pmu_counters[CCN_IDX_PMU_CYCLE_COUNTER].event = event; return -EINVAL;
return 0;
}
/* Allocate an event counter */
hw->idx = arm_ccn_pmu_alloc_bit(ccn->dt.pmu_counters_mask,
CCN_NUM_PMU_EVENT_COUNTERS);
if (hw->idx < 0) {
dev_warn(ccn->dev, "No more counters available!\n");
return -EAGAIN;
}
if (type == CCN_TYPE_XP)
source = &ccn->xp[node_xp];
else
source = &ccn->node[node_xp];
ccn->dt.pmu_counters[hw->idx].source = source;
/* Allocate an event source or a watchpoint */
if (type == CCN_TYPE_XP && event_id == CCN_EVENT_WATCHPOINT)
bit = arm_ccn_pmu_alloc_bit(source->xp.dt_cmp_mask,
CCN_NUM_XP_WATCHPOINTS);
else
bit = arm_ccn_pmu_alloc_bit(source->pmu_events_mask,
CCN_NUM_PMU_EVENTS);
if (bit < 0) {
dev_warn(ccn->dev, "No more event sources/watchpoints on node/XP %d!\n",
node_xp);
clear_bit(hw->idx, ccn->dt.pmu_counters_mask);
return -EAGAIN;
}
hw->config_base = bit;
ccn->dt.pmu_counters[hw->idx].event = event; list_for_each_entry(sibling, &event->group_leader->sibling_list,
group_entry)
if (sibling->pmu != event->pmu &&
!is_software_event(sibling))
return -EINVAL;
return 0; return 0;
} }
...@@ -835,9 +915,14 @@ static void arm_ccn_pmu_event_start(struct perf_event *event, int flags) ...@@ -835,9 +915,14 @@ static void arm_ccn_pmu_event_start(struct perf_event *event, int flags)
arm_ccn_pmu_read_counter(ccn, hw->idx)); arm_ccn_pmu_read_counter(ccn, hw->idx));
hw->state = 0; hw->state = 0;
if (!ccn->irq_used) /*
* Pin the timer, so that the overflows are handled by the chosen
* event->cpu (this is the same one as presented in "cpumask"
* attribute).
*/
if (!ccn->irq)
hrtimer_start(&ccn->dt.hrtimer, arm_ccn_pmu_timer_period(), hrtimer_start(&ccn->dt.hrtimer, arm_ccn_pmu_timer_period(),
HRTIMER_MODE_REL); HRTIMER_MODE_REL_PINNED);
/* Set the DT bus input, engaging the counter */ /* Set the DT bus input, engaging the counter */
arm_ccn_pmu_xp_dt_config(event, 1); arm_ccn_pmu_xp_dt_config(event, 1);
...@@ -852,7 +937,7 @@ static void arm_ccn_pmu_event_stop(struct perf_event *event, int flags) ...@@ -852,7 +937,7 @@ static void arm_ccn_pmu_event_stop(struct perf_event *event, int flags)
/* Disable counting, setting the DT bus to pass-through mode */ /* Disable counting, setting the DT bus to pass-through mode */
arm_ccn_pmu_xp_dt_config(event, 0); arm_ccn_pmu_xp_dt_config(event, 0);
if (!ccn->irq_used) if (!ccn->irq)
hrtimer_cancel(&ccn->dt.hrtimer); hrtimer_cancel(&ccn->dt.hrtimer);
/* Let the DT bus drain */ /* Let the DT bus drain */
...@@ -1014,8 +1099,13 @@ static void arm_ccn_pmu_event_config(struct perf_event *event) ...@@ -1014,8 +1099,13 @@ static void arm_ccn_pmu_event_config(struct perf_event *event)
static int arm_ccn_pmu_event_add(struct perf_event *event, int flags) static int arm_ccn_pmu_event_add(struct perf_event *event, int flags)
{ {
int err;
struct hw_perf_event *hw = &event->hw; struct hw_perf_event *hw = &event->hw;
err = arm_ccn_pmu_event_alloc(event);
if (err)
return err;
arm_ccn_pmu_event_config(event); arm_ccn_pmu_event_config(event);
hw->state = PERF_HES_STOPPED; hw->state = PERF_HES_STOPPED;
...@@ -1029,6 +1119,8 @@ static int arm_ccn_pmu_event_add(struct perf_event *event, int flags) ...@@ -1029,6 +1119,8 @@ static int arm_ccn_pmu_event_add(struct perf_event *event, int flags)
static void arm_ccn_pmu_event_del(struct perf_event *event, int flags) static void arm_ccn_pmu_event_del(struct perf_event *event, int flags)
{ {
arm_ccn_pmu_event_stop(event, PERF_EF_UPDATE); arm_ccn_pmu_event_stop(event, PERF_EF_UPDATE);
arm_ccn_pmu_event_release(event);
} }
static void arm_ccn_pmu_event_read(struct perf_event *event) static void arm_ccn_pmu_event_read(struct perf_event *event)
...@@ -1079,12 +1171,39 @@ static enum hrtimer_restart arm_ccn_pmu_timer_handler(struct hrtimer *hrtimer) ...@@ -1079,12 +1171,39 @@ static enum hrtimer_restart arm_ccn_pmu_timer_handler(struct hrtimer *hrtimer)
} }
static int arm_ccn_pmu_cpu_notifier(struct notifier_block *nb,
unsigned long action, void *hcpu)
{
struct arm_ccn_dt *dt = container_of(nb, struct arm_ccn_dt, cpu_nb);
struct arm_ccn *ccn = container_of(dt, struct arm_ccn, dt);
unsigned int cpu = (long)hcpu; /* for (long) see kernel/cpu.c */
unsigned int target;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE:
if (!cpumask_test_and_clear_cpu(cpu, &dt->cpu))
break;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target < 0)
break;
perf_pmu_migrate_context(&dt->pmu, cpu, target);
cpumask_set_cpu(target, &dt->cpu);
WARN_ON(irq_set_affinity(ccn->irq, &dt->cpu) != 0);
default:
break;
}
return NOTIFY_OK;
}
static DEFINE_IDA(arm_ccn_pmu_ida); static DEFINE_IDA(arm_ccn_pmu_ida);
static int arm_ccn_pmu_init(struct arm_ccn *ccn) static int arm_ccn_pmu_init(struct arm_ccn *ccn)
{ {
int i; int i;
char *name; char *name;
int err;
/* Initialize DT subsystem */ /* Initialize DT subsystem */
ccn->dt.base = ccn->base + CCN_REGION_SIZE; ccn->dt.base = ccn->base + CCN_REGION_SIZE;
...@@ -1136,20 +1255,58 @@ static int arm_ccn_pmu_init(struct arm_ccn *ccn) ...@@ -1136,20 +1255,58 @@ static int arm_ccn_pmu_init(struct arm_ccn *ccn)
}; };
/* No overflow interrupt? Have to use a timer instead. */ /* No overflow interrupt? Have to use a timer instead. */
if (!ccn->irq_used) { if (!ccn->irq) {
dev_info(ccn->dev, "No access to interrupts, using timer.\n"); dev_info(ccn->dev, "No access to interrupts, using timer.\n");
hrtimer_init(&ccn->dt.hrtimer, CLOCK_MONOTONIC, hrtimer_init(&ccn->dt.hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL); HRTIMER_MODE_REL);
ccn->dt.hrtimer.function = arm_ccn_pmu_timer_handler; ccn->dt.hrtimer.function = arm_ccn_pmu_timer_handler;
} }
return perf_pmu_register(&ccn->dt.pmu, name, -1); /* Pick one CPU which we will use to collect data from CCN... */
cpumask_set_cpu(smp_processor_id(), &ccn->dt.cpu);
/*
* ... and change the selection when it goes offline. Priority is
* picked to have a chance to migrate events before perf is notified.
*/
ccn->dt.cpu_nb.notifier_call = arm_ccn_pmu_cpu_notifier;
ccn->dt.cpu_nb.priority = CPU_PRI_PERF + 1,
err = register_cpu_notifier(&ccn->dt.cpu_nb);
if (err)
goto error_cpu_notifier;
/* Also make sure that the overflow interrupt is handled by this CPU */
if (ccn->irq) {
err = irq_set_affinity(ccn->irq, &ccn->dt.cpu);
if (err) {
dev_err(ccn->dev, "Failed to set interrupt affinity!\n");
goto error_set_affinity;
}
}
err = perf_pmu_register(&ccn->dt.pmu, name, -1);
if (err)
goto error_pmu_register;
return 0;
error_pmu_register:
error_set_affinity:
unregister_cpu_notifier(&ccn->dt.cpu_nb);
error_cpu_notifier:
ida_simple_remove(&arm_ccn_pmu_ida, ccn->dt.id);
for (i = 0; i < ccn->num_xps; i++)
writel(0, ccn->xp[i].base + CCN_XP_DT_CONTROL);
writel(0, ccn->dt.base + CCN_DT_PMCR);
return err;
} }
static void arm_ccn_pmu_cleanup(struct arm_ccn *ccn) static void arm_ccn_pmu_cleanup(struct arm_ccn *ccn)
{ {
int i; int i;
irq_set_affinity(ccn->irq, cpu_possible_mask);
unregister_cpu_notifier(&ccn->dt.cpu_nb);
for (i = 0; i < ccn->num_xps; i++) for (i = 0; i < ccn->num_xps; i++)
writel(0, ccn->xp[i].base + CCN_XP_DT_CONTROL); writel(0, ccn->xp[i].base + CCN_XP_DT_CONTROL);
writel(0, ccn->dt.base + CCN_DT_PMCR); writel(0, ccn->dt.base + CCN_DT_PMCR);
...@@ -1285,6 +1442,7 @@ static int arm_ccn_probe(struct platform_device *pdev) ...@@ -1285,6 +1442,7 @@ static int arm_ccn_probe(struct platform_device *pdev)
{ {
struct arm_ccn *ccn; struct arm_ccn *ccn;
struct resource *res; struct resource *res;
unsigned int irq;
int err; int err;
ccn = devm_kzalloc(&pdev->dev, sizeof(*ccn), GFP_KERNEL); ccn = devm_kzalloc(&pdev->dev, sizeof(*ccn), GFP_KERNEL);
...@@ -1309,6 +1467,7 @@ static int arm_ccn_probe(struct platform_device *pdev) ...@@ -1309,6 +1467,7 @@ static int arm_ccn_probe(struct platform_device *pdev)
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) if (!res)
return -EINVAL; return -EINVAL;
irq = res->start;
/* Check if we can use the interrupt */ /* Check if we can use the interrupt */
writel(CCN_MN_ERRINT_STATUS__PMU_EVENTS__DISABLE, writel(CCN_MN_ERRINT_STATUS__PMU_EVENTS__DISABLE,
...@@ -1318,13 +1477,12 @@ static int arm_ccn_probe(struct platform_device *pdev) ...@@ -1318,13 +1477,12 @@ static int arm_ccn_probe(struct platform_device *pdev)
/* Can set 'disable' bits, so can acknowledge interrupts */ /* Can set 'disable' bits, so can acknowledge interrupts */
writel(CCN_MN_ERRINT_STATUS__PMU_EVENTS__ENABLE, writel(CCN_MN_ERRINT_STATUS__PMU_EVENTS__ENABLE,
ccn->base + CCN_MN_ERRINT_STATUS); ccn->base + CCN_MN_ERRINT_STATUS);
err = devm_request_irq(ccn->dev, res->start, err = devm_request_irq(ccn->dev, irq, arm_ccn_irq_handler, 0,
arm_ccn_irq_handler, 0, dev_name(ccn->dev), dev_name(ccn->dev), ccn);
ccn);
if (err) if (err)
return err; return err;
ccn->irq_used = 1; ccn->irq = irq;
} }
......
...@@ -502,12 +502,13 @@ static const struct berlin2_gate_data bg2_gates[] __initconst = { ...@@ -502,12 +502,13 @@ static const struct berlin2_gate_data bg2_gates[] __initconst = {
static void __init berlin2_clock_setup(struct device_node *np) static void __init berlin2_clock_setup(struct device_node *np)
{ {
struct device_node *parent_np = of_get_parent(np);
const char *parent_names[9]; const char *parent_names[9];
struct clk *clk; struct clk *clk;
u8 avpll_flags = 0; u8 avpll_flags = 0;
int n; int n;
gbase = of_iomap(np, 0); gbase = of_iomap(parent_np, 0);
if (!gbase) if (!gbase)
return; return;
...@@ -685,7 +686,5 @@ static void __init berlin2_clock_setup(struct device_node *np) ...@@ -685,7 +686,5 @@ static void __init berlin2_clock_setup(struct device_node *np)
bg2_fail: bg2_fail:
iounmap(gbase); iounmap(gbase);
} }
CLK_OF_DECLARE(berlin2_clock, "marvell,berlin2-chip-ctrl", CLK_OF_DECLARE(berlin2_clk, "marvell,berlin2-clk",
berlin2_clock_setup);
CLK_OF_DECLARE(berlin2cd_clock, "marvell,berlin2cd-chip-ctrl",
berlin2_clock_setup); berlin2_clock_setup);
...@@ -290,18 +290,19 @@ static const struct berlin2_gate_data bg2q_gates[] __initconst = { ...@@ -290,18 +290,19 @@ static const struct berlin2_gate_data bg2q_gates[] __initconst = {
static void __init berlin2q_clock_setup(struct device_node *np) static void __init berlin2q_clock_setup(struct device_node *np)
{ {
struct device_node *parent_np = of_get_parent(np);
const char *parent_names[9]; const char *parent_names[9];
struct clk *clk; struct clk *clk;
int n; int n;
gbase = of_iomap(np, 0); gbase = of_iomap(parent_np, 0);
if (!gbase) { if (!gbase) {
pr_err("%s: Unable to map global base\n", np->full_name); pr_err("%s: Unable to map global base\n", np->full_name);
return; return;
} }
/* BG2Q CPU PLL is not part of global registers */ /* BG2Q CPU PLL is not part of global registers */
cpupll_base = of_iomap(np, 1); cpupll_base = of_iomap(parent_np, 1);
if (!cpupll_base) { if (!cpupll_base) {
pr_err("%s: Unable to map cpupll base\n", np->full_name); pr_err("%s: Unable to map cpupll base\n", np->full_name);
iounmap(gbase); iounmap(gbase);
...@@ -384,5 +385,5 @@ static void __init berlin2q_clock_setup(struct device_node *np) ...@@ -384,5 +385,5 @@ static void __init berlin2q_clock_setup(struct device_node *np)
iounmap(cpupll_base); iounmap(cpupll_base);
iounmap(gbase); iounmap(gbase);
} }
CLK_OF_DECLARE(berlin2q_clock, "marvell,berlin2q-chip-ctrl", CLK_OF_DECLARE(berlin2q_clk, "marvell,berlin2q-clk",
berlin2q_clock_setup); berlin2q_clock_setup);
...@@ -12,7 +12,8 @@ obj-$(CONFIG_ISCSI_IBFT_FIND) += iscsi_ibft_find.o ...@@ -12,7 +12,8 @@ obj-$(CONFIG_ISCSI_IBFT_FIND) += iscsi_ibft_find.o
obj-$(CONFIG_ISCSI_IBFT) += iscsi_ibft.o obj-$(CONFIG_ISCSI_IBFT) += iscsi_ibft.o
obj-$(CONFIG_FIRMWARE_MEMMAP) += memmap.o obj-$(CONFIG_FIRMWARE_MEMMAP) += memmap.o
obj-$(CONFIG_QCOM_SCM) += qcom_scm.o obj-$(CONFIG_QCOM_SCM) += qcom_scm.o
CFLAGS_qcom_scm.o :=$(call as-instr,.arch_extension sec,-DREQUIRES_SEC=1) obj-$(CONFIG_QCOM_SCM) += qcom_scm-32.o
CFLAGS_qcom_scm-32.o :=$(call as-instr,.arch_extension sec,-DREQUIRES_SEC=1)
obj-$(CONFIG_GOOGLE_FIRMWARE) += google/ obj-$(CONFIG_GOOGLE_FIRMWARE) += google/
obj-$(CONFIG_EFI) += efi/ obj-$(CONFIG_EFI) += efi/
......
/* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/qcom_scm.h>
#include <asm/outercache.h>
#include <asm/cacheflush.h>
#include "qcom_scm.h"
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
struct qcom_scm_entry {
int flag;
void *entry;
};
static struct qcom_scm_entry qcom_scm_wb[] = {
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
};
static DEFINE_MUTEX(qcom_scm_lock);
/**
* struct qcom_scm_command - one SCM command buffer
* @len: total available memory for command and response
* @buf_offset: start of command buffer
* @resp_hdr_offset: start of response buffer
* @id: command to be executed
* @buf: buffer returned from qcom_scm_get_command_buffer()
*
* An SCM command is laid out in memory as follows:
*
* ------------------- <--- struct qcom_scm_command
* | command header |
* ------------------- <--- qcom_scm_get_command_buffer()
* | command buffer |
* ------------------- <--- struct qcom_scm_response and
* | response header | qcom_scm_command_to_response()
* ------------------- <--- qcom_scm_get_response_buffer()
* | response buffer |
* -------------------
*
* There can be arbitrary padding between the headers and buffers so
* you should always use the appropriate qcom_scm_get_*_buffer() routines
* to access the buffers in a safe manner.
*/
struct qcom_scm_command {
__le32 len;
__le32 buf_offset;
__le32 resp_hdr_offset;
__le32 id;
__le32 buf[0];
};
/**
* struct qcom_scm_response - one SCM response buffer
* @len: total available memory for response
* @buf_offset: start of response data relative to start of qcom_scm_response
* @is_complete: indicates if the command has finished processing
*/
struct qcom_scm_response {
__le32 len;
__le32 buf_offset;
__le32 is_complete;
};
/**
* alloc_qcom_scm_command() - Allocate an SCM command
* @cmd_size: size of the command buffer
* @resp_size: size of the response buffer
*
* Allocate an SCM command, including enough room for the command
* and response headers as well as the command and response buffers.
*
* Returns a valid &qcom_scm_command on success or %NULL if the allocation fails.
*/
static struct qcom_scm_command *alloc_qcom_scm_command(size_t cmd_size, size_t resp_size)
{
struct qcom_scm_command *cmd;
size_t len = sizeof(*cmd) + sizeof(struct qcom_scm_response) + cmd_size +
resp_size;
u32 offset;
cmd = kzalloc(PAGE_ALIGN(len), GFP_KERNEL);
if (cmd) {
cmd->len = cpu_to_le32(len);
offset = offsetof(struct qcom_scm_command, buf);
cmd->buf_offset = cpu_to_le32(offset);
cmd->resp_hdr_offset = cpu_to_le32(offset + cmd_size);
}
return cmd;
}
/**
* free_qcom_scm_command() - Free an SCM command
* @cmd: command to free
*
* Free an SCM command.
*/
static inline void free_qcom_scm_command(struct qcom_scm_command *cmd)
{
kfree(cmd);
}
/**
* qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
* @cmd: command
*
* Returns a pointer to a response for a command.
*/
static inline struct qcom_scm_response *qcom_scm_command_to_response(
const struct qcom_scm_command *cmd)
{
return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
}
/**
* qcom_scm_get_command_buffer() - Get a pointer to a command buffer
* @cmd: command
*
* Returns a pointer to the command buffer of a command.
*/
static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
{
return (void *)cmd->buf;
}
/**
* qcom_scm_get_response_buffer() - Get a pointer to a response buffer
* @rsp: response
*
* Returns a pointer to a response buffer of a response.
*/
static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
{
return (void *)rsp + le32_to_cpu(rsp->buf_offset);
}
static int qcom_scm_remap_error(int err)
{
pr_err("qcom_scm_call failed with error code %d\n", err);
switch (err) {
case QCOM_SCM_ERROR:
return -EIO;
case QCOM_SCM_EINVAL_ADDR:
case QCOM_SCM_EINVAL_ARG:
return -EINVAL;
case QCOM_SCM_EOPNOTSUPP:
return -EOPNOTSUPP;
case QCOM_SCM_ENOMEM:
return -ENOMEM;
}
return -EINVAL;
}
static u32 smc(u32 cmd_addr)
{
int context_id;
register u32 r0 asm("r0") = 1;
register u32 r1 asm("r1") = (u32)&context_id;
register u32 r2 asm("r2") = cmd_addr;
do {
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r0")
__asmeq("%2", "r1")
__asmeq("%3", "r2")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
} while (r0 == QCOM_SCM_INTERRUPTED);
return r0;
}
static int __qcom_scm_call(const struct qcom_scm_command *cmd)
{
int ret;
u32 cmd_addr = virt_to_phys(cmd);
/*
* Flush the command buffer so that the secure world sees
* the correct data.
*/
__cpuc_flush_dcache_area((void *)cmd, cmd->len);
outer_flush_range(cmd_addr, cmd_addr + cmd->len);
ret = smc(cmd_addr);
if (ret < 0)
ret = qcom_scm_remap_error(ret);
return ret;
}
static void qcom_scm_inv_range(unsigned long start, unsigned long end)
{
u32 cacheline_size, ctr;
asm volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (ctr));
cacheline_size = 4 << ((ctr >> 16) & 0xf);
start = round_down(start, cacheline_size);
end = round_up(end, cacheline_size);
outer_inv_range(start, end);
while (start < end) {
asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (start)
: "memory");
start += cacheline_size;
}
dsb();
isb();
}
/**
* qcom_scm_call() - Send an SCM command
* @svc_id: service identifier
* @cmd_id: command identifier
* @cmd_buf: command buffer
* @cmd_len: length of the command buffer
* @resp_buf: response buffer
* @resp_len: length of the response buffer
*
* Sends a command to the SCM and waits for the command to finish processing.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking qcom_scm_call and invalidated in the cache
* immediately after qcom_scm_call returns. Cache maintenance on the command
* and response buffers is taken care of by qcom_scm_call; however, callers are
* responsible for any other cached buffers passed over to the secure world.
*/
static int qcom_scm_call(u32 svc_id, u32 cmd_id, const void *cmd_buf,
size_t cmd_len, void *resp_buf, size_t resp_len)
{
int ret;
struct qcom_scm_command *cmd;
struct qcom_scm_response *rsp;
unsigned long start, end;
cmd = alloc_qcom_scm_command(cmd_len, resp_len);
if (!cmd)
return -ENOMEM;
cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
if (cmd_buf)
memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
mutex_lock(&qcom_scm_lock);
ret = __qcom_scm_call(cmd);
mutex_unlock(&qcom_scm_lock);
if (ret)
goto out;
rsp = qcom_scm_command_to_response(cmd);
start = (unsigned long)rsp;
do {
qcom_scm_inv_range(start, start + sizeof(*rsp));
} while (!rsp->is_complete);
end = (unsigned long)qcom_scm_get_response_buffer(rsp) + resp_len;
qcom_scm_inv_range(start, end);
if (resp_buf)
memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), resp_len);
out:
free_qcom_scm_command(cmd);
return ret;
}
#define SCM_CLASS_REGISTER (0x2 << 8)
#define SCM_MASK_IRQS BIT(5)
#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
SCM_CLASS_REGISTER | \
SCM_MASK_IRQS | \
(n & 0xf))
/**
* qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
register u32 r1 asm("r1") = (u32)&context_id;
register u32 r2 asm("r2") = arg1;
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r0")
__asmeq("%2", "r1")
__asmeq("%3", "r2")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
return r0;
}
u32 qcom_scm_get_version(void)
{
int context_id;
static u32 version = -1;
register u32 r0 asm("r0");
register u32 r1 asm("r1");
if (version != -1)
return version;
mutex_lock(&qcom_scm_lock);
r0 = 0x1 << 8;
r1 = (u32)&context_id;
do {
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r1")
__asmeq("%2", "r0")
__asmeq("%3", "r1")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0), "=r" (r1)
: "r" (r0), "r" (r1)
: "r2", "r3");
} while (r0 == QCOM_SCM_INTERRUPTED);
version = r1;
mutex_unlock(&qcom_scm_lock);
return version;
}
EXPORT_SYMBOL(qcom_scm_get_version);
/*
* Set the cold/warm boot address for one of the CPU cores.
*/
static int qcom_scm_set_boot_addr(u32 addr, int flags)
{
struct {
__le32 flags;
__le32 addr;
} cmd;
cmd.addr = cpu_to_le32(addr);
cmd.flags = cpu_to_le32(flags);
return qcom_scm_call(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
&cmd, sizeof(cmd), NULL, 0);
}
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
int flags = 0;
int cpu;
int scm_cb_flags[] = {
QCOM_SCM_FLAG_COLDBOOT_CPU0,
QCOM_SCM_FLAG_COLDBOOT_CPU1,
QCOM_SCM_FLAG_COLDBOOT_CPU2,
QCOM_SCM_FLAG_COLDBOOT_CPU3,
};
if (!cpus || (cpus && cpumask_empty(cpus)))
return -EINVAL;
for_each_cpu(cpu, cpus) {
if (cpu < ARRAY_SIZE(scm_cb_flags))
flags |= scm_cb_flags[cpu];
else
set_cpu_present(cpu, false);
}
return qcom_scm_set_boot_addr(virt_to_phys(entry), flags);
}
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
int ret;
int flags = 0;
int cpu;
/*
* Reassign only if we are switching from hotplug entry point
* to cpuidle entry point or vice versa.
*/
for_each_cpu(cpu, cpus) {
if (entry == qcom_scm_wb[cpu].entry)
continue;
flags |= qcom_scm_wb[cpu].flag;
}
/* No change in entry function */
if (!flags)
return 0;
ret = qcom_scm_set_boot_addr(virt_to_phys(entry), flags);
if (!ret) {
for_each_cpu(cpu, cpus)
qcom_scm_wb[cpu].entry = entry;
}
return ret;
}
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void __qcom_scm_cpu_power_down(u32 flags)
{
qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC,
flags & QCOM_SCM_FLUSH_FLAG_MASK);
}
int __qcom_scm_is_call_available(u32 svc_id, u32 cmd_id)
{
int ret;
u32 svc_cmd = (svc_id << 10) | cmd_id;
u32 ret_val = 0;
ret = qcom_scm_call(QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &svc_cmd,
sizeof(svc_cmd), &ret_val, sizeof(ret_val));
if (ret)
return ret;
return ret_val;
}
int __qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
return -ERANGE;
return qcom_scm_call(QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
req, req_cnt * sizeof(*req), resp, sizeof(*resp));
}
/* Copyright (c) 2010, Code Aurora Forum. All rights reserved. /* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd. * Copyright (C) 2015 Linaro Ltd.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
...@@ -16,393 +16,12 @@ ...@@ -16,393 +16,12 @@
* 02110-1301, USA. * 02110-1301, USA.
*/ */
#include <linux/slab.h> #include <linux/cpumask.h>
#include <linux/io.h> #include <linux/export.h>
#include <linux/module.h> #include <linux/types.h>
#include <linux/mutex.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/qcom_scm.h> #include <linux/qcom_scm.h>
#include <asm/outercache.h> #include "qcom_scm.h"
#include <asm/cacheflush.h>
#define QCOM_SCM_ENOMEM -5
#define QCOM_SCM_EOPNOTSUPP -4
#define QCOM_SCM_EINVAL_ADDR -3
#define QCOM_SCM_EINVAL_ARG -2
#define QCOM_SCM_ERROR -1
#define QCOM_SCM_INTERRUPTED 1
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
struct qcom_scm_entry {
int flag;
void *entry;
};
static struct qcom_scm_entry qcom_scm_wb[] = {
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
};
static DEFINE_MUTEX(qcom_scm_lock);
/**
* struct qcom_scm_command - one SCM command buffer
* @len: total available memory for command and response
* @buf_offset: start of command buffer
* @resp_hdr_offset: start of response buffer
* @id: command to be executed
* @buf: buffer returned from qcom_scm_get_command_buffer()
*
* An SCM command is laid out in memory as follows:
*
* ------------------- <--- struct qcom_scm_command
* | command header |
* ------------------- <--- qcom_scm_get_command_buffer()
* | command buffer |
* ------------------- <--- struct qcom_scm_response and
* | response header | qcom_scm_command_to_response()
* ------------------- <--- qcom_scm_get_response_buffer()
* | response buffer |
* -------------------
*
* There can be arbitrary padding between the headers and buffers so
* you should always use the appropriate qcom_scm_get_*_buffer() routines
* to access the buffers in a safe manner.
*/
struct qcom_scm_command {
__le32 len;
__le32 buf_offset;
__le32 resp_hdr_offset;
__le32 id;
__le32 buf[0];
};
/**
* struct qcom_scm_response - one SCM response buffer
* @len: total available memory for response
* @buf_offset: start of response data relative to start of qcom_scm_response
* @is_complete: indicates if the command has finished processing
*/
struct qcom_scm_response {
__le32 len;
__le32 buf_offset;
__le32 is_complete;
};
/**
* alloc_qcom_scm_command() - Allocate an SCM command
* @cmd_size: size of the command buffer
* @resp_size: size of the response buffer
*
* Allocate an SCM command, including enough room for the command
* and response headers as well as the command and response buffers.
*
* Returns a valid &qcom_scm_command on success or %NULL if the allocation fails.
*/
static struct qcom_scm_command *alloc_qcom_scm_command(size_t cmd_size, size_t resp_size)
{
struct qcom_scm_command *cmd;
size_t len = sizeof(*cmd) + sizeof(struct qcom_scm_response) + cmd_size +
resp_size;
u32 offset;
cmd = kzalloc(PAGE_ALIGN(len), GFP_KERNEL);
if (cmd) {
cmd->len = cpu_to_le32(len);
offset = offsetof(struct qcom_scm_command, buf);
cmd->buf_offset = cpu_to_le32(offset);
cmd->resp_hdr_offset = cpu_to_le32(offset + cmd_size);
}
return cmd;
}
/**
* free_qcom_scm_command() - Free an SCM command
* @cmd: command to free
*
* Free an SCM command.
*/
static inline void free_qcom_scm_command(struct qcom_scm_command *cmd)
{
kfree(cmd);
}
/**
* qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
* @cmd: command
*
* Returns a pointer to a response for a command.
*/
static inline struct qcom_scm_response *qcom_scm_command_to_response(
const struct qcom_scm_command *cmd)
{
return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
}
/**
* qcom_scm_get_command_buffer() - Get a pointer to a command buffer
* @cmd: command
*
* Returns a pointer to the command buffer of a command.
*/
static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
{
return (void *)cmd->buf;
}
/**
* qcom_scm_get_response_buffer() - Get a pointer to a response buffer
* @rsp: response
*
* Returns a pointer to a response buffer of a response.
*/
static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
{
return (void *)rsp + le32_to_cpu(rsp->buf_offset);
}
static int qcom_scm_remap_error(int err)
{
pr_err("qcom_scm_call failed with error code %d\n", err);
switch (err) {
case QCOM_SCM_ERROR:
return -EIO;
case QCOM_SCM_EINVAL_ADDR:
case QCOM_SCM_EINVAL_ARG:
return -EINVAL;
case QCOM_SCM_EOPNOTSUPP:
return -EOPNOTSUPP;
case QCOM_SCM_ENOMEM:
return -ENOMEM;
}
return -EINVAL;
}
static u32 smc(u32 cmd_addr)
{
int context_id;
register u32 r0 asm("r0") = 1;
register u32 r1 asm("r1") = (u32)&context_id;
register u32 r2 asm("r2") = cmd_addr;
do {
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r0")
__asmeq("%2", "r1")
__asmeq("%3", "r2")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
} while (r0 == QCOM_SCM_INTERRUPTED);
return r0;
}
static int __qcom_scm_call(const struct qcom_scm_command *cmd)
{
int ret;
u32 cmd_addr = virt_to_phys(cmd);
/*
* Flush the command buffer so that the secure world sees
* the correct data.
*/
__cpuc_flush_dcache_area((void *)cmd, cmd->len);
outer_flush_range(cmd_addr, cmd_addr + cmd->len);
ret = smc(cmd_addr);
if (ret < 0)
ret = qcom_scm_remap_error(ret);
return ret;
}
static void qcom_scm_inv_range(unsigned long start, unsigned long end)
{
u32 cacheline_size, ctr;
asm volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (ctr));
cacheline_size = 4 << ((ctr >> 16) & 0xf);
start = round_down(start, cacheline_size);
end = round_up(end, cacheline_size);
outer_inv_range(start, end);
while (start < end) {
asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (start)
: "memory");
start += cacheline_size;
}
dsb();
isb();
}
/**
* qcom_scm_call() - Send an SCM command
* @svc_id: service identifier
* @cmd_id: command identifier
* @cmd_buf: command buffer
* @cmd_len: length of the command buffer
* @resp_buf: response buffer
* @resp_len: length of the response buffer
*
* Sends a command to the SCM and waits for the command to finish processing.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking qcom_scm_call and invalidated in the cache
* immediately after qcom_scm_call returns. Cache maintenance on the command
* and response buffers is taken care of by qcom_scm_call; however, callers are
* responsible for any other cached buffers passed over to the secure world.
*/
static int qcom_scm_call(u32 svc_id, u32 cmd_id, const void *cmd_buf,
size_t cmd_len, void *resp_buf, size_t resp_len)
{
int ret;
struct qcom_scm_command *cmd;
struct qcom_scm_response *rsp;
unsigned long start, end;
cmd = alloc_qcom_scm_command(cmd_len, resp_len);
if (!cmd)
return -ENOMEM;
cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
if (cmd_buf)
memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
mutex_lock(&qcom_scm_lock);
ret = __qcom_scm_call(cmd);
mutex_unlock(&qcom_scm_lock);
if (ret)
goto out;
rsp = qcom_scm_command_to_response(cmd);
start = (unsigned long)rsp;
do {
qcom_scm_inv_range(start, start + sizeof(*rsp));
} while (!rsp->is_complete);
end = (unsigned long)qcom_scm_get_response_buffer(rsp) + resp_len;
qcom_scm_inv_range(start, end);
if (resp_buf)
memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), resp_len);
out:
free_qcom_scm_command(cmd);
return ret;
}
#define SCM_CLASS_REGISTER (0x2 << 8)
#define SCM_MASK_IRQS BIT(5)
#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
SCM_CLASS_REGISTER | \
SCM_MASK_IRQS | \
(n & 0xf))
/**
* qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
register u32 r1 asm("r1") = (u32)&context_id;
register u32 r2 asm("r2") = arg1;
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r0")
__asmeq("%2", "r1")
__asmeq("%3", "r2")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
return r0;
}
u32 qcom_scm_get_version(void)
{
int context_id;
static u32 version = -1;
register u32 r0 asm("r0");
register u32 r1 asm("r1");
if (version != -1)
return version;
mutex_lock(&qcom_scm_lock);
r0 = 0x1 << 8;
r1 = (u32)&context_id;
do {
asm volatile(
__asmeq("%0", "r0")
__asmeq("%1", "r1")
__asmeq("%2", "r0")
__asmeq("%3", "r1")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0), "=r" (r1)
: "r" (r0), "r" (r1)
: "r2", "r3");
} while (r0 == QCOM_SCM_INTERRUPTED);
version = r1;
mutex_unlock(&qcom_scm_lock);
return version;
}
EXPORT_SYMBOL(qcom_scm_get_version);
#define QCOM_SCM_SVC_BOOT 0x1
#define QCOM_SCM_BOOT_ADDR 0x1
/*
* Set the cold/warm boot address for one of the CPU cores.
*/
static int qcom_scm_set_boot_addr(u32 addr, int flags)
{
struct {
__le32 flags;
__le32 addr;
} cmd;
cmd.addr = cpu_to_le32(addr);
cmd.flags = cpu_to_le32(flags);
return qcom_scm_call(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
&cmd, sizeof(cmd), NULL, 0);
}
/** /**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
...@@ -414,26 +33,7 @@ static int qcom_scm_set_boot_addr(u32 addr, int flags) ...@@ -414,26 +33,7 @@ static int qcom_scm_set_boot_addr(u32 addr, int flags)
*/ */
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{ {
int flags = 0; return __qcom_scm_set_cold_boot_addr(entry, cpus);
int cpu;
int scm_cb_flags[] = {
QCOM_SCM_FLAG_COLDBOOT_CPU0,
QCOM_SCM_FLAG_COLDBOOT_CPU1,
QCOM_SCM_FLAG_COLDBOOT_CPU2,
QCOM_SCM_FLAG_COLDBOOT_CPU3,
};
if (!cpus || (cpus && cpumask_empty(cpus)))
return -EINVAL;
for_each_cpu(cpu, cpus) {
if (cpu < ARRAY_SIZE(scm_cb_flags))
flags |= scm_cb_flags[cpu];
else
set_cpu_present(cpu, false);
}
return qcom_scm_set_boot_addr(virt_to_phys(entry), flags);
} }
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
...@@ -447,37 +47,10 @@ EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); ...@@ -447,37 +47,10 @@ EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
*/ */
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus) int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{ {
int ret; return __qcom_scm_set_warm_boot_addr(entry, cpus);
int flags = 0;
int cpu;
/*
* Reassign only if we are switching from hotplug entry point
* to cpuidle entry point or vice versa.
*/
for_each_cpu(cpu, cpus) {
if (entry == qcom_scm_wb[cpu].entry)
continue;
flags |= qcom_scm_wb[cpu].flag;
}
/* No change in entry function */
if (!flags)
return 0;
ret = qcom_scm_set_boot_addr(virt_to_phys(entry), flags);
if (!ret) {
for_each_cpu(cpu, cpus)
qcom_scm_wb[cpu].entry = entry;
}
return ret;
} }
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
#define QCOM_SCM_CMD_TERMINATE_PC 0x2
#define QCOM_SCM_FLUSH_FLAG_MASK 0x3
/** /**
* qcom_scm_cpu_power_down() - Power down the cpu * qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache * @flags - Flags to flush cache
...@@ -488,7 +61,36 @@ EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); ...@@ -488,7 +61,36 @@ EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
*/ */
void qcom_scm_cpu_power_down(u32 flags) void qcom_scm_cpu_power_down(u32 flags)
{ {
qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC, __qcom_scm_cpu_power_down(flags);
flags & QCOM_SCM_FLUSH_FLAG_MASK);
} }
EXPORT_SYMBOL(qcom_scm_cpu_power_down); EXPORT_SYMBOL(qcom_scm_cpu_power_down);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
int ret;
ret = __qcom_scm_is_call_available(QCOM_SCM_SVC_HDCP,
QCOM_SCM_CMD_HDCP);
return (ret > 0) ? true : false;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
return __qcom_scm_hdcp_req(req, req_cnt, resp);
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
/* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __QCOM_SCM_INT_H
#define __QCOM_SCM_INT_H
#define QCOM_SCM_SVC_BOOT 0x1
#define QCOM_SCM_BOOT_ADDR 0x1
#define QCOM_SCM_BOOT_ADDR_MC 0x11
#define QCOM_SCM_FLAG_HLOS 0x01
#define QCOM_SCM_FLAG_COLDBOOT_MC 0x02
#define QCOM_SCM_FLAG_WARMBOOT_MC 0x04
extern int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus);
extern int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus);
#define QCOM_SCM_CMD_TERMINATE_PC 0x2
#define QCOM_SCM_FLUSH_FLAG_MASK 0x3
#define QCOM_SCM_CMD_CORE_HOTPLUGGED 0x10
extern void __qcom_scm_cpu_power_down(u32 flags);
#define QCOM_SCM_SVC_INFO 0x6
#define QCOM_IS_CALL_AVAIL_CMD 0x1
extern int __qcom_scm_is_call_available(u32 svc_id, u32 cmd_id);
#define QCOM_SCM_SVC_HDCP 0x11
#define QCOM_SCM_CMD_HDCP 0x01
extern int __qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
u32 *resp);
/* common error codes */
#define QCOM_SCM_ENOMEM -5
#define QCOM_SCM_EOPNOTSUPP -4
#define QCOM_SCM_EINVAL_ADDR -3
#define QCOM_SCM_EINVAL_ARG -2
#define QCOM_SCM_ERROR -1
#define QCOM_SCM_INTERRUPTED 1
#endif
...@@ -219,7 +219,7 @@ config TEGRA_IOMMU_SMMU ...@@ -219,7 +219,7 @@ config TEGRA_IOMMU_SMMU
select IOMMU_API select IOMMU_API
help help
This driver supports the IOMMU hardware (SMMU) found on NVIDIA Tegra This driver supports the IOMMU hardware (SMMU) found on NVIDIA Tegra
SoCs (Tegra30 up to Tegra124). SoCs (Tegra30 up to Tegra132).
config EXYNOS_IOMMU config EXYNOS_IOMMU
bool "Exynos IOMMU Support" bool "Exynos IOMMU Support"
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
*/ */
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/iommu.h> #include <linux/iommu.h>
#include <linux/kernel.h> #include <linux/kernel.h>
...@@ -31,6 +32,8 @@ struct tegra_smmu { ...@@ -31,6 +32,8 @@ struct tegra_smmu {
struct mutex lock; struct mutex lock;
struct list_head list; struct list_head list;
struct dentry *debugfs;
}; };
struct tegra_smmu_as { struct tegra_smmu_as {
...@@ -673,6 +676,103 @@ static void tegra_smmu_ahb_enable(void) ...@@ -673,6 +676,103 @@ static void tegra_smmu_ahb_enable(void)
} }
} }
static int tegra_smmu_swgroups_show(struct seq_file *s, void *data)
{
struct tegra_smmu *smmu = s->private;
unsigned int i;
u32 value;
seq_printf(s, "swgroup enabled ASID\n");
seq_printf(s, "------------------------\n");
for (i = 0; i < smmu->soc->num_swgroups; i++) {
const struct tegra_smmu_swgroup *group = &smmu->soc->swgroups[i];
const char *status;
unsigned int asid;
value = smmu_readl(smmu, group->reg);
if (value & SMMU_ASID_ENABLE)
status = "yes";
else
status = "no";
asid = value & SMMU_ASID_MASK;
seq_printf(s, "%-9s %-7s %#04x\n", group->name, status,
asid);
}
return 0;
}
static int tegra_smmu_swgroups_open(struct inode *inode, struct file *file)
{
return single_open(file, tegra_smmu_swgroups_show, inode->i_private);
}
static const struct file_operations tegra_smmu_swgroups_fops = {
.open = tegra_smmu_swgroups_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int tegra_smmu_clients_show(struct seq_file *s, void *data)
{
struct tegra_smmu *smmu = s->private;
unsigned int i;
u32 value;
seq_printf(s, "client enabled\n");
seq_printf(s, "--------------------\n");
for (i = 0; i < smmu->soc->num_clients; i++) {
const struct tegra_mc_client *client = &smmu->soc->clients[i];
const char *status;
value = smmu_readl(smmu, client->smmu.reg);
if (value & BIT(client->smmu.bit))
status = "yes";
else
status = "no";
seq_printf(s, "%-12s %s\n", client->name, status);
}
return 0;
}
static int tegra_smmu_clients_open(struct inode *inode, struct file *file)
{
return single_open(file, tegra_smmu_clients_show, inode->i_private);
}
static const struct file_operations tegra_smmu_clients_fops = {
.open = tegra_smmu_clients_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void tegra_smmu_debugfs_init(struct tegra_smmu *smmu)
{
smmu->debugfs = debugfs_create_dir("smmu", NULL);
if (!smmu->debugfs)
return;
debugfs_create_file("swgroups", S_IRUGO, smmu->debugfs, smmu,
&tegra_smmu_swgroups_fops);
debugfs_create_file("clients", S_IRUGO, smmu->debugfs, smmu,
&tegra_smmu_clients_fops);
}
static void tegra_smmu_debugfs_exit(struct tegra_smmu *smmu)
{
debugfs_remove_recursive(smmu->debugfs);
}
struct tegra_smmu *tegra_smmu_probe(struct device *dev, struct tegra_smmu *tegra_smmu_probe(struct device *dev,
const struct tegra_smmu_soc *soc, const struct tegra_smmu_soc *soc,
struct tegra_mc *mc) struct tegra_mc *mc)
...@@ -743,5 +843,14 @@ struct tegra_smmu *tegra_smmu_probe(struct device *dev, ...@@ -743,5 +843,14 @@ struct tegra_smmu *tegra_smmu_probe(struct device *dev,
if (err < 0) if (err < 0)
return ERR_PTR(err); return ERR_PTR(err);
if (IS_ENABLED(CONFIG_DEBUG_FS))
tegra_smmu_debugfs_init(smmu);
return smmu; return smmu;
} }
void tegra_smmu_remove(struct tegra_smmu *smmu)
{
if (IS_ENABLED(CONFIG_DEBUG_FS))
tegra_smmu_debugfs_exit(smmu);
}
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
* MA 02111-1307 USA * MA 02111-1307 USA
*/ */
#include <linux/io.h> #include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
...@@ -66,102 +67,101 @@ static void syscon_led_set(struct led_classdev *led_cdev, ...@@ -66,102 +67,101 @@ static void syscon_led_set(struct led_classdev *led_cdev,
dev_err(sled->cdev.dev, "error updating LED status\n"); dev_err(sled->cdev.dev, "error updating LED status\n");
} }
static int __init syscon_leds_spawn(struct device_node *np, static int syscon_led_probe(struct platform_device *pdev)
struct device *dev,
struct regmap *map)
{ {
struct device_node *child; struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device *parent;
struct regmap *map;
struct syscon_led *sled;
const char *state;
int ret; int ret;
for_each_available_child_of_node(np, child) { parent = dev->parent;
struct syscon_led *sled; if (!parent) {
const char *state; dev_err(dev, "no parent for syscon LED\n");
return -ENODEV;
/* Only check for register-bit-leds */ }
if (of_property_match_string(child, "compatible", map = syscon_node_to_regmap(parent->of_node);
"register-bit-led") < 0) if (!map) {
continue; dev_err(dev, "no regmap for syscon LED parent\n");
return -ENODEV;
sled = devm_kzalloc(dev, sizeof(*sled), GFP_KERNEL); }
if (!sled)
return -ENOMEM; sled = devm_kzalloc(dev, sizeof(*sled), GFP_KERNEL);
if (!sled)
sled->map = map; return -ENOMEM;
if (of_property_read_u32(child, "offset", &sled->offset)) sled->map = map;
return -EINVAL;
if (of_property_read_u32(child, "mask", &sled->mask)) if (of_property_read_u32(np, "offset", &sled->offset))
return -EINVAL; return -EINVAL;
sled->cdev.name = if (of_property_read_u32(np, "mask", &sled->mask))
of_get_property(child, "label", NULL) ? : child->name; return -EINVAL;
sled->cdev.default_trigger = sled->cdev.name =
of_get_property(child, "linux,default-trigger", NULL); of_get_property(np, "label", NULL) ? : np->name;
sled->cdev.default_trigger =
state = of_get_property(child, "default-state", NULL); of_get_property(np, "linux,default-trigger", NULL);
if (state) {
if (!strcmp(state, "keep")) { state = of_get_property(np, "default-state", NULL);
u32 val; if (state) {
if (!strcmp(state, "keep")) {
ret = regmap_read(map, sled->offset, &val); u32 val;
if (ret < 0)
return ret; ret = regmap_read(map, sled->offset, &val);
sled->state = !!(val & sled->mask); if (ret < 0)
} else if (!strcmp(state, "on")) { return ret;
sled->state = true; sled->state = !!(val & sled->mask);
ret = regmap_update_bits(map, sled->offset, } else if (!strcmp(state, "on")) {
sled->mask, sled->state = true;
sled->mask); ret = regmap_update_bits(map, sled->offset,
if (ret < 0) sled->mask,
return ret; sled->mask);
} else { if (ret < 0)
sled->state = false; return ret;
ret = regmap_update_bits(map, sled->offset, } else {
sled->mask, 0); sled->state = false;
if (ret < 0) ret = regmap_update_bits(map, sled->offset,
return ret; sled->mask, 0);
} if (ret < 0)
return ret;
} }
sled->cdev.brightness_set = syscon_led_set; }
sled->cdev.brightness_set = syscon_led_set;
ret = led_classdev_register(dev, &sled->cdev); ret = led_classdev_register(dev, &sled->cdev);
if (ret < 0) if (ret < 0)
return ret; return ret;
platform_set_drvdata(pdev, sled);
dev_info(dev, "registered LED %s\n", sled->cdev.name);
dev_info(dev, "registered LED %s\n", sled->cdev.name);
}
return 0; return 0;
} }
static int __init syscon_leds_init(void) static int syscon_led_remove(struct platform_device *pdev)
{ {
struct device_node *np; struct syscon_led *sled = platform_get_drvdata(pdev);
for_each_of_allnodes(np) {
struct platform_device *pdev;
struct regmap *map;
int ret;
if (!of_device_is_compatible(np, "syscon")) led_classdev_unregister(&sled->cdev);
continue; /* Turn it off */
regmap_update_bits(sled->map, sled->offset, sled->mask, 0);
return 0;
}
map = syscon_node_to_regmap(np); static const struct of_device_id of_syscon_leds_match[] = {
if (IS_ERR(map)) { { .compatible = "register-bit-led", },
pr_err("error getting regmap for syscon LEDs\n"); {},
continue; };
}
/* MODULE_DEVICE_TABLE(of, of_syscon_leds_match);
* If the map is there, the device should be there, we allocate
* memory on the syscon device's behalf here.
*/
pdev = of_find_device_by_node(np);
if (!pdev)
return -ENODEV;
ret = syscon_leds_spawn(np, &pdev->dev, map);
if (ret)
dev_err(&pdev->dev, "could not spawn syscon LEDs\n");
}
return 0; static struct platform_driver syscon_led_driver = {
} .probe = syscon_led_probe,
device_initcall(syscon_leds_init); .remove = syscon_led_remove,
.driver = {
.name = "leds-syscon",
.of_match_table = of_syscon_leds_match,
},
};
module_platform_driver(syscon_led_driver);
...@@ -5,3 +5,13 @@ config TEGRA_MC ...@@ -5,3 +5,13 @@ config TEGRA_MC
help help
This driver supports the Memory Controller (MC) hardware found on This driver supports the Memory Controller (MC) hardware found on
NVIDIA Tegra SoCs. NVIDIA Tegra SoCs.
config TEGRA124_EMC
bool "NVIDIA Tegra124 External Memory Controller driver"
default y
depends on TEGRA_MC && ARCH_TEGRA_124_SOC
help
This driver is for the External Memory Controller (EMC) found on
Tegra124 chips. The EMC controls the external DRAM on the board.
This driver is required to change memory timings / clock rate for
external memory.
...@@ -3,5 +3,8 @@ tegra-mc-y := mc.o ...@@ -3,5 +3,8 @@ tegra-mc-y := mc.o
tegra-mc-$(CONFIG_ARCH_TEGRA_3x_SOC) += tegra30.o tegra-mc-$(CONFIG_ARCH_TEGRA_3x_SOC) += tegra30.o
tegra-mc-$(CONFIG_ARCH_TEGRA_114_SOC) += tegra114.o tegra-mc-$(CONFIG_ARCH_TEGRA_114_SOC) += tegra114.o
tegra-mc-$(CONFIG_ARCH_TEGRA_124_SOC) += tegra124.o tegra-mc-$(CONFIG_ARCH_TEGRA_124_SOC) += tegra124.o
tegra-mc-$(CONFIG_ARCH_TEGRA_132_SOC) += tegra124.o
obj-$(CONFIG_TEGRA_MC) += tegra-mc.o obj-$(CONFIG_TEGRA_MC) += tegra-mc.o
obj-$(CONFIG_TEGRA124_EMC) += tegra124-emc.o
...@@ -13,6 +13,9 @@ ...@@ -13,6 +13,9 @@
#include <linux/of.h> #include <linux/of.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/sort.h>
#include <soc/tegra/fuse.h>
#include "mc.h" #include "mc.h"
...@@ -48,6 +51,9 @@ ...@@ -48,6 +51,9 @@
#define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK 0x1ff #define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK 0x1ff
#define MC_EMEM_ARB_MISC0 0xd8 #define MC_EMEM_ARB_MISC0 0xd8
#define MC_EMEM_ADR_CFG 0x54
#define MC_EMEM_ADR_CFG_EMEM_NUMDEV BIT(0)
static const struct of_device_id tegra_mc_of_match[] = { static const struct of_device_id tegra_mc_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_3x_SOC #ifdef CONFIG_ARCH_TEGRA_3x_SOC
{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc }, { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
...@@ -57,6 +63,9 @@ static const struct of_device_id tegra_mc_of_match[] = { ...@@ -57,6 +63,9 @@ static const struct of_device_id tegra_mc_of_match[] = {
#endif #endif
#ifdef CONFIG_ARCH_TEGRA_124_SOC #ifdef CONFIG_ARCH_TEGRA_124_SOC
{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc }, { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
#endif #endif
{ } { }
}; };
...@@ -91,6 +100,130 @@ static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc) ...@@ -91,6 +100,130 @@ static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
return 0; return 0;
} }
void tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
{
unsigned int i;
struct tegra_mc_timing *timing = NULL;
for (i = 0; i < mc->num_timings; i++) {
if (mc->timings[i].rate == rate) {
timing = &mc->timings[i];
break;
}
}
if (!timing) {
dev_err(mc->dev, "no memory timing registered for rate %lu\n",
rate);
return;
}
for (i = 0; i < mc->soc->num_emem_regs; ++i)
mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
}
unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
{
u8 dram_count;
dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
dram_count++;
return dram_count;
}
static int load_one_timing(struct tegra_mc *mc,
struct tegra_mc_timing *timing,
struct device_node *node)
{
int err;
u32 tmp;
err = of_property_read_u32(node, "clock-frequency", &tmp);
if (err) {
dev_err(mc->dev,
"timing %s: failed to read rate\n", node->name);
return err;
}
timing->rate = tmp;
timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
sizeof(u32), GFP_KERNEL);
if (!timing->emem_data)
return -ENOMEM;
err = of_property_read_u32_array(node, "nvidia,emem-configuration",
timing->emem_data,
mc->soc->num_emem_regs);
if (err) {
dev_err(mc->dev,
"timing %s: failed to read EMEM configuration\n",
node->name);
return err;
}
return 0;
}
static int load_timings(struct tegra_mc *mc, struct device_node *node)
{
struct device_node *child;
struct tegra_mc_timing *timing;
int child_count = of_get_child_count(node);
int i = 0, err;
mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
GFP_KERNEL);
if (!mc->timings)
return -ENOMEM;
mc->num_timings = child_count;
for_each_child_of_node(node, child) {
timing = &mc->timings[i++];
err = load_one_timing(mc, timing, child);
if (err)
return err;
}
return 0;
}
static int tegra_mc_setup_timings(struct tegra_mc *mc)
{
struct device_node *node;
u32 ram_code, node_ram_code;
int err;
ram_code = tegra_read_ram_code();
mc->num_timings = 0;
for_each_child_of_node(mc->dev->of_node, node) {
err = of_property_read_u32(node, "nvidia,ram-code",
&node_ram_code);
if (err || (node_ram_code != ram_code)) {
of_node_put(node);
continue;
}
err = load_timings(mc, node);
if (err)
return err;
of_node_put(node);
break;
}
if (mc->num_timings == 0)
dev_warn(mc->dev,
"no memory timings for RAM code %u registered\n",
ram_code);
return 0;
}
static const char *const status_names[32] = { static const char *const status_names[32] = {
[ 1] = "External interrupt", [ 1] = "External interrupt",
[ 6] = "EMEM address decode error", [ 6] = "EMEM address decode error",
...@@ -248,6 +381,12 @@ static int tegra_mc_probe(struct platform_device *pdev) ...@@ -248,6 +381,12 @@ static int tegra_mc_probe(struct platform_device *pdev)
return err; return err;
} }
err = tegra_mc_setup_timings(mc);
if (err < 0) {
dev_err(&pdev->dev, "failed to setup timings: %d\n", err);
return err;
}
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU)) { if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU)) {
mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc); mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
if (IS_ERR(mc->smmu)) { if (IS_ERR(mc->smmu)) {
...@@ -273,8 +412,8 @@ static int tegra_mc_probe(struct platform_device *pdev) ...@@ -273,8 +412,8 @@ static int tegra_mc_probe(struct platform_device *pdev)
value = MC_INT_DECERR_MTS | MC_INT_SECERR_SEC | MC_INT_DECERR_VPR | value = MC_INT_DECERR_MTS | MC_INT_SECERR_SEC | MC_INT_DECERR_VPR |
MC_INT_INVALID_APB_ASID_UPDATE | MC_INT_INVALID_SMMU_PAGE | MC_INT_INVALID_APB_ASID_UPDATE | MC_INT_INVALID_SMMU_PAGE |
MC_INT_ARBITRATION_EMEM | MC_INT_SECURITY_VIOLATION | MC_INT_SECURITY_VIOLATION | MC_INT_DECERR_EMEM;
MC_INT_DECERR_EMEM;
mc_writel(mc, value, MC_INTMASK); mc_writel(mc, value, MC_INTMASK);
return 0; return 0;
......
...@@ -37,4 +37,8 @@ extern const struct tegra_mc_soc tegra114_mc_soc; ...@@ -37,4 +37,8 @@ extern const struct tegra_mc_soc tegra114_mc_soc;
extern const struct tegra_mc_soc tegra124_mc_soc; extern const struct tegra_mc_soc tegra124_mc_soc;
#endif #endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
extern const struct tegra_mc_soc tegra132_mc_soc;
#endif
#endif /* MEMORY_TEGRA_MC_H */ #endif /* MEMORY_TEGRA_MC_H */
...@@ -896,22 +896,22 @@ static const struct tegra_mc_client tegra114_mc_clients[] = { ...@@ -896,22 +896,22 @@ static const struct tegra_mc_client tegra114_mc_clients[] = {
}; };
static const struct tegra_smmu_swgroup tegra114_swgroups[] = { static const struct tegra_smmu_swgroup tegra114_swgroups[] = {
{ .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 }, { .name = "dc", .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 },
{ .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 }, { .name = "dcb", .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 },
{ .swgroup = TEGRA_SWGROUP_EPP, .reg = 0x248 }, { .name = "epp", .swgroup = TEGRA_SWGROUP_EPP, .reg = 0x248 },
{ .swgroup = TEGRA_SWGROUP_G2, .reg = 0x24c }, { .name = "g2", .swgroup = TEGRA_SWGROUP_G2, .reg = 0x24c },
{ .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c }, { .name = "avpc", .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c },
{ .swgroup = TEGRA_SWGROUP_NV, .reg = 0x268 }, { .name = "nv", .swgroup = TEGRA_SWGROUP_NV, .reg = 0x268 },
{ .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 }, { .name = "hda", .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 },
{ .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 }, { .name = "hc", .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 },
{ .swgroup = TEGRA_SWGROUP_MSENC, .reg = 0x264 }, { .name = "msenc", .swgroup = TEGRA_SWGROUP_MSENC, .reg = 0x264 },
{ .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 }, { .name = "ppcs", .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 },
{ .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c }, { .name = "vde", .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c },
{ .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 }, { .name = "vi", .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 },
{ .swgroup = TEGRA_SWGROUP_ISP, .reg = 0x258 }, { .name = "isp", .swgroup = TEGRA_SWGROUP_ISP, .reg = 0x258 },
{ .swgroup = TEGRA_SWGROUP_XUSB_HOST, .reg = 0x288 }, { .name = "xusb_host", .swgroup = TEGRA_SWGROUP_XUSB_HOST, .reg = 0x288 },
{ .swgroup = TEGRA_SWGROUP_XUSB_DEV, .reg = 0x28c }, { .name = "xusb_dev", .swgroup = TEGRA_SWGROUP_XUSB_DEV, .reg = 0x28c },
{ .swgroup = TEGRA_SWGROUP_TSEC, .reg = 0x294 }, { .name = "tsec", .swgroup = TEGRA_SWGROUP_TSEC, .reg = 0x294 },
}; };
static void tegra114_flush_dcache(struct page *page, unsigned long offset, static void tegra114_flush_dcache(struct page *page, unsigned long offset,
......
/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clk-provider.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/sort.h>
#include <linux/string.h>
#include <soc/tegra/emc.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/mc.h>
#define EMC_FBIO_CFG5 0x104
#define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3
#define EMC_FBIO_CFG5_DRAM_TYPE_SHIFT 0
#define EMC_INTSTATUS 0x0
#define EMC_INTSTATUS_CLKCHANGE_COMPLETE BIT(4)
#define EMC_CFG 0xc
#define EMC_CFG_DRAM_CLKSTOP_PD BIT(31)
#define EMC_CFG_DRAM_CLKSTOP_SR BIT(30)
#define EMC_CFG_DRAM_ACPD BIT(29)
#define EMC_CFG_DYN_SREF BIT(28)
#define EMC_CFG_PWR_MASK ((0xF << 28) | BIT(18))
#define EMC_CFG_DSR_VTTGEN_DRV_EN BIT(18)
#define EMC_REFCTRL 0x20
#define EMC_REFCTRL_DEV_SEL_SHIFT 0
#define EMC_REFCTRL_ENABLE BIT(31)
#define EMC_TIMING_CONTROL 0x28
#define EMC_RC 0x2c
#define EMC_RFC 0x30
#define EMC_RAS 0x34
#define EMC_RP 0x38
#define EMC_R2W 0x3c
#define EMC_W2R 0x40
#define EMC_R2P 0x44
#define EMC_W2P 0x48
#define EMC_RD_RCD 0x4c
#define EMC_WR_RCD 0x50
#define EMC_RRD 0x54
#define EMC_REXT 0x58
#define EMC_WDV 0x5c
#define EMC_QUSE 0x60
#define EMC_QRST 0x64
#define EMC_QSAFE 0x68
#define EMC_RDV 0x6c
#define EMC_REFRESH 0x70
#define EMC_BURST_REFRESH_NUM 0x74
#define EMC_PDEX2WR 0x78
#define EMC_PDEX2RD 0x7c
#define EMC_PCHG2PDEN 0x80
#define EMC_ACT2PDEN 0x84
#define EMC_AR2PDEN 0x88
#define EMC_RW2PDEN 0x8c
#define EMC_TXSR 0x90
#define EMC_TCKE 0x94
#define EMC_TFAW 0x98
#define EMC_TRPAB 0x9c
#define EMC_TCLKSTABLE 0xa0
#define EMC_TCLKSTOP 0xa4
#define EMC_TREFBW 0xa8
#define EMC_ODT_WRITE 0xb0
#define EMC_ODT_READ 0xb4
#define EMC_WEXT 0xb8
#define EMC_CTT 0xbc
#define EMC_RFC_SLR 0xc0
#define EMC_MRS_WAIT_CNT2 0xc4
#define EMC_MRS_WAIT_CNT 0xc8
#define EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT 0
#define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK \
(0x3FF << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)
#define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16
#define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \
(0x3FF << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
#define EMC_MRS 0xcc
#define EMC_MODE_SET_DLL_RESET BIT(8)
#define EMC_MODE_SET_LONG_CNT BIT(26)
#define EMC_EMRS 0xd0
#define EMC_REF 0xd4
#define EMC_PRE 0xd8
#define EMC_SELF_REF 0xe0
#define EMC_SELF_REF_CMD_ENABLED BIT(0)
#define EMC_SELF_REF_DEV_SEL_SHIFT 30
#define EMC_MRW 0xe8
#define EMC_MRR 0xec
#define EMC_MRR_MA_SHIFT 16
#define LPDDR2_MR4_TEMP_SHIFT 0
#define EMC_XM2DQSPADCTRL3 0xf8
#define EMC_FBIO_SPARE 0x100
#define EMC_FBIO_CFG6 0x114
#define EMC_EMRS2 0x12c
#define EMC_MRW2 0x134
#define EMC_MRW4 0x13c
#define EMC_EINPUT 0x14c
#define EMC_EINPUT_DURATION 0x150
#define EMC_PUTERM_EXTRA 0x154
#define EMC_TCKESR 0x158
#define EMC_TPD 0x15c
#define EMC_AUTO_CAL_CONFIG 0x2a4
#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_START BIT(31)
#define EMC_AUTO_CAL_INTERVAL 0x2a8
#define EMC_AUTO_CAL_STATUS 0x2ac
#define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31)
#define EMC_STATUS 0x2b4
#define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23)
#define EMC_CFG_2 0x2b8
#define EMC_CFG_2_MODE_SHIFT 0
#define EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR BIT(6)
#define EMC_CFG_DIG_DLL 0x2bc
#define EMC_CFG_DIG_DLL_PERIOD 0x2c0
#define EMC_RDV_MASK 0x2cc
#define EMC_WDV_MASK 0x2d0
#define EMC_CTT_DURATION 0x2d8
#define EMC_CTT_TERM_CTRL 0x2dc
#define EMC_ZCAL_INTERVAL 0x2e0
#define EMC_ZCAL_WAIT_CNT 0x2e4
#define EMC_ZQ_CAL 0x2ec
#define EMC_ZQ_CAL_CMD BIT(0)
#define EMC_ZQ_CAL_LONG BIT(4)
#define EMC_ZQ_CAL_LONG_CMD_DEV0 \
(DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
#define EMC_ZQ_CAL_LONG_CMD_DEV1 \
(DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
#define EMC_XM2CMDPADCTRL 0x2f0
#define EMC_XM2DQSPADCTRL 0x2f8
#define EMC_XM2DQSPADCTRL2 0x2fc
#define EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE BIT(0)
#define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5)
#define EMC_XM2DQPADCTRL 0x300
#define EMC_XM2DQPADCTRL2 0x304
#define EMC_XM2CLKPADCTRL 0x308
#define EMC_XM2COMPPADCTRL 0x30c
#define EMC_XM2VTTGENPADCTRL 0x310
#define EMC_XM2VTTGENPADCTRL2 0x314
#define EMC_XM2VTTGENPADCTRL3 0x318
#define EMC_XM2DQSPADCTRL4 0x320
#define EMC_DLL_XFORM_DQS0 0x328
#define EMC_DLL_XFORM_DQS1 0x32c
#define EMC_DLL_XFORM_DQS2 0x330
#define EMC_DLL_XFORM_DQS3 0x334
#define EMC_DLL_XFORM_DQS4 0x338
#define EMC_DLL_XFORM_DQS5 0x33c
#define EMC_DLL_XFORM_DQS6 0x340
#define EMC_DLL_XFORM_DQS7 0x344
#define EMC_DLL_XFORM_QUSE0 0x348
#define EMC_DLL_XFORM_QUSE1 0x34c
#define EMC_DLL_XFORM_QUSE2 0x350
#define EMC_DLL_XFORM_QUSE3 0x354
#define EMC_DLL_XFORM_QUSE4 0x358
#define EMC_DLL_XFORM_QUSE5 0x35c
#define EMC_DLL_XFORM_QUSE6 0x360
#define EMC_DLL_XFORM_QUSE7 0x364
#define EMC_DLL_XFORM_DQ0 0x368
#define EMC_DLL_XFORM_DQ1 0x36c
#define EMC_DLL_XFORM_DQ2 0x370
#define EMC_DLL_XFORM_DQ3 0x374
#define EMC_DLI_TRIM_TXDQS0 0x3a8
#define EMC_DLI_TRIM_TXDQS1 0x3ac
#define EMC_DLI_TRIM_TXDQS2 0x3b0
#define EMC_DLI_TRIM_TXDQS3 0x3b4
#define EMC_DLI_TRIM_TXDQS4 0x3b8
#define EMC_DLI_TRIM_TXDQS5 0x3bc
#define EMC_DLI_TRIM_TXDQS6 0x3c0
#define EMC_DLI_TRIM_TXDQS7 0x3c4
#define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc
#define EMC_SEL_DPD_CTRL 0x3d8
#define EMC_SEL_DPD_CTRL_DATA_SEL_DPD BIT(8)
#define EMC_SEL_DPD_CTRL_ODT_SEL_DPD BIT(5)
#define EMC_SEL_DPD_CTRL_RESET_SEL_DPD BIT(4)
#define EMC_SEL_DPD_CTRL_CA_SEL_DPD BIT(3)
#define EMC_SEL_DPD_CTRL_CLK_SEL_DPD BIT(2)
#define EMC_SEL_DPD_CTRL_DDR3_MASK \
((0xf << 2) | BIT(8))
#define EMC_SEL_DPD_CTRL_MASK \
((0x3 << 2) | BIT(5) | BIT(8))
#define EMC_PRE_REFRESH_REQ_CNT 0x3dc
#define EMC_DYN_SELF_REF_CONTROL 0x3e0
#define EMC_TXSRDLL 0x3e4
#define EMC_CCFIFO_ADDR 0x3e8
#define EMC_CCFIFO_DATA 0x3ec
#define EMC_CCFIFO_STATUS 0x3f0
#define EMC_CDB_CNTL_1 0x3f4
#define EMC_CDB_CNTL_2 0x3f8
#define EMC_XM2CLKPADCTRL2 0x3fc
#define EMC_AUTO_CAL_CONFIG2 0x458
#define EMC_AUTO_CAL_CONFIG3 0x45c
#define EMC_IBDLY 0x468
#define EMC_DLL_XFORM_ADDR0 0x46c
#define EMC_DLL_XFORM_ADDR1 0x470
#define EMC_DLL_XFORM_ADDR2 0x474
#define EMC_DSR_VTTGEN_DRV 0x47c
#define EMC_TXDSRVTTGEN 0x480
#define EMC_XM2CMDPADCTRL4 0x484
#define EMC_XM2CMDPADCTRL5 0x488
#define EMC_DLL_XFORM_DQS8 0x4a0
#define EMC_DLL_XFORM_DQS9 0x4a4
#define EMC_DLL_XFORM_DQS10 0x4a8
#define EMC_DLL_XFORM_DQS11 0x4ac
#define EMC_DLL_XFORM_DQS12 0x4b0
#define EMC_DLL_XFORM_DQS13 0x4b4
#define EMC_DLL_XFORM_DQS14 0x4b8
#define EMC_DLL_XFORM_DQS15 0x4bc
#define EMC_DLL_XFORM_QUSE8 0x4c0
#define EMC_DLL_XFORM_QUSE9 0x4c4
#define EMC_DLL_XFORM_QUSE10 0x4c8
#define EMC_DLL_XFORM_QUSE11 0x4cc
#define EMC_DLL_XFORM_QUSE12 0x4d0
#define EMC_DLL_XFORM_QUSE13 0x4d4
#define EMC_DLL_XFORM_QUSE14 0x4d8
#define EMC_DLL_XFORM_QUSE15 0x4dc
#define EMC_DLL_XFORM_DQ4 0x4e0
#define EMC_DLL_XFORM_DQ5 0x4e4
#define EMC_DLL_XFORM_DQ6 0x4e8
#define EMC_DLL_XFORM_DQ7 0x4ec
#define EMC_DLI_TRIM_TXDQS8 0x520
#define EMC_DLI_TRIM_TXDQS9 0x524
#define EMC_DLI_TRIM_TXDQS10 0x528
#define EMC_DLI_TRIM_TXDQS11 0x52c
#define EMC_DLI_TRIM_TXDQS12 0x530
#define EMC_DLI_TRIM_TXDQS13 0x534
#define EMC_DLI_TRIM_TXDQS14 0x538
#define EMC_DLI_TRIM_TXDQS15 0x53c
#define EMC_CDB_CNTL_3 0x540
#define EMC_XM2DQSPADCTRL5 0x544
#define EMC_XM2DQSPADCTRL6 0x548
#define EMC_XM2DQPADCTRL3 0x54c
#define EMC_DLL_XFORM_ADDR3 0x550
#define EMC_DLL_XFORM_ADDR4 0x554
#define EMC_DLL_XFORM_ADDR5 0x558
#define EMC_CFG_PIPE 0x560
#define EMC_QPOP 0x564
#define EMC_QUSE_WIDTH 0x568
#define EMC_PUTERM_WIDTH 0x56c
#define EMC_BGBIAS_CTL0 0x570
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX BIT(3)
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN BIT(2)
#define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD BIT(1)
#define EMC_PUTERM_ADJ 0x574
#define DRAM_DEV_SEL_ALL 0
#define DRAM_DEV_SEL_0 (2 << 30)
#define DRAM_DEV_SEL_1 (1 << 30)
#define EMC_CFG_POWER_FEATURES_MASK \
(EMC_CFG_DYN_SREF | EMC_CFG_DRAM_ACPD | EMC_CFG_DRAM_CLKSTOP_SR | \
EMC_CFG_DRAM_CLKSTOP_PD | EMC_CFG_DSR_VTTGEN_DRV_EN)
#define EMC_REFCTRL_DEV_SEL(n) (((n > 1) ? 0 : 2) << EMC_REFCTRL_DEV_SEL_SHIFT)
#define EMC_DRAM_DEV_SEL(n) ((n > 1) ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0)
/* Maximum amount of time in us. to wait for changes to become effective */
#define EMC_STATUS_UPDATE_TIMEOUT 1000
enum emc_dram_type {
DRAM_TYPE_DDR3 = 0,
DRAM_TYPE_DDR1 = 1,
DRAM_TYPE_LPDDR3 = 2,
DRAM_TYPE_DDR2 = 3
};
enum emc_dll_change {
DLL_CHANGE_NONE,
DLL_CHANGE_ON,
DLL_CHANGE_OFF
};
static const unsigned long emc_burst_regs[] = {
EMC_RC,
EMC_RFC,
EMC_RFC_SLR,
EMC_RAS,
EMC_RP,
EMC_R2W,
EMC_W2R,
EMC_R2P,
EMC_W2P,
EMC_RD_RCD,
EMC_WR_RCD,
EMC_RRD,
EMC_REXT,
EMC_WEXT,
EMC_WDV,
EMC_WDV_MASK,
EMC_QUSE,
EMC_QUSE_WIDTH,
EMC_IBDLY,
EMC_EINPUT,
EMC_EINPUT_DURATION,
EMC_PUTERM_EXTRA,
EMC_PUTERM_WIDTH,
EMC_PUTERM_ADJ,
EMC_CDB_CNTL_1,
EMC_CDB_CNTL_2,
EMC_CDB_CNTL_3,
EMC_QRST,
EMC_QSAFE,
EMC_RDV,
EMC_RDV_MASK,
EMC_REFRESH,
EMC_BURST_REFRESH_NUM,
EMC_PRE_REFRESH_REQ_CNT,
EMC_PDEX2WR,
EMC_PDEX2RD,
EMC_PCHG2PDEN,
EMC_ACT2PDEN,
EMC_AR2PDEN,
EMC_RW2PDEN,
EMC_TXSR,
EMC_TXSRDLL,
EMC_TCKE,
EMC_TCKESR,
EMC_TPD,
EMC_TFAW,
EMC_TRPAB,
EMC_TCLKSTABLE,
EMC_TCLKSTOP,
EMC_TREFBW,
EMC_FBIO_CFG6,
EMC_ODT_WRITE,
EMC_ODT_READ,
EMC_FBIO_CFG5,
EMC_CFG_DIG_DLL,
EMC_CFG_DIG_DLL_PERIOD,
EMC_DLL_XFORM_DQS0,
EMC_DLL_XFORM_DQS1,
EMC_DLL_XFORM_DQS2,
EMC_DLL_XFORM_DQS3,
EMC_DLL_XFORM_DQS4,
EMC_DLL_XFORM_DQS5,
EMC_DLL_XFORM_DQS6,
EMC_DLL_XFORM_DQS7,
EMC_DLL_XFORM_DQS8,
EMC_DLL_XFORM_DQS9,
EMC_DLL_XFORM_DQS10,
EMC_DLL_XFORM_DQS11,
EMC_DLL_XFORM_DQS12,
EMC_DLL_XFORM_DQS13,
EMC_DLL_XFORM_DQS14,
EMC_DLL_XFORM_DQS15,
EMC_DLL_XFORM_QUSE0,
EMC_DLL_XFORM_QUSE1,
EMC_DLL_XFORM_QUSE2,
EMC_DLL_XFORM_QUSE3,
EMC_DLL_XFORM_QUSE4,
EMC_DLL_XFORM_QUSE5,
EMC_DLL_XFORM_QUSE6,
EMC_DLL_XFORM_QUSE7,
EMC_DLL_XFORM_ADDR0,
EMC_DLL_XFORM_ADDR1,
EMC_DLL_XFORM_ADDR2,
EMC_DLL_XFORM_ADDR3,
EMC_DLL_XFORM_ADDR4,
EMC_DLL_XFORM_ADDR5,
EMC_DLL_XFORM_QUSE8,
EMC_DLL_XFORM_QUSE9,
EMC_DLL_XFORM_QUSE10,
EMC_DLL_XFORM_QUSE11,
EMC_DLL_XFORM_QUSE12,
EMC_DLL_XFORM_QUSE13,
EMC_DLL_XFORM_QUSE14,
EMC_DLL_XFORM_QUSE15,
EMC_DLI_TRIM_TXDQS0,
EMC_DLI_TRIM_TXDQS1,
EMC_DLI_TRIM_TXDQS2,
EMC_DLI_TRIM_TXDQS3,
EMC_DLI_TRIM_TXDQS4,
EMC_DLI_TRIM_TXDQS5,
EMC_DLI_TRIM_TXDQS6,
EMC_DLI_TRIM_TXDQS7,
EMC_DLI_TRIM_TXDQS8,
EMC_DLI_TRIM_TXDQS9,
EMC_DLI_TRIM_TXDQS10,
EMC_DLI_TRIM_TXDQS11,
EMC_DLI_TRIM_TXDQS12,
EMC_DLI_TRIM_TXDQS13,
EMC_DLI_TRIM_TXDQS14,
EMC_DLI_TRIM_TXDQS15,
EMC_DLL_XFORM_DQ0,
EMC_DLL_XFORM_DQ1,
EMC_DLL_XFORM_DQ2,
EMC_DLL_XFORM_DQ3,
EMC_DLL_XFORM_DQ4,
EMC_DLL_XFORM_DQ5,
EMC_DLL_XFORM_DQ6,
EMC_DLL_XFORM_DQ7,
EMC_XM2CMDPADCTRL,
EMC_XM2CMDPADCTRL4,
EMC_XM2CMDPADCTRL5,
EMC_XM2DQPADCTRL2,
EMC_XM2DQPADCTRL3,
EMC_XM2CLKPADCTRL,
EMC_XM2CLKPADCTRL2,
EMC_XM2COMPPADCTRL,
EMC_XM2VTTGENPADCTRL,
EMC_XM2VTTGENPADCTRL2,
EMC_XM2VTTGENPADCTRL3,
EMC_XM2DQSPADCTRL3,
EMC_XM2DQSPADCTRL4,
EMC_XM2DQSPADCTRL5,
EMC_XM2DQSPADCTRL6,
EMC_DSR_VTTGEN_DRV,
EMC_TXDSRVTTGEN,
EMC_FBIO_SPARE,
EMC_ZCAL_WAIT_CNT,
EMC_MRS_WAIT_CNT2,
EMC_CTT,
EMC_CTT_DURATION,
EMC_CFG_PIPE,
EMC_DYN_SELF_REF_CONTROL,
EMC_QPOP
};
struct emc_timing {
unsigned long rate;
u32 emc_burst_data[ARRAY_SIZE(emc_burst_regs)];
u32 emc_auto_cal_config;
u32 emc_auto_cal_config2;
u32 emc_auto_cal_config3;
u32 emc_auto_cal_interval;
u32 emc_bgbias_ctl0;
u32 emc_cfg;
u32 emc_cfg_2;
u32 emc_ctt_term_ctrl;
u32 emc_mode_1;
u32 emc_mode_2;
u32 emc_mode_4;
u32 emc_mode_reset;
u32 emc_mrs_wait_cnt;
u32 emc_sel_dpd_ctrl;
u32 emc_xm2dqspadctrl2;
u32 emc_zcal_cnt_long;
u32 emc_zcal_interval;
};
struct tegra_emc {
struct device *dev;
struct tegra_mc *mc;
void __iomem *regs;
enum emc_dram_type dram_type;
unsigned int dram_num;
struct emc_timing last_timing;
struct emc_timing *timings;
unsigned int num_timings;
};
/* Timing change sequence functions */
static void emc_ccfifo_writel(struct tegra_emc *emc, u32 value,
unsigned long offset)
{
writel(value, emc->regs + EMC_CCFIFO_DATA);
writel(offset, emc->regs + EMC_CCFIFO_ADDR);
}
static void emc_seq_update_timing(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
writel(1, emc->regs + EMC_TIMING_CONTROL);
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_STATUS);
if ((value & EMC_STATUS_TIMING_UPDATE_STALLED) == 0)
return;
udelay(1);
}
dev_err(emc->dev, "timing update timed out\n");
}
static void emc_seq_disable_auto_cal(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
writel(0, emc->regs + EMC_AUTO_CAL_INTERVAL);
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_AUTO_CAL_STATUS);
if ((value & EMC_AUTO_CAL_STATUS_ACTIVE) == 0)
return;
udelay(1);
}
dev_err(emc->dev, "auto cal disable timed out\n");
}
static void emc_seq_wait_clkchange(struct tegra_emc *emc)
{
unsigned int i;
u32 value;
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) {
value = readl(emc->regs + EMC_INTSTATUS);
if (value & EMC_INTSTATUS_CLKCHANGE_COMPLETE)
return;
udelay(1);
}
dev_err(emc->dev, "clock change timed out\n");
}
static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = NULL;
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate == rate) {
timing = &emc->timings[i];
break;
}
}
if (!timing) {
dev_err(emc->dev, "no timing for rate %lu\n", rate);
return NULL;
}
return timing;
}
int tegra_emc_prepare_timing_change(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
struct emc_timing *last = &emc->last_timing;
enum emc_dll_change dll_change;
unsigned int pre_wait = 0;
u32 val, val2, mask;
bool update = false;
unsigned int i;
if (!timing)
return -ENOENT;
if ((last->emc_mode_1 & 0x1) == (timing->emc_mode_1 & 0x1))
dll_change = DLL_CHANGE_NONE;
else if (timing->emc_mode_1 & 0x1)
dll_change = DLL_CHANGE_ON;
else
dll_change = DLL_CHANGE_OFF;
/* Clear CLKCHANGE_COMPLETE interrupts */
writel(EMC_INTSTATUS_CLKCHANGE_COMPLETE, emc->regs + EMC_INTSTATUS);
/* Disable dynamic self-refresh */
val = readl(emc->regs + EMC_CFG);
if (val & EMC_CFG_PWR_MASK) {
val &= ~EMC_CFG_POWER_FEATURES_MASK;
writel(val, emc->regs + EMC_CFG);
pre_wait = 5;
}
/* Disable SEL_DPD_CTRL for clock change */
if (emc->dram_type == DRAM_TYPE_DDR3)
mask = EMC_SEL_DPD_CTRL_DDR3_MASK;
else
mask = EMC_SEL_DPD_CTRL_MASK;
val = readl(emc->regs + EMC_SEL_DPD_CTRL);
if (val & mask) {
val &= ~mask;
writel(val, emc->regs + EMC_SEL_DPD_CTRL);
}
/* Prepare DQ/DQS for clock change */
val = readl(emc->regs + EMC_BGBIAS_CTL0);
val2 = last->emc_bgbias_ctl0;
if (!(timing->emc_bgbias_ctl0 &
EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) &&
(val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX)) {
val2 &= ~EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX;
update = true;
}
if ((val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD) ||
(val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN)) {
update = true;
}
if (update) {
writel(val2, emc->regs + EMC_BGBIAS_CTL0);
if (pre_wait < 5)
pre_wait = 5;
}
update = false;
val = readl(emc->regs + EMC_XM2DQSPADCTRL2);
if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_VREF_ENABLE &&
!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) {
val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE;
update = true;
}
if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE &&
!(val & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE)) {
val |= EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE;
update = true;
}
if (update) {
writel(val, emc->regs + EMC_XM2DQSPADCTRL2);
if (pre_wait < 30)
pre_wait = 30;
}
/* Wait to settle */
if (pre_wait) {
emc_seq_update_timing(emc);
udelay(pre_wait);
}
/* Program CTT_TERM control */
if (last->emc_ctt_term_ctrl != timing->emc_ctt_term_ctrl) {
emc_seq_disable_auto_cal(emc);
writel(timing->emc_ctt_term_ctrl,
emc->regs + EMC_CTT_TERM_CTRL);
emc_seq_update_timing(emc);
}
/* Program burst shadow registers */
for (i = 0; i < ARRAY_SIZE(timing->emc_burst_data); ++i)
writel(timing->emc_burst_data[i],
emc->regs + emc_burst_regs[i]);
writel(timing->emc_xm2dqspadctrl2, emc->regs + EMC_XM2DQSPADCTRL2);
writel(timing->emc_zcal_interval, emc->regs + EMC_ZCAL_INTERVAL);
tegra_mc_write_emem_configuration(emc->mc, timing->rate);
val = timing->emc_cfg & ~EMC_CFG_POWER_FEATURES_MASK;
emc_ccfifo_writel(emc, val, EMC_CFG);
/* Program AUTO_CAL_CONFIG */
if (timing->emc_auto_cal_config2 != last->emc_auto_cal_config2)
emc_ccfifo_writel(emc, timing->emc_auto_cal_config2,
EMC_AUTO_CAL_CONFIG2);
if (timing->emc_auto_cal_config3 != last->emc_auto_cal_config3)
emc_ccfifo_writel(emc, timing->emc_auto_cal_config3,
EMC_AUTO_CAL_CONFIG3);
if (timing->emc_auto_cal_config != last->emc_auto_cal_config) {
val = timing->emc_auto_cal_config;
val &= EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
emc_ccfifo_writel(emc, val, EMC_AUTO_CAL_CONFIG);
}
/* DDR3: predict MRS long wait count */
if (emc->dram_type == DRAM_TYPE_DDR3 &&
dll_change == DLL_CHANGE_ON) {
u32 cnt = 512;
if (timing->emc_zcal_interval != 0 &&
last->emc_zcal_interval == 0)
cnt -= emc->dram_num * 256;
val = (timing->emc_mrs_wait_cnt
& EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK)
>> EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT;
if (cnt < val)
cnt = val;
val = timing->emc_mrs_wait_cnt
& ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
& EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
writel(val, emc->regs + EMC_MRS_WAIT_CNT);
}
val = timing->emc_cfg_2;
val &= ~EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR;
emc_ccfifo_writel(emc, val, EMC_CFG_2);
/* DDR3: Turn off DLL and enter self-refresh */
if (emc->dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_OFF)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS);
/* Disable refresh controller */
emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num),
EMC_REFCTRL);
if (emc->dram_type == DRAM_TYPE_DDR3)
emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num) |
EMC_SELF_REF_CMD_ENABLED,
EMC_SELF_REF);
/* Flow control marker */
emc_ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE);
/* DDR3: Exit self-refresh */
if (emc->dram_type == DRAM_TYPE_DDR3)
emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num),
EMC_SELF_REF);
emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num) |
EMC_REFCTRL_ENABLE,
EMC_REFCTRL);
/* Set DRAM mode registers */
if (emc->dram_type == DRAM_TYPE_DDR3) {
if (timing->emc_mode_1 != last->emc_mode_1)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS);
if (timing->emc_mode_2 != last->emc_mode_2)
emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_EMRS2);
if ((timing->emc_mode_reset != last->emc_mode_reset) ||
dll_change == DLL_CHANGE_ON) {
val = timing->emc_mode_reset;
if (dll_change == DLL_CHANGE_ON) {
val |= EMC_MODE_SET_DLL_RESET;
val |= EMC_MODE_SET_LONG_CNT;
} else {
val &= ~EMC_MODE_SET_DLL_RESET;
}
emc_ccfifo_writel(emc, val, EMC_MRS);
}
} else {
if (timing->emc_mode_2 != last->emc_mode_2)
emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_MRW2);
if (timing->emc_mode_1 != last->emc_mode_1)
emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_MRW);
if (timing->emc_mode_4 != last->emc_mode_4)
emc_ccfifo_writel(emc, timing->emc_mode_4, EMC_MRW4);
}
/* Issue ZCAL command if turning ZCAL on */
if (timing->emc_zcal_interval != 0 && last->emc_zcal_interval == 0) {
emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV0, EMC_ZQ_CAL);
if (emc->dram_num > 1)
emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV1,
EMC_ZQ_CAL);
}
/* Write to RO register to remove stall after change */
emc_ccfifo_writel(emc, 0, EMC_CCFIFO_STATUS);
if (timing->emc_cfg_2 & EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR)
emc_ccfifo_writel(emc, timing->emc_cfg_2, EMC_CFG_2);
/* Disable AUTO_CAL for clock change */
emc_seq_disable_auto_cal(emc);
/* Read register to wait until programming has settled */
readl(emc->regs + EMC_INTSTATUS);
return 0;
}
void tegra_emc_complete_timing_change(struct tegra_emc *emc,
unsigned long rate)
{
struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
struct emc_timing *last = &emc->last_timing;
u32 val;
if (!timing)
return;
/* Wait until the state machine has settled */
emc_seq_wait_clkchange(emc);
/* Restore AUTO_CAL */
if (timing->emc_ctt_term_ctrl != last->emc_ctt_term_ctrl)
writel(timing->emc_auto_cal_interval,
emc->regs + EMC_AUTO_CAL_INTERVAL);
/* Restore dynamic self-refresh */
if (timing->emc_cfg & EMC_CFG_PWR_MASK)
writel(timing->emc_cfg, emc->regs + EMC_CFG);
/* Set ZCAL wait count */
writel(timing->emc_zcal_cnt_long, emc->regs + EMC_ZCAL_WAIT_CNT);
/* LPDDR3: Turn off BGBIAS if low frequency */
if (emc->dram_type == DRAM_TYPE_LPDDR3 &&
timing->emc_bgbias_ctl0 &
EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) {
val = timing->emc_bgbias_ctl0;
val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN;
val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD;
writel(val, emc->regs + EMC_BGBIAS_CTL0);
} else {
if (emc->dram_type == DRAM_TYPE_DDR3 &&
readl(emc->regs + EMC_BGBIAS_CTL0) !=
timing->emc_bgbias_ctl0) {
writel(timing->emc_bgbias_ctl0,
emc->regs + EMC_BGBIAS_CTL0);
}
writel(timing->emc_auto_cal_interval,
emc->regs + EMC_AUTO_CAL_INTERVAL);
}
/* Wait for timing to settle */
udelay(2);
/* Reprogram SEL_DPD_CTRL */
writel(timing->emc_sel_dpd_ctrl, emc->regs + EMC_SEL_DPD_CTRL);
emc_seq_update_timing(emc);
emc->last_timing = *timing;
}
/* Initialization and deinitialization */
static void emc_read_current_timing(struct tegra_emc *emc,
struct emc_timing *timing)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(emc_burst_regs); ++i)
timing->emc_burst_data[i] =
readl(emc->regs + emc_burst_regs[i]);
timing->emc_cfg = readl(emc->regs + EMC_CFG);
timing->emc_auto_cal_interval = 0;
timing->emc_zcal_cnt_long = 0;
timing->emc_mode_1 = 0;
timing->emc_mode_2 = 0;
timing->emc_mode_4 = 0;
timing->emc_mode_reset = 0;
}
static int emc_init(struct tegra_emc *emc)
{
emc->dram_type = readl(emc->regs + EMC_FBIO_CFG5);
emc->dram_type &= EMC_FBIO_CFG5_DRAM_TYPE_MASK;
emc->dram_type >>= EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
emc->dram_num = tegra_mc_get_emem_device_count(emc->mc);
emc_read_current_timing(emc, &emc->last_timing);
return 0;
}
static int load_one_timing_from_dt(struct tegra_emc *emc,
struct emc_timing *timing,
struct device_node *node)
{
u32 value;
int err;
err = of_property_read_u32(node, "clock-frequency", &value);
if (err) {
dev_err(emc->dev, "timing %s: failed to read rate: %d\n",
node->name, err);
return err;
}
timing->rate = value;
err = of_property_read_u32_array(node, "nvidia,emc-configuration",
timing->emc_burst_data,
ARRAY_SIZE(timing->emc_burst_data));
if (err) {
dev_err(emc->dev,
"timing %s: failed to read emc burst data: %d\n",
node->name, err);
return err;
}
#define EMC_READ_PROP(prop, dtprop) { \
err = of_property_read_u32(node, dtprop, &timing->prop); \
if (err) { \
dev_err(emc->dev, "timing %s: failed to read " #prop ": %d\n", \
node->name, err); \
return err; \
} \
}
EMC_READ_PROP(emc_auto_cal_config, "nvidia,emc-auto-cal-config")
EMC_READ_PROP(emc_auto_cal_config2, "nvidia,emc-auto-cal-config2")
EMC_READ_PROP(emc_auto_cal_config3, "nvidia,emc-auto-cal-config3")
EMC_READ_PROP(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval")
EMC_READ_PROP(emc_bgbias_ctl0, "nvidia,emc-bgbias-ctl0")
EMC_READ_PROP(emc_cfg, "nvidia,emc-cfg")
EMC_READ_PROP(emc_cfg_2, "nvidia,emc-cfg-2")
EMC_READ_PROP(emc_ctt_term_ctrl, "nvidia,emc-ctt-term-ctrl")
EMC_READ_PROP(emc_mode_1, "nvidia,emc-mode-1")
EMC_READ_PROP(emc_mode_2, "nvidia,emc-mode-2")
EMC_READ_PROP(emc_mode_4, "nvidia,emc-mode-4")
EMC_READ_PROP(emc_mode_reset, "nvidia,emc-mode-reset")
EMC_READ_PROP(emc_mrs_wait_cnt, "nvidia,emc-mrs-wait-cnt")
EMC_READ_PROP(emc_sel_dpd_ctrl, "nvidia,emc-sel-dpd-ctrl")
EMC_READ_PROP(emc_xm2dqspadctrl2, "nvidia,emc-xm2dqspadctrl2")
EMC_READ_PROP(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long")
EMC_READ_PROP(emc_zcal_interval, "nvidia,emc-zcal-interval")
#undef EMC_READ_PROP
return 0;
}
static int cmp_timings(const void *_a, const void *_b)
{
const struct emc_timing *a = _a;
const struct emc_timing *b = _b;
if (a->rate < b->rate)
return -1;
else if (a->rate == b->rate)
return 0;
else
return 1;
}
static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
struct device_node *node)
{
int child_count = of_get_child_count(node);
struct device_node *child;
struct emc_timing *timing;
unsigned int i = 0;
int err;
emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
GFP_KERNEL);
if (!emc->timings)
return -ENOMEM;
emc->num_timings = child_count;
for_each_child_of_node(node, child) {
timing = &emc->timings[i++];
err = load_one_timing_from_dt(emc, timing, child);
if (err)
return err;
}
sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
NULL);
return 0;
}
static const struct of_device_id tegra_emc_of_match[] = {
{ .compatible = "nvidia,tegra124-emc" },
{}
};
static struct device_node *
tegra_emc_find_node_by_ram_code(struct device_node *node, u32 ram_code)
{
struct device_node *np;
int err;
for_each_child_of_node(node, np) {
u32 value;
err = of_property_read_u32(np, "nvidia,ram-code", &value);
if (err || (value != ram_code)) {
of_node_put(np);
continue;
}
return np;
}
return NULL;
}
/* Debugfs entry */
static int emc_debug_rate_get(void *data, u64 *rate)
{
struct clk *c = data;
*rate = clk_get_rate(c);
return 0;
}
static int emc_debug_rate_set(void *data, u64 rate)
{
struct clk *c = data;
return clk_set_rate(c, rate);
}
DEFINE_SIMPLE_ATTRIBUTE(emc_debug_rate_fops, emc_debug_rate_get,
emc_debug_rate_set, "%lld\n");
static void emc_debugfs_init(struct device *dev)
{
struct dentry *root, *file;
struct clk *clk;
root = debugfs_create_dir("emc", NULL);
if (!root) {
dev_err(dev, "failed to create debugfs directory\n");
return;
}
clk = clk_get_sys("tegra-clk-debug", "emc");
if (IS_ERR(clk)) {
dev_err(dev, "failed to get debug clock: %ld\n", PTR_ERR(clk));
return;
}
file = debugfs_create_file("rate", S_IRUGO | S_IWUSR, root, clk,
&emc_debug_rate_fops);
if (!file)
dev_err(dev, "failed to create debugfs entry\n");
}
static int tegra_emc_probe(struct platform_device *pdev)
{
struct platform_device *mc;
struct device_node *np;
struct tegra_emc *emc;
struct resource *res;
u32 ram_code;
int err;
emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
if (!emc)
return -ENOMEM;
emc->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
emc->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(emc->regs))
return PTR_ERR(emc->regs);
np = of_parse_phandle(pdev->dev.of_node, "nvidia,memory-controller", 0);
if (!np) {
dev_err(&pdev->dev, "could not get memory controller\n");
return -ENOENT;
}
mc = of_find_device_by_node(np);
if (!mc)
return -ENOENT;
of_node_put(np);
emc->mc = platform_get_drvdata(mc);
if (!emc->mc)
return -EPROBE_DEFER;
ram_code = tegra_read_ram_code();
np = tegra_emc_find_node_by_ram_code(pdev->dev.of_node, ram_code);
if (!np) {
dev_err(&pdev->dev,
"no memory timings for RAM code %u found in DT\n",
ram_code);
return -ENOENT;
}
err = tegra_emc_load_timings_from_dt(emc, np);
of_node_put(np);
if (err)
return err;
if (emc->num_timings == 0) {
dev_err(&pdev->dev,
"no memory timings for RAM code %u registered\n",
ram_code);
return -ENOENT;
}
err = emc_init(emc);
if (err) {
dev_err(&pdev->dev, "EMC initialization failed: %d\n", err);
return err;
}
platform_set_drvdata(pdev, emc);
if (IS_ENABLED(CONFIG_DEBUG_FS))
emc_debugfs_init(&pdev->dev);
return 0;
};
static struct platform_driver tegra_emc_driver = {
.probe = tegra_emc_probe,
.driver = {
.name = "tegra-emc",
.of_match_table = tegra_emc_of_match,
.suppress_bind_attrs = true,
},
};
static int tegra_emc_init(void)
{
return platform_driver_register(&tegra_emc_driver);
}
subsys_initcall(tegra_emc_init);
...@@ -15,6 +15,48 @@ ...@@ -15,6 +15,48 @@
#include "mc.h" #include "mc.h"
#define MC_EMEM_ARB_CFG 0x90
#define MC_EMEM_ARB_OUTSTANDING_REQ 0x94
#define MC_EMEM_ARB_TIMING_RCD 0x98
#define MC_EMEM_ARB_TIMING_RP 0x9c
#define MC_EMEM_ARB_TIMING_RC 0xa0
#define MC_EMEM_ARB_TIMING_RAS 0xa4
#define MC_EMEM_ARB_TIMING_FAW 0xa8
#define MC_EMEM_ARB_TIMING_RRD 0xac
#define MC_EMEM_ARB_TIMING_RAP2PRE 0xb0
#define MC_EMEM_ARB_TIMING_WAP2PRE 0xb4
#define MC_EMEM_ARB_TIMING_R2R 0xb8
#define MC_EMEM_ARB_TIMING_W2W 0xbc
#define MC_EMEM_ARB_TIMING_R2W 0xc0
#define MC_EMEM_ARB_TIMING_W2R 0xc4
#define MC_EMEM_ARB_DA_TURNS 0xd0
#define MC_EMEM_ARB_DA_COVERS 0xd4
#define MC_EMEM_ARB_MISC0 0xd8
#define MC_EMEM_ARB_MISC1 0xdc
#define MC_EMEM_ARB_RING1_THROTTLE 0xe0
static const unsigned long tegra124_mc_emem_regs[] = {
MC_EMEM_ARB_CFG,
MC_EMEM_ARB_OUTSTANDING_REQ,
MC_EMEM_ARB_TIMING_RCD,
MC_EMEM_ARB_TIMING_RP,
MC_EMEM_ARB_TIMING_RC,
MC_EMEM_ARB_TIMING_RAS,
MC_EMEM_ARB_TIMING_FAW,
MC_EMEM_ARB_TIMING_RRD,
MC_EMEM_ARB_TIMING_RAP2PRE,
MC_EMEM_ARB_TIMING_WAP2PRE,
MC_EMEM_ARB_TIMING_R2R,
MC_EMEM_ARB_TIMING_W2W,
MC_EMEM_ARB_TIMING_R2W,
MC_EMEM_ARB_TIMING_W2R,
MC_EMEM_ARB_DA_TURNS,
MC_EMEM_ARB_DA_COVERS,
MC_EMEM_ARB_MISC0,
MC_EMEM_ARB_MISC1,
MC_EMEM_ARB_RING1_THROTTLE
};
static const struct tegra_mc_client tegra124_mc_clients[] = { static const struct tegra_mc_client tegra124_mc_clients[] = {
{ {
.id = 0x00, .id = 0x00,
...@@ -934,29 +976,29 @@ static const struct tegra_mc_client tegra124_mc_clients[] = { ...@@ -934,29 +976,29 @@ static const struct tegra_mc_client tegra124_mc_clients[] = {
}; };
static const struct tegra_smmu_swgroup tegra124_swgroups[] = { static const struct tegra_smmu_swgroup tegra124_swgroups[] = {
{ .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 }, { .name = "dc", .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 },
{ .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 }, { .name = "dcb", .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 },
{ .swgroup = TEGRA_SWGROUP_AFI, .reg = 0x238 }, { .name = "afi", .swgroup = TEGRA_SWGROUP_AFI, .reg = 0x238 },
{ .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c }, { .name = "avpc", .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c },
{ .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 }, { .name = "hda", .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 },
{ .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 }, { .name = "hc", .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 },
{ .swgroup = TEGRA_SWGROUP_MSENC, .reg = 0x264 }, { .name = "msenc", .swgroup = TEGRA_SWGROUP_MSENC, .reg = 0x264 },
{ .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 }, { .name = "ppcs", .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 },
{ .swgroup = TEGRA_SWGROUP_SATA, .reg = 0x274 }, { .name = "sata", .swgroup = TEGRA_SWGROUP_SATA, .reg = 0x274 },
{ .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c }, { .name = "vde", .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c },
{ .swgroup = TEGRA_SWGROUP_ISP2, .reg = 0x258 }, { .name = "isp2", .swgroup = TEGRA_SWGROUP_ISP2, .reg = 0x258 },
{ .swgroup = TEGRA_SWGROUP_XUSB_HOST, .reg = 0x288 }, { .name = "xusb_host", .swgroup = TEGRA_SWGROUP_XUSB_HOST, .reg = 0x288 },
{ .swgroup = TEGRA_SWGROUP_XUSB_DEV, .reg = 0x28c }, { .name = "xusb_dev", .swgroup = TEGRA_SWGROUP_XUSB_DEV, .reg = 0x28c },
{ .swgroup = TEGRA_SWGROUP_ISP2B, .reg = 0xaa4 }, { .name = "isp2b", .swgroup = TEGRA_SWGROUP_ISP2B, .reg = 0xaa4 },
{ .swgroup = TEGRA_SWGROUP_TSEC, .reg = 0x294 }, { .name = "tsec", .swgroup = TEGRA_SWGROUP_TSEC, .reg = 0x294 },
{ .swgroup = TEGRA_SWGROUP_A9AVP, .reg = 0x290 }, { .name = "a9avp", .swgroup = TEGRA_SWGROUP_A9AVP, .reg = 0x290 },
{ .swgroup = TEGRA_SWGROUP_GPU, .reg = 0xaac }, { .name = "gpu", .swgroup = TEGRA_SWGROUP_GPU, .reg = 0xaac },
{ .swgroup = TEGRA_SWGROUP_SDMMC1A, .reg = 0xa94 }, { .name = "sdmmc1a", .swgroup = TEGRA_SWGROUP_SDMMC1A, .reg = 0xa94 },
{ .swgroup = TEGRA_SWGROUP_SDMMC2A, .reg = 0xa98 }, { .name = "sdmmc2a", .swgroup = TEGRA_SWGROUP_SDMMC2A, .reg = 0xa98 },
{ .swgroup = TEGRA_SWGROUP_SDMMC3A, .reg = 0xa9c }, { .name = "sdmmc3a", .swgroup = TEGRA_SWGROUP_SDMMC3A, .reg = 0xa9c },
{ .swgroup = TEGRA_SWGROUP_SDMMC4A, .reg = 0xaa0 }, { .name = "sdmmc4a", .swgroup = TEGRA_SWGROUP_SDMMC4A, .reg = 0xaa0 },
{ .swgroup = TEGRA_SWGROUP_VIC, .reg = 0x284 }, { .name = "vic", .swgroup = TEGRA_SWGROUP_VIC, .reg = 0x284 },
{ .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 }, { .name = "vi", .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 },
}; };
#ifdef CONFIG_ARCH_TEGRA_124_SOC #ifdef CONFIG_ARCH_TEGRA_124_SOC
...@@ -991,5 +1033,40 @@ const struct tegra_mc_soc tegra124_mc_soc = { ...@@ -991,5 +1033,40 @@ const struct tegra_mc_soc tegra124_mc_soc = {
.num_address_bits = 34, .num_address_bits = 34,
.atom_size = 32, .atom_size = 32,
.smmu = &tegra124_smmu_soc, .smmu = &tegra124_smmu_soc,
.emem_regs = tegra124_mc_emem_regs,
.num_emem_regs = ARRAY_SIZE(tegra124_mc_emem_regs),
}; };
#endif /* CONFIG_ARCH_TEGRA_124_SOC */ #endif /* CONFIG_ARCH_TEGRA_124_SOC */
#ifdef CONFIG_ARCH_TEGRA_132_SOC
static void tegra132_flush_dcache(struct page *page, unsigned long offset,
size_t size)
{
void *virt = page_address(page) + offset;
__flush_dcache_area(virt, size);
}
static const struct tegra_smmu_ops tegra132_smmu_ops = {
.flush_dcache = tegra132_flush_dcache,
};
static const struct tegra_smmu_soc tegra132_smmu_soc = {
.clients = tegra124_mc_clients,
.num_clients = ARRAY_SIZE(tegra124_mc_clients),
.swgroups = tegra124_swgroups,
.num_swgroups = ARRAY_SIZE(tegra124_swgroups),
.supports_round_robin_arbitration = true,
.supports_request_limit = true,
.num_asids = 128,
.ops = &tegra132_smmu_ops,
};
const struct tegra_mc_soc tegra132_mc_soc = {
.clients = tegra124_mc_clients,
.num_clients = ARRAY_SIZE(tegra124_mc_clients),
.num_address_bits = 34,
.atom_size = 32,
.smmu = &tegra132_smmu_soc,
};
#endif /* CONFIG_ARCH_TEGRA_132_SOC */
...@@ -918,22 +918,22 @@ static const struct tegra_mc_client tegra30_mc_clients[] = { ...@@ -918,22 +918,22 @@ static const struct tegra_mc_client tegra30_mc_clients[] = {
}; };
static const struct tegra_smmu_swgroup tegra30_swgroups[] = { static const struct tegra_smmu_swgroup tegra30_swgroups[] = {
{ .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 }, { .name = "dc", .swgroup = TEGRA_SWGROUP_DC, .reg = 0x240 },
{ .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 }, { .name = "dcb", .swgroup = TEGRA_SWGROUP_DCB, .reg = 0x244 },
{ .swgroup = TEGRA_SWGROUP_EPP, .reg = 0x248 }, { .name = "epp", .swgroup = TEGRA_SWGROUP_EPP, .reg = 0x248 },
{ .swgroup = TEGRA_SWGROUP_G2, .reg = 0x24c }, { .name = "g2", .swgroup = TEGRA_SWGROUP_G2, .reg = 0x24c },
{ .swgroup = TEGRA_SWGROUP_MPE, .reg = 0x264 }, { .name = "mpe", .swgroup = TEGRA_SWGROUP_MPE, .reg = 0x264 },
{ .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 }, { .name = "vi", .swgroup = TEGRA_SWGROUP_VI, .reg = 0x280 },
{ .swgroup = TEGRA_SWGROUP_AFI, .reg = 0x238 }, { .name = "afi", .swgroup = TEGRA_SWGROUP_AFI, .reg = 0x238 },
{ .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c }, { .name = "avpc", .swgroup = TEGRA_SWGROUP_AVPC, .reg = 0x23c },
{ .swgroup = TEGRA_SWGROUP_NV, .reg = 0x268 }, { .name = "nv", .swgroup = TEGRA_SWGROUP_NV, .reg = 0x268 },
{ .swgroup = TEGRA_SWGROUP_NV2, .reg = 0x26c }, { .name = "nv2", .swgroup = TEGRA_SWGROUP_NV2, .reg = 0x26c },
{ .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 }, { .name = "hda", .swgroup = TEGRA_SWGROUP_HDA, .reg = 0x254 },
{ .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 }, { .name = "hc", .swgroup = TEGRA_SWGROUP_HC, .reg = 0x250 },
{ .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 }, { .name = "ppcs", .swgroup = TEGRA_SWGROUP_PPCS, .reg = 0x270 },
{ .swgroup = TEGRA_SWGROUP_SATA, .reg = 0x278 }, { .name = "sata", .swgroup = TEGRA_SWGROUP_SATA, .reg = 0x278 },
{ .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c }, { .name = "vde", .swgroup = TEGRA_SWGROUP_VDE, .reg = 0x27c },
{ .swgroup = TEGRA_SWGROUP_ISP, .reg = 0x258 }, { .name = "isp", .swgroup = TEGRA_SWGROUP_ISP, .reg = 0x258 },
}; };
static void tegra30_flush_dcache(struct page *page, unsigned long offset, static void tegra30_flush_dcache(struct page *page, unsigned long offset,
......
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
const struct of_device_id of_default_bus_match_table[] = { const struct of_device_id of_default_bus_match_table[] = {
{ .compatible = "simple-bus", }, { .compatible = "simple-bus", },
{ .compatible = "simple-mfd", },
#ifdef CONFIG_ARM_AMBA #ifdef CONFIG_ARM_AMBA
{ .compatible = "arm,amba-bus", }, { .compatible = "arm,amba-bus", },
#endif /* CONFIG_ARM_AMBA */ #endif /* CONFIG_ARM_AMBA */
......
...@@ -218,11 +218,11 @@ static const struct berlin_pinctrl_desc berlin2_sysmgr_pinctrl_data = { ...@@ -218,11 +218,11 @@ static const struct berlin_pinctrl_desc berlin2_sysmgr_pinctrl_data = {
static const struct of_device_id berlin2_pinctrl_match[] = { static const struct of_device_id berlin2_pinctrl_match[] = {
{ {
.compatible = "marvell,berlin2-chip-ctrl", .compatible = "marvell,berlin2-soc-pinctrl",
.data = &berlin2_soc_pinctrl_data .data = &berlin2_soc_pinctrl_data
}, },
{ {
.compatible = "marvell,berlin2-system-ctrl", .compatible = "marvell,berlin2-system-pinctrl",
.data = &berlin2_sysmgr_pinctrl_data .data = &berlin2_sysmgr_pinctrl_data
}, },
{} {}
...@@ -233,28 +233,6 @@ static int berlin2_pinctrl_probe(struct platform_device *pdev) ...@@ -233,28 +233,6 @@ static int berlin2_pinctrl_probe(struct platform_device *pdev)
{ {
const struct of_device_id *match = const struct of_device_id *match =
of_match_device(berlin2_pinctrl_match, &pdev->dev); of_match_device(berlin2_pinctrl_match, &pdev->dev);
struct regmap_config *rmconfig;
struct regmap *regmap;
struct resource *res;
void __iomem *base;
rmconfig = devm_kzalloc(&pdev->dev, sizeof(*rmconfig), GFP_KERNEL);
if (!rmconfig)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
rmconfig->reg_bits = 32,
rmconfig->val_bits = 32,
rmconfig->reg_stride = 4,
rmconfig->max_register = resource_size(res);
regmap = devm_regmap_init_mmio(&pdev->dev, base, rmconfig);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
return berlin_pinctrl_probe(pdev, match->data); return berlin_pinctrl_probe(pdev, match->data);
} }
......
...@@ -161,11 +161,11 @@ static const struct berlin_pinctrl_desc berlin2cd_sysmgr_pinctrl_data = { ...@@ -161,11 +161,11 @@ static const struct berlin_pinctrl_desc berlin2cd_sysmgr_pinctrl_data = {
static const struct of_device_id berlin2cd_pinctrl_match[] = { static const struct of_device_id berlin2cd_pinctrl_match[] = {
{ {
.compatible = "marvell,berlin2cd-chip-ctrl", .compatible = "marvell,berlin2cd-soc-pinctrl",
.data = &berlin2cd_soc_pinctrl_data .data = &berlin2cd_soc_pinctrl_data
}, },
{ {
.compatible = "marvell,berlin2cd-system-ctrl", .compatible = "marvell,berlin2cd-system-pinctrl",
.data = &berlin2cd_sysmgr_pinctrl_data .data = &berlin2cd_sysmgr_pinctrl_data
}, },
{} {}
...@@ -176,28 +176,6 @@ static int berlin2cd_pinctrl_probe(struct platform_device *pdev) ...@@ -176,28 +176,6 @@ static int berlin2cd_pinctrl_probe(struct platform_device *pdev)
{ {
const struct of_device_id *match = const struct of_device_id *match =
of_match_device(berlin2cd_pinctrl_match, &pdev->dev); of_match_device(berlin2cd_pinctrl_match, &pdev->dev);
struct regmap_config *rmconfig;
struct regmap *regmap;
struct resource *res;
void __iomem *base;
rmconfig = devm_kzalloc(&pdev->dev, sizeof(*rmconfig), GFP_KERNEL);
if (!rmconfig)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
rmconfig->reg_bits = 32,
rmconfig->val_bits = 32,
rmconfig->reg_stride = 4,
rmconfig->max_register = resource_size(res);
regmap = devm_regmap_init_mmio(&pdev->dev, base, rmconfig);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
return berlin_pinctrl_probe(pdev, match->data); return berlin_pinctrl_probe(pdev, match->data);
} }
......
...@@ -380,11 +380,11 @@ static const struct berlin_pinctrl_desc berlin2q_sysmgr_pinctrl_data = { ...@@ -380,11 +380,11 @@ static const struct berlin_pinctrl_desc berlin2q_sysmgr_pinctrl_data = {
static const struct of_device_id berlin2q_pinctrl_match[] = { static const struct of_device_id berlin2q_pinctrl_match[] = {
{ {
.compatible = "marvell,berlin2q-chip-ctrl", .compatible = "marvell,berlin2q-soc-pinctrl",
.data = &berlin2q_soc_pinctrl_data, .data = &berlin2q_soc_pinctrl_data,
}, },
{ {
.compatible = "marvell,berlin2q-system-ctrl", .compatible = "marvell,berlin2q-system-pinctrl",
.data = &berlin2q_sysmgr_pinctrl_data, .data = &berlin2q_sysmgr_pinctrl_data,
}, },
{} {}
...@@ -395,28 +395,6 @@ static int berlin2q_pinctrl_probe(struct platform_device *pdev) ...@@ -395,28 +395,6 @@ static int berlin2q_pinctrl_probe(struct platform_device *pdev)
{ {
const struct of_device_id *match = const struct of_device_id *match =
of_match_device(berlin2q_pinctrl_match, &pdev->dev); of_match_device(berlin2q_pinctrl_match, &pdev->dev);
struct regmap_config *rmconfig;
struct regmap *regmap;
struct resource *res;
void __iomem *base;
rmconfig = devm_kzalloc(&pdev->dev, sizeof(*rmconfig), GFP_KERNEL);
if (!rmconfig)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
rmconfig->reg_bits = 32,
rmconfig->val_bits = 32,
rmconfig->reg_stride = 4,
rmconfig->max_register = resource_size(res);
regmap = devm_regmap_init_mmio(&pdev->dev, base, rmconfig);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
return berlin_pinctrl_probe(pdev, match->data); return berlin_pinctrl_probe(pdev, match->data);
} }
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
*/ */
#include <linux/io.h> #include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_address.h> #include <linux/of_address.h>
...@@ -295,13 +296,15 @@ int berlin_pinctrl_probe(struct platform_device *pdev, ...@@ -295,13 +296,15 @@ int berlin_pinctrl_probe(struct platform_device *pdev,
const struct berlin_pinctrl_desc *desc) const struct berlin_pinctrl_desc *desc)
{ {
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct device_node *parent_np = of_get_parent(dev->of_node);
struct berlin_pinctrl *pctrl; struct berlin_pinctrl *pctrl;
struct regmap *regmap; struct regmap *regmap;
int ret; int ret;
regmap = dev_get_regmap(&pdev->dev, NULL); regmap = syscon_node_to_regmap(parent_np);
if (!regmap) of_node_put(parent_np);
return -ENODEV; if (IS_ERR(regmap))
return PTR_ERR(regmap);
pctrl = devm_kzalloc(dev, sizeof(*pctrl), GFP_KERNEL); pctrl = devm_kzalloc(dev, sizeof(*pctrl), GFP_KERNEL);
if (!pctrl) if (!pctrl)
......
...@@ -11,10 +11,12 @@ ...@@ -11,10 +11,12 @@
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset-controller.h> #include <linux/reset-controller.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/types.h> #include <linux/types.h>
...@@ -25,8 +27,7 @@ ...@@ -25,8 +27,7 @@
container_of((p), struct berlin_reset_priv, rcdev) container_of((p), struct berlin_reset_priv, rcdev)
struct berlin_reset_priv { struct berlin_reset_priv {
void __iomem *base; struct regmap *regmap;
unsigned int size;
struct reset_controller_dev rcdev; struct reset_controller_dev rcdev;
}; };
...@@ -37,7 +38,7 @@ static int berlin_reset_reset(struct reset_controller_dev *rcdev, ...@@ -37,7 +38,7 @@ static int berlin_reset_reset(struct reset_controller_dev *rcdev,
int offset = id >> 8; int offset = id >> 8;
int mask = BIT(id & 0x1f); int mask = BIT(id & 0x1f);
writel(mask, priv->base + offset); regmap_write(priv->regmap, offset, mask);
/* let the reset be effective */ /* let the reset be effective */
udelay(10); udelay(10);
...@@ -52,7 +53,6 @@ static struct reset_control_ops berlin_reset_ops = { ...@@ -52,7 +53,6 @@ static struct reset_control_ops berlin_reset_ops = {
static int berlin_reset_xlate(struct reset_controller_dev *rcdev, static int berlin_reset_xlate(struct reset_controller_dev *rcdev,
const struct of_phandle_args *reset_spec) const struct of_phandle_args *reset_spec)
{ {
struct berlin_reset_priv *priv = to_berlin_reset_priv(rcdev);
unsigned offset, bit; unsigned offset, bit;
if (WARN_ON(reset_spec->args_count != rcdev->of_reset_n_cells)) if (WARN_ON(reset_spec->args_count != rcdev->of_reset_n_cells))
...@@ -61,71 +61,53 @@ static int berlin_reset_xlate(struct reset_controller_dev *rcdev, ...@@ -61,71 +61,53 @@ static int berlin_reset_xlate(struct reset_controller_dev *rcdev,
offset = reset_spec->args[0]; offset = reset_spec->args[0];
bit = reset_spec->args[1]; bit = reset_spec->args[1];
if (offset >= priv->size)
return -EINVAL;
if (bit >= BERLIN_MAX_RESETS) if (bit >= BERLIN_MAX_RESETS)
return -EINVAL; return -EINVAL;
return (offset << 8) | bit; return (offset << 8) | bit;
} }
static int __berlin_reset_init(struct device_node *np) static int berlin2_reset_probe(struct platform_device *pdev)
{ {
struct device_node *parent_np = of_get_parent(pdev->dev.of_node);
struct berlin_reset_priv *priv; struct berlin_reset_priv *priv;
struct resource res;
resource_size_t size;
int ret;
priv = kzalloc(sizeof(*priv), GFP_KERNEL); priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv) if (!priv)
return -ENOMEM; return -ENOMEM;
ret = of_address_to_resource(np, 0, &res); priv->regmap = syscon_node_to_regmap(parent_np);
if (ret) of_node_put(parent_np);
goto err; if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
size = resource_size(&res);
priv->base = ioremap(res.start, size);
if (!priv->base) {
ret = -ENOMEM;
goto err;
}
priv->size = size;
priv->rcdev.owner = THIS_MODULE; priv->rcdev.owner = THIS_MODULE;
priv->rcdev.ops = &berlin_reset_ops; priv->rcdev.ops = &berlin_reset_ops;
priv->rcdev.of_node = np; priv->rcdev.of_node = pdev->dev.of_node;
priv->rcdev.of_reset_n_cells = 2; priv->rcdev.of_reset_n_cells = 2;
priv->rcdev.of_xlate = berlin_reset_xlate; priv->rcdev.of_xlate = berlin_reset_xlate;
reset_controller_register(&priv->rcdev); reset_controller_register(&priv->rcdev);
return 0; return 0;
err:
kfree(priv);
return ret;
} }
static const struct of_device_id berlin_reset_of_match[] __initconst = { static const struct of_device_id berlin_reset_dt_match[] = {
{ .compatible = "marvell,berlin2-chip-ctrl" }, { .compatible = "marvell,berlin2-reset" },
{ .compatible = "marvell,berlin2cd-chip-ctrl" },
{ .compatible = "marvell,berlin2q-chip-ctrl" },
{ }, { },
}; };
MODULE_DEVICE_TABLE(of, berlin_reset_dt_match);
static struct platform_driver berlin_reset_driver = {
.probe = berlin2_reset_probe,
.driver = {
.name = "berlin2-reset",
.of_match_table = berlin_reset_dt_match,
},
};
module_platform_driver(berlin_reset_driver);
static int __init berlin_reset_init(void) MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
{ MODULE_AUTHOR("Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>");
struct device_node *np; MODULE_DESCRIPTION("Marvell Berlin reset driver");
int ret; MODULE_LICENSE("GPL");
for_each_matching_node(np, berlin_reset_of_match) {
ret = __berlin_reset_init(np);
if (ret)
return ret;
}
return 0;
}
arch_initcall(berlin_reset_init);
...@@ -2,6 +2,7 @@ menu "SOC (System On Chip) specific Drivers" ...@@ -2,6 +2,7 @@ menu "SOC (System On Chip) specific Drivers"
source "drivers/soc/mediatek/Kconfig" source "drivers/soc/mediatek/Kconfig"
source "drivers/soc/qcom/Kconfig" source "drivers/soc/qcom/Kconfig"
source "drivers/soc/sunxi/Kconfig"
source "drivers/soc/ti/Kconfig" source "drivers/soc/ti/Kconfig"
source "drivers/soc/versatile/Kconfig" source "drivers/soc/versatile/Kconfig"
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
obj-$(CONFIG_ARCH_MEDIATEK) += mediatek/ obj-$(CONFIG_ARCH_MEDIATEK) += mediatek/
obj-$(CONFIG_ARCH_QCOM) += qcom/ obj-$(CONFIG_ARCH_QCOM) += qcom/
obj-$(CONFIG_ARCH_SUNXI) += sunxi/
obj-$(CONFIG_ARCH_TEGRA) += tegra/ obj-$(CONFIG_ARCH_TEGRA) += tegra/
obj-$(CONFIG_SOC_TI) += ti/ obj-$(CONFIG_SOC_TI) += ti/
obj-$(CONFIG_PLAT_VERSATILE) += versatile/ obj-$(CONFIG_PLAT_VERSATILE) += versatile/
...@@ -10,3 +10,10 @@ config QCOM_GSBI ...@@ -10,3 +10,10 @@ config QCOM_GSBI
functions for connecting the underlying serial UART, SPI, and I2C functions for connecting the underlying serial UART, SPI, and I2C
devices to the output pins. devices to the output pins.
config QCOM_PM
bool "Qualcomm Power Management"
depends on ARCH_QCOM && !ARM64
help
QCOM Platform specific power driver to manage cores and L2 low power
modes. It interface with various system drivers to put the cores in
low power modes.
obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o
obj-$(CONFIG_QCOM_PM) += spm.o
/*
* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
* Copyright (c) 2014,2015, Linaro Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/cpuidle.h>
#include <linux/cpu_pm.h>
#include <linux/qcom_scm.h>
#include <asm/cpuidle.h>
#include <asm/proc-fns.h>
#include <asm/suspend.h>
#define MAX_PMIC_DATA 2
#define MAX_SEQ_DATA 64
#define SPM_CTL_INDEX 0x7f
#define SPM_CTL_INDEX_SHIFT 4
#define SPM_CTL_EN BIT(0)
enum pm_sleep_mode {
PM_SLEEP_MODE_STBY,
PM_SLEEP_MODE_RET,
PM_SLEEP_MODE_SPC,
PM_SLEEP_MODE_PC,
PM_SLEEP_MODE_NR,
};
enum spm_reg {
SPM_REG_CFG,
SPM_REG_SPM_CTL,
SPM_REG_DLY,
SPM_REG_PMIC_DLY,
SPM_REG_PMIC_DATA_0,
SPM_REG_PMIC_DATA_1,
SPM_REG_VCTL,
SPM_REG_SEQ_ENTRY,
SPM_REG_SPM_STS,
SPM_REG_PMIC_STS,
SPM_REG_NR,
};
struct spm_reg_data {
const u8 *reg_offset;
u32 spm_cfg;
u32 spm_dly;
u32 pmic_dly;
u32 pmic_data[MAX_PMIC_DATA];
u8 seq[MAX_SEQ_DATA];
u8 start_index[PM_SLEEP_MODE_NR];
};
struct spm_driver_data {
void __iomem *reg_base;
const struct spm_reg_data *reg_data;
};
static const u8 spm_reg_offset_v2_1[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_SPM_CTL] = 0x30,
[SPM_REG_DLY] = 0x34,
[SPM_REG_SEQ_ENTRY] = 0x80,
};
/* SPM register data for 8974, 8084 */
static const struct spm_reg_data spm_reg_8974_8084_cpu = {
.reg_offset = spm_reg_offset_v2_1,
.spm_cfg = 0x1,
.spm_dly = 0x3C102800,
.seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03,
0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30,
0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 3,
};
static const u8 spm_reg_offset_v1_1[SPM_REG_NR] = {
[SPM_REG_CFG] = 0x08,
[SPM_REG_SPM_CTL] = 0x20,
[SPM_REG_PMIC_DLY] = 0x24,
[SPM_REG_PMIC_DATA_0] = 0x28,
[SPM_REG_PMIC_DATA_1] = 0x2C,
[SPM_REG_SEQ_ENTRY] = 0x80,
};
/* SPM register data for 8064 */
static const struct spm_reg_data spm_reg_8064_cpu = {
.reg_offset = spm_reg_offset_v1_1,
.spm_cfg = 0x1F,
.pmic_dly = 0x02020004,
.pmic_data[0] = 0x0084009C,
.pmic_data[1] = 0x00A4001C,
.seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01,
0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F },
.start_index[PM_SLEEP_MODE_STBY] = 0,
.start_index[PM_SLEEP_MODE_SPC] = 2,
};
static DEFINE_PER_CPU(struct spm_driver_data *, cpu_spm_drv);
typedef int (*idle_fn)(int);
static DEFINE_PER_CPU(idle_fn*, qcom_idle_ops);
static inline void spm_register_write(struct spm_driver_data *drv,
enum spm_reg reg, u32 val)
{
if (drv->reg_data->reg_offset[reg])
writel_relaxed(val, drv->reg_base +
drv->reg_data->reg_offset[reg]);
}
/* Ensure a guaranteed write, before return */
static inline void spm_register_write_sync(struct spm_driver_data *drv,
enum spm_reg reg, u32 val)
{
u32 ret;
if (!drv->reg_data->reg_offset[reg])
return;
do {
writel_relaxed(val, drv->reg_base +
drv->reg_data->reg_offset[reg]);
ret = readl_relaxed(drv->reg_base +
drv->reg_data->reg_offset[reg]);
if (ret == val)
break;
cpu_relax();
} while (1);
}
static inline u32 spm_register_read(struct spm_driver_data *drv,
enum spm_reg reg)
{
return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]);
}
static void spm_set_low_power_mode(struct spm_driver_data *drv,
enum pm_sleep_mode mode)
{
u32 start_index;
u32 ctl_val;
start_index = drv->reg_data->start_index[mode];
ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL);
ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT);
ctl_val |= start_index << SPM_CTL_INDEX_SHIFT;
ctl_val |= SPM_CTL_EN;
spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val);
}
static int qcom_pm_collapse(unsigned long int unused)
{
qcom_scm_cpu_power_down(QCOM_SCM_CPU_PWR_DOWN_L2_ON);
/*
* Returns here only if there was a pending interrupt and we did not
* power down as a result.
*/
return -1;
}
static int qcom_cpu_spc(int cpu)
{
int ret;
struct spm_driver_data *drv = per_cpu(cpu_spm_drv, cpu);
spm_set_low_power_mode(drv, PM_SLEEP_MODE_SPC);
ret = cpu_suspend(0, qcom_pm_collapse);
/*
* ARM common code executes WFI without calling into our driver and
* if the SPM mode is not reset, then we may accidently power down the
* cpu when we intended only to gate the cpu clock.
* Ensure the state is set to standby before returning.
*/
spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
return ret;
}
static int qcom_idle_enter(int cpu, unsigned long index)
{
return per_cpu(qcom_idle_ops, cpu)[index](cpu);
}
static const struct of_device_id qcom_idle_state_match[] __initconst = {
{ .compatible = "qcom,idle-state-spc", .data = qcom_cpu_spc },
{ },
};
static int __init qcom_cpuidle_init(struct device_node *cpu_node, int cpu)
{
const struct of_device_id *match_id;
struct device_node *state_node;
int i;
int state_count = 1;
idle_fn idle_fns[CPUIDLE_STATE_MAX];
idle_fn *fns;
cpumask_t mask;
bool use_scm_power_down = false;
for (i = 0; ; i++) {
state_node = of_parse_phandle(cpu_node, "cpu-idle-states", i);
if (!state_node)
break;
if (!of_device_is_available(state_node))
continue;
if (i == CPUIDLE_STATE_MAX) {
pr_warn("%s: cpuidle states reached max possible\n",
__func__);
break;
}
match_id = of_match_node(qcom_idle_state_match, state_node);
if (!match_id)
return -ENODEV;
idle_fns[state_count] = match_id->data;
/* Check if any of the states allow power down */
if (match_id->data == qcom_cpu_spc)
use_scm_power_down = true;
state_count++;
}
if (state_count == 1)
goto check_spm;
fns = devm_kcalloc(get_cpu_device(cpu), state_count, sizeof(*fns),
GFP_KERNEL);
if (!fns)
return -ENOMEM;
for (i = 1; i < state_count; i++)
fns[i] = idle_fns[i];
if (use_scm_power_down) {
/* We have atleast one power down mode */
cpumask_clear(&mask);
cpumask_set_cpu(cpu, &mask);
qcom_scm_set_warm_boot_addr(cpu_resume, &mask);
}
per_cpu(qcom_idle_ops, cpu) = fns;
/*
* SPM probe for the cpu should have happened by now, if the
* SPM device does not exist, return -ENXIO to indicate that the
* cpu does not support idle states.
*/
check_spm:
return per_cpu(cpu_spm_drv, cpu) ? 0 : -ENXIO;
}
static struct cpuidle_ops qcom_cpuidle_ops __initdata = {
.suspend = qcom_idle_enter,
.init = qcom_cpuidle_init,
};
CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v1, "qcom,kpss-acc-v1", &qcom_cpuidle_ops);
CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v2, "qcom,kpss-acc-v2", &qcom_cpuidle_ops);
static struct spm_driver_data *spm_get_drv(struct platform_device *pdev,
int *spm_cpu)
{
struct spm_driver_data *drv = NULL;
struct device_node *cpu_node, *saw_node;
int cpu;
bool found;
for_each_possible_cpu(cpu) {
cpu_node = of_cpu_device_node_get(cpu);
if (!cpu_node)
continue;
saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
found = (saw_node == pdev->dev.of_node);
of_node_put(saw_node);
of_node_put(cpu_node);
if (found)
break;
}
if (found) {
drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
if (drv)
*spm_cpu = cpu;
}
return drv;
}
static const struct of_device_id spm_match_table[] = {
{ .compatible = "qcom,msm8974-saw2-v2.1-cpu",
.data = &spm_reg_8974_8084_cpu },
{ .compatible = "qcom,apq8084-saw2-v2.1-cpu",
.data = &spm_reg_8974_8084_cpu },
{ .compatible = "qcom,apq8064-saw2-v1.1-cpu",
.data = &spm_reg_8064_cpu },
{ },
};
static int spm_dev_probe(struct platform_device *pdev)
{
struct spm_driver_data *drv;
struct resource *res;
const struct of_device_id *match_id;
void __iomem *addr;
int cpu;
drv = spm_get_drv(pdev, &cpu);
if (!drv)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
drv->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(drv->reg_base))
return PTR_ERR(drv->reg_base);
match_id = of_match_node(spm_match_table, pdev->dev.of_node);
if (!match_id)
return -ENODEV;
drv->reg_data = match_id->data;
/* Write the SPM sequences first.. */
addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY];
__iowrite32_copy(addr, drv->reg_data->seq,
ARRAY_SIZE(drv->reg_data->seq) / 4);
/*
* ..and then the control registers.
* On some SoC if the control registers are written first and if the
* CPU was held in reset, the reset signal could trigger the SPM state
* machine, before the sequences are completely written.
*/
spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg);
spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly);
spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly);
spm_register_write(drv, SPM_REG_PMIC_DATA_0,
drv->reg_data->pmic_data[0]);
spm_register_write(drv, SPM_REG_PMIC_DATA_1,
drv->reg_data->pmic_data[1]);
/* Set up Standby as the default low power mode */
spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
per_cpu(cpu_spm_drv, cpu) = drv;
return 0;
}
static struct platform_driver spm_driver = {
.probe = spm_dev_probe,
.driver = {
.name = "saw",
.of_match_table = spm_match_table,
},
};
module_platform_driver(spm_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("SAW power controller driver");
MODULE_ALIAS("platform:saw");
#
# Allwinner sunXi SoC drivers
#
config SUNXI_SRAM
bool
default ARCH_SUNXI
help
Say y here to enable the SRAM controller support. This
device is responsible on mapping the SRAM in the sunXi SoCs
whether to the CPU/DMA, or to the devices.
obj-$(CONFIG_SUNXI_SRAM) += sunxi_sram.o
/*
* Allwinner SoCs SRAM Controller Driver
*
* Copyright (C) 2015 Maxime Ripard
*
* Author: Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/soc/sunxi/sunxi_sram.h>
struct sunxi_sram_func {
char *func;
u8 val;
};
struct sunxi_sram_data {
char *name;
u8 reg;
u8 offset;
u8 width;
struct sunxi_sram_func *func;
struct list_head list;
};
struct sunxi_sram_desc {
struct sunxi_sram_data data;
bool claimed;
};
#define SUNXI_SRAM_MAP(_val, _func) \
{ \
.func = _func, \
.val = _val, \
}
#define SUNXI_SRAM_DATA(_name, _reg, _off, _width, ...) \
{ \
.name = _name, \
.reg = _reg, \
.offset = _off, \
.width = _width, \
.func = (struct sunxi_sram_func[]){ \
__VA_ARGS__, { } }, \
}
static struct sunxi_sram_desc sun4i_a10_sram_a3_a4 = {
.data = SUNXI_SRAM_DATA("A3-A4", 0x4, 0x4, 2,
SUNXI_SRAM_MAP(0, "cpu"),
SUNXI_SRAM_MAP(1, "emac")),
};
static struct sunxi_sram_desc sun4i_a10_sram_d = {
.data = SUNXI_SRAM_DATA("D", 0x4, 0x0, 1,
SUNXI_SRAM_MAP(0, "cpu"),
SUNXI_SRAM_MAP(1, "usb-otg")),
};
static const struct of_device_id sunxi_sram_dt_ids[] = {
{
.compatible = "allwinner,sun4i-a10-sram-a3-a4",
.data = &sun4i_a10_sram_a3_a4.data,
},
{
.compatible = "allwinner,sun4i-a10-sram-d",
.data = &sun4i_a10_sram_d.data,
},
{}
};
static struct device *sram_dev;
static LIST_HEAD(claimed_sram);
static DEFINE_SPINLOCK(sram_lock);
static void __iomem *base;
static int sunxi_sram_show(struct seq_file *s, void *data)
{
struct device_node *sram_node, *section_node;
const struct sunxi_sram_data *sram_data;
const struct of_device_id *match;
struct sunxi_sram_func *func;
const __be32 *sram_addr_p, *section_addr_p;
u32 val;
seq_puts(s, "Allwinner sunXi SRAM\n");
seq_puts(s, "--------------------\n\n");
for_each_child_of_node(sram_dev->of_node, sram_node) {
sram_addr_p = of_get_address(sram_node, 0, NULL, NULL);
seq_printf(s, "sram@%08x\n",
be32_to_cpu(*sram_addr_p));
for_each_child_of_node(sram_node, section_node) {
match = of_match_node(sunxi_sram_dt_ids, section_node);
if (!match)
continue;
sram_data = match->data;
section_addr_p = of_get_address(section_node, 0,
NULL, NULL);
seq_printf(s, "\tsection@%04x\t(%s)\n",
be32_to_cpu(*section_addr_p),
sram_data->name);
val = readl(base + sram_data->reg);
val >>= sram_data->offset;
val &= sram_data->width;
for (func = sram_data->func; func->func; func++) {
seq_printf(s, "\t\t%s%c\n", func->func,
func->val == val ? '*' : ' ');
}
}
seq_puts(s, "\n");
}
return 0;
}
static int sunxi_sram_open(struct inode *inode, struct file *file)
{
return single_open(file, sunxi_sram_show, inode->i_private);
}
static const struct file_operations sunxi_sram_fops = {
.open = sunxi_sram_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static inline struct sunxi_sram_desc *to_sram_desc(const struct sunxi_sram_data *data)
{
return container_of(data, struct sunxi_sram_desc, data);
}
static const struct sunxi_sram_data *sunxi_sram_of_parse(struct device_node *node,
unsigned int *value)
{
const struct of_device_id *match;
struct of_phandle_args args;
int ret;
ret = of_parse_phandle_with_fixed_args(node, "allwinner,sram", 1, 0,
&args);
if (ret)
return ERR_PTR(ret);
if (!of_device_is_available(args.np)) {
ret = -EBUSY;
goto err;
}
if (value)
*value = args.args[0];
match = of_match_node(sunxi_sram_dt_ids, args.np);
if (!match) {
ret = -EINVAL;
goto err;
}
of_node_put(args.np);
return match->data;
err:
of_node_put(args.np);
return ERR_PTR(ret);
}
int sunxi_sram_claim(struct device *dev)
{
const struct sunxi_sram_data *sram_data;
struct sunxi_sram_desc *sram_desc;
unsigned int device;
u32 val, mask;
if (IS_ERR(base))
return -EPROBE_DEFER;
if (!dev || !dev->of_node)
return -EINVAL;
sram_data = sunxi_sram_of_parse(dev->of_node, &device);
if (IS_ERR(sram_data))
return PTR_ERR(sram_data);
sram_desc = to_sram_desc(sram_data);
spin_lock(&sram_lock);
if (sram_desc->claimed) {
spin_unlock(&sram_lock);
return -EBUSY;
}
mask = GENMASK(sram_data->offset + sram_data->width, sram_data->offset);
val = readl(base + sram_data->reg);
val &= ~mask;
writel(val | ((device << sram_data->offset) & mask),
base + sram_data->reg);
spin_unlock(&sram_lock);
return 0;
}
EXPORT_SYMBOL(sunxi_sram_claim);
int sunxi_sram_release(struct device *dev)
{
const struct sunxi_sram_data *sram_data;
struct sunxi_sram_desc *sram_desc;
if (!dev || !dev->of_node)
return -EINVAL;
sram_data = sunxi_sram_of_parse(dev->of_node, NULL);
if (IS_ERR(sram_data))
return -EINVAL;
sram_desc = to_sram_desc(sram_data);
spin_lock(&sram_lock);
sram_desc->claimed = false;
spin_unlock(&sram_lock);
return 0;
}
EXPORT_SYMBOL(sunxi_sram_release);
static int sunxi_sram_probe(struct platform_device *pdev)
{
struct resource *res;
struct dentry *d;
sram_dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
d = debugfs_create_file("sram", S_IRUGO, NULL, NULL,
&sunxi_sram_fops);
if (!d)
return -ENOMEM;
return 0;
}
static const struct of_device_id sunxi_sram_dt_match[] = {
{ .compatible = "allwinner,sun4i-a10-sram-controller" },
{ },
};
MODULE_DEVICE_TABLE(of, sunxi_sram_dt_match);
static struct platform_driver sunxi_sram_driver = {
.driver = {
.name = "sunxi-sram",
.of_match_table = sunxi_sram_dt_match,
},
.probe = sunxi_sram_probe,
};
module_platform_driver(sunxi_sram_driver);
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner sunXi SRAM Controller Driver");
MODULE_LICENSE("GPL");
...@@ -28,8 +28,15 @@ ...@@ -28,8 +28,15 @@
#define APBMISC_SIZE 0x64 #define APBMISC_SIZE 0x64
#define FUSE_SKU_INFO 0x10 #define FUSE_SKU_INFO 0x10
#define PMC_STRAPPING_OPT_A_RAM_CODE_SHIFT 4
#define PMC_STRAPPING_OPT_A_RAM_CODE_MASK_LONG \
(0xf << PMC_STRAPPING_OPT_A_RAM_CODE_SHIFT)
#define PMC_STRAPPING_OPT_A_RAM_CODE_MASK_SHORT \
(0x3 << PMC_STRAPPING_OPT_A_RAM_CODE_SHIFT)
static void __iomem *apbmisc_base; static void __iomem *apbmisc_base;
static void __iomem *strapping_base; static void __iomem *strapping_base;
static bool long_ram_code;
u32 tegra_read_chipid(void) u32 tegra_read_chipid(void)
{ {
...@@ -54,6 +61,18 @@ u32 tegra_read_straps(void) ...@@ -54,6 +61,18 @@ u32 tegra_read_straps(void)
return 0; return 0;
} }
u32 tegra_read_ram_code(void)
{
u32 straps = tegra_read_straps();
if (long_ram_code)
straps &= PMC_STRAPPING_OPT_A_RAM_CODE_MASK_LONG;
else
straps &= PMC_STRAPPING_OPT_A_RAM_CODE_MASK_SHORT;
return straps >> PMC_STRAPPING_OPT_A_RAM_CODE_SHIFT;
}
static const struct of_device_id apbmisc_match[] __initconst = { static const struct of_device_id apbmisc_match[] __initconst = {
{ .compatible = "nvidia,tegra20-apbmisc", }, { .compatible = "nvidia,tegra20-apbmisc", },
{}, {},
...@@ -112,4 +131,6 @@ void __init tegra_init_apbmisc(void) ...@@ -112,4 +131,6 @@ void __init tegra_init_apbmisc(void)
strapping_base = of_iomap(np, 1); strapping_base = of_iomap(np, 1);
if (!strapping_base) if (!strapping_base)
pr_err("ioremap tegra strapping_base failed\n"); pr_err("ioremap tegra strapping_base failed\n");
long_ram_code = of_property_read_bool(np, "nvidia,long-ram-code");
} }
/* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved. /* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd. * Copyright (C) 2015 Linaro Ltd.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
...@@ -16,6 +16,17 @@ ...@@ -16,6 +16,17 @@
extern int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus); extern int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus);
extern int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus); extern int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus);
#define QCOM_SCM_HDCP_MAX_REQ_CNT 5
struct qcom_scm_hdcp_req {
u32 addr;
u32 val;
};
extern bool qcom_scm_hdcp_available(void);
extern int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
u32 *resp);
#define QCOM_SCM_CPU_PWR_DOWN_L2_ON 0x0 #define QCOM_SCM_CPU_PWR_DOWN_L2_ON 0x0
#define QCOM_SCM_CPU_PWR_DOWN_L2_OFF 0x1 #define QCOM_SCM_CPU_PWR_DOWN_L2_OFF 0x1
......
/*
* Allwinner SoCs SRAM Controller Driver
*
* Copyright (C) 2015 Maxime Ripard
*
* Author: Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#ifndef _SUNXI_SRAM_H_
#define _SUNXI_SRAM_H_
int sunxi_sram_claim(struct device *dev);
int sunxi_sram_release(struct device *dev);
#endif /* _SUNXI_SRAM_H_ */
/*
* Copyright (c) 2014 NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __SOC_TEGRA_EMC_H__
#define __SOC_TEGRA_EMC_H__
struct tegra_emc;
int tegra_emc_prepare_timing_change(struct tegra_emc *emc,
unsigned long rate);
void tegra_emc_complete_timing_change(struct tegra_emc *emc,
unsigned long rate);
#endif /* __SOC_TEGRA_EMC_H__ */
...@@ -56,6 +56,7 @@ struct tegra_sku_info { ...@@ -56,6 +56,7 @@ struct tegra_sku_info {
}; };
u32 tegra_read_straps(void); u32 tegra_read_straps(void);
u32 tegra_read_ram_code(void);
u32 tegra_read_chipid(void); u32 tegra_read_chipid(void);
int tegra_fuse_readl(unsigned long offset, u32 *value); int tegra_fuse_readl(unsigned long offset, u32 *value);
......
...@@ -20,6 +20,12 @@ struct tegra_smmu_enable { ...@@ -20,6 +20,12 @@ struct tegra_smmu_enable {
unsigned int bit; unsigned int bit;
}; };
struct tegra_mc_timing {
unsigned long rate;
u32 *emem_data;
};
/* latency allowance */ /* latency allowance */
struct tegra_mc_la { struct tegra_mc_la {
unsigned int reg; unsigned int reg;
...@@ -40,6 +46,7 @@ struct tegra_mc_client { ...@@ -40,6 +46,7 @@ struct tegra_mc_client {
}; };
struct tegra_smmu_swgroup { struct tegra_smmu_swgroup {
const char *name;
unsigned int swgroup; unsigned int swgroup;
unsigned int reg; unsigned int reg;
}; };
...@@ -71,6 +78,7 @@ struct tegra_smmu; ...@@ -71,6 +78,7 @@ struct tegra_smmu;
struct tegra_smmu *tegra_smmu_probe(struct device *dev, struct tegra_smmu *tegra_smmu_probe(struct device *dev,
const struct tegra_smmu_soc *soc, const struct tegra_smmu_soc *soc,
struct tegra_mc *mc); struct tegra_mc *mc);
void tegra_smmu_remove(struct tegra_smmu *smmu);
#else #else
static inline struct tegra_smmu * static inline struct tegra_smmu *
tegra_smmu_probe(struct device *dev, const struct tegra_smmu_soc *soc, tegra_smmu_probe(struct device *dev, const struct tegra_smmu_soc *soc,
...@@ -78,13 +86,17 @@ tegra_smmu_probe(struct device *dev, const struct tegra_smmu_soc *soc, ...@@ -78,13 +86,17 @@ tegra_smmu_probe(struct device *dev, const struct tegra_smmu_soc *soc,
{ {
return NULL; return NULL;
} }
static inline void tegra_smmu_remove(struct tegra_smmu *smmu)
{
}
#endif #endif
struct tegra_mc_soc { struct tegra_mc_soc {
const struct tegra_mc_client *clients; const struct tegra_mc_client *clients;
unsigned int num_clients; unsigned int num_clients;
const unsigned int *emem_regs; const unsigned long *emem_regs;
unsigned int num_emem_regs; unsigned int num_emem_regs;
unsigned int num_address_bits; unsigned int num_address_bits;
...@@ -102,6 +114,12 @@ struct tegra_mc { ...@@ -102,6 +114,12 @@ struct tegra_mc {
const struct tegra_mc_soc *soc; const struct tegra_mc_soc *soc;
unsigned long tick; unsigned long tick;
struct tegra_mc_timing *timings;
unsigned int num_timings;
}; };
void tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate);
unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc);
#endif /* __SOC_TEGRA_MC_H__ */ #endif /* __SOC_TEGRA_MC_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment