Commit fc5ab020 authored by Hariprasad Shenai's avatar Hariprasad Shenai Committed by David S. Miller

cxgb4: Replaced the backdoor mechanism to access the HW memory with PCIe Window method

Rip out a bunch of redundant PCI-E Memory Window Read/Write routines,
collapse the more general purpose routines into a single routine
thereby eliminating the need for a large stack frame (and extra data
copying) in the outer routine, change everything to use the improved
routine t4_memory_rw.

Based on origninal work by Casey Leedom <leedom@chelsio.com> and
Steve Wise <swise@opengridcomputing.com>
Signed-off-by: default avatarCasey Leedom <leedom@chelsio.com>
Signed-off-by: default avatarSteve Wise <swise@opengridcomputing.com>
Signed-off-by: default avatarHariprasad Shenai <hariprasad@chelsio.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 0abfd152
...@@ -654,6 +654,7 @@ struct adapter { ...@@ -654,6 +654,7 @@ struct adapter {
struct dentry *debugfs_root; struct dentry *debugfs_root;
spinlock_t stats_lock; spinlock_t stats_lock;
spinlock_t win0_lock ____cacheline_aligned_in_smp;
}; };
/* Defined bit width of user definable filter tuples /* Defined bit width of user definable filter tuples
...@@ -960,8 +961,17 @@ int t4_wait_dev_ready(struct adapter *adap); ...@@ -960,8 +961,17 @@ int t4_wait_dev_ready(struct adapter *adap);
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
struct link_config *lc); struct link_config *lc);
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port); int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port);
int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
__be32 *buf); #define T4_MEMORY_WRITE 0
#define T4_MEMORY_READ 1
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, u32 len,
__be32 *buf, int dir);
static inline int t4_memory_write(struct adapter *adap, int mtype, u32 addr,
u32 len, __be32 *buf)
{
return t4_memory_rw(adap, 0, mtype, addr, len, buf, 0);
}
int t4_seeprom_wp(struct adapter *adapter, bool enable); int t4_seeprom_wp(struct adapter *adapter, bool enable);
int get_vpd_params(struct adapter *adapter, struct vpd_params *p); int get_vpd_params(struct adapter *adapter, struct vpd_params *p);
int t4_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size); int t4_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size);
...@@ -1059,7 +1069,6 @@ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, ...@@ -1059,7 +1069,6 @@ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl); int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl);
void t4_db_full(struct adapter *adapter); void t4_db_full(struct adapter *adapter);
void t4_db_dropped(struct adapter *adapter); void t4_db_dropped(struct adapter *adapter);
int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len);
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
u32 addr, u32 val); u32 addr, u32 val);
void t4_sge_decode_idma_state(struct adapter *adapter, int state); void t4_sge_decode_idma_state(struct adapter *adapter, int state);
......
...@@ -3066,6 +3066,8 @@ static ssize_t mem_read(struct file *file, char __user *buf, size_t count, ...@@ -3066,6 +3066,8 @@ static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
loff_t avail = file_inode(file)->i_size; loff_t avail = file_inode(file)->i_size;
unsigned int mem = (uintptr_t)file->private_data & 3; unsigned int mem = (uintptr_t)file->private_data & 3;
struct adapter *adap = file->private_data - mem; struct adapter *adap = file->private_data - mem;
__be32 *data;
int ret;
if (pos < 0) if (pos < 0)
return -EINVAL; return -EINVAL;
...@@ -3074,29 +3076,24 @@ static ssize_t mem_read(struct file *file, char __user *buf, size_t count, ...@@ -3074,29 +3076,24 @@ static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
if (count > avail - pos) if (count > avail - pos)
count = avail - pos; count = avail - pos;
while (count) { data = t4_alloc_mem(count);
size_t len; if (!data)
int ret, ofst; return -ENOMEM;
__be32 data[16];
if ((mem == MEM_MC) || (mem == MEM_MC1)) spin_lock(&adap->win0_lock);
ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL); ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
else spin_unlock(&adap->win0_lock);
ret = t4_edc_read(adap, mem, pos, data, NULL); if (ret) {
if (ret) t4_free_mem(data);
return ret; return ret;
}
ret = copy_to_user(buf, data, count);
ofst = pos % sizeof(data); t4_free_mem(data);
len = min(count, sizeof(data) - ofst); if (ret)
if (copy_to_user(buf, (u8 *)data + ofst, len))
return -EFAULT; return -EFAULT;
buf += len; *ppos = pos + count;
pos += len;
count -= len;
}
count = pos - *ppos;
*ppos = pos;
return count; return count;
} }
...@@ -3757,7 +3754,11 @@ static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) ...@@ -3757,7 +3754,11 @@ static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
__be64 indices; __be64 indices;
int ret; int ret;
ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8); spin_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
sizeof(indices), (__be32 *)&indices,
T4_MEMORY_READ);
spin_unlock(&adap->win0_lock);
if (!ret) { if (!ret) {
*cidx = (be64_to_cpu(indices) >> 25) & 0xffff; *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
*pidx = (be64_to_cpu(indices) >> 9) & 0xffff; *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
...@@ -5076,7 +5077,7 @@ static int adap_init0_config(struct adapter *adapter, int reset) ...@@ -5076,7 +5077,7 @@ static int adap_init0_config(struct adapter *adapter, int reset)
adapter->fn, 0, 1, params, val); adapter->fn, 0, 1, params, val);
if (ret == 0) { if (ret == 0) {
/* /*
* For t4_memory_write() below addresses and * For t4_memory_rw() below addresses and
* sizes have to be in terms of multiples of 4 * sizes have to be in terms of multiples of 4
* bytes. So, if the Configuration File isn't * bytes. So, if the Configuration File isn't
* a multiple of 4 bytes in length we'll have * a multiple of 4 bytes in length we'll have
...@@ -5092,8 +5093,9 @@ static int adap_init0_config(struct adapter *adapter, int reset) ...@@ -5092,8 +5093,9 @@ static int adap_init0_config(struct adapter *adapter, int reset)
mtype = FW_PARAMS_PARAM_Y_GET(val[0]); mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16; maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
ret = t4_memory_write(adapter, mtype, maddr, spin_lock(&adapter->win0_lock);
size, data); ret = t4_memory_rw(adapter, 0, mtype, maddr,
size, data, T4_MEMORY_WRITE);
if (ret == 0 && resid != 0) { if (ret == 0 && resid != 0) {
union { union {
__be32 word; __be32 word;
...@@ -5104,10 +5106,12 @@ static int adap_init0_config(struct adapter *adapter, int reset) ...@@ -5104,10 +5106,12 @@ static int adap_init0_config(struct adapter *adapter, int reset)
last.word = data[size >> 2]; last.word = data[size >> 2];
for (i = resid; i < 4; i++) for (i = resid; i < 4; i++)
last.buf[i] = 0; last.buf[i] = 0;
ret = t4_memory_write(adapter, mtype, ret = t4_memory_rw(adapter, 0, mtype,
maddr + size, maddr + size,
4, &last.word); 4, &last.word,
T4_MEMORY_WRITE);
} }
spin_unlock(&adapter->win0_lock);
} }
} }
......
...@@ -413,78 +413,41 @@ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) ...@@ -413,78 +413,41 @@ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
return 0; return 0;
} }
/*
* t4_mem_win_rw - read/write memory through PCIE memory window
* @adap: the adapter
* @addr: address of first byte requested
* @data: MEMWIN0_APERTURE bytes of data containing the requested address
* @dir: direction of transfer 1 => read, 0 => write
*
* Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
* MEMWIN0_APERTURE-byte-aligned address that covers the requested
* address @addr.
*/
static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
{
int i;
u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
/*
* Setup offset into PCIE memory window. Address must be a
* MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
* ensure that changes propagate before we attempt to use the new
* values.)
*/
t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
(addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
/* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
if (dir)
*data++ = (__force __be32) t4_read_reg(adap,
(MEMWIN0_BASE + i));
else
t4_write_reg(adap, (MEMWIN0_BASE + i),
(__force u32) *data++);
}
return 0;
}
/** /**
* t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
* @adap: the adapter * @adap: the adapter
* @win: PCI-E Memory Window to use
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
* @addr: address within indicated memory type * @addr: address within indicated memory type
* @len: amount of memory to transfer * @len: amount of memory to transfer
* @buf: host memory buffer * @buf: host memory buffer
* @dir: direction of transfer 1 => read, 0 => write * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
* *
* Reads/writes an [almost] arbitrary memory region in the firmware: the * Reads/writes an [almost] arbitrary memory region in the firmware: the
* firmware memory address, length and host buffer must be aligned on * firmware memory address and host buffer must be aligned on 32-bit
* 32-bit boudaries. The memory is transferred as a raw byte sequence * boudaries; the length may be arbitrary. The memory is transferred as
* from/to the firmware's memory. If this memory contains data * a raw byte sequence from/to the firmware's memory. If this memory
* structures which contain multi-byte integers, it's the callers * contains data structures which contain multi-byte integers, it's the
* responsibility to perform appropriate byte order conversions. * caller's responsibility to perform appropriate byte order conversions.
*/ */
static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len, int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
__be32 *buf, int dir) u32 len, __be32 *buf, int dir)
{ {
u32 pos, start, end, offset, memoffset; u32 pos, offset, resid, memoffset;
u32 edc_size, mc_size; u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
int ret = 0;
__be32 *data;
/* /* Argument sanity checks ...
* Argument sanity checks ...
*/ */
if ((addr & 0x3) || (len & 0x3)) if (addr & 0x3)
return -EINVAL; return -EINVAL;
data = vmalloc(MEMWIN0_APERTURE); /* It's convenient to be able to handle lengths which aren't a
if (!data) * multiple of 32-bits because we often end up transferring files to
return -ENOMEM; * the firmware. So we'll handle that by normalizing the length here
* and then handling any residual transfer at the end.
*/
resid = len & 0x3;
len -= resid;
/* Offset into the region of memory which is being accessed /* Offset into the region of memory which is being accessed
* MEM_EDC0 = 0 * MEM_EDC0 = 0
...@@ -505,66 +468,98 @@ static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len, ...@@ -505,66 +468,98 @@ static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
/* Determine the PCIE_MEM_ACCESS_OFFSET */ /* Determine the PCIE_MEM_ACCESS_OFFSET */
addr = addr + memoffset; addr = addr + memoffset;
/* /* Each PCI-E Memory Window is programmed with a window size -- or
* The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes * "aperture" -- which controls the granularity of its mapping onto
* at a time so we need to round down the start and round up the end. * adapter memory. We need to grab that aperture in order to know
* We'll start copying out of the first line at (addr - start) a word * how to use the specified window. The window is also programmed
* at a time. * with the base address of the Memory Window in BAR0's address
*/ * space. For T4 this is an absolute PCI-E Bus Address. For T5
start = addr & ~(MEMWIN0_APERTURE-1); * the address is relative to BAR0.
end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1); */
offset = (addr - start)/sizeof(__be32); mem_reg = t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN,
for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) { win));
mem_aperture = 1 << (GET_WINDOW(mem_reg) + 10);
mem_base = GET_PCIEOFST(mem_reg) << 10;
if (is_t4(adap->params.chip))
mem_base -= adap->t4_bar0;
win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
/* /* Calculate our initial PCI-E Memory Window Position and Offset into
* If we're writing, copy the data from the caller's memory * that Window.
* buffer
*/
if (!dir) {
/*
* If we're doing a partial write, then we need to do
* a read-modify-write ...
*/ */
if (offset || len < MEMWIN0_APERTURE) { pos = addr & ~(mem_aperture-1);
ret = t4_mem_win_rw(adap, pos, data, 1); offset = addr - pos;
if (ret)
break;
}
while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
len > 0) {
data[offset++] = *buf++;
len -= sizeof(__be32);
}
}
/* /* Set up initial PCI-E Memory Window to cover the start of our
* Transfer a block of memory and bail if there's an error. * transfer. (Read it back to ensure that changes propagate before we
* attempt to use the new value.)
*/ */
ret = t4_mem_win_rw(adap, pos, data, dir); t4_write_reg(adap,
if (ret) PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win),
break; pos | win_pf);
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
/* /* Transfer data to/from the adapter as long as there's an integral
* If we're reading, copy the data into the caller's memory * number of 32-bit transfers to complete.
* buffer.
*/ */
if (dir) while (len > 0) {
while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && if (dir == T4_MEMORY_READ)
len > 0) { *buf++ = (__force __be32) t4_read_reg(adap,
*buf++ = data[offset++]; mem_base + offset);
else
t4_write_reg(adap, mem_base + offset,
(__force u32) *buf++);
offset += sizeof(__be32);
len -= sizeof(__be32); len -= sizeof(__be32);
/* If we've reached the end of our current window aperture,
* move the PCI-E Memory Window on to the next. Note that
* doing this here after "len" may be 0 allows us to set up
* the PCI-E Memory Window for a possible final residual
* transfer below ...
*/
if (offset == mem_aperture) {
pos += mem_aperture;
offset = 0;
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
win), pos | win_pf);
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
win));
}
}
/* If the original transfer had a length which wasn't a multiple of
* 32-bits, now's where we need to finish off the transfer of the
* residual amount. The PCI-E Memory Window has already been moved
* above (if necessary) to cover this final transfer.
*/
if (resid) {
union {
__be32 word;
char byte[4];
} last;
unsigned char *bp;
int i;
if (dir == T4_MEMORY_WRITE) {
last.word = (__force __be32) t4_read_reg(adap,
mem_base + offset);
for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
bp[i] = last.byte[i];
} else {
last.word = *buf;
for (i = resid; i < 4; i++)
last.byte[i] = 0;
t4_write_reg(adap, mem_base + offset,
(__force u32) last.word);
} }
} }
vfree(data); return 0;
return ret;
}
int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
__be32 *buf)
{
return t4_memory_rw(adap, mtype, addr, len, buf, 0);
} }
#define EEPROM_STAT_ADDR 0x7bfc #define EEPROM_STAT_ADDR 0x7bfc
...@@ -2528,39 +2523,6 @@ int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, ...@@ -2528,39 +2523,6 @@ int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
} }
/**
* t4_mem_win_read_len - read memory through PCIE memory window
* @adap: the adapter
* @addr: address of first byte requested aligned on 32b.
* @data: len bytes to hold the data read
* @len: amount of data to read from window. Must be <=
* MEMWIN0_APERATURE after adjusting for 16B for T4 and
* 128B for T5 alignment requirements of the the memory window.
*
* Read len bytes of data from MC starting at @addr.
*/
int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
{
int i, off;
u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
/* Align on a 2KB boundary.
*/
off = addr & MEMWIN0_APERTURE;
if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
return -EINVAL;
t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
(addr & ~MEMWIN0_APERTURE) | win_pf);
t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
for (i = 0; i < len; i += 4)
*data++ = (__force __be32) t4_read_reg(adap,
(MEMWIN0_BASE + off + i));
return 0;
}
/** /**
* t4_mdio_rd - read a PHY register through MDIO * t4_mdio_rd - read a PHY register through MDIO
* @adap: the adapter * @adap: the adapter
......
...@@ -400,6 +400,7 @@ ...@@ -400,6 +400,7 @@
#define WINDOW_MASK 0x000000ffU #define WINDOW_MASK 0x000000ffU
#define WINDOW_SHIFT 0 #define WINDOW_SHIFT 0
#define WINDOW(x) ((x) << WINDOW_SHIFT) #define WINDOW(x) ((x) << WINDOW_SHIFT)
#define GET_WINDOW(x) (((x) >> WINDOW_SHIFT) & WINDOW_MASK)
#define PCIE_MEM_ACCESS_OFFSET 0x306c #define PCIE_MEM_ACCESS_OFFSET 0x306c
#define ENABLE (1U << 30) #define ENABLE (1U << 30)
#define FUNCTION(x) ((x) << 12) #define FUNCTION(x) ((x) << 12)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment