Commit fc934d40 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull RCU updates from Ingo Molnar:

 - Continued initialization/Kconfig updates: hide most Kconfig options
   from unsuspecting users.

   There's now a single high level configuration option:

        *
        * RCU Subsystem
        *
        Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)

   Which if answered in the negative, leaves us with a single
   interactive configuration option:

        Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)

   All the rest of the RCU options are configured automatically.  Later
   on we'll remove this single leftover configuration option as well.

 - Remove all uses of RCU-protected array indexes: replace the
   rcu_[access|dereference]_index_check() APIs with READ_ONCE() and
   rcu_lockdep_assert()

 - RCU CPU-hotplug cleanups

 - Updates to Tiny RCU: a race fix and further code shrinkage.

 - RCU torture-testing updates: fixes, speedups, cleanups and
   documentation updates.

 - Miscellaneous fixes

 - Documentation updates

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  rcutorture: Allow repetition factors in Kconfig-fragment lists
  rcutorture: Display "make oldconfig" errors
  rcutorture: Update TREE_RCU-kconfig.txt
  rcutorture: Make rcutorture scripts force RCU_EXPERT
  rcutorture: Update configuration fragments for rcutree.rcu_fanout_exact
  rcutorture: TASKS_RCU set directly, so don't explicitly set it
  rcutorture: Test SRCU cleanup code path
  rcutorture: Replace barriers with smp_store_release() and smp_load_acquire()
  locktorture: Change longdelay_us to longdelay_ms
  rcutorture: Allow negative values of nreaders to oversubscribe
  rcutorture: Exchange TREE03 and TREE08 NR_CPUS, speed up CPU hotplug
  rcutorture: Exchange TREE03 and TREE04 geometries
  locktorture: fix deadlock in 'rw_lock_irq' type
  rcu: Correctly handle non-empty Tiny RCU callback list with none ready
  rcutorture: Test both RCU-sched and RCU-bh for Tiny RCU
  rcu: Further shrink Tiny RCU by making empty functions static inlines
  rcu: Conditionally compile RCU's eqs warnings
  rcu: Remove prompt for RCU implementation
  rcu: Make RCU able to tolerate undefined CONFIG_RCU_KTHREAD_PRIO
  rcu: Make RCU able to tolerate undefined CONFIG_RCU_FANOUT_LEAF
  ...
parents 052b398a 085c7897
......@@ -10,7 +10,19 @@ also be used to protect arrays. Three situations are as follows:
3. Resizeable Arrays
Each of these situations are discussed below.
Each of these three situations involves an RCU-protected pointer to an
array that is separately indexed. It might be tempting to consider use
of RCU to instead protect the index into an array, however, this use
case is -not- supported. The problem with RCU-protected indexes into
arrays is that compilers can play way too many optimization games with
integers, which means that the rules governing handling of these indexes
are far more trouble than they are worth. If RCU-protected indexes into
arrays prove to be particularly valuable (which they have not thus far),
explicit cooperation from the compiler will be required to permit them
to be safely used.
That aside, each of the three RCU-protected pointer situations are
described in the following sections.
Situation 1: Hash Tables
......@@ -36,9 +48,9 @@ Quick Quiz: Why is it so important that updates be rare when
Situation 3: Resizeable Arrays
Use of RCU for resizeable arrays is demonstrated by the grow_ary()
function used by the System V IPC code. The array is used to map from
semaphore, message-queue, and shared-memory IDs to the data structure
that represents the corresponding IPC construct. The grow_ary()
function formerly used by the System V IPC code. The array is used
to map from semaphore, message-queue, and shared-memory IDs to the data
structure that represents the corresponding IPC construct. The grow_ary()
function does not acquire any locks; instead its caller must hold the
ids->sem semaphore.
......
......@@ -47,11 +47,6 @@ checking of rcu_dereference() primitives:
Use explicit check expression "c" along with
srcu_read_lock_held()(). This is useful in code that
is invoked by both SRCU readers and updaters.
rcu_dereference_index_check(p, c):
Use explicit check expression "c", but the caller
must supply one of the rcu_read_lock_held() functions.
This is useful in code that uses RCU-protected arrays
that is invoked by both RCU readers and updaters.
rcu_dereference_raw(p):
Don't check. (Use sparingly, if at all.)
rcu_dereference_protected(p, c):
......@@ -64,11 +59,6 @@ checking of rcu_dereference() primitives:
but retain the compiler constraints that prevent duplicating
or coalescsing. This is useful when when testing the
value of the pointer itself, for example, against NULL.
rcu_access_index(idx):
Return the value of the index and omit all barriers, but
retain the compiler constraints that prevent duplicating
or coalescsing. This is useful when when testing the
value of the index itself, for example, against -1.
The rcu_dereference_check() check expression can be any boolean
expression, but would normally include a lockdep expression. However,
......
......@@ -25,17 +25,6 @@ o You must use one of the rcu_dereference() family of primitives
for an example where the compiler can in fact deduce the exact
value of the pointer, and thus cause misordering.
o Do not use single-element RCU-protected arrays. The compiler
is within its right to assume that the value of an index into
such an array must necessarily evaluate to zero. The compiler
could then substitute the constant zero for the computation, so
that the array index no longer depended on the value returned
by rcu_dereference(). If the array index no longer depends
on rcu_dereference(), then both the compiler and the CPU
are within their rights to order the array access before the
rcu_dereference(), which can cause the array access to return
garbage.
o Avoid cancellation when using the "+" and "-" infix arithmetic
operators. For example, for a given variable "x", avoid
"(x-x)". There are similar arithmetic pitfalls from other
......@@ -76,14 +65,15 @@ o Do not use the results from the boolean "&&" and "||" when
dereferencing. For example, the following (rather improbable)
code is buggy:
int a[2];
int index;
int force_zero_index = 1;
int *p;
int *q;
...
r1 = rcu_dereference(i1)
r2 = a[r1 && force_zero_index]; /* BUGGY!!! */
p = rcu_dereference(gp)
q = &global_q;
q += p != &oom_p1 && p != &oom_p2;
r1 = *q; /* BUGGY!!! */
The reason this is buggy is that "&&" and "||" are often compiled
using branches. While weak-memory machines such as ARM or PowerPC
......@@ -94,14 +84,15 @@ o Do not use the results from relational operators ("==", "!=",
">", ">=", "<", or "<=") when dereferencing. For example,
the following (quite strange) code is buggy:
int a[2];
int index;
int flip_index = 0;
int *p;
int *q;
...
r1 = rcu_dereference(i1)
r2 = a[r1 != flip_index]; /* BUGGY!!! */
p = rcu_dereference(gp)
q = &global_q;
q += p > &oom_p;
r1 = *q; /* BUGGY!!! */
As before, the reason this is buggy is that relational operators
are often compiled using branches. And as before, although
......@@ -193,6 +184,11 @@ o Be very careful about comparing pointers obtained from
pointer. Note that the volatile cast in rcu_dereference()
will normally prevent the compiler from knowing too much.
However, please note that if the compiler knows that the
pointer takes on only one of two values, a not-equal
comparison will provide exactly the information that the
compiler needs to deduce the value of the pointer.
o Disable any value-speculation optimizations that your compiler
might provide, especially if you are making use of feedback-based
optimizations that take data collected from prior runs. Such
......
......@@ -256,7 +256,9 @@ rcu_dereference()
If you are going to be fetching multiple fields from the
RCU-protected structure, using the local variable is of
course preferred. Repeated rcu_dereference() calls look
ugly and incur unnecessary overhead on Alpha CPUs.
ugly, do not guarantee that the same pointer will be returned
if an update happened while in the critical section, and incur
unnecessary overhead on Alpha CPUs.
Note that the value returned by rcu_dereference() is valid
only within the enclosing RCU read-side critical section.
......@@ -879,9 +881,7 @@ SRCU: Initialization/cleanup
All: lockdep-checked RCU-protected pointer access
rcu_access_index
rcu_access_pointer
rcu_dereference_index_check
rcu_dereference_raw
rcu_lockdep_assert
rcu_sleep_check
......
......@@ -2998,11 +2998,34 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Set maximum number of finished RCU callbacks to
process in one batch.
rcutree.dump_tree= [KNL]
Dump the structure of the rcu_node combining tree
out at early boot. This is used for diagnostic
purposes, to verify correct tree setup.
rcutree.gp_cleanup_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period cleanup. This only has effect
when CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP is set.
rcutree.gp_init_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period initialization. This only has
effect when CONFIG_RCU_TORTURE_TEST_SLOW_INIT is
set.
effect when CONFIG_RCU_TORTURE_TEST_SLOW_INIT
is set.
rcutree.gp_preinit_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period pre-initialization, that is,
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree. This only has effect
when CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT is set.
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
possibly be useful for architectures having high
cache-to-cache transfer latencies.
rcutree.rcu_fanout_leaf= [KNL]
Increase the number of CPUs assigned to each
......@@ -3107,7 +3130,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
test, hence the "fake".
rcutorture.nreaders= [KNL]
Set number of RCU readers.
Set number of RCU readers. The value -1 selects
N-1, where N is the number of CPUs. A value
"n" less than -1 selects N-n-2, where N is again
the number of CPUs. For example, -2 selects N
(the number of CPUs), -3 selects N+1, and so on.
rcutorture.object_debug= [KNL]
Enable debug-object double-call_rcu() testing.
......
......@@ -617,16 +617,16 @@ case what's actually required is:
However, stores are not speculated. This means that ordering -is- provided
for load-store control dependencies, as in the following example:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
if (q) {
ACCESS_ONCE(b) = p;
}
Control dependencies pair normally with other types of barriers.
That said, please note that ACCESS_ONCE() is not optional! Without the
ACCESS_ONCE(), might combine the load from 'a' with other loads from
'a', and the store to 'b' with other stores to 'b', with possible highly
counterintuitive effects on ordering.
Control dependencies pair normally with other types of barriers. That
said, please note that READ_ONCE_CTRL() is not optional! Without the
READ_ONCE_CTRL(), the compiler might combine the load from 'a' with
other loads from 'a', and the store to 'b' with other stores to 'b',
with possible highly counterintuitive effects on ordering.
Worse yet, if the compiler is able to prove (say) that the value of
variable 'a' is always non-zero, it would be well within its rights
......@@ -636,12 +636,15 @@ as follows:
q = a;
b = p; /* BUG: Compiler and CPU can both reorder!!! */
So don't leave out the ACCESS_ONCE().
Finally, the READ_ONCE_CTRL() includes an smp_read_barrier_depends()
that DEC Alpha needs in order to respect control depedencies.
So don't leave out the READ_ONCE_CTRL().
It is tempting to try to enforce ordering on identical stores on both
branches of the "if" statement as follows:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
if (q) {
barrier();
ACCESS_ONCE(b) = p;
......@@ -655,7 +658,7 @@ branches of the "if" statement as follows:
Unfortunately, current compilers will transform this as follows at high
optimization levels:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
barrier();
ACCESS_ONCE(b) = p; /* BUG: No ordering vs. load from a!!! */
if (q) {
......@@ -685,7 +688,7 @@ memory barriers, for example, smp_store_release():
In contrast, without explicit memory barriers, two-legged-if control
ordering is guaranteed only when the stores differ, for example:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
if (q) {
ACCESS_ONCE(b) = p;
do_something();
......@@ -694,14 +697,14 @@ ordering is guaranteed only when the stores differ, for example:
do_something_else();
}
The initial ACCESS_ONCE() is still required to prevent the compiler from
proving the value of 'a'.
The initial READ_ONCE_CTRL() is still required to prevent the compiler
from proving the value of 'a'.
In addition, you need to be careful what you do with the local variable 'q',
otherwise the compiler might be able to guess the value and again remove
the needed conditional. For example:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
if (q % MAX) {
ACCESS_ONCE(b) = p;
do_something();
......@@ -714,7 +717,7 @@ If MAX is defined to be 1, then the compiler knows that (q % MAX) is
equal to zero, in which case the compiler is within its rights to
transform the above code into the following:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
ACCESS_ONCE(b) = p;
do_something_else();
......@@ -725,7 +728,7 @@ is gone, and the barrier won't bring it back. Therefore, if you are
relying on this ordering, you should make sure that MAX is greater than
one, perhaps as follows:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
if (q % MAX) {
ACCESS_ONCE(b) = p;
......@@ -742,14 +745,15 @@ of the 'if' statement.
You must also be careful not to rely too much on boolean short-circuit
evaluation. Consider this example:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
if (a || 1 > 0)
ACCESS_ONCE(b) = 1;
Because the second condition is always true, the compiler can transform
this example as following, defeating control dependency:
Because the first condition cannot fault and the second condition is
always true, the compiler can transform this example as following,
defeating control dependency:
q = ACCESS_ONCE(a);
q = READ_ONCE_CTRL(a);
ACCESS_ONCE(b) = 1;
This example underscores the need to ensure that the compiler cannot
......@@ -762,8 +766,8 @@ demonstrated by two related examples, with the initial values of
x and y both being zero:
CPU 0 CPU 1
===================== =====================
r1 = ACCESS_ONCE(x); r2 = ACCESS_ONCE(y);
======================= =======================
r1 = READ_ONCE_CTRL(x); r2 = READ_ONCE_CTRL(y);
if (r1 > 0) if (r2 > 0)
ACCESS_ONCE(y) = 1; ACCESS_ONCE(x) = 1;
......@@ -783,7 +787,8 @@ But because control dependencies do -not- provide transitivity, the above
assertion can fail after the combined three-CPU example completes. If you
need the three-CPU example to provide ordering, you will need smp_mb()
between the loads and stores in the CPU 0 and CPU 1 code fragments,
that is, just before or just after the "if" statements.
that is, just before or just after the "if" statements. Furthermore,
the original two-CPU example is very fragile and should be avoided.
These two examples are the LB and WWC litmus tests from this paper:
http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf and this
......@@ -791,6 +796,12 @@ site: https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html.
In summary:
(*) Control dependencies must be headed by READ_ONCE_CTRL().
Or, as a much less preferable alternative, interpose
be headed by READ_ONCE() or an ACCESS_ONCE() read and must
have smp_read_barrier_depends() between this read and the
control-dependent write.
(*) Control dependencies can order prior loads against later stores.
However, they do -not- guarantee any other sort of ordering:
Not prior loads against later loads, nor prior stores against
......@@ -1784,10 +1795,9 @@ for each construct. These operations all imply certain barriers:
Memory operations issued before the ACQUIRE may be completed after
the ACQUIRE operation has completed. An smp_mb__before_spinlock(),
combined with a following ACQUIRE, orders prior loads against
subsequent loads and stores and also orders prior stores against
subsequent stores. Note that this is weaker than smp_mb()! The
smp_mb__before_spinlock() primitive is free on many architectures.
combined with a following ACQUIRE, orders prior stores against
subsequent loads and stores. Note that this is weaker than smp_mb()!
The smp_mb__before_spinlock() primitive is free on many architectures.
(2) RELEASE operation implication:
......
......@@ -89,5 +89,6 @@ do { \
#define smp_mb__before_atomic() smp_mb()
#define smp_mb__after_atomic() smp_mb()
#define smp_mb__before_spinlock() smp_mb()
#endif /* _ASM_POWERPC_BARRIER_H */
......@@ -53,9 +53,12 @@
static DEFINE_MUTEX(mce_chrdev_read_mutex);
#define rcu_dereference_check_mce(p) \
rcu_dereference_index_check((p), \
rcu_read_lock_sched_held() || \
lockdep_is_held(&mce_chrdev_read_mutex))
({ \
rcu_lockdep_assert(rcu_read_lock_sched_held() || \
lockdep_is_held(&mce_chrdev_read_mutex), \
"suspicious rcu_dereference_check_mce() usage"); \
smp_load_acquire(&(p)); \
})
#define CREATE_TRACE_POINTS
#include <trace/events/mce.h>
......@@ -1887,7 +1890,7 @@ static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &mce_chrdev_wait, wait);
if (rcu_access_index(mcelog.next))
if (READ_ONCE(mcelog.next))
return POLLIN | POLLRDNORM;
if (!mce_apei_read_done && apei_check_mce())
return POLLIN | POLLRDNORM;
......@@ -1932,7 +1935,7 @@ void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
}
EXPORT_SYMBOL_GPL(register_mce_write_callback);
ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
size_t usize, loff_t *off)
{
if (mce_write)
......
......@@ -252,6 +252,22 @@ static __always_inline void __write_once_size(volatile void *p, void *res, int s
#define WRITE_ONCE(x, val) \
({ typeof(x) __val = (val); __write_once_size(&(x), &__val, sizeof(__val)); __val; })
/**
* READ_ONCE_CTRL - Read a value heading a control dependency
* @x: The value to be read, heading the control dependency
*
* Control dependencies are tricky. See Documentation/memory-barriers.txt
* for important information on how to use them. Note that in many cases,
* use of smp_load_acquire() will be much simpler. Control dependencies
* should be avoided except on the hottest of hotpaths.
*/
#define READ_ONCE_CTRL(x) \
({ \
typeof(x) __val = READ_ONCE(x); \
smp_read_barrier_depends(); /* Enforce control dependency. */ \
__val; \
})
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
......
......@@ -29,8 +29,8 @@
*/
static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
{
ACCESS_ONCE(list->next) = list;
ACCESS_ONCE(list->prev) = list;
WRITE_ONCE(list->next, list);
WRITE_ONCE(list->prev, list);
}
/*
......@@ -288,7 +288,7 @@ static inline void list_splice_init_rcu(struct list_head *list,
#define list_first_or_null_rcu(ptr, type, member) \
({ \
struct list_head *__ptr = (ptr); \
struct list_head *__next = ACCESS_ONCE(__ptr->next); \
struct list_head *__next = READ_ONCE(__ptr->next); \
likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
})
......@@ -549,8 +549,8 @@ static inline void hlist_add_behind_rcu(struct hlist_node *n,
*/
#define hlist_for_each_entry_from_rcu(pos, member) \
for (; pos; \
pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
typeof(*(pos)), member))
pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
&(pos)->member)), typeof(*(pos)), member))
#endif /* __KERNEL__ */
#endif
......@@ -292,10 +292,6 @@ void rcu_sched_qs(void);
void rcu_bh_qs(void);
void rcu_check_callbacks(int user);
struct notifier_block;
void rcu_idle_enter(void);
void rcu_idle_exit(void);
void rcu_irq_enter(void);
void rcu_irq_exit(void);
int rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu);
......@@ -364,8 +360,8 @@ extern struct srcu_struct tasks_rcu_exit_srcu;
#define rcu_note_voluntary_context_switch(t) \
do { \
rcu_all_qs(); \
if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
if (READ_ONCE((t)->rcu_tasks_holdout)) \
WRITE_ONCE((t)->rcu_tasks_holdout, false); \
} while (0)
#else /* #ifdef CONFIG_TASKS_RCU */
#define TASKS_RCU(x) do { } while (0)
......@@ -609,7 +605,7 @@ static inline void rcu_preempt_sleep_check(void)
#define __rcu_access_pointer(p, space) \
({ \
typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
rcu_dereference_sparse(p, space); \
((typeof(*p) __force __kernel *)(_________p1)); \
})
......@@ -628,21 +624,6 @@ static inline void rcu_preempt_sleep_check(void)
((typeof(*p) __force __kernel *)(p)); \
})
#define __rcu_access_index(p, space) \
({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
rcu_dereference_sparse(p, space); \
(_________p1); \
})
#define __rcu_dereference_index_check(p, c) \
({ \
/* Dependency order vs. p above. */ \
typeof(p) _________p1 = lockless_dereference(p); \
rcu_lockdep_assert(c, \
"suspicious rcu_dereference_index_check() usage"); \
(_________p1); \
})
/**
* RCU_INITIALIZER() - statically initialize an RCU-protected global variable
* @v: The value to statically initialize with.
......@@ -659,7 +640,7 @@ static inline void rcu_preempt_sleep_check(void)
*/
#define lockless_dereference(p) \
({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
typeof(p) _________p1 = READ_ONCE(p); \
smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
(_________p1); \
})
......@@ -702,7 +683,7 @@ static inline void rcu_preempt_sleep_check(void)
* @p: The pointer to read
*
* Return the value of the specified RCU-protected pointer, but omit the
* smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
* smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
* when the value of this pointer is accessed, but the pointer is not
* dereferenced, for example, when testing an RCU-protected pointer against
* NULL. Although rcu_access_pointer() may also be used in cases where
......@@ -786,48 +767,13 @@ static inline void rcu_preempt_sleep_check(void)
*/
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
/**
* rcu_access_index() - fetch RCU index with no dereferencing
* @p: The index to read
*
* Return the value of the specified RCU-protected index, but omit the
* smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
* when the value of this index is accessed, but the index is not
* dereferenced, for example, when testing an RCU-protected index against
* -1. Although rcu_access_index() may also be used in cases where
* update-side locks prevent the value of the index from changing, you
* should instead use rcu_dereference_index_protected() for this use case.
*/
#define rcu_access_index(p) __rcu_access_index((p), __rcu)
/**
* rcu_dereference_index_check() - rcu_dereference for indices with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Similar to rcu_dereference_check(), but omits the sparse checking.
* This allows rcu_dereference_index_check() to be used on integers,
* which can then be used as array indices. Attempting to use
* rcu_dereference_check() on an integer will give compiler warnings
* because the sparse address-space mechanism relies on dereferencing
* the RCU-protected pointer. Dereferencing integers is not something
* that even gcc will put up with.
*
* Note that this function does not implicitly check for RCU read-side
* critical sections. If this function gains lots of uses, it might
* make sense to provide versions for each flavor of RCU, but it does
* not make sense as of early 2010.
*/
#define rcu_dereference_index_check(p, c) \
__rcu_dereference_index_check((p), (c))
/**
* rcu_dereference_protected() - fetch RCU pointer when updates prevented
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Return the value of the specified RCU-protected pointer, but omit
* both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
* both the smp_read_barrier_depends() and the READ_ONCE(). This
* is useful in cases where update-side locks prevent the value of the
* pointer from changing. Please note that this primitive does -not-
* prevent the compiler from repeating this reference or combining it
......@@ -1153,13 +1099,13 @@ static inline notrace void rcu_read_unlock_sched_notrace(void)
#define kfree_rcu(ptr, rcu_head) \
__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
#ifdef CONFIG_TINY_RCU
static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
{
*delta_jiffies = ULONG_MAX;
return 0;
}
#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
#endif /* #ifdef CONFIG_TINY_RCU */
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
......
......@@ -159,6 +159,22 @@ static inline void rcu_cpu_stall_reset(void)
{
}
static inline void rcu_idle_enter(void)
{
}
static inline void rcu_idle_exit(void)
{
}
static inline void rcu_irq_enter(void)
{
}
static inline void rcu_irq_exit(void)
{
}
static inline void exit_rcu(void)
{
}
......
......@@ -31,9 +31,7 @@
#define __LINUX_RCUTREE_H
void rcu_note_context_switch(void);
#ifndef CONFIG_RCU_NOCB_CPU_ALL
int rcu_needs_cpu(unsigned long *delta_jiffies);
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
void rcu_cpu_stall_reset(void);
/*
......@@ -93,6 +91,11 @@ void rcu_force_quiescent_state(void);
void rcu_bh_force_quiescent_state(void);
void rcu_sched_force_quiescent_state(void);
void rcu_idle_enter(void);
void rcu_idle_exit(void);
void rcu_irq_enter(void);
void rcu_irq_exit(void);
void exit_rcu(void);
void rcu_scheduler_starting(void);
......
......@@ -120,7 +120,7 @@ do { \
/*
* Despite its name it doesn't necessarily has to be a full barrier.
* It should only guarantee that a STORE before the critical section
* can not be reordered with a LOAD inside this section.
* can not be reordered with LOADs and STOREs inside this section.
* spin_lock() is the one-way barrier, this LOAD can not escape out
* of the region. So the default implementation simply ensures that
* a STORE can not move into the critical section, smp_wmb() should
......
......@@ -465,13 +465,9 @@ endmenu # "CPU/Task time and stats accounting"
menu "RCU Subsystem"
choice
prompt "RCU Implementation"
default TREE_RCU
config TREE_RCU
bool "Tree-based hierarchical RCU"
depends on !PREEMPT && SMP
bool
default y if !PREEMPT && SMP
help
This option selects the RCU implementation that is
designed for very large SMP system with hundreds or
......@@ -479,8 +475,8 @@ config TREE_RCU
smaller systems.
config PREEMPT_RCU
bool "Preemptible tree-based hierarchical RCU"
depends on PREEMPT
bool
default y if PREEMPT
help
This option selects the RCU implementation that is
designed for very large SMP systems with hundreds or
......@@ -491,15 +487,28 @@ config PREEMPT_RCU
Select this option if you are unsure.
config TINY_RCU
bool "UP-only small-memory-footprint RCU"
depends on !PREEMPT && !SMP
bool
default y if !PREEMPT && !SMP
help
This option selects the RCU implementation that is
designed for UP systems from which real-time response
is not required. This option greatly reduces the
memory footprint of RCU.
endchoice
config RCU_EXPERT
bool "Make expert-level adjustments to RCU configuration"
default n
help
This option needs to be enabled if you wish to make
expert-level adjustments to RCU configuration. By default,
no such adjustments can be made, which has the often-beneficial
side-effect of preventing "make oldconfig" from asking you all
sorts of detailed questions about how you would like numerous
obscure RCU options to be set up.
Say Y if you need to make expert-level adjustments to RCU.
Say N if you are unsure.
config SRCU
bool
......@@ -509,7 +518,7 @@ config SRCU
sections.
config TASKS_RCU
bool "Task_based RCU implementation using voluntary context switch"
bool
default n
select SRCU
help
......@@ -517,8 +526,6 @@ config TASKS_RCU
only voluntary context switch (not preemption!), idle, and
user-mode execution as quiescent states.
If unsure, say N.
config RCU_STALL_COMMON
def_bool ( TREE_RCU || PREEMPT_RCU || RCU_TRACE )
help
......@@ -531,9 +538,7 @@ config CONTEXT_TRACKING
bool
config RCU_USER_QS
bool "Consider userspace as in RCU extended quiescent state"
depends on HAVE_CONTEXT_TRACKING && SMP
select CONTEXT_TRACKING
bool
help
This option sets hooks on kernel / userspace boundaries and
puts RCU in extended quiescent state when the CPU runs in
......@@ -541,12 +546,6 @@ config RCU_USER_QS
excluded from the global RCU state machine and thus doesn't
try to keep the timer tick on for RCU.
Unless you want to hack and help the development of the full
dynticks mode, you shouldn't enable this option. It also
adds unnecessary overhead.
If unsure say N
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
......@@ -578,7 +577,7 @@ config RCU_FANOUT
int "Tree-based hierarchical RCU fanout value"
range 2 64 if 64BIT
range 2 32 if !64BIT
depends on TREE_RCU || PREEMPT_RCU
depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
default 64 if 64BIT
default 32 if !64BIT
help
......@@ -596,9 +595,9 @@ config RCU_FANOUT
config RCU_FANOUT_LEAF
int "Tree-based hierarchical RCU leaf-level fanout value"
range 2 RCU_FANOUT if 64BIT
range 2 RCU_FANOUT if !64BIT
depends on TREE_RCU || PREEMPT_RCU
range 2 64 if 64BIT
range 2 32 if !64BIT
depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
default 16
help
This option controls the leaf-level fanout of hierarchical
......@@ -621,23 +620,9 @@ config RCU_FANOUT_LEAF
Take the default if unsure.
config RCU_FANOUT_EXACT
bool "Disable tree-based hierarchical RCU auto-balancing"
depends on TREE_RCU || PREEMPT_RCU
default n
help
This option forces use of the exact RCU_FANOUT value specified,
regardless of imbalances in the hierarchy. This is useful for
testing RCU itself, and might one day be useful on systems with
strong NUMA behavior.
Without RCU_FANOUT_EXACT, the code will balance the hierarchy.
Say N if unsure.
config RCU_FAST_NO_HZ
bool "Accelerate last non-dyntick-idle CPU's grace periods"
depends on NO_HZ_COMMON && SMP
depends on NO_HZ_COMMON && SMP && RCU_EXPERT
default n
help
This option permits CPUs to enter dynticks-idle state even if
......@@ -663,7 +648,7 @@ config TREE_RCU_TRACE
config RCU_BOOST
bool "Enable RCU priority boosting"
depends on RT_MUTEXES && PREEMPT_RCU
depends on RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT
default n
help
This option boosts the priority of preempted RCU readers that
......@@ -680,6 +665,7 @@ config RCU_KTHREAD_PRIO
range 0 99 if !RCU_BOOST
default 1 if RCU_BOOST
default 0 if !RCU_BOOST
depends on RCU_EXPERT
help
This option specifies the SCHED_FIFO priority value that will be
assigned to the rcuc/n and rcub/n threads and is also the value
......
......@@ -398,7 +398,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
if (err) {
/* CPU didn't die: tell everyone. Can't complain. */
smpboot_unpark_threads(cpu);
cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
goto out_release;
}
......@@ -463,6 +462,7 @@ static int smpboot_thread_call(struct notifier_block *nfb,
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_FAILED:
case CPU_ONLINE:
smpboot_unpark_threads(cpu);
break;
......@@ -479,7 +479,7 @@ static struct notifier_block smpboot_thread_notifier = {
.priority = CPU_PRI_SMPBOOT,
};
void __cpuinit smpboot_thread_init(void)
void smpboot_thread_init(void)
{
register_cpu_notifier(&smpboot_thread_notifier);
}
......
......@@ -141,7 +141,7 @@ int perf_output_begin(struct perf_output_handle *handle,
perf_output_get_handle(handle);
do {
tail = ACCESS_ONCE(rb->user_page->data_tail);
tail = READ_ONCE_CTRL(rb->user_page->data_tail);
offset = head = local_read(&rb->head);
if (!rb->overwrite &&
unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
......
......@@ -122,12 +122,12 @@ static int torture_lock_busted_write_lock(void)
static void torture_lock_busted_write_delay(struct torture_random_state *trsp)
{
const unsigned long longdelay_us = 100;
const unsigned long longdelay_ms = 100;
/* We want a long delay occasionally to force massive contention. */
if (!(torture_random(trsp) %
(cxt.nrealwriters_stress * 2000 * longdelay_us)))
mdelay(longdelay_us);
(cxt.nrealwriters_stress * 2000 * longdelay_ms)))
mdelay(longdelay_ms);
#ifdef CONFIG_PREEMPT
if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
preempt_schedule(); /* Allow test to be preempted. */
......@@ -160,14 +160,14 @@ static int torture_spin_lock_write_lock(void) __acquires(torture_spinlock)
static void torture_spin_lock_write_delay(struct torture_random_state *trsp)
{
const unsigned long shortdelay_us = 2;
const unsigned long longdelay_us = 100;
const unsigned long longdelay_ms = 100;
/* We want a short delay mostly to emulate likely code, and
* we want a long delay occasionally to force massive contention.
*/
if (!(torture_random(trsp) %
(cxt.nrealwriters_stress * 2000 * longdelay_us)))
mdelay(longdelay_us);
(cxt.nrealwriters_stress * 2000 * longdelay_ms)))
mdelay(longdelay_ms);
if (!(torture_random(trsp) %
(cxt.nrealwriters_stress * 2 * shortdelay_us)))
udelay(shortdelay_us);
......@@ -309,7 +309,7 @@ static int torture_rwlock_read_lock_irq(void) __acquires(torture_rwlock)
static void torture_rwlock_read_unlock_irq(void)
__releases(torture_rwlock)
{
write_unlock_irqrestore(&torture_rwlock, cxt.cur_ops->flags);
read_unlock_irqrestore(&torture_rwlock, cxt.cur_ops->flags);
}
static struct lock_torture_ops rw_lock_irq_ops = {
......
......@@ -241,6 +241,7 @@ rcu_torture_free(struct rcu_torture *p)
struct rcu_torture_ops {
int ttype;
void (*init)(void);
void (*cleanup)(void);
int (*readlock)(void);
void (*read_delay)(struct torture_random_state *rrsp);
void (*readunlock)(int idx);
......@@ -477,10 +478,12 @@ static struct rcu_torture_ops rcu_busted_ops = {
*/
DEFINE_STATIC_SRCU(srcu_ctl);
static struct srcu_struct srcu_ctld;
static struct srcu_struct *srcu_ctlp = &srcu_ctl;
static int srcu_torture_read_lock(void) __acquires(&srcu_ctl)
static int srcu_torture_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(&srcu_ctl);
return srcu_read_lock(srcu_ctlp);
}
static void srcu_read_delay(struct torture_random_state *rrsp)
......@@ -499,49 +502,49 @@ static void srcu_read_delay(struct torture_random_state *rrsp)
rcu_read_delay(rrsp);
}
static void srcu_torture_read_unlock(int idx) __releases(&srcu_ctl)
static void srcu_torture_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(&srcu_ctl, idx);
srcu_read_unlock(srcu_ctlp, idx);
}
static unsigned long srcu_torture_completed(void)
{
return srcu_batches_completed(&srcu_ctl);
return srcu_batches_completed(srcu_ctlp);
}
static void srcu_torture_deferred_free(struct rcu_torture *rp)
{
call_srcu(&srcu_ctl, &rp->rtort_rcu, rcu_torture_cb);
call_srcu(srcu_ctlp, &rp->rtort_rcu, rcu_torture_cb);
}
static void srcu_torture_synchronize(void)
{
synchronize_srcu(&srcu_ctl);
synchronize_srcu(srcu_ctlp);
}
static void srcu_torture_call(struct rcu_head *head,
void (*func)(struct rcu_head *head))
{
call_srcu(&srcu_ctl, head, func);
call_srcu(srcu_ctlp, head, func);
}
static void srcu_torture_barrier(void)
{
srcu_barrier(&srcu_ctl);
srcu_barrier(srcu_ctlp);
}
static void srcu_torture_stats(void)
{
int cpu;
int idx = srcu_ctl.completed & 0x1;
int idx = srcu_ctlp->completed & 0x1;
pr_alert("%s%s per-CPU(idx=%d):",
torture_type, TORTURE_FLAG, idx);
for_each_possible_cpu(cpu) {
long c0, c1;
c0 = (long)per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[!idx];
c1 = (long)per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[idx];
c0 = (long)per_cpu_ptr(srcu_ctlp->per_cpu_ref, cpu)->c[!idx];
c1 = (long)per_cpu_ptr(srcu_ctlp->per_cpu_ref, cpu)->c[idx];
pr_cont(" %d(%ld,%ld)", cpu, c0, c1);
}
pr_cont("\n");
......@@ -549,7 +552,7 @@ static void srcu_torture_stats(void)
static void srcu_torture_synchronize_expedited(void)
{
synchronize_srcu_expedited(&srcu_ctl);
synchronize_srcu_expedited(srcu_ctlp);
}
static struct rcu_torture_ops srcu_ops = {
......@@ -569,6 +572,38 @@ static struct rcu_torture_ops srcu_ops = {
.name = "srcu"
};
static void srcu_torture_init(void)
{
rcu_sync_torture_init();
WARN_ON(init_srcu_struct(&srcu_ctld));
srcu_ctlp = &srcu_ctld;
}
static void srcu_torture_cleanup(void)
{
cleanup_srcu_struct(&srcu_ctld);
srcu_ctlp = &srcu_ctl; /* In case of a later rcutorture run. */
}
/* As above, but dynamically allocated. */
static struct rcu_torture_ops srcud_ops = {
.ttype = SRCU_FLAVOR,
.init = srcu_torture_init,
.cleanup = srcu_torture_cleanup,
.readlock = srcu_torture_read_lock,
.read_delay = srcu_read_delay,
.readunlock = srcu_torture_read_unlock,
.started = NULL,
.completed = srcu_torture_completed,
.deferred_free = srcu_torture_deferred_free,
.sync = srcu_torture_synchronize,
.exp_sync = srcu_torture_synchronize_expedited,
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
.name = "srcud"
};
/*
* Definitions for sched torture testing.
*/
......@@ -672,8 +707,8 @@ static void rcu_torture_boost_cb(struct rcu_head *head)
struct rcu_boost_inflight *rbip =
container_of(head, struct rcu_boost_inflight, rcu);
smp_mb(); /* Ensure RCU-core accesses precede clearing ->inflight */
rbip->inflight = 0;
/* Ensure RCU-core accesses precede clearing ->inflight */
smp_store_release(&rbip->inflight, 0);
}
static int rcu_torture_boost(void *arg)
......@@ -710,9 +745,9 @@ static int rcu_torture_boost(void *arg)
call_rcu_time = jiffies;
while (ULONG_CMP_LT(jiffies, endtime)) {
/* If we don't have a callback in flight, post one. */
if (!rbi.inflight) {
smp_mb(); /* RCU core before ->inflight = 1. */
rbi.inflight = 1;
if (!smp_load_acquire(&rbi.inflight)) {
/* RCU core before ->inflight = 1. */
smp_store_release(&rbi.inflight, 1);
call_rcu(&rbi.rcu, rcu_torture_boost_cb);
if (jiffies - call_rcu_time >
test_boost_duration * HZ - HZ / 2) {
......@@ -751,11 +786,10 @@ checkwait: stutter_wait("rcu_torture_boost");
} while (!torture_must_stop());
/* Clean up and exit. */
while (!kthread_should_stop() || rbi.inflight) {
while (!kthread_should_stop() || smp_load_acquire(&rbi.inflight)) {
torture_shutdown_absorb("rcu_torture_boost");
schedule_timeout_uninterruptible(1);
}
smp_mb(); /* order accesses to ->inflight before stack-frame death. */
destroy_rcu_head_on_stack(&rbi.rcu);
torture_kthread_stopping("rcu_torture_boost");
return 0;
......@@ -1054,7 +1088,7 @@ static void rcu_torture_timer(unsigned long unused)
p = rcu_dereference_check(rcu_torture_current,
rcu_read_lock_bh_held() ||
rcu_read_lock_sched_held() ||
srcu_read_lock_held(&srcu_ctl));
srcu_read_lock_held(srcu_ctlp));
if (p == NULL) {
/* Leave because rcu_torture_writer is not yet underway */
cur_ops->readunlock(idx);
......@@ -1128,7 +1162,7 @@ rcu_torture_reader(void *arg)
p = rcu_dereference_check(rcu_torture_current,
rcu_read_lock_bh_held() ||
rcu_read_lock_sched_held() ||
srcu_read_lock_held(&srcu_ctl));
srcu_read_lock_held(srcu_ctlp));
if (p == NULL) {
/* Wait for rcu_torture_writer to get underway */
cur_ops->readunlock(idx);
......@@ -1413,12 +1447,15 @@ static int rcu_torture_barrier_cbs(void *arg)
do {
wait_event(barrier_cbs_wq[myid],
(newphase =
ACCESS_ONCE(barrier_phase)) != lastphase ||
smp_load_acquire(&barrier_phase)) != lastphase ||
torture_must_stop());
lastphase = newphase;
smp_mb(); /* ensure barrier_phase load before ->call(). */
if (torture_must_stop())
break;
/*
* The above smp_load_acquire() ensures barrier_phase load
* is ordered before the folloiwng ->call().
*/
cur_ops->call(&rcu, rcu_torture_barrier_cbf);
if (atomic_dec_and_test(&barrier_cbs_count))
wake_up(&barrier_wq);
......@@ -1439,8 +1476,8 @@ static int rcu_torture_barrier(void *arg)
do {
atomic_set(&barrier_cbs_invoked, 0);
atomic_set(&barrier_cbs_count, n_barrier_cbs);
smp_mb(); /* Ensure barrier_phase after prior assignments. */
barrier_phase = !barrier_phase;
/* Ensure barrier_phase ordered after prior assignments. */
smp_store_release(&barrier_phase, !barrier_phase);
for (i = 0; i < n_barrier_cbs; i++)
wake_up(&barrier_cbs_wq[i]);
wait_event(barrier_wq,
......@@ -1588,10 +1625,14 @@ rcu_torture_cleanup(void)
rcutorture_booster_cleanup(i);
}
/* Wait for all RCU callbacks to fire. */
/*
* Wait for all RCU callbacks to fire, then do flavor-specific
* cleanup operations.
*/
if (cur_ops->cb_barrier != NULL)
cur_ops->cb_barrier();
if (cur_ops->cleanup != NULL)
cur_ops->cleanup();
rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
......@@ -1668,8 +1709,8 @@ rcu_torture_init(void)
int cpu;
int firsterr = 0;
static struct rcu_torture_ops *torture_ops[] = {
&rcu_ops, &rcu_bh_ops, &rcu_busted_ops, &srcu_ops, &sched_ops,
RCUTORTURE_TASKS_OPS
&rcu_ops, &rcu_bh_ops, &rcu_busted_ops, &srcu_ops, &srcud_ops,
&sched_ops, RCUTORTURE_TASKS_OPS
};
if (!torture_init_begin(torture_type, verbose, &torture_runnable))
......@@ -1701,7 +1742,7 @@ rcu_torture_init(void)
if (nreaders >= 0) {
nrealreaders = nreaders;
} else {
nrealreaders = num_online_cpus() - 1;
nrealreaders = num_online_cpus() - 2 - nreaders;
if (nrealreaders <= 0)
nrealreaders = 1;
}
......
......@@ -151,7 +151,7 @@ static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
unsigned long t;
for_each_possible_cpu(cpu) {
t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
sum += t;
}
return sum;
......@@ -168,7 +168,7 @@ static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
unsigned long t;
for_each_possible_cpu(cpu) {
t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
sum += t;
}
return sum;
......@@ -265,8 +265,8 @@ static int srcu_readers_active(struct srcu_struct *sp)
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
}
return sum;
}
......@@ -296,7 +296,7 @@ int __srcu_read_lock(struct srcu_struct *sp)
{
int idx;
idx = ACCESS_ONCE(sp->completed) & 0x1;
idx = READ_ONCE(sp->completed) & 0x1;
preempt_disable();
__this_cpu_inc(sp->per_cpu_ref->c[idx]);
smp_mb(); /* B */ /* Avoid leaking the critical section. */
......
......@@ -49,39 +49,6 @@ static void __call_rcu(struct rcu_head *head,
#include "tiny_plugin.h"
/*
* Enter idle, which is an extended quiescent state if we have fully
* entered that mode.
*/
void rcu_idle_enter(void)
{
}
EXPORT_SYMBOL_GPL(rcu_idle_enter);
/*
* Exit an interrupt handler towards idle.
*/
void rcu_irq_exit(void)
{
}
EXPORT_SYMBOL_GPL(rcu_irq_exit);
/*
* Exit idle, so that we are no longer in an extended quiescent state.
*/
void rcu_idle_exit(void)
{
}
EXPORT_SYMBOL_GPL(rcu_idle_exit);
/*
* Enter an interrupt handler, moving away from idle.
*/
void rcu_irq_enter(void)
{
}
EXPORT_SYMBOL_GPL(rcu_irq_enter);
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE)
/*
......@@ -170,6 +137,11 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
/* Move the ready-to-invoke callbacks to a local list. */
local_irq_save(flags);
if (rcp->donetail == &rcp->rcucblist) {
/* No callbacks ready, so just leave. */
local_irq_restore(flags);
return;
}
RCU_TRACE(trace_rcu_batch_start(rcp->name, 0, rcp->qlen, -1));
list = rcp->rcucblist;
rcp->rcucblist = *rcp->donetail;
......
......@@ -144,16 +144,17 @@ static void check_cpu_stall(struct rcu_ctrlblk *rcp)
return;
rcp->ticks_this_gp++;
j = jiffies;
js = ACCESS_ONCE(rcp->jiffies_stall);
js = READ_ONCE(rcp->jiffies_stall);
if (rcp->rcucblist && ULONG_CMP_GE(j, js)) {
pr_err("INFO: %s stall on CPU (%lu ticks this GP) idle=%llx (t=%lu jiffies q=%ld)\n",
rcp->name, rcp->ticks_this_gp, DYNTICK_TASK_EXIT_IDLE,
jiffies - rcp->gp_start, rcp->qlen);
dump_stack();
ACCESS_ONCE(rcp->jiffies_stall) = jiffies +
3 * rcu_jiffies_till_stall_check() + 3;
WRITE_ONCE(rcp->jiffies_stall,
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
} else if (ULONG_CMP_GE(j, js)) {
ACCESS_ONCE(rcp->jiffies_stall) = jiffies + rcu_jiffies_till_stall_check();
WRITE_ONCE(rcp->jiffies_stall,
jiffies + rcu_jiffies_till_stall_check());
}
}
......@@ -161,7 +162,8 @@ static void reset_cpu_stall_ticks(struct rcu_ctrlblk *rcp)
{
rcp->ticks_this_gp = 0;
rcp->gp_start = jiffies;
ACCESS_ONCE(rcp->jiffies_stall) = jiffies + rcu_jiffies_till_stall_check();
WRITE_ONCE(rcp->jiffies_stall,
jiffies + rcu_jiffies_till_stall_check());
}
static void check_cpu_stalls(void)
......
......@@ -91,7 +91,7 @@ static const char *tp_##sname##_varname __used __tracepoint_string = sname##_var
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
struct rcu_state sname##_state = { \
.level = { &sname##_state.node[0] }, \
.rda = &sname##_data, \
......@@ -110,11 +110,18 @@ struct rcu_state sname##_state = { \
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
static struct rcu_state *rcu_state_p;
static struct rcu_state *const rcu_state_p;
static struct rcu_data __percpu *const rcu_data_p;
LIST_HEAD(rcu_struct_flavors);
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0444);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
......@@ -159,17 +166,46 @@ static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
/* rcuc/rcub kthread realtime priority */
#ifdef CONFIG_RCU_KTHREAD_PRIO
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
module_param(kthread_prio, int, 0644);
/* Delay in jiffies for grace-period initialization delays, debug only. */
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
module_param(gp_init_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
#define PER_RCU_NODE_PERIOD 10 /* Number of grace periods between delays. */
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
/*
* Number of grace periods between delays, normalized by the duration of
* the delay. The longer the the delay, the more the grace periods between
* each delay. The reason for this normalization is that it means that,
* for non-zero delays, the overall slowdown of grace periods is constant
* regardless of the duration of the delay. This arrangement balances
* the need for long delays to increase some race probabilities with the
* need for fast grace periods to increase other race probabilities.
*/
#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
/*
* Track the rcutorture test sequence number and the update version
......@@ -191,17 +227,17 @@ unsigned long rcutorture_vernum;
*/
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
return ACCESS_ONCE(rnp->qsmaskinitnext);
return READ_ONCE(rnp->qsmaskinitnext);
}
/*
* Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
* Return true if an RCU grace period is in progress. The READ_ONCE()s
* permit this function to be invoked without holding the root rcu_node
* structure's ->lock, but of course results can be subject to change.
*/
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
}
/*
......@@ -278,8 +314,8 @@ static void rcu_momentary_dyntick_idle(void)
if (!(resched_mask & rsp->flavor_mask))
continue;
smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
if (ACCESS_ONCE(rdp->mynode->completed) !=
ACCESS_ONCE(rdp->cond_resched_completed))
if (READ_ONCE(rdp->mynode->completed) !=
READ_ONCE(rdp->cond_resched_completed))
continue;
/*
......@@ -491,9 +527,9 @@ void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
break;
}
if (rsp != NULL) {
*flags = ACCESS_ONCE(rsp->gp_flags);
*gpnum = ACCESS_ONCE(rsp->gpnum);
*completed = ACCESS_ONCE(rsp->completed);
*flags = READ_ONCE(rsp->gp_flags);
*gpnum = READ_ONCE(rsp->gpnum);
*completed = READ_ONCE(rsp->completed);
return;
}
*flags = 0;
......@@ -539,10 +575,10 @@ static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
struct rcu_node *rnp = rcu_get_root(rsp);
int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
int *fp = &rnp->need_future_gp[idx];
return ACCESS_ONCE(*fp);
return READ_ONCE(*fp);
}
/*
......@@ -565,7 +601,7 @@ cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
return 1; /* Yes, this CPU has newly registered callbacks. */
for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
ULONG_CMP_LT(READ_ONCE(rsp->completed),
rdp->nxtcompleted[i]))
return 1; /* Yes, CBs for future grace period. */
return 0; /* No grace period needed. */
......@@ -585,7 +621,8 @@ static void rcu_eqs_enter_common(long long oldval, bool user)
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
if (!user && !is_idle_task(current)) {
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
!user && !is_idle_task(current)) {
struct task_struct *idle __maybe_unused =
idle_task(smp_processor_id());
......@@ -604,7 +641,8 @@ static void rcu_eqs_enter_common(long long oldval, bool user)
smp_mb__before_atomic(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic(); /* Force ordering with next sojourn. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
atomic_read(&rdtp->dynticks) & 0x1);
rcu_dynticks_task_enter();
/*
......@@ -630,7 +668,8 @@ static void rcu_eqs_enter(bool user)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
(oldval & DYNTICK_TASK_NEST_MASK) == 0);
if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
rdtp->dynticks_nesting = 0;
rcu_eqs_enter_common(oldval, user);
......@@ -703,7 +742,8 @@ void rcu_irq_exit(void)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
rdtp->dynticks_nesting--;
WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
rdtp->dynticks_nesting < 0);
if (rdtp->dynticks_nesting)
trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
else
......@@ -728,10 +768,12 @@ static void rcu_eqs_exit_common(long long oldval, int user)
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
!(atomic_read(&rdtp->dynticks) & 0x1));
rcu_cleanup_after_idle();
trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
if (!user && !is_idle_task(current)) {
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
!user && !is_idle_task(current)) {
struct task_struct *idle __maybe_unused =
idle_task(smp_processor_id());
......@@ -755,7 +797,7 @@ static void rcu_eqs_exit(bool user)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE(oldval < 0);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
if (oldval & DYNTICK_TASK_NEST_MASK) {
rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
} else {
......@@ -828,7 +870,8 @@ void rcu_irq_enter(void)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
rdtp->dynticks_nesting++;
WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
rdtp->dynticks_nesting == 0);
if (oldval)
trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
else
......@@ -1011,9 +1054,9 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp,
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
return 1;
} else {
if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
rdp->mynode->gpnum))
ACCESS_ONCE(rdp->gpwrap) = true;
WRITE_ONCE(rdp->gpwrap, true);
return 0;
}
}
......@@ -1093,12 +1136,12 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
if (ULONG_CMP_GE(jiffies,
rdp->rsp->gp_start + jiffies_till_sched_qs) ||
ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
ACCESS_ONCE(rdp->cond_resched_completed) =
ACCESS_ONCE(rdp->mynode->completed);
if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
WRITE_ONCE(rdp->cond_resched_completed,
READ_ONCE(rdp->mynode->completed));
smp_mb(); /* ->cond_resched_completed before *rcrmp. */
ACCESS_ONCE(*rcrmp) =
ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
WRITE_ONCE(*rcrmp,
READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
rdp->rsp->jiffies_resched += 5; /* Enable beating. */
} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
......@@ -1119,9 +1162,9 @@ static void record_gp_stall_check_time(struct rcu_state *rsp)
rsp->gp_start = j;
smp_wmb(); /* Record start time before stall time. */
j1 = rcu_jiffies_till_stall_check();
ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
WRITE_ONCE(rsp->jiffies_stall, j + j1);
rsp->jiffies_resched = j + j1 / 2;
rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
}
/*
......@@ -1133,10 +1176,11 @@ static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
unsigned long j;
j = jiffies;
gpa = ACCESS_ONCE(rsp->gp_activity);
gpa = READ_ONCE(rsp->gp_activity);
if (j - gpa > 2 * HZ)
pr_err("%s kthread starved for %ld jiffies!\n",
rsp->name, j - gpa);
pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x\n",
rsp->name, j - gpa,
rsp->gpnum, rsp->completed, rsp->gp_flags);
}
/*
......@@ -1173,12 +1217,13 @@ static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
/* Only let one CPU complain about others per time interval. */
raw_spin_lock_irqsave(&rnp->lock, flags);
delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
delta = jiffies - READ_ONCE(rsp->jiffies_stall);
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
WRITE_ONCE(rsp->jiffies_stall,
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/*
......@@ -1212,12 +1257,12 @@ static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
if (ndetected) {
rcu_dump_cpu_stacks(rsp);
} else {
if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
ACCESS_ONCE(rsp->completed) == gpnum) {
if (READ_ONCE(rsp->gpnum) != gpnum ||
READ_ONCE(rsp->completed) == gpnum) {
pr_err("INFO: Stall ended before state dump start\n");
} else {
j = jiffies;
gpa = ACCESS_ONCE(rsp->gp_activity);
gpa = READ_ONCE(rsp->gp_activity);
pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
rsp->name, j - gpa, j, gpa,
jiffies_till_next_fqs,
......@@ -1262,9 +1307,9 @@ static void print_cpu_stall(struct rcu_state *rsp)
rcu_dump_cpu_stacks(rsp);
raw_spin_lock_irqsave(&rnp->lock, flags);
if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
3 * rcu_jiffies_till_stall_check() + 3;
if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
WRITE_ONCE(rsp->jiffies_stall,
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/*
......@@ -1307,20 +1352,20 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
* Given this check, comparisons of jiffies, rsp->jiffies_stall,
* and rsp->gp_start suffice to forestall false positives.
*/
gpnum = ACCESS_ONCE(rsp->gpnum);
gpnum = READ_ONCE(rsp->gpnum);
smp_rmb(); /* Pick up ->gpnum first... */
js = ACCESS_ONCE(rsp->jiffies_stall);
js = READ_ONCE(rsp->jiffies_stall);
smp_rmb(); /* ...then ->jiffies_stall before the rest... */
gps = ACCESS_ONCE(rsp->gp_start);
gps = READ_ONCE(rsp->gp_start);
smp_rmb(); /* ...and finally ->gp_start before ->completed. */
completed = ACCESS_ONCE(rsp->completed);
completed = READ_ONCE(rsp->completed);
if (ULONG_CMP_GE(completed, gpnum) ||
ULONG_CMP_LT(j, js) ||
ULONG_CMP_GE(gps, js))
return; /* No stall or GP completed since entering function. */
rnp = rdp->mynode;
if (rcu_gp_in_progress(rsp) &&
(ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
(READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
/* We haven't checked in, so go dump stack. */
print_cpu_stall(rsp);
......@@ -1347,7 +1392,7 @@ void rcu_cpu_stall_reset(void)
struct rcu_state *rsp;
for_each_rcu_flavor(rsp)
ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
}
/*
......@@ -1457,7 +1502,7 @@ rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
* doing some extra useless work.
*/
if (rnp->gpnum != rnp->completed ||
ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
rnp->need_future_gp[c & 0x1]++;
trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
goto out;
......@@ -1542,7 +1587,7 @@ static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
if (current == rsp->gp_kthread ||
!ACCESS_ONCE(rsp->gp_flags) ||
!READ_ONCE(rsp->gp_flags) ||
!rsp->gp_kthread)
return;
wake_up(&rsp->gp_wq);
......@@ -1677,7 +1722,7 @@ static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
/* Handle the ends of any preceding grace periods first. */
if (rdp->completed == rnp->completed &&
!unlikely(ACCESS_ONCE(rdp->gpwrap))) {
!unlikely(READ_ONCE(rdp->gpwrap))) {
/* No grace period end, so just accelerate recent callbacks. */
ret = rcu_accelerate_cbs(rsp, rnp, rdp);
......@@ -1692,7 +1737,7 @@ static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
}
if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
/*
* If the current grace period is waiting for this CPU,
* set up to detect a quiescent state, otherwise don't
......@@ -1704,7 +1749,7 @@ static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
zero_cpu_stall_ticks(rdp);
ACCESS_ONCE(rdp->gpwrap) = false;
WRITE_ONCE(rdp->gpwrap, false);
}
return ret;
}
......@@ -1717,9 +1762,9 @@ static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
local_irq_save(flags);
rnp = rdp->mynode;
if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
rdp->completed == ACCESS_ONCE(rnp->completed) &&
!unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
rdp->completed == READ_ONCE(rnp->completed) &&
!unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
!raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
local_irq_restore(flags);
return;
......@@ -1731,6 +1776,13 @@ static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
rcu_gp_kthread_wake(rsp);
}
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
if (delay > 0 &&
!(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
schedule_timeout_uninterruptible(delay);
}
/*
* Initialize a new grace period. Return 0 if no grace period required.
*/
......@@ -1740,15 +1792,15 @@ static int rcu_gp_init(struct rcu_state *rsp)
struct rcu_data *rdp;
struct rcu_node *rnp = rcu_get_root(rsp);
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
raw_spin_lock_irq(&rnp->lock);
smp_mb__after_unlock_lock();
if (!ACCESS_ONCE(rsp->gp_flags)) {
if (!READ_ONCE(rsp->gp_flags)) {
/* Spurious wakeup, tell caller to go back to sleep. */
raw_spin_unlock_irq(&rnp->lock);
return 0;
}
ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
/*
......@@ -1773,6 +1825,7 @@ static int rcu_gp_init(struct rcu_state *rsp)
* will handle subsequent offline CPUs.
*/
rcu_for_each_leaf_node(rsp, rnp) {
rcu_gp_slow(rsp, gp_preinit_delay);
raw_spin_lock_irq(&rnp->lock);
smp_mb__after_unlock_lock();
if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
......@@ -1829,14 +1882,15 @@ static int rcu_gp_init(struct rcu_state *rsp)
* process finishes, because this kthread handles both.
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
rcu_gp_slow(rsp, gp_init_delay);
raw_spin_lock_irq(&rnp->lock);
smp_mb__after_unlock_lock();
rdp = this_cpu_ptr(rsp->rda);
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
WRITE_ONCE(rnp->gpnum, rsp->gpnum);
if (WARN_ON_ONCE(rnp->completed != rsp->completed))
ACCESS_ONCE(rnp->completed) = rsp->completed;
WRITE_ONCE(rnp->completed, rsp->completed);
if (rnp == rdp->mynode)
(void)__note_gp_changes(rsp, rnp, rdp);
rcu_preempt_boost_start_gp(rnp);
......@@ -1845,10 +1899,7 @@ static int rcu_gp_init(struct rcu_state *rsp)
rnp->grphi, rnp->qsmask);
raw_spin_unlock_irq(&rnp->lock);
cond_resched_rcu_qs();
ACCESS_ONCE(rsp->gp_activity) = jiffies;
if (gp_init_delay > 0 &&
!(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
schedule_timeout_uninterruptible(gp_init_delay);
WRITE_ONCE(rsp->gp_activity, jiffies);
}
return 1;
......@@ -1864,7 +1915,7 @@ static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
unsigned long maxj;
struct rcu_node *rnp = rcu_get_root(rsp);
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
rsp->n_force_qs++;
if (fqs_state == RCU_SAVE_DYNTICK) {
/* Collect dyntick-idle snapshots. */
......@@ -1882,11 +1933,11 @@ static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
}
/* Clear flag to prevent immediate re-entry. */
if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
raw_spin_lock_irq(&rnp->lock);
smp_mb__after_unlock_lock();
ACCESS_ONCE(rsp->gp_flags) =
ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
WRITE_ONCE(rsp->gp_flags,
READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
raw_spin_unlock_irq(&rnp->lock);
}
return fqs_state;
......@@ -1903,7 +1954,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
struct rcu_data *rdp;
struct rcu_node *rnp = rcu_get_root(rsp);
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
raw_spin_lock_irq(&rnp->lock);
smp_mb__after_unlock_lock();
gp_duration = jiffies - rsp->gp_start;
......@@ -1934,7 +1985,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
smp_mb__after_unlock_lock();
WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
WARN_ON_ONCE(rnp->qsmask);
ACCESS_ONCE(rnp->completed) = rsp->gpnum;
WRITE_ONCE(rnp->completed, rsp->gpnum);
rdp = this_cpu_ptr(rsp->rda);
if (rnp == rdp->mynode)
needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
......@@ -1942,7 +1993,8 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
nocb += rcu_future_gp_cleanup(rsp, rnp);
raw_spin_unlock_irq(&rnp->lock);
cond_resched_rcu_qs();
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
rcu_gp_slow(rsp, gp_cleanup_delay);
}
rnp = rcu_get_root(rsp);
raw_spin_lock_irq(&rnp->lock);
......@@ -1950,16 +2002,16 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
rcu_nocb_gp_set(rnp, nocb);
/* Declare grace period done. */
ACCESS_ONCE(rsp->completed) = rsp->gpnum;
WRITE_ONCE(rsp->completed, rsp->gpnum);
trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
rsp->fqs_state = RCU_GP_IDLE;
rdp = this_cpu_ptr(rsp->rda);
/* Advance CBs to reduce false positives below. */
needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
if (needgp || cpu_needs_another_gp(rsp, rdp)) {
ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("newreq"));
}
raw_spin_unlock_irq(&rnp->lock);
......@@ -1983,20 +2035,20 @@ static int __noreturn rcu_gp_kthread(void *arg)
/* Handle grace-period start. */
for (;;) {
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("reqwait"));
rsp->gp_state = RCU_GP_WAIT_GPS;
wait_event_interruptible(rsp->gp_wq,
ACCESS_ONCE(rsp->gp_flags) &
READ_ONCE(rsp->gp_flags) &
RCU_GP_FLAG_INIT);
/* Locking provides needed memory barrier. */
if (rcu_gp_init(rsp))
break;
cond_resched_rcu_qs();
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
WARN_ON(signal_pending(current));
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("reqwaitsig"));
}
......@@ -2012,39 +2064,39 @@ static int __noreturn rcu_gp_kthread(void *arg)
if (!ret)
rsp->jiffies_force_qs = jiffies + j;
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("fqswait"));
rsp->gp_state = RCU_GP_WAIT_FQS;
ret = wait_event_interruptible_timeout(rsp->gp_wq,
((gf = ACCESS_ONCE(rsp->gp_flags)) &
((gf = READ_ONCE(rsp->gp_flags)) &
RCU_GP_FLAG_FQS) ||
(!ACCESS_ONCE(rnp->qsmask) &&
(!READ_ONCE(rnp->qsmask) &&
!rcu_preempt_blocked_readers_cgp(rnp)),
j);
/* Locking provides needed memory barriers. */
/* If grace period done, leave loop. */
if (!ACCESS_ONCE(rnp->qsmask) &&
if (!READ_ONCE(rnp->qsmask) &&
!rcu_preempt_blocked_readers_cgp(rnp))
break;
/* If time for quiescent-state forcing, do it. */
if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
(gf & RCU_GP_FLAG_FQS)) {
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("fqsstart"));
fqs_state = rcu_gp_fqs(rsp, fqs_state);
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("fqsend"));
cond_resched_rcu_qs();
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
} else {
/* Deal with stray signal. */
cond_resched_rcu_qs();
ACCESS_ONCE(rsp->gp_activity) = jiffies;
WRITE_ONCE(rsp->gp_activity, jiffies);
WARN_ON(signal_pending(current));
trace_rcu_grace_period(rsp->name,
ACCESS_ONCE(rsp->gpnum),
READ_ONCE(rsp->gpnum),
TPS("fqswaitsig"));
}
j = jiffies_till_next_fqs;
......@@ -2086,8 +2138,8 @@ rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
*/
return false;
}
ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
TPS("newreq"));
/*
......@@ -2137,6 +2189,7 @@ static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
{
WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
rcu_gp_kthread_wake(rsp);
}
......@@ -2334,8 +2387,6 @@ rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Send the specified CPU's RCU callbacks to the orphanage. The
* specified CPU must be offline, and the caller must hold the
......@@ -2346,7 +2397,7 @@ rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
struct rcu_node *rnp, struct rcu_data *rdp)
{
/* No-CBs CPUs do not have orphanable callbacks. */
if (rcu_is_nocb_cpu(rdp->cpu))
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
return;
/*
......@@ -2359,7 +2410,7 @@ rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
rsp->qlen += rdp->qlen;
rdp->n_cbs_orphaned += rdp->qlen;
rdp->qlen_lazy = 0;
ACCESS_ONCE(rdp->qlen) = 0;
WRITE_ONCE(rdp->qlen, 0);
}
/*
......@@ -2405,7 +2456,8 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
/* No-CBs CPUs are handled specially. */
if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
return;
/* Do the accounting first. */
......@@ -2452,6 +2504,9 @@ static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
return;
RCU_TRACE(mask = rdp->grpmask);
trace_rcu_grace_period(rsp->name,
rnp->gpnum + 1 - !!(rnp->qsmask & mask),
......@@ -2480,7 +2535,8 @@ static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
long mask;
struct rcu_node *rnp = rnp_leaf;
if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
return;
for (;;) {
mask = rnp->grpmask;
......@@ -2511,6 +2567,9 @@ static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
return;
/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
mask = rdp->grpmask;
raw_spin_lock_irqsave(&rnp->lock, flags);
......@@ -2532,6 +2591,9 @@ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
return;
/* Adjust any no-longer-needed kthreads. */
rcu_boost_kthread_setaffinity(rnp, -1);
......@@ -2546,26 +2608,6 @@ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
cpu, rdp->qlen, rdp->nxtlist);
}
#else /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
}
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
}
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
{
}
#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
/*
* Invoke any RCU callbacks that have made it to the end of their grace
* period. Thottle as specified by rdp->blimit.
......@@ -2580,7 +2622,7 @@ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
/* If no callbacks are ready, just return. */
if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
need_resched(), is_idle_task(current),
rcu_is_callbacks_kthread());
return;
......@@ -2636,7 +2678,7 @@ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
}
smp_mb(); /* List handling before counting for rcu_barrier(). */
rdp->qlen_lazy -= count_lazy;
ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
WRITE_ONCE(rdp->qlen, rdp->qlen - count);
rdp->n_cbs_invoked += count;
/* Reinstate batch limit if we have worked down the excess. */
......@@ -2730,10 +2772,6 @@ static void force_qs_rnp(struct rcu_state *rsp,
mask = 0;
raw_spin_lock_irqsave(&rnp->lock, flags);
smp_mb__after_unlock_lock();
if (!rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
if (rnp->qsmask == 0) {
if (rcu_state_p == &rcu_sched_state ||
rsp != rcu_state_p ||
......@@ -2763,8 +2801,6 @@ static void force_qs_rnp(struct rcu_state *rsp,
bit = 1;
for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
if ((rnp->qsmask & bit) != 0) {
if ((rnp->qsmaskinit & bit) == 0)
*isidle = false; /* Pending hotplug. */
if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
mask |= bit;
}
......@@ -2793,7 +2829,7 @@ static void force_quiescent_state(struct rcu_state *rsp)
/* Funnel through hierarchy to reduce memory contention. */
rnp = __this_cpu_read(rsp->rda->mynode);
for (; rnp != NULL; rnp = rnp->parent) {
ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
!raw_spin_trylock(&rnp->fqslock);
if (rnp_old != NULL)
raw_spin_unlock(&rnp_old->fqslock);
......@@ -2809,13 +2845,12 @@ static void force_quiescent_state(struct rcu_state *rsp)
raw_spin_lock_irqsave(&rnp_old->lock, flags);
smp_mb__after_unlock_lock();
raw_spin_unlock(&rnp_old->fqslock);
if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
rsp->n_force_qs_lh++;
raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
return; /* Someone beat us to it. */
}
ACCESS_ONCE(rsp->gp_flags) =
ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
rcu_gp_kthread_wake(rsp);
}
......@@ -2881,7 +2916,7 @@ static void rcu_process_callbacks(struct softirq_action *unused)
*/
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
return;
if (likely(!rsp->boost)) {
rcu_do_batch(rsp, rdp);
......@@ -2972,7 +3007,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
if (debug_rcu_head_queue(head)) {
/* Probable double call_rcu(), so leak the callback. */
ACCESS_ONCE(head->func) = rcu_leak_callback;
WRITE_ONCE(head->func, rcu_leak_callback);
WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
return;
}
......@@ -3011,7 +3046,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
if (!likely(rdp->nxtlist))
init_default_callback_list(rdp);
}
ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
if (lazy)
rdp->qlen_lazy++;
else
......@@ -3287,7 +3322,7 @@ void synchronize_sched_expedited(void)
if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
(ulong)atomic_long_read(&rsp->expedited_done) +
ULONG_MAX / 8)) {
synchronize_sched();
wait_rcu_gp(call_rcu_sched);
atomic_long_inc(&rsp->expedited_wrap);
return;
}
......@@ -3450,14 +3485,14 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
}
/* Has another RCU grace period completed? */
if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
rdp->n_rp_gp_completed++;
return 1;
}
/* Has a new RCU grace period started? */
if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
rdp->n_rp_gp_started++;
return 1;
}
......@@ -3493,7 +3528,7 @@ static int rcu_pending(void)
* non-NULL, store an indication of whether all callbacks are lazy.
* (If there are no callbacks, all of them are deemed to be lazy.)
*/
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
{
bool al = true;
bool hc = false;
......@@ -3564,7 +3599,7 @@ static void _rcu_barrier(struct rcu_state *rsp)
{
int cpu;
struct rcu_data *rdp;
unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
unsigned long snap = READ_ONCE(rsp->n_barrier_done);
unsigned long snap_done;
_rcu_barrier_trace(rsp, "Begin", -1, snap);
......@@ -3606,10 +3641,10 @@ static void _rcu_barrier(struct rcu_state *rsp)
/*
* Increment ->n_barrier_done to avoid duplicate work. Use
* ACCESS_ONCE() to prevent the compiler from speculating
* WRITE_ONCE() to prevent the compiler from speculating
* the increment to precede the early-exit check.
*/
ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
......@@ -3645,7 +3680,7 @@ static void _rcu_barrier(struct rcu_state *rsp)
__call_rcu(&rdp->barrier_head,
rcu_barrier_callback, rsp, cpu, 0);
}
} else if (ACCESS_ONCE(rdp->qlen)) {
} else if (READ_ONCE(rdp->qlen)) {
_rcu_barrier_trace(rsp, "OnlineQ", cpu,
rsp->n_barrier_done);
smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
......@@ -3665,7 +3700,7 @@ static void _rcu_barrier(struct rcu_state *rsp)
/* Increment ->n_barrier_done to prevent duplicate work. */
smp_mb(); /* Keep increment after above mechanism. */
ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
smp_mb(); /* Keep increment before caller's subsequent code. */
......@@ -3780,7 +3815,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
rdp->completed = rnp->completed;
rdp->passed_quiesce = false;
rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
rdp->qs_pending = false;
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
raw_spin_unlock_irqrestore(&rnp->lock, flags);
......@@ -3924,16 +3959,16 @@ void rcu_scheduler_starting(void)
/*
* Compute the per-level fanout, either using the exact fanout specified
* or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
* or balancing the tree, depending on the rcu_fanout_exact boot parameter.
*/
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int i;
if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
if (rcu_fanout_exact) {
rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
for (i = rcu_num_lvls - 2; i >= 0; i--)
rsp->levelspread[i] = CONFIG_RCU_FANOUT;
rsp->levelspread[i] = RCU_FANOUT;
} else {
int ccur;
int cprv;
......@@ -3971,9 +4006,9 @@ static void __init rcu_init_one(struct rcu_state *rsp,
BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
/* Silence gcc 4.8 warning about array index out of range. */
if (rcu_num_lvls > RCU_NUM_LVLS)
panic("rcu_init_one: rcu_num_lvls overflow");
/* Silence gcc 4.8 false positive about array index out of range. */
if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
panic("rcu_init_one: rcu_num_lvls out of range");
/* Initialize the level-tracking arrays. */
......@@ -4059,7 +4094,7 @@ static void __init rcu_init_geometry(void)
jiffies_till_next_fqs = d;
/* If the compile-time values are accurate, just leave. */
if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
nr_cpu_ids == NR_CPUS)
return;
pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
......@@ -4073,7 +4108,7 @@ static void __init rcu_init_geometry(void)
rcu_capacity[0] = 1;
rcu_capacity[1] = rcu_fanout_leaf;
for (i = 2; i <= MAX_RCU_LVLS; i++)
rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
/*
* The boot-time rcu_fanout_leaf parameter is only permitted
......@@ -4083,7 +4118,7 @@ static void __init rcu_init_geometry(void)
* the configured number of CPUs. Complain and fall back to the
* compile-time values if these limits are exceeded.
*/
if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
n > rcu_capacity[MAX_RCU_LVLS]) {
WARN_ON(1);
......@@ -4109,6 +4144,28 @@ static void __init rcu_init_geometry(void)
rcu_num_nodes -= n;
}
/*
* Dump out the structure of the rcu_node combining tree associated
* with the rcu_state structure referenced by rsp.
*/
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
int level = 0;
struct rcu_node *rnp;
pr_info("rcu_node tree layout dump\n");
pr_info(" ");
rcu_for_each_node_breadth_first(rsp, rnp) {
if (rnp->level != level) {
pr_cont("\n");
pr_info(" ");
level = rnp->level;
}
pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
}
pr_cont("\n");
}
void __init rcu_init(void)
{
int cpu;
......@@ -4119,6 +4176,8 @@ void __init rcu_init(void)
rcu_init_geometry();
rcu_init_one(&rcu_bh_state, &rcu_bh_data);
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
if (dump_tree)
rcu_dump_rcu_node_tree(&rcu_sched_state);
__rcu_init_preempt();
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
......
......@@ -35,11 +35,33 @@
* In practice, this did work well going from three levels to four.
* Of course, your mileage may vary.
*/
#define MAX_RCU_LVLS 4
#define RCU_FANOUT_1 (CONFIG_RCU_FANOUT_LEAF)
#define RCU_FANOUT_2 (RCU_FANOUT_1 * CONFIG_RCU_FANOUT)
#define RCU_FANOUT_3 (RCU_FANOUT_2 * CONFIG_RCU_FANOUT)
#define RCU_FANOUT_4 (RCU_FANOUT_3 * CONFIG_RCU_FANOUT)
#ifdef CONFIG_RCU_FANOUT
#define RCU_FANOUT CONFIG_RCU_FANOUT
#else /* #ifdef CONFIG_RCU_FANOUT */
# ifdef CONFIG_64BIT
# define RCU_FANOUT 64
# else
# define RCU_FANOUT 32
# endif
#endif /* #else #ifdef CONFIG_RCU_FANOUT */
#ifdef CONFIG_RCU_FANOUT_LEAF
#define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF
#else /* #ifdef CONFIG_RCU_FANOUT_LEAF */
# ifdef CONFIG_64BIT
# define RCU_FANOUT_LEAF 64
# else
# define RCU_FANOUT_LEAF 32
# endif
#endif /* #else #ifdef CONFIG_RCU_FANOUT_LEAF */
#define RCU_FANOUT_1 (RCU_FANOUT_LEAF)
#define RCU_FANOUT_2 (RCU_FANOUT_1 * RCU_FANOUT)
#define RCU_FANOUT_3 (RCU_FANOUT_2 * RCU_FANOUT)
#define RCU_FANOUT_4 (RCU_FANOUT_3 * RCU_FANOUT)
#if NR_CPUS <= RCU_FANOUT_1
# define RCU_NUM_LVLS 1
......@@ -170,7 +192,6 @@ struct rcu_node {
/* if there is no such task. If there */
/* is no current expedited grace period, */
/* then there can cannot be any such task. */
#ifdef CONFIG_RCU_BOOST
struct list_head *boost_tasks;
/* Pointer to first task that needs to be */
/* priority boosted, or NULL if no priority */
......@@ -208,7 +229,6 @@ struct rcu_node {
unsigned long n_balk_nos;
/* Refused to boost: not sure why, though. */
/* This can happen due to race conditions. */
#endif /* #ifdef CONFIG_RCU_BOOST */
#ifdef CONFIG_RCU_NOCB_CPU
wait_queue_head_t nocb_gp_wq[2];
/* Place for rcu_nocb_kthread() to wait GP. */
......@@ -519,14 +539,11 @@ extern struct list_head rcu_struct_flavors;
* RCU implementation internal declarations:
*/
extern struct rcu_state rcu_sched_state;
DECLARE_PER_CPU(struct rcu_data, rcu_sched_data);
extern struct rcu_state rcu_bh_state;
DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);
#ifdef CONFIG_PREEMPT_RCU
extern struct rcu_state rcu_preempt_state;
DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
......
......@@ -43,7 +43,17 @@ DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);
#endif /* #ifdef CONFIG_RCU_BOOST */
#else /* #ifdef CONFIG_RCU_BOOST */
/*
* Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
* all uses are in dead code. Provide a definition to keep the compiler
* happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
* This probably needs to be excluded from -rt builds.
*/
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
#endif /* #else #ifdef CONFIG_RCU_BOOST */
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
......@@ -60,11 +70,11 @@ static void __init rcu_bootup_announce_oddness(void)
{
if (IS_ENABLED(CONFIG_RCU_TRACE))
pr_info("\tRCU debugfs-based tracing is enabled.\n");
if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
(!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
(!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
CONFIG_RCU_FANOUT);
if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
RCU_FANOUT);
if (rcu_fanout_exact)
pr_info("\tHierarchical RCU autobalancing is disabled.\n");
if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
......@@ -76,10 +86,10 @@ static void __init rcu_bootup_announce_oddness(void)
pr_info("\tAdditional per-CPU info printed with stalls.\n");
if (NUM_RCU_LVL_4 != 0)
pr_info("\tFour-level hierarchy is enabled.\n");
if (CONFIG_RCU_FANOUT_LEAF != 16)
if (RCU_FANOUT_LEAF != 16)
pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
CONFIG_RCU_FANOUT_LEAF);
if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
RCU_FANOUT_LEAF);
if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
if (nr_cpu_ids != NR_CPUS)
pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
......@@ -90,7 +100,8 @@ static void __init rcu_bootup_announce_oddness(void)
#ifdef CONFIG_PREEMPT_RCU
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
static struct rcu_state *rcu_state_p = &rcu_preempt_state;
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
......@@ -116,11 +127,11 @@ static void __init rcu_bootup_announce(void)
*/
static void rcu_preempt_qs(void)
{
if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
trace_rcu_grace_period(TPS("rcu_preempt"),
__this_cpu_read(rcu_preempt_data.gpnum),
__this_cpu_read(rcu_data_p->gpnum),
TPS("cpuqs"));
__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
__this_cpu_write(rcu_data_p->passed_quiesce, 1);
barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
current->rcu_read_unlock_special.b.need_qs = false;
}
......@@ -150,7 +161,7 @@ static void rcu_preempt_note_context_switch(void)
!t->rcu_read_unlock_special.b.blocked) {
/* Possibly blocking in an RCU read-side critical section. */
rdp = this_cpu_ptr(rcu_preempt_state.rda);
rdp = this_cpu_ptr(rcu_state_p->rda);
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
smp_mb__after_unlock_lock();
......@@ -180,10 +191,9 @@ static void rcu_preempt_note_context_switch(void)
if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
rnp->gp_tasks = &t->rcu_node_entry;
#ifdef CONFIG_RCU_BOOST
if (rnp->boost_tasks != NULL)
if (IS_ENABLED(CONFIG_RCU_BOOST) &&
rnp->boost_tasks != NULL)
rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
} else {
list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
if (rnp->qsmask & rdp->grpmask)
......@@ -263,9 +273,7 @@ void rcu_read_unlock_special(struct task_struct *t)
bool empty_exp_now;
unsigned long flags;
struct list_head *np;
#ifdef CONFIG_RCU_BOOST
bool drop_boost_mutex = false;
#endif /* #ifdef CONFIG_RCU_BOOST */
struct rcu_node *rnp;
union rcu_special special;
......@@ -307,9 +315,11 @@ void rcu_read_unlock_special(struct task_struct *t)
t->rcu_read_unlock_special.b.blocked = false;
/*
* Remove this task from the list it blocked on. The
* task can migrate while we acquire the lock, but at
* most one time. So at most two passes through loop.
* Remove this task from the list it blocked on. The task
* now remains queued on the rcu_node corresponding to
* the CPU it first blocked on, so the first attempt to
* acquire the task's rcu_node's ->lock will succeed.
* Keep the loop and add a WARN_ON() out of sheer paranoia.
*/
for (;;) {
rnp = t->rcu_blocked_node;
......@@ -317,6 +327,7 @@ void rcu_read_unlock_special(struct task_struct *t)
smp_mb__after_unlock_lock();
if (rnp == t->rcu_blocked_node)
break;
WARN_ON_ONCE(1);
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
......@@ -331,12 +342,12 @@ void rcu_read_unlock_special(struct task_struct *t)
rnp->gp_tasks = np;
if (&t->rcu_node_entry == rnp->exp_tasks)
rnp->exp_tasks = np;
#ifdef CONFIG_RCU_BOOST
if (IS_ENABLED(CONFIG_RCU_BOOST)) {
if (&t->rcu_node_entry == rnp->boost_tasks)
rnp->boost_tasks = np;
/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
#endif /* #ifdef CONFIG_RCU_BOOST */
}
/*
* If this was the last task on the current list, and if
......@@ -353,24 +364,21 @@ void rcu_read_unlock_special(struct task_struct *t)
rnp->grplo,
rnp->grphi,
!!rnp->gp_tasks);
rcu_report_unblock_qs_rnp(&rcu_preempt_state,
rnp, flags);
rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
} else {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
#ifdef CONFIG_RCU_BOOST
/* Unboost if we were boosted. */
if (drop_boost_mutex)
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
rt_mutex_unlock(&rnp->boost_mtx);
#endif /* #ifdef CONFIG_RCU_BOOST */
/*
* If this was the last task on the expedited lists,
* then we need to report up the rcu_node hierarchy.
*/
if (!empty_exp && empty_exp_now)
rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
rcu_report_exp_rnp(rcu_state_p, rnp, true);
} else {
local_irq_restore(flags);
}
......@@ -390,7 +398,7 @@ static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
t = list_entry(rnp->gp_tasks,
t = list_entry(rnp->gp_tasks->prev,
struct task_struct, rcu_node_entry);
list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
sched_show_task(t);
......@@ -447,7 +455,7 @@ static int rcu_print_task_stall(struct rcu_node *rnp)
if (!rcu_preempt_blocked_readers_cgp(rnp))
return 0;
rcu_print_task_stall_begin(rnp);
t = list_entry(rnp->gp_tasks,
t = list_entry(rnp->gp_tasks->prev,
struct task_struct, rcu_node_entry);
list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
pr_cont(" P%d", t->pid);
......@@ -491,8 +499,8 @@ static void rcu_preempt_check_callbacks(void)
return;
}
if (t->rcu_read_lock_nesting > 0 &&
__this_cpu_read(rcu_preempt_data.qs_pending) &&
!__this_cpu_read(rcu_preempt_data.passed_quiesce))
__this_cpu_read(rcu_data_p->qs_pending) &&
!__this_cpu_read(rcu_data_p->passed_quiesce))
t->rcu_read_unlock_special.b.need_qs = true;
}
......@@ -500,7 +508,7 @@ static void rcu_preempt_check_callbacks(void)
static void rcu_preempt_do_callbacks(void)
{
rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
}
#endif /* #ifdef CONFIG_RCU_BOOST */
......@@ -510,7 +518,7 @@ static void rcu_preempt_do_callbacks(void)
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_preempt_state, -1, 0);
__call_rcu(head, func, rcu_state_p, -1, 0);
}
EXPORT_SYMBOL_GPL(call_rcu);
......@@ -570,7 +578,7 @@ static int rcu_preempted_readers_exp(struct rcu_node *rnp)
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
return !rcu_preempted_readers_exp(rnp) &&
ACCESS_ONCE(rnp->expmask) == 0;
READ_ONCE(rnp->expmask) == 0;
}
/*
......@@ -711,12 +719,12 @@ sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
void synchronize_rcu_expedited(void)
{
struct rcu_node *rnp;
struct rcu_state *rsp = &rcu_preempt_state;
struct rcu_state *rsp = rcu_state_p;
unsigned long snap;
int trycount = 0;
smp_mb(); /* Caller's modifications seen first by other CPUs. */
snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
smp_mb(); /* Above access cannot bleed into critical section. */
/*
......@@ -740,7 +748,7 @@ void synchronize_rcu_expedited(void)
*/
while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
if (ULONG_CMP_LT(snap,
ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
READ_ONCE(sync_rcu_preempt_exp_count))) {
put_online_cpus();
goto mb_ret; /* Others did our work for us. */
}
......@@ -752,7 +760,7 @@ void synchronize_rcu_expedited(void)
return;
}
}
if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
put_online_cpus();
goto unlock_mb_ret; /* Others did our work for us. */
}
......@@ -780,8 +788,7 @@ void synchronize_rcu_expedited(void)
/* Clean up and exit. */
smp_mb(); /* ensure expedited GP seen before counter increment. */
ACCESS_ONCE(sync_rcu_preempt_exp_count) =
sync_rcu_preempt_exp_count + 1;
WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
unlock_mb_ret:
mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
......@@ -799,7 +806,7 @@ EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
*/
void rcu_barrier(void)
{
_rcu_barrier(&rcu_preempt_state);
_rcu_barrier(rcu_state_p);
}
EXPORT_SYMBOL_GPL(rcu_barrier);
......@@ -808,7 +815,7 @@ EXPORT_SYMBOL_GPL(rcu_barrier);
*/
static void __init __rcu_init_preempt(void)
{
rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
rcu_init_one(rcu_state_p, rcu_data_p);
}
/*
......@@ -831,7 +838,8 @@ void exit_rcu(void)
#else /* #ifdef CONFIG_PREEMPT_RCU */
static struct rcu_state *rcu_state_p = &rcu_sched_state;
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
/*
* Tell them what RCU they are running.
......@@ -994,8 +1002,8 @@ static int rcu_boost(struct rcu_node *rnp)
struct task_struct *t;
struct list_head *tb;
if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
ACCESS_ONCE(rnp->boost_tasks) == NULL)
if (READ_ONCE(rnp->exp_tasks) == NULL &&
READ_ONCE(rnp->boost_tasks) == NULL)
return 0; /* Nothing left to boost. */
raw_spin_lock_irqsave(&rnp->lock, flags);
......@@ -1048,8 +1056,8 @@ static int rcu_boost(struct rcu_node *rnp)
rt_mutex_lock(&rnp->boost_mtx);
rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
ACCESS_ONCE(rnp->boost_tasks) != NULL;
return READ_ONCE(rnp->exp_tasks) != NULL ||
READ_ONCE(rnp->boost_tasks) != NULL;
}
/*
......@@ -1173,7 +1181,7 @@ static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
struct sched_param sp;
struct task_struct *t;
if (&rcu_preempt_state != rsp)
if (rcu_state_p != rsp)
return 0;
if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
......@@ -1367,13 +1375,12 @@ static void rcu_prepare_kthreads(int cpu)
* Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
* any flavor of RCU.
*/
#ifndef CONFIG_RCU_NOCB_CPU_ALL
int rcu_needs_cpu(unsigned long *delta_jiffies)
{
*delta_jiffies = ULONG_MAX;
return rcu_cpu_has_callbacks(NULL);
return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
? 0 : rcu_cpu_has_callbacks(NULL);
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
/*
* Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
......@@ -1462,7 +1469,7 @@ static bool __maybe_unused rcu_try_advance_all_cbs(void)
* callbacks not yet ready to invoke.
*/
if ((rdp->completed != rnp->completed ||
unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
unlikely(READ_ONCE(rdp->gpwrap))) &&
rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
note_gp_changes(rsp, rdp);
......@@ -1480,11 +1487,15 @@ static bool __maybe_unused rcu_try_advance_all_cbs(void)
*
* The caller must have disabled interrupts.
*/
#ifndef CONFIG_RCU_NOCB_CPU_ALL
int rcu_needs_cpu(unsigned long *dj)
{
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
*dj = ULONG_MAX;
return 0;
}
/* Snapshot to detect later posting of non-lazy callback. */
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
......@@ -1511,7 +1522,6 @@ int rcu_needs_cpu(unsigned long *dj)
}
return 0;
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
/*
* Prepare a CPU for idle from an RCU perspective. The first major task
......@@ -1525,7 +1535,6 @@ int rcu_needs_cpu(unsigned long *dj)
*/
static void rcu_prepare_for_idle(void)
{
#ifndef CONFIG_RCU_NOCB_CPU_ALL
bool needwake;
struct rcu_data *rdp;
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
......@@ -1533,8 +1542,11 @@ static void rcu_prepare_for_idle(void)
struct rcu_state *rsp;
int tne;
if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
return;
/* Handle nohz enablement switches conservatively. */
tne = ACCESS_ONCE(tick_nohz_active);
tne = READ_ONCE(tick_nohz_active);
if (tne != rdtp->tick_nohz_enabled_snap) {
if (rcu_cpu_has_callbacks(NULL))
invoke_rcu_core(); /* force nohz to see update. */
......@@ -1580,7 +1592,6 @@ static void rcu_prepare_for_idle(void)
if (needwake)
rcu_gp_kthread_wake(rsp);
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
}
/*
......@@ -1590,12 +1601,11 @@ static void rcu_prepare_for_idle(void)
*/
static void rcu_cleanup_after_idle(void)
{
#ifndef CONFIG_RCU_NOCB_CPU_ALL
if (rcu_is_nocb_cpu(smp_processor_id()))
if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
rcu_is_nocb_cpu(smp_processor_id()))
return;
if (rcu_try_advance_all_cbs())
invoke_rcu_core();
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
}
/*
......@@ -1760,7 +1770,7 @@ static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
atomic_read(&rdtp->dynticks) & 0xfff,
rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
fast_no_hz);
}
......@@ -1898,11 +1908,11 @@ static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
struct rcu_data *rdp_leader = rdp->nocb_leader;
if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
if (!READ_ONCE(rdp_leader->nocb_kthread))
return;
if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
/* Prior smp_mb__after_atomic() orders against prior enqueue. */
ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
wake_up(&rdp_leader->nocb_wq);
}
}
......@@ -1934,14 +1944,14 @@ static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
ret = atomic_long_read(&rdp->nocb_q_count);
#ifdef CONFIG_PROVE_RCU
rhp = ACCESS_ONCE(rdp->nocb_head);
rhp = READ_ONCE(rdp->nocb_head);
if (!rhp)
rhp = ACCESS_ONCE(rdp->nocb_gp_head);
rhp = READ_ONCE(rdp->nocb_gp_head);
if (!rhp)
rhp = ACCESS_ONCE(rdp->nocb_follower_head);
rhp = READ_ONCE(rdp->nocb_follower_head);
/* Having no rcuo kthread but CBs after scheduler starts is bad! */
if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp &&
if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
rcu_scheduler_fully_active) {
/* RCU callback enqueued before CPU first came online??? */
pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
......@@ -1975,12 +1985,12 @@ static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
atomic_long_add(rhcount, &rdp->nocb_q_count);
/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
old_rhpp = xchg(&rdp->nocb_tail, rhtp);
ACCESS_ONCE(*old_rhpp) = rhp;
WRITE_ONCE(*old_rhpp, rhp);
atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
/* If we are not being polled and there is a kthread, awaken it ... */
t = ACCESS_ONCE(rdp->nocb_kthread);
t = READ_ONCE(rdp->nocb_kthread);
if (rcu_nocb_poll || !t) {
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
TPS("WakeNotPoll"));
......@@ -2118,7 +2128,7 @@ static void rcu_nocb_wait_gp(struct rcu_data *rdp)
for (;;) {
wait_event_interruptible(
rnp->nocb_gp_wq[c & 0x1],
(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
if (likely(d))
break;
WARN_ON(signal_pending(current));
......@@ -2145,7 +2155,7 @@ static void nocb_leader_wait(struct rcu_data *my_rdp)
if (!rcu_nocb_poll) {
trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
wait_event_interruptible(my_rdp->nocb_wq,
!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
!READ_ONCE(my_rdp->nocb_leader_sleep));
/* Memory barrier handled by smp_mb() calls below and repoll. */
} else if (firsttime) {
firsttime = false; /* Don't drown trace log with "Poll"! */
......@@ -2159,12 +2169,12 @@ static void nocb_leader_wait(struct rcu_data *my_rdp)
*/
gotcbs = false;
for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
if (!rdp->nocb_gp_head)
continue; /* No CBs here, try next follower. */
/* Move callbacks to wait-for-GP list, which is empty. */
ACCESS_ONCE(rdp->nocb_head) = NULL;
WRITE_ONCE(rdp->nocb_head, NULL);
rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
gotcbs = true;
}
......@@ -2184,7 +2194,7 @@ static void nocb_leader_wait(struct rcu_data *my_rdp)
my_rdp->nocb_leader_sleep = true;
smp_mb(); /* Ensure _sleep true before scan. */
for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
if (ACCESS_ONCE(rdp->nocb_head)) {
if (READ_ONCE(rdp->nocb_head)) {
/* Found CB, so short-circuit next wait. */
my_rdp->nocb_leader_sleep = false;
break;
......@@ -2205,7 +2215,7 @@ static void nocb_leader_wait(struct rcu_data *my_rdp)
/* Each pass through the following loop wakes a follower, if needed. */
for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
if (ACCESS_ONCE(rdp->nocb_head))
if (READ_ONCE(rdp->nocb_head))
my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
if (!rdp->nocb_gp_head)
continue; /* No CBs, so no need to wake follower. */
......@@ -2241,7 +2251,7 @@ static void nocb_follower_wait(struct rcu_data *rdp)
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
"FollowerSleep");
wait_event_interruptible(rdp->nocb_wq,
ACCESS_ONCE(rdp->nocb_follower_head));
READ_ONCE(rdp->nocb_follower_head));
} else if (firsttime) {
/* Don't drown trace log with "Poll"! */
firsttime = false;
......@@ -2282,10 +2292,10 @@ static int rcu_nocb_kthread(void *arg)
nocb_follower_wait(rdp);
/* Pull the ready-to-invoke callbacks onto local list. */
list = ACCESS_ONCE(rdp->nocb_follower_head);
list = READ_ONCE(rdp->nocb_follower_head);
BUG_ON(!list);
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
WRITE_ONCE(rdp->nocb_follower_head, NULL);
tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
/* Each pass through the following loop invokes a callback. */
......@@ -2324,7 +2334,7 @@ static int rcu_nocb_kthread(void *arg)
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
return ACCESS_ONCE(rdp->nocb_defer_wakeup);
return READ_ONCE(rdp->nocb_defer_wakeup);
}
/* Do a deferred wakeup of rcu_nocb_kthread(). */
......@@ -2334,8 +2344,8 @@ static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
if (!rcu_nocb_need_deferred_wakeup(rdp))
return;
ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
ndw = READ_ONCE(rdp->nocb_defer_wakeup);
WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
}
......@@ -2448,7 +2458,7 @@ static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
t = kthread_run(rcu_nocb_kthread, rdp_spawn,
"rcuo%c/%d", rsp->abbr, cpu);
BUG_ON(IS_ERR(t));
ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
WRITE_ONCE(rdp_spawn->nocb_kthread, t);
}
/*
......@@ -2663,7 +2673,7 @@ static void rcu_sysidle_enter(int irq)
/* Record start of fully idle period. */
j = jiffies;
ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
smp_mb__before_atomic();
atomic_inc(&rdtp->dynticks_idle);
smp_mb__after_atomic();
......@@ -2681,7 +2691,7 @@ static void rcu_sysidle_enter(int irq)
*/
void rcu_sysidle_force_exit(void)
{
int oldstate = ACCESS_ONCE(full_sysidle_state);
int oldstate = READ_ONCE(full_sysidle_state);
int newoldstate;
/*
......@@ -2794,7 +2804,7 @@ static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
smp_mb(); /* Read counters before timestamps. */
/* Pick up timestamps. */
j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
j = READ_ONCE(rdtp->dynticks_idle_jiffies);
/* If this CPU entered idle more recently, update maxj timestamp. */
if (ULONG_CMP_LT(*maxj, j))
*maxj = j;
......@@ -2831,11 +2841,11 @@ static unsigned long rcu_sysidle_delay(void)
static void rcu_sysidle(unsigned long j)
{
/* Check the current state. */
switch (ACCESS_ONCE(full_sysidle_state)) {
switch (READ_ONCE(full_sysidle_state)) {
case RCU_SYSIDLE_NOT:
/* First time all are idle, so note a short idle period. */
ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
break;
case RCU_SYSIDLE_SHORT:
......@@ -2873,7 +2883,7 @@ static void rcu_sysidle_cancel(void)
{
smp_mb();
if (full_sysidle_state > RCU_SYSIDLE_SHORT)
ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
}
/*
......@@ -2925,7 +2935,7 @@ static void rcu_sysidle_cb(struct rcu_head *rhp)
smp_mb(); /* grace period precedes setting inuse. */
rshp = container_of(rhp, struct rcu_sysidle_head, rh);
ACCESS_ONCE(rshp->inuse) = 0;
WRITE_ONCE(rshp->inuse, 0);
}
/*
......@@ -2936,7 +2946,7 @@ static void rcu_sysidle_cb(struct rcu_head *rhp)
bool rcu_sys_is_idle(void)
{
static struct rcu_sysidle_head rsh;
int rss = ACCESS_ONCE(full_sysidle_state);
int rss = READ_ONCE(full_sysidle_state);
if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
return false;
......@@ -2964,7 +2974,7 @@ bool rcu_sys_is_idle(void)
}
rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
oldrss = rss;
rss = ACCESS_ONCE(full_sysidle_state);
rss = READ_ONCE(full_sysidle_state);
}
}
......@@ -3048,10 +3058,10 @@ static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
#ifdef CONFIG_NO_HZ_FULL
if (tick_nohz_full_cpu(smp_processor_id()) &&
(!rcu_gp_in_progress(rsp) ||
ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
return 1;
ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
return true;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
return 0;
return false;
}
/*
......@@ -3077,7 +3087,7 @@ static void rcu_bind_gp_kthread(void)
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
......@@ -3085,6 +3095,6 @@ static void rcu_dynticks_task_enter(void)
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
......@@ -277,7 +277,7 @@ static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp)
seq_printf(m, "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu oqlen=%ld/%ld\n",
rsp->n_force_qs, rsp->n_force_qs_ngp,
rsp->n_force_qs - rsp->n_force_qs_ngp,
ACCESS_ONCE(rsp->n_force_qs_lh), rsp->qlen_lazy, rsp->qlen);
READ_ONCE(rsp->n_force_qs_lh), rsp->qlen_lazy, rsp->qlen);
for (rnp = &rsp->node[0]; rnp - &rsp->node[0] < rcu_num_nodes; rnp++) {
if (rnp->level != level) {
seq_puts(m, "\n");
......@@ -323,8 +323,8 @@ static void show_one_rcugp(struct seq_file *m, struct rcu_state *rsp)
struct rcu_node *rnp = &rsp->node[0];
raw_spin_lock_irqsave(&rnp->lock, flags);
completed = ACCESS_ONCE(rsp->completed);
gpnum = ACCESS_ONCE(rsp->gpnum);
completed = READ_ONCE(rsp->completed);
gpnum = READ_ONCE(rsp->gpnum);
if (completed == gpnum)
gpage = 0;
else
......
......@@ -150,14 +150,14 @@ void __rcu_read_unlock(void)
barrier(); /* critical section before exit code. */
t->rcu_read_lock_nesting = INT_MIN;
barrier(); /* assign before ->rcu_read_unlock_special load */
if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s)))
if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
rcu_read_unlock_special(t);
barrier(); /* ->rcu_read_unlock_special load before assign */
t->rcu_read_lock_nesting = 0;
}
#ifdef CONFIG_PROVE_LOCKING
{
int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
int rrln = READ_ONCE(t->rcu_read_lock_nesting);
WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
}
......@@ -389,17 +389,17 @@ module_param(rcu_cpu_stall_timeout, int, 0644);
int rcu_jiffies_till_stall_check(void)
{
int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
/*
* Limit check must be consistent with the Kconfig limits
* for CONFIG_RCU_CPU_STALL_TIMEOUT.
*/
if (till_stall_check < 3) {
ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
WRITE_ONCE(rcu_cpu_stall_timeout, 3);
till_stall_check = 3;
} else if (till_stall_check > 300) {
ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
WRITE_ONCE(rcu_cpu_stall_timeout, 300);
till_stall_check = 300;
}
return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
......@@ -550,12 +550,12 @@ static void check_holdout_task(struct task_struct *t,
{
int cpu;
if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
!ACCESS_ONCE(t->on_rq) ||
if (!READ_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
!READ_ONCE(t->on_rq) ||
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
ACCESS_ONCE(t->rcu_tasks_holdout) = false;
WRITE_ONCE(t->rcu_tasks_holdout, false);
list_del_init(&t->rcu_tasks_holdout_list);
put_task_struct(t);
return;
......@@ -639,11 +639,11 @@ static int __noreturn rcu_tasks_kthread(void *arg)
*/
rcu_read_lock();
for_each_process_thread(g, t) {
if (t != current && ACCESS_ONCE(t->on_rq) &&
if (t != current && READ_ONCE(t->on_rq) &&
!is_idle_task(t)) {
get_task_struct(t);
t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
ACCESS_ONCE(t->rcu_tasks_holdout) = true;
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
WRITE_ONCE(t->rcu_tasks_holdout, true);
list_add(&t->rcu_tasks_holdout_list,
&rcu_tasks_holdouts);
}
......@@ -672,7 +672,7 @@ static int __noreturn rcu_tasks_kthread(void *arg)
struct task_struct *t1;
schedule_timeout_interruptible(HZ);
rtst = ACCESS_ONCE(rcu_task_stall_timeout);
rtst = READ_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 &&
time_after(jiffies, lastreport + rtst);
if (needreport)
......@@ -728,7 +728,7 @@ static void rcu_spawn_tasks_kthread(void)
static struct task_struct *rcu_tasks_kthread_ptr;
struct task_struct *t;
if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
if (READ_ONCE(rcu_tasks_kthread_ptr)) {
smp_mb(); /* Ensure caller sees full kthread. */
return;
}
......@@ -740,7 +740,7 @@ static void rcu_spawn_tasks_kthread(void)
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
BUG_ON(IS_ERR(t));
smp_mb(); /* Ensure others see full kthread. */
ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
WRITE_ONCE(rcu_tasks_kthread_ptr, t);
mutex_unlock(&rcu_tasks_kthread_mutex);
}
......
......@@ -409,7 +409,7 @@ static void (*torture_shutdown_hook)(void);
*/
void torture_shutdown_absorb(const char *title)
{
while (ACCESS_ONCE(fullstop) == FULLSTOP_SHUTDOWN) {
while (READ_ONCE(fullstop) == FULLSTOP_SHUTDOWN) {
pr_notice("torture thread %s parking due to system shutdown\n",
title);
schedule_timeout_uninterruptible(MAX_SCHEDULE_TIMEOUT);
......@@ -480,9 +480,9 @@ static int torture_shutdown_notify(struct notifier_block *unused1,
unsigned long unused2, void *unused3)
{
mutex_lock(&fullstop_mutex);
if (ACCESS_ONCE(fullstop) == FULLSTOP_DONTSTOP) {
if (READ_ONCE(fullstop) == FULLSTOP_DONTSTOP) {
VERBOSE_TOROUT_STRING("Unscheduled system shutdown detected");
ACCESS_ONCE(fullstop) = FULLSTOP_SHUTDOWN;
WRITE_ONCE(fullstop, FULLSTOP_SHUTDOWN);
} else {
pr_warn("Concurrent rmmod and shutdown illegal!\n");
}
......@@ -523,13 +523,13 @@ static int stutter;
*/
void stutter_wait(const char *title)
{
while (ACCESS_ONCE(stutter_pause_test) ||
(torture_runnable && !ACCESS_ONCE(*torture_runnable))) {
while (READ_ONCE(stutter_pause_test) ||
(torture_runnable && !READ_ONCE(*torture_runnable))) {
if (stutter_pause_test)
if (ACCESS_ONCE(stutter_pause_test) == 1)
if (READ_ONCE(stutter_pause_test) == 1)
schedule_timeout_interruptible(1);
else
while (ACCESS_ONCE(stutter_pause_test))
while (READ_ONCE(stutter_pause_test))
cond_resched();
else
schedule_timeout_interruptible(round_jiffies_relative(HZ));
......@@ -549,14 +549,14 @@ static int torture_stutter(void *arg)
if (!torture_must_stop()) {
if (stutter > 1) {
schedule_timeout_interruptible(stutter - 1);
ACCESS_ONCE(stutter_pause_test) = 2;
WRITE_ONCE(stutter_pause_test, 2);
}
schedule_timeout_interruptible(1);
ACCESS_ONCE(stutter_pause_test) = 1;
WRITE_ONCE(stutter_pause_test, 1);
}
if (!torture_must_stop())
schedule_timeout_interruptible(stutter);
ACCESS_ONCE(stutter_pause_test) = 0;
WRITE_ONCE(stutter_pause_test, 0);
torture_shutdown_absorb("torture_stutter");
} while (!torture_must_stop());
torture_kthread_stopping("torture_stutter");
......@@ -642,13 +642,13 @@ EXPORT_SYMBOL_GPL(torture_init_end);
bool torture_cleanup_begin(void)
{
mutex_lock(&fullstop_mutex);
if (ACCESS_ONCE(fullstop) == FULLSTOP_SHUTDOWN) {
if (READ_ONCE(fullstop) == FULLSTOP_SHUTDOWN) {
pr_warn("Concurrent rmmod and shutdown illegal!\n");
mutex_unlock(&fullstop_mutex);
schedule_timeout_uninterruptible(10);
return true;
}
ACCESS_ONCE(fullstop) = FULLSTOP_RMMOD;
WRITE_ONCE(fullstop, FULLSTOP_RMMOD);
mutex_unlock(&fullstop_mutex);
torture_shutdown_cleanup();
torture_shuffle_cleanup();
......@@ -681,7 +681,7 @@ EXPORT_SYMBOL_GPL(torture_must_stop);
*/
bool torture_must_stop_irq(void)
{
return ACCESS_ONCE(fullstop) != FULLSTOP_DONTSTOP;
return READ_ONCE(fullstop) != FULLSTOP_DONTSTOP;
}
EXPORT_SYMBOL_GPL(torture_must_stop_irq);
......
......@@ -1233,6 +1233,7 @@ config RCU_TORTURE_TEST
depends on DEBUG_KERNEL
select TORTURE_TEST
select SRCU
select TASKS_RCU
default n
help
This option provides a kernel module that runs torture tests
......@@ -1261,12 +1262,38 @@ config RCU_TORTURE_TEST_RUNNABLE
Say N here if you want the RCU torture tests to start only
after being manually enabled via /proc.
config RCU_TORTURE_TEST_SLOW_PREINIT
bool "Slow down RCU grace-period pre-initialization to expose races"
depends on RCU_TORTURE_TEST
help
This option delays grace-period pre-initialization (the
propagation of CPU-hotplug changes up the rcu_node combining
tree) for a few jiffies between initializing each pair of
consecutive rcu_node structures. This helps to expose races
involving grace-period pre-initialization, in other words, it
makes your kernel less stable. It can also greatly increase
grace-period latency, especially on systems with large numbers
of CPUs. This is useful when torture-testing RCU, but in
almost no other circumstance.
Say Y here if you want your system to crash and hang more often.
Say N if you want a sane system.
config RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
int "How much to slow down RCU grace-period pre-initialization"
range 0 5
default 3
depends on RCU_TORTURE_TEST_SLOW_PREINIT
help
This option specifies the number of jiffies to wait between
each rcu_node structure pre-initialization step.
config RCU_TORTURE_TEST_SLOW_INIT
bool "Slow down RCU grace-period initialization to expose races"
depends on RCU_TORTURE_TEST
help
This option makes grace-period initialization block for a
few jiffies between initializing each pair of consecutive
This option delays grace-period initialization for a few
jiffies between initializing each pair of consecutive
rcu_node structures. This helps to expose races involving
grace-period initialization, in other words, it makes your
kernel less stable. It can also greatly increase grace-period
......@@ -1286,6 +1313,30 @@ config RCU_TORTURE_TEST_SLOW_INIT_DELAY
This option specifies the number of jiffies to wait between
each rcu_node structure initialization.
config RCU_TORTURE_TEST_SLOW_CLEANUP
bool "Slow down RCU grace-period cleanup to expose races"
depends on RCU_TORTURE_TEST
help
This option delays grace-period cleanup for a few jiffies
between cleaning up each pair of consecutive rcu_node
structures. This helps to expose races involving grace-period
cleanup, in other words, it makes your kernel less stable.
It can also greatly increase grace-period latency, especially
on systems with large numbers of CPUs. This is useful when
torture-testing RCU, but in almost no other circumstance.
Say Y here if you want your system to crash and hang more often.
Say N if you want a sane system.
config RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
int "How much to slow down RCU grace-period cleanup"
range 0 5
default 3
depends on RCU_TORTURE_TEST_SLOW_CLEANUP
help
This option specifies the number of jiffies to wait between
each rcu_node structure cleanup operation.
config RCU_CPU_STALL_TIMEOUT
int "RCU CPU stall timeout in seconds"
depends on RCU_STALL_COMMON
......@@ -1322,6 +1373,17 @@ config RCU_TRACE
Say Y here if you want to enable RCU tracing
Say N if you are unsure.
config RCU_EQS_DEBUG
bool "Use this when adding any sort of NO_HZ support to your arch"
depends on DEBUG_KERNEL
help
This option provides consistency checks in RCU's handling of
NO_HZ. These checks have proven quite helpful in detecting
bugs in arch-specific NO_HZ code.
Say N here if you need ultimate kernel/user switch latencies
Say Y if you are unsure
endmenu # "RCU Debugging"
config DEBUG_BLOCK_EXT_DEVT
......
......@@ -66,7 +66,7 @@ make $buildloc $TORTURE_DEFCONFIG > $builddir/Make.defconfig.out 2>&1
mv $builddir/.config $builddir/.config.sav
sh $T/upd.sh < $builddir/.config.sav > $builddir/.config
cp $builddir/.config $builddir/.config.new
yes '' | make $buildloc oldconfig > $builddir/Make.modconfig.out 2>&1
yes '' | make $buildloc oldconfig > $builddir/Make.oldconfig.out 2> $builddir/Make.oldconfig.err
# verify new config matches specification.
configcheck.sh $builddir/.config $c
......
......@@ -43,6 +43,10 @@ do
if test -f "$i/console.log"
then
configcheck.sh $i/.config $i/ConfigFragment
if test -r $i/Make.oldconfig.err
then
cat $i/Make.oldconfig.err
fi
parse-build.sh $i/Make.out $configfile
parse-torture.sh $i/console.log $configfile
parse-console.sh $i/console.log $configfile
......
......@@ -55,7 +55,7 @@ usage () {
echo " --bootargs kernel-boot-arguments"
echo " --bootimage relative-path-to-kernel-boot-image"
echo " --buildonly"
echo " --configs \"config-file list\""
echo " --configs \"config-file list w/ repeat factor (3*TINY01)\""
echo " --cpus N"
echo " --datestamp string"
echo " --defconfig string"
......@@ -178,13 +178,26 @@ fi
touch $T/cfgcpu
for CF in $configs
do
if test -f "$CONFIGFRAG/$CF"
case $CF in
[0-9]\**|[0-9][0-9]\**|[0-9][0-9][0-9]\**)
config_reps=`echo $CF | sed -e 's/\*.*$//'`
CF1=`echo $CF | sed -e 's/^[^*]*\*//'`
;;
*)
config_reps=1
CF1=$CF
;;
esac
if test -f "$CONFIGFRAG/$CF1"
then
cpu_count=`configNR_CPUS.sh $CONFIGFRAG/$CF`
cpu_count=`configfrag_boot_cpus "$TORTURE_BOOTARGS" "$CONFIGFRAG/$CF" "$cpu_count"`
echo $CF $cpu_count >> $T/cfgcpu
cpu_count=`configNR_CPUS.sh $CONFIGFRAG/$CF1`
cpu_count=`configfrag_boot_cpus "$TORTURE_BOOTARGS" "$CONFIGFRAG/$CF1" "$cpu_count"`
for ((cur_rep=0;cur_rep<$config_reps;cur_rep++))
do
echo $CF1 $cpu_count >> $T/cfgcpu
done
else
echo "The --configs file $CF does not exist, terminating."
echo "The --configs file $CF1 does not exist, terminating."
exit 1
fi
done
......
CONFIG_RCU_TORTURE_TEST=y
CONFIG_PRINTK_TIME=y
CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP=y
CONFIG_RCU_TORTURE_TEST_SLOW_INIT=y
CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT=y
......@@ -5,3 +5,4 @@ CONFIG_HOTPLUG_CPU=y
CONFIG_PREEMPT_NONE=y
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n
CONFIG_RCU_EXPERT=y
......@@ -5,3 +5,4 @@ CONFIG_HOTPLUG_CPU=y
CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y
#CHECK#CONFIG_RCU_EXPERT=n
rcutorture.torture_type=srcu
rcutorture.torture_type=srcud
......@@ -5,5 +5,6 @@ CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_RCU=y
CONFIG_TASKS_RCU=y
CONFIG_PROVE_LOCKING=n
#CHECK#CONFIG_PROVE_RCU=n
CONFIG_RCU_EXPERT=y
......@@ -2,4 +2,3 @@ CONFIG_SMP=n
CONFIG_PREEMPT_NONE=y
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n
CONFIG_TASKS_RCU=y
......@@ -6,8 +6,8 @@ CONFIG_HIBERNATION=n
CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y
CONFIG_TASKS_RCU=y
CONFIG_HZ_PERIODIC=n
CONFIG_NO_HZ_IDLE=n
CONFIG_NO_HZ_FULL=y
CONFIG_NO_HZ_FULL_ALL=y
#CHECK#CONFIG_RCU_EXPERT=n
......@@ -8,7 +8,7 @@ CONFIG_NO_HZ_IDLE=n
CONFIG_NO_HZ_FULL=n
CONFIG_RCU_TRACE=y
CONFIG_PROVE_LOCKING=y
CONFIG_PROVE_RCU=y
#CHECK#CONFIG_PROVE_RCU=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_PREEMPT_COUNT=y
rcupdate.rcu_self_test=1
rcupdate.rcu_self_test_bh=1
rcutorture.torture_type=rcu_bh
......@@ -16,3 +16,4 @@ CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_RCU_BOOST=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
......@@ -14,10 +14,10 @@ CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=3
CONFIG_RCU_FANOUT_LEAF=3
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=n
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_RCU_BOOST=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
......@@ -14,7 +14,6 @@ CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=3
CONFIG_RCU_FANOUT_LEAF=3
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=n
......
CONFIG_SMP=y
CONFIG_NR_CPUS=8
CONFIG_NR_CPUS=16
CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y
......@@ -9,12 +9,12 @@ CONFIG_NO_HZ_IDLE=n
CONFIG_NO_HZ_FULL=n
CONFIG_RCU_TRACE=y
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_FANOUT=4
CONFIG_RCU_FANOUT_LEAF=4
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_FANOUT=2
CONFIG_RCU_FANOUT_LEAF=2
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_RCU_BOOST=y
CONFIG_RCU_KTHREAD_PRIO=2
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
rcutorture.onoff_interval=1 rcutorture.onoff_holdoff=30
......@@ -13,10 +13,10 @@ CONFIG_RCU_TRACE=y
CONFIG_HOTPLUG_CPU=n
CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=2
CONFIG_RCU_FANOUT_LEAF=2
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_FANOUT=4
CONFIG_RCU_FANOUT_LEAF=4
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_RCU_CPU_STALL_INFO=y
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
......@@ -12,11 +12,11 @@ CONFIG_RCU_TRACE=n
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_LEAF=6
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_NOCB_CPU=y
CONFIG_RCU_NOCB_CPU_NONE=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_PROVE_RCU=y
#CHECK#CONFIG_PROVE_RCU=y
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
......@@ -14,10 +14,10 @@ CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_LEAF=6
CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_PROVE_RCU=y
#CHECK#CONFIG_PROVE_RCU=y
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=y
CONFIG_RCU_EXPERT=y
rcupdate.rcu_self_test=1
rcupdate.rcu_self_test_bh=1
rcupdate.rcu_self_test_sched=1
rcutree.rcu_fanout_exact=1
......@@ -15,8 +15,8 @@ CONFIG_RCU_TRACE=y
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_FANOUT=2
CONFIG_RCU_FANOUT_LEAF=2
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_RCU_CPU_STALL_INFO=y
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
CONFIG_SMP=y
CONFIG_NR_CPUS=16
CONFIG_NR_CPUS=8
CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y
......@@ -13,13 +13,13 @@ CONFIG_HOTPLUG_CPU=n
CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=3
CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_FANOUT_LEAF=2
CONFIG_RCU_NOCB_CPU=y
CONFIG_RCU_NOCB_CPU_ALL=y
CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_PROVE_LOCKING=y
CONFIG_PROVE_RCU=y
#CHECK#CONFIG_PROVE_RCU=y
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_RCU_BOOST=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
......@@ -13,7 +13,6 @@ CONFIG_HOTPLUG_CPU=n
CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n
CONFIG_RCU_FANOUT=3
CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_FANOUT_LEAF=2
CONFIG_RCU_NOCB_CPU=y
CONFIG_RCU_NOCB_CPU_ALL=y
......
rcutorture.torture_type=sched
rcupdate.rcu_self_test=1
rcupdate.rcu_self_test_sched=1
rcutree.rcu_fanout_exact=1
......@@ -16,3 +16,4 @@ CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_RCU_CPU_STALL_INFO=n
CONFIG_RCU_BOOST=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
#CHECK#CONFIG_RCU_EXPERT=n
......@@ -12,13 +12,12 @@ CONFIG_NO_HZ_IDLE -- Do those not otherwise specified. (Groups of two.)
CONFIG_NO_HZ_FULL -- Do two, one with CONFIG_NO_HZ_FULL_SYSIDLE.
CONFIG_NO_HZ_FULL_SYSIDLE -- Do one.
CONFIG_PREEMPT -- Do half. (First three and #8.)
CONFIG_PROVE_LOCKING -- Do all but two, covering CONFIG_PROVE_RCU and not.
CONFIG_PROVE_RCU -- Do all but one under CONFIG_PROVE_LOCKING.
CONFIG_PROVE_LOCKING -- Do several, covering CONFIG_DEBUG_LOCK_ALLOC=y and not.
CONFIG_PROVE_RCU -- Hardwired to CONFIG_PROVE_LOCKING.
CONFIG_RCU_BOOST -- one of PREEMPT_RCU.
CONFIG_RCU_KTHREAD_PRIO -- set to 2 for _BOOST testing.
CONFIG_RCU_CPU_STALL_INFO -- Do one.
CONFIG_RCU_FANOUT -- Cover hierarchy as currently, but overlap with others.
CONFIG_RCU_FANOUT_EXACT -- Do one.
CONFIG_RCU_CPU_STALL_INFO -- Now default, avoid at least twice.
CONFIG_RCU_FANOUT -- Cover hierarchy, but overlap with others.
CONFIG_RCU_FANOUT_LEAF -- Do one non-default.
CONFIG_RCU_FAST_NO_HZ -- Do one, but not with CONFIG_RCU_NOCB_CPU_ALL.
CONFIG_RCU_NOCB_CPU -- Do three, see below.
......@@ -27,28 +26,19 @@ CONFIG_RCU_NOCB_CPU_NONE -- Do one.
CONFIG_RCU_NOCB_CPU_ZERO -- Do one.
CONFIG_RCU_TRACE -- Do half.
CONFIG_SMP -- Need one !SMP for PREEMPT_RCU.
!RCU_EXPERT -- Do a few, but these have to be vanilla configurations.
RCU-bh: Do one with PREEMPT and one with !PREEMPT.
RCU-sched: Do one with PREEMPT but not BOOST.
Hierarchy:
TREE01. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=8, CONFIG_RCU_FANOUT_EXACT=n.
TREE02. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=3, CONFIG_RCU_FANOUT_EXACT=n,
CONFIG_RCU_FANOUT_LEAF=3.
TREE03. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=4, CONFIG_RCU_FANOUT_EXACT=n,
CONFIG_RCU_FANOUT_LEAF=4.
TREE04. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=2, CONFIG_RCU_FANOUT_EXACT=n,
CONFIG_RCU_FANOUT_LEAF=2.
TREE05. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=6, CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_FANOUT_LEAF=6.
TREE06. CONFIG_NR_CPUS=8, CONFIG_RCU_FANOUT=6, CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_FANOUT_LEAF=6.
TREE07. CONFIG_NR_CPUS=16, CONFIG_RCU_FANOUT=2, CONFIG_RCU_FANOUT_EXACT=n,
CONFIG_RCU_FANOUT_LEAF=2.
TREE08. CONFIG_NR_CPUS=16, CONFIG_RCU_FANOUT=3, CONFIG_RCU_FANOUT_EXACT=y,
CONFIG_RCU_FANOUT_LEAF=2.
TREE09. CONFIG_NR_CPUS=1.
Boot parameters:
nohz_full - do at least one.
maxcpu -- do at least one.
rcupdate.rcu_self_test_bh -- Do at least one each, offloaded and not.
rcupdate.rcu_self_test_sched -- Do at least one each, offloaded and not.
rcupdate.rcu_self_test -- Do at least one each, offloaded and not.
rcutree.rcu_fanout_exact -- Do at least one.
Kconfig Parameters Ignored:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment