- 15 Dec, 2015 40 commits
-
-
Daeho Jeong authored
commit 4327ba52 upstream. If a EXT4 filesystem utilizes JBD2 journaling and an error occurs, the journaling will be aborted first and the error number will be recorded into JBD2 superblock and, finally, the system will enter into the panic state in "errors=panic" option. But, in the rare case, this sequence is little twisted like the below figure and it will happen that the system enters into panic state, which means the system reset in mobile environment, before completion of recording an error in the journal superblock. In this case, e2fsck cannot recognize that the filesystem failure occurred in the previous run and the corruption wouldn't be fixed. Task A Task B ext4_handle_error() -> jbd2_journal_abort() -> __journal_abort_soft() -> __jbd2_journal_abort_hard() | -> journal->j_flags |= JBD2_ABORT; | | __ext4_abort() | -> jbd2_journal_abort() | | -> __journal_abort_soft() | | -> if (journal->j_flags & JBD2_ABORT) | | return; | -> panic() | -> jbd2_journal_update_sb_errno() Tested-by: Hobin Woo <hobin.woo@samsung.com> Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lukas Czerner authored
commit 6934da92 upstream. There is a use-after-free possibility in __ext4_journal_stop() in the case that we free the handle in the first jbd2_journal_stop() because we're referencing handle->h_err afterwards. This was introduced in 9705acd6 and it is wrong. Fix it by storing the handle->h_err value beforehand and avoid referencing potentially freed handle. Fixes: 9705acd6Signed-off-by: Lukas Czerner <lczerner@redhat.com> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Theodore Ts'o authored
commit 687c3c36 upstream. Buggy (or hostile) userspace should not be able to cause the kernel to crash. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Theodore Ts'o authored
commit 937d7b84 upstream. There are times when ext4_bio_write_page() is called even though we don't actually need to do any I/O. This happens when ext4_writepage() gets called by the jbd2 commit path when an inode needs to force its pages written out in order to provide data=ordered guarantees --- and a page is backed by an unwritten (e.g., uninitialized) block on disk, or if delayed allocation means the page's backing store hasn't been allocated yet. In that case, we need to skip the call to ext4_encrypt_page(), since in addition to wasting CPU, it leads to a bounce page and an ext4 crypto context getting leaked. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilya Dryomov authored
commit 70b16db8 upstream. Commit 4e752f0a ("rbd: access snapshot context and mapping size safely") moved ceph_get_snap_context() out of rbd_img_request_create() and into rbd_queue_workfn(), adding a ceph_put_snap_context() to the error path in rbd_queue_workfn(). However, rbd_img_request_create() consumes a ref on snapc, so calling ceph_put_snap_context() after a successful rbd_img_request_create() leads to an extra put. Fix it. Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Josh Durgin <jdurgin@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Sterba authored
commit 9dcbeed4 upstream. The calculation of range length in btrfs_sync_file leads to signed overflow. This was caught by PaX gcc SIZE_OVERFLOW plugin. https://forums.grsecurity.net/viewtopic.php?f=1&t=4284 The fsync call passes 0 and LLONG_MAX, the range length does not fit to loff_t and overflows, but the value is converted to u64 so it silently works as expected. The minimal fix is a typecast to u64, switching functions to take (start, end) instead of (start, len) would be more intrusive. Coccinelle script found that there's one more opencoded calculation of the length. <smpl> @@ loff_t start, end; @@ * end - start </smpl> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit f1cd1f0b upstream. When listing a inode's xattrs we have a time window where we race against a concurrent operation for adding a new hard link for our inode that makes us not return any xattr to user space. In order for this to happen, the first xattr of our inode needs to be at slot 0 of a leaf and the previous leaf must still have room for an inode ref (or extref) item, and this can happen because an inode's listxattrs callback does not lock the inode's i_mutex (nor does the VFS does it for us), but adding a hard link to an inode makes the VFS lock the inode's i_mutex before calling the inode's link callback. If we have the following leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 XATTR_ITEM 12345), ... ] slot N - 2 slot N - 1 slot 0 The race illustrated by the following sequence diagram is possible: CPU 1 CPU 2 btrfs_listxattr() searches for key (257 XATTR_ITEM 0) gets path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() releases the path adds key (257 INODE_REF 666) to the end of leaf X (slot N), and leaf X now has N + 1 items searches for the key (257 INODE_REF 256), with path->keep_locks == 1, because that is the last key it saw in leaf X before releasing the path ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in leaf X, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 666) btrfs_listxattr's loop iteration sees that the type of the key pointed by the path is different from the type BTRFS_XATTR_ITEM_KEY and so it breaks the loop and stops looking for more xattr items --> the application doesn't get any xattr listed for our inode So fix this by breaking the loop only if the key's type is greater than BTRFS_XATTR_ITEM_KEY and skip the current key if its type is smaller. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 1d512cb7 upstream. If we are using the NO_HOLES feature, we have a tiny time window when running delalloc for a nodatacow inode where we can race with a concurrent link or xattr add operation leading to a BUG_ON. This happens because at run_delalloc_nocow() we end up casting a leaf item of type BTRFS_INODE_[REF|EXTREF]_KEY or of type BTRFS_XATTR_ITEM_KEY to a file extent item (struct btrfs_file_extent_item) and then analyse its extent type field, which won't match any of the expected extent types (values BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]) and therefore trigger an explicit BUG_ON(1). The following sequence diagram shows how the race happens when running a no-cow dellaloc range [4K, 8K[ for inode 257 and we have the following neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 (Note the implicit hole for inode 257 regarding the [0, 8K[ range) CPU 1 CPU 2 run_dealloc_nocow() btrfs_lookup_file_extent() --> searches for a key with value (257 EXTENT_DATA 4096) in the fs/subvol tree --> returns us a path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() --> releases the path hard link added to our inode, with key (257 INODE_REF 500) added to the end of leaf X, so leaf X now has N + 1 keys --> searches for the key (257 INODE_REF 256), because it was the last key in leaf X before it released the path, with path->keep_locks set to 1 --> ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in the leaf, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 500) the loop iteration of run_dealloc_nocow() does not break out the loop and continues because the key referenced in the path at path->nodes[0] and path->slots[0] is for inode 257, its type is < BTRFS_EXTENT_DATA_KEY and its offset (500) is less then our delalloc range's end (8192) the item pointed by the path, an inode reference item, is (incorrectly) interpreted as a file extent item and we get an invalid extent type, leading to the BUG_ON(1): if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) } else { BUG_ON(1) } The same can happen if a xattr is added concurrently and ends up having a key with an offset smaller then the delalloc's range end. So fix this by skipping keys with a type smaller than BTRFS_EXTENT_DATA_KEY. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit aeafbf84 upstream. While running a stress test I got the following warning triggered: [191627.672810] ------------[ cut here ]------------ [191627.673949] WARNING: CPU: 8 PID: 8447 at fs/btrfs/file.c:779 __btrfs_drop_extents+0x391/0xa50 [btrfs]() (...) [191627.701485] Call Trace: [191627.702037] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [191627.702992] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2 [191627.704091] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [191627.705380] [<ffffffffa0664499>] ? __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.706637] [<ffffffff8104b46d>] warn_slowpath_null+0x1a/0x1c [191627.707789] [<ffffffffa0664499>] __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.709155] [<ffffffff8115663c>] ? cache_alloc_debugcheck_after.isra.32+0x171/0x1d0 [191627.712444] [<ffffffff81155007>] ? kmemleak_alloc_recursive.constprop.40+0x16/0x18 [191627.714162] [<ffffffffa06570c9>] insert_reserved_file_extent.constprop.40+0x83/0x24e [btrfs] [191627.715887] [<ffffffffa065422b>] ? start_transaction+0x3bb/0x610 [btrfs] [191627.717287] [<ffffffffa065b604>] btrfs_finish_ordered_io+0x273/0x4e2 [btrfs] [191627.728865] [<ffffffffa065b888>] finish_ordered_fn+0x15/0x17 [btrfs] [191627.730045] [<ffffffffa067d688>] normal_work_helper+0x14c/0x32c [btrfs] [191627.731256] [<ffffffffa067d96a>] btrfs_endio_write_helper+0x12/0x14 [btrfs] [191627.732661] [<ffffffff81061119>] process_one_work+0x24c/0x4ae [191627.733822] [<ffffffff810615b0>] worker_thread+0x206/0x2c2 [191627.734857] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.736052] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.737349] [<ffffffff810669a6>] kthread+0xef/0xf7 [191627.738267] [<ffffffff810f3b3a>] ? time_hardirqs_on+0x15/0x28 [191627.739330] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.741976] [<ffffffff81465592>] ret_from_fork+0x42/0x70 [191627.743080] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.744206] ---[ end trace bbfddacb7aaada8d ]--- $ cat -n fs/btrfs/file.c 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, (...) 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 if (key.objectid > ino || 760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 761 break; 762 763 fi = btrfs_item_ptr(leaf, path->slots[0], 764 struct btrfs_file_extent_item); 765 extent_type = btrfs_file_extent_type(leaf, fi); 766 767 if (extent_type == BTRFS_FILE_EXTENT_REG || 768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) 774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) 778 } else { 779 WARN_ON(1); 780 extent_end = search_start; 781 } (...) This happened because the item we were processing did not match a file extent item (its key type != BTRFS_EXTENT_DATA_KEY), and even on this case we cast the item to a struct btrfs_file_extent_item pointer and then find a type field value that does not match any of the expected values (BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]). This scenario happens due to a tiny time window where a race can happen as exemplified below. For example, consider the following scenario where we're using the NO_HOLES feature and we have the following two neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 Our inode 257 has an implicit hole in the range [0, 8K[ (implicit rather than explicit because NO_HOLES is enabled). Now if our inode has an ordered extent for the range [4K, 8K[ that is finishing, the following can happen: CPU 1 CPU 2 btrfs_finish_ordered_io() insert_reserved_file_extent() __btrfs_drop_extents() Searches for the key (257 EXTENT_DATA 4096) through btrfs_lookup_file_extent() Key not found and we get a path where path->nodes[0] == leaf X and path->slots[0] == N Because path->slots[0] is >= btrfs_header_nritems(leaf X), we call btrfs_next_leaf() btrfs_next_leaf() releases the path inserts key (257 INODE_REF 4096) at the end of leaf X, leaf X now has N + 1 keys, and the new key is at slot N btrfs_next_leaf() searches for key (257 INODE_REF 256), with path->keep_locks set to 1, because it was the last key it saw in leaf X finds it in leaf X again and notices it's no longer the last key of the leaf, so it returns 0 with path->nodes[0] == leaf X and path->slots[0] == N (which is now < btrfs_header_nritems(leaf X)), pointing to the new key (257 INODE_REF 4096) __btrfs_drop_extents() casts the item at path->nodes[0], slot path->slots[0], to a struct btrfs_file_extent_item - it does not skip keys for the target inode with a type less than BTRFS_EXTENT_DATA_KEY (BTRFS_INODE_REF_KEY < BTRFS_EXTENT_DATA_KEY) sees a bogus value for the type field triggering the WARN_ON in the trace shown above, and sets extent_end = search_start (4096) does the if-then-else logic to fixup 0 length extent items created by a past bug from hole punching: if (extent_end == key.offset && extent_end >= search_start) goto delete_extent_item; that evaluates to true and it ends up deleting the key pointed to by path->slots[0], (257 INODE_REF 4096), from leaf X The same could happen for example for a xattr that ends up having a key with an offset value that matches search_start (very unlikely but not impossible). So fix this by ensuring that keys smaller than BTRFS_EXTENT_DATA_KEY are skipped, never casted to struct btrfs_file_extent_item and never deleted by accident. Also protect against the unexpected case of getting a key for a lower inode number by skipping that key and issuing a warning. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 2c3cf7d5 upstream. In the kernel 4.2 merge window we had a refactoring/rework of the delayed references implementation in order to fix certain problems with qgroups. However that rework introduced one more regression that leads to the following trace when running delayed references for metadata: [35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832! [35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2 [35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000 [35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293 [35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000 [35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000 [35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8 [35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000 [35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000 [35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000 [35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0 [35908.065201] Stack: [35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000 [35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8 [35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000 [35908.065201] Call Trace: [35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs] [35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs] [35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs] [35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs] [35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs] [35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs] [35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs] [35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs] [35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs] [35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac [35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2 [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31 [35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP <ffff88010c4cbb08> [35908.310885] ---[ end trace fe4299baf0666457 ]--- This happens because the new delayed references code no longer merges delayed references that have different sequence values. The following steps are an example sequence leading to this issue: 1) Transaction N starts, fs_info->tree_mod_seq has value 0; 2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for bytenr A is created, with a value of 1 and a seq value of 0; 3) fs_info->tree_mod_seq is incremented to 1; 4) Extent buffer A is deleted through btrfs_del_items(), which calls btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The later returns the metadata extent associated to extent buffer A to the free space cache (the range is not pinned), because the extent buffer was created in the current transaction (N) and writeback never happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set in the extent buffer). This creates the delayed reference Ref2 for bytenr A, with a value of -1 and a seq value of 1; 5) Delayed reference Ref2 is not merged with Ref1 when we create it, because they have different sequence numbers (decided at add_delayed_ref_tail_merge()); 6) fs_info->tree_mod_seq is incremented to 2; 7) Some task attempts to allocate a new extent buffer (done at extent-tree.c:find_free_extent()), but due to heavy fragmentation and running low on metadata space the clustered allocation fails and we fall back to unclustered allocation, which finds the extent at offset A, so a new extent buffer at offset A is allocated. This creates delayed reference Ref3 for bytenr A, with a value of 1 and a seq value of 2; 8) Ref3 is not merged neither with Ref2 nor Ref1, again because they all have different seq values; 9) We start running the delayed references (__btrfs_run_delayed_refs()); 10) The delayed Ref1 is the first one being applied, which ends up creating an inline extent backref in the extent tree; 10) Next the delayed reference Ref3 is selected for execution, and not Ref2, because select_delayed_ref() always gives a preference for positive references (that have an action of BTRFS_ADD_DELAYED_REF); 11) When running Ref3 we encounter alreay the inline extent backref in the extent tree at insert_inline_extent_backref(), which makes us hit the following BUG_ON: BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); This is always true because owner corresponds to the level of the extent buffer/btree node in the btree. For the scenario described above we hit the BUG_ON because we never merge references that have different seq values. We used to do the merging before the 4.2 kernel, more specifically, before the commmits: c6fc2454 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") c43d160f ("btrfs: delayed-ref: Cleanup the unneeded functions.") This issue became more exposed after the following change that was added to 4.2 as well: cffc3374 ("Btrfs: fix order by which delayed references are run") Which in turn fixed another regression by the two commits previously mentioned. So fix this by bringing back the delayed reference merge code, with the proper adaptations so that it operates against the new data structure (linked list vs old red black tree implementation). This issue was hit running fstest btrfs/063 in a loop. Several people have reported this issue in the mailing list when running on kernels 4.2+. Very special thanks to Stéphane Lesimple for helping debugging this issue and testing this fix on his multi terabyte filesystem (which took more than one day to balance alone, plus fsck, etc). Fixes: c6fc2454 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") Reported-by: Peter Becker <floyd.net@gmail.com> Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Reported-by: Malte Schröder <malte@tnxip.de> Reported-by: Derek Dongray <derek@valedon.co.uk> Reported-by: Erkki Seppala <flux-btrfs@inside.org> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 0305cd5f upstream. When truncating a file to a smaller size which consists of an inline extent that is compressed, we did not discard (or made unusable) the data between the new file size and the old file size, wasting metadata space and allowing for the truncated data to be leaked and the data corruption/loss mentioned below. We were also not correctly decrementing the number of bytes used by the inode, we were setting it to zero, giving a wrong report for callers of the stat(2) syscall. The fsck tool also reported an error about a mismatch between the nbytes of the file versus the real space used by the file. Now because we weren't discarding the truncated region of the file, it was possible for a caller of the clone ioctl to actually read the data that was truncated, allowing for a security breach without requiring root access to the system, using only standard filesystem operations. The scenario is the following: 1) User A creates a file which consists of an inline and compressed extent with a size of 2000 bytes - the file is not accessible to any other users (no read, write or execution permission for anyone else); 2) The user truncates the file to a size of 1000 bytes; 3) User A makes the file world readable; 4) User B creates a file consisting of an inline extent of 2000 bytes; 5) User B issues a clone operation from user A's file into its own file (using a length argument of 0, clone the whole range); 6) User B now gets to see the 1000 bytes that user A truncated from its file before it made its file world readbale. User B also lost the bytes in the range [1000, 2000[ bytes from its own file, but that might be ok if his/her intention was reading stale data from user A that was never supposed to be public. Note that this contrasts with the case where we truncate a file from 2000 bytes to 1000 bytes and then truncate it back from 1000 to 2000 bytes. In this case reading any byte from the range [1000, 2000[ will return a value of 0x00, instead of the original data. This problem exists since the clone ioctl was added and happens both with and without my recent data loss and file corruption fixes for the clone ioctl (patch "Btrfs: fix file corruption and data loss after cloning inline extents"). So fix this by truncating the compressed inline extents as we do for the non-compressed case, which involves decompressing, if the data isn't already in the page cache, compressing the truncated version of the extent, writing the compressed content into the inline extent and then truncate it. The following test case for fstests reproduces the problem. In order for the test to pass both this fix and my previous fix for the clone ioctl that forbids cloning a smaller inline extent into a larger one, which is titled "Btrfs: fix file corruption and data loss after cloning inline extents", are needed. Without that other fix the test fails in a different way that does not leak the truncated data, instead part of destination file gets replaced with zeroes (because the destination file has a larger inline extent than the source). seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _scratch_mount "-o compress" # Create our test files. File foo is going to be the source of a clone operation # and consists of a single inline extent with an uncompressed size of 512 bytes, # while file bar consists of a single inline extent with an uncompressed size of # 256 bytes. For our test's purpose, it's important that file bar has an inline # extent with a size smaller than foo's inline extent. $XFS_IO_PROG -f -c "pwrite -S 0xa1 0 128" \ -c "pwrite -S 0x2a 128 384" \ $SCRATCH_MNT/foo | _filter_xfs_io $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 256" $SCRATCH_MNT/bar | _filter_xfs_io # Now durably persist all metadata and data. We do this to make sure that we get # on disk an inline extent with a size of 512 bytes for file foo. sync # Now truncate our file foo to a smaller size. Because it consists of a # compressed and inline extent, btrfs did not shrink the inline extent to the # new size (if the extent was not compressed, btrfs would shrink it to 128 # bytes), it only updates the inode's i_size to 128 bytes. $XFS_IO_PROG -c "truncate 128" $SCRATCH_MNT/foo # Now clone foo's inline extent into bar. # This clone operation should fail with errno EOPNOTSUPP because the source # file consists only of an inline extent and the file's size is smaller than # the inline extent of the destination (128 bytes < 256 bytes). However the # clone ioctl was not prepared to deal with a file that has a size smaller # than the size of its inline extent (something that happens only for compressed # inline extents), resulting in copying the full inline extent from the source # file into the destination file. # # Note that btrfs' clone operation for inline extents consists of removing the # inline extent from the destination inode and copy the inline extent from the # source inode into the destination inode, meaning that if the destination # inode's inline extent is larger (N bytes) than the source inode's inline # extent (M bytes), some bytes (N - M bytes) will be lost from the destination # file. Btrfs could copy the source inline extent's data into the destination's # inline extent so that we would not lose any data, but that's currently not # done due to the complexity that would be needed to deal with such cases # (specially when one or both extents are compressed), returning EOPNOTSUPP, as # it's normally not a very common case to clone very small files (only case # where we get inline extents) and copying inline extents does not save any # space (unlike for normal, non-inlined extents). $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar # Now because the above clone operation used to succeed, and due to foo's inline # extent not being shinked by the truncate operation, our file bar got the whole # inline extent copied from foo, making us lose the last 128 bytes from bar # which got replaced by the bytes in range [128, 256[ from foo before foo was # truncated - in other words, data loss from bar and being able to read old and # stale data from foo that should not be possible to read anymore through normal # filesystem operations. Contrast with the case where we truncate a file from a # size N to a smaller size M, truncate it back to size N and then read the range # [M, N[, we should always get the value 0x00 for all the bytes in that range. # We expected the clone operation to fail with errno EOPNOTSUPP and therefore # not modify our file's bar data/metadata. So its content should be 256 bytes # long with all bytes having the value 0xbb. # # Without the btrfs bug fix, the clone operation succeeded and resulted in # leaking truncated data from foo, the bytes that belonged to its range # [128, 256[, and losing data from bar in that same range. So reading the # file gave us the following content: # # 0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 # * # 0000200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a # * # 0000400 echo "File bar's content after the clone operation:" od -t x1 $SCRATCH_MNT/bar # Also because the foo's inline extent was not shrunk by the truncate # operation, btrfs' fsck, which is run by the fstests framework everytime a # test completes, failed reporting the following error: # # root 5 inode 257 errors 400, nbytes wrong status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 8039d87d upstream. Currently the clone ioctl allows to clone an inline extent from one file to another that already has other (non-inlined) extents. This is a problem because btrfs is not designed to deal with files having inline and regular extents, if a file has an inline extent then it must be the only extent in the file and must start at file offset 0. Having a file with an inline extent followed by regular extents results in EIO errors when doing reads or writes against the first 4K of the file. Also, the clone ioctl allows one to lose data if the source file consists of a single inline extent, with a size of N bytes, and the destination file consists of a single inline extent with a size of M bytes, where we have M > N. In this case the clone operation removes the inline extent from the destination file and then copies the inline extent from the source file into the destination file - we lose the M - N bytes from the destination file, a read operation will get the value 0x00 for any bytes in the the range [N, M] (the destination inode's i_size remained as M, that's why we can read past N bytes). So fix this by not allowing such destructive operations to happen and return errno EOPNOTSUPP to user space. Currently the fstest btrfs/035 tests the data loss case but it totally ignores this - i.e. expects the operation to succeed and does not check the we got data loss. The following test case for fstests exercises all these cases that result in file corruption and data loss: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner _require_btrfs_fs_feature "no_holes" _require_btrfs_mkfs_feature "no-holes" rm -f $seqres.full test_cloning_inline_extents() { local mkfs_opts=$1 local mount_opts=$2 _scratch_mkfs $mkfs_opts >>$seqres.full 2>&1 _scratch_mount $mount_opts # File bar, the source for all the following clone operations, consists # of a single inline extent (50 bytes). $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \ | _filter_xfs_io # Test cloning into a file with an extent (non-inlined) where the # destination offset overlaps that extent. It should not be possible to # clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo data after clone operation:" # All bytes should have the value 0xaa (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo $XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io # Test cloning the inline extent against a file which has a hole in its # first 4K followed by a non-inlined extent. It should not be possible # as well to clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo2 data after clone operation:" # All bytes should have the value 0x00 (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo2 $XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io # Test cloning the inline extent against a file which has a size of zero # but has a prealloc extent. It should not be possible as well to clone # the inline extent from file bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "First 50 bytes of foo3 after clone operation:" # Should not be able to read any bytes, file has 0 bytes i_size (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo3 $XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size not greater than the size of # bar's inline extent (40 < 50). # It should be possible to do the extent cloning from bar to this file. $XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4 # Doing IO against any range in the first 4K of the file should work. echo "File foo4 data after clone operation:" # Must match file bar's content. od -t x1 $SCRATCH_MNT/foo4 $XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size greater than the size of bar's # inline extent (60 > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5 # Reading the file should not fail. echo "File foo5 data after clone operation:" # Must have a size of 60 bytes, with all bytes having a value of 0x03 # (the clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo5 # Test cloning the inline extent against a file which has no extents but # has a size greater than bar's inline extent (16K > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6 # Reading the file should not fail. echo "File foo6 data after clone operation:" # Must have a size of 16K, with all bytes having a value of 0x00 (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo6 # Test cloning the inline extent against a file which has no extents but # has a size not greater than bar's inline extent (30 < 50). # It should be possible to clone the inline extent from file bar into # this file. $XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7 # Reading the file should not fail. echo "File foo7 data after clone operation:" # Must have a size of 50 bytes, with all bytes having a value of 0xbb. od -t x1 $SCRATCH_MNT/foo7 # Test cloning the inline extent against a file which has a size not # greater than the size of bar's inline extent (20 < 50) but has # a prealloc extent that goes beyond the file's size. It should not be # possible to clone the inline extent from bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" \ -c "pwrite -S 0x88 0 20" \ $SCRATCH_MNT/foo8 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8 echo "File foo8 data after clone operation:" # Must have a size of 20 bytes, with all bytes having a value of 0x88 # (the clone operation did not modify our file). od -t x1 $SCRATCH_MNT/foo8 _scratch_unmount } echo -e "\nTesting without compression and without the no-holes feature...\n" test_cloning_inline_extents echo -e "\nTesting with compression and without the no-holes feature...\n" test_cloning_inline_extents "" "-o compress" echo -e "\nTesting without compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "" echo -e "\nTesting with compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "-o compress" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Robin Ruede authored
commit b96b1db0 upstream. This fixes a regression introduced by 37b8d27d between v4.1 and v4.2. When a snapshot is received, its received_uuid is set to the original uuid of the subvolume. When that snapshot is then resent to a third filesystem, it's received_uuid is set to the second uuid instead of the original one. The same was true for the parent_uuid. This behaviour was partially changed in 37b8d27d, but in that patch only the parent_uuid was taken from the real original, not the uuid itself, causing the search for the parent to fail in the case below. This happens for example when trying to send a series of linked snapshots (e.g. created by snapper) from the backup file system back to the original one. The following commands reproduce the issue in v4.2.1 (no error in 4.1.6) # setup three test file systems for i in 1 2 3; do truncate -s 50M fs$i mkfs.btrfs fs$i mkdir $i mount fs$i $i done echo "content" > 1/testfile btrfs su snapshot -r 1/ 1/snap1 echo "changed content" > 1/testfile btrfs su snapshot -r 1/ 1/snap2 # works fine: btrfs send 1/snap1 | btrfs receive 2/ btrfs send -p 1/snap1 1/snap2 | btrfs receive 2/ # ERROR: could not find parent subvolume btrfs send 2/snap1 | btrfs receive 3/ btrfs send -p 2/snap1 2/snap2 | btrfs receive 3/ Signed-off-by: Robin Ruede <rruede+git@gmail.com> Fixes: 37b8d27d ("Btrfs: use received_uuid of parent during send") Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Ed Tomlinson <edt@aei.ca> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andrej Ota authored
[ Upstream commit 5f715c09 ] Because eth_type_trans() consumes ethernet header worth of bytes, a call to read TCI from end of packet using rhine_rx_vlan_tag() no longer works as it's reading from an invalid offset. Tested to be working on PCEngines Alix board. Fixes: 810f19bc ("via-rhine: add consistent memory barrier in vlan receive code.") Signed-off-by: Andrej Ota <andrej@ota.si> Acked-by: Francois Romieu <romieu@fr.zoreil.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 4eaf3b84 ] qdisc_tree_decrease_qlen() suffers from two problems on multiqueue devices. One problem is that it updates sch->q.qlen and sch->qstats.drops on the mq/mqprio root qdisc, while it should not : Daniele reported underflows errors : [ 681.774821] PAX: sch->q.qlen: 0 n: 1 [ 681.774825] PAX: size overflow detected in function qdisc_tree_decrease_qlen net/sched/sch_api.c:769 cicus.693_49 min, count: 72, decl: qlen; num: 0; context: sk_buff_head; [ 681.774954] CPU: 2 PID: 19 Comm: ksoftirqd/2 Tainted: G O 4.2.6.201511282239-1-grsec #1 [ 681.774955] Hardware name: ASUSTeK COMPUTER INC. X302LJ/X302LJ, BIOS X302LJ.202 03/05/2015 [ 681.774956] ffffffffa9a04863 0000000000000000 0000000000000000 ffffffffa990ff7c [ 681.774959] ffffc90000d3bc38 ffffffffa95d2810 0000000000000007 ffffffffa991002b [ 681.774960] ffffc90000d3bc68 ffffffffa91a44f4 0000000000000001 0000000000000001 [ 681.774962] Call Trace: [ 681.774967] [<ffffffffa95d2810>] dump_stack+0x4c/0x7f [ 681.774970] [<ffffffffa91a44f4>] report_size_overflow+0x34/0x50 [ 681.774972] [<ffffffffa94d17e2>] qdisc_tree_decrease_qlen+0x152/0x160 [ 681.774976] [<ffffffffc02694b1>] fq_codel_dequeue+0x7b1/0x820 [sch_fq_codel] [ 681.774978] [<ffffffffc02680a0>] ? qdisc_peek_dequeued+0xa0/0xa0 [sch_fq_codel] [ 681.774980] [<ffffffffa94cd92d>] __qdisc_run+0x4d/0x1d0 [ 681.774983] [<ffffffffa949b2b2>] net_tx_action+0xc2/0x160 [ 681.774985] [<ffffffffa90664c1>] __do_softirq+0xf1/0x200 [ 681.774987] [<ffffffffa90665ee>] run_ksoftirqd+0x1e/0x30 [ 681.774989] [<ffffffffa90896b0>] smpboot_thread_fn+0x150/0x260 [ 681.774991] [<ffffffffa9089560>] ? sort_range+0x40/0x40 [ 681.774992] [<ffffffffa9085fe4>] kthread+0xe4/0x100 [ 681.774994] [<ffffffffa9085f00>] ? kthread_worker_fn+0x170/0x170 [ 681.774995] [<ffffffffa95d8d1e>] ret_from_fork+0x3e/0x70 mq/mqprio have their own ways to report qlen/drops by folding stats on all their queues, with appropriate locking. A second problem is that qdisc_tree_decrease_qlen() calls qdisc_lookup() without proper locking : concurrent qdisc updates could corrupt the list that qdisc_match_from_root() parses to find a qdisc given its handle. Fix first problem adding a TCQ_F_NOPARENT qdisc flag that qdisc_tree_decrease_qlen() can use to abort its tree traversal, as soon as it meets a mq/mqprio qdisc children. Second problem can be fixed by RCU protection. Qdisc are already freed after RCU grace period, so qdisc_list_add() and qdisc_list_del() simply have to use appropriate rcu list variants. A future patch will add a per struct netdev_queue list anchor, so that qdisc_tree_decrease_qlen() can have more efficient lookups. Reported-by: Daniele Fucini <dfucini@gmail.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Cong Wang <cwang@twopensource.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 602dd62d ] Dmitry Vyukov reported a memory leak using IPV6 SCTP sockets. We need to call inet6_destroy_sock() to properly release inet6 specific fields. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Konstantin Khlebnikov authored
[ Upstream commit 6adc5fd6 ] Proxy entries could have null pointer to net-device. Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Fixes: 84920c14 ("net: Allow ipv6 proxies and arp proxies be shown with iproute2") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 45f6fad8 ] This patch addresses multiple problems : UDP/RAW sendmsg() need to get a stable struct ipv6_txoptions while socket is not locked : Other threads can change np->opt concurrently. Dmitry posted a syzkaller (http://github.com/google/syzkaller) program desmonstrating use-after-free. Starting with TCP/DCCP lockless listeners, tcp_v6_syn_recv_sock() and dccp_v6_request_recv_sock() also need to use RCU protection to dereference np->opt once (before calling ipv6_dup_options()) This patch adds full RCU protection to np->opt Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit fbca9d2d ] During own review but also reported by Dmitry's syzkaller [1] it has been noticed that we trigger a heap out-of-bounds access on eBPF array maps when updating elements. This happens with each map whose map->value_size (specified during map creation time) is not multiple of 8 bytes. In array_map_alloc(), elem_size is round_up(attr->value_size, 8) and used to align array map slots for faster access. However, in function array_map_update_elem(), we update the element as ... memcpy(array->value + array->elem_size * index, value, array->elem_size); ... where we access 'value' out-of-bounds, since it was allocated from map_update_elem() from syscall side as kmalloc(map->value_size, GFP_USER) and later on copied through copy_from_user(value, uvalue, map->value_size). Thus, up to 7 bytes, we can access out-of-bounds. Same could happen from within an eBPF program, where in worst case we access beyond an eBPF program's designated stack. Since 1be7f75d ("bpf: enable non-root eBPF programs") didn't hit an official release yet, it only affects priviledged users. In case of array_map_lookup_elem(), the verifier prevents eBPF programs from accessing beyond map->value_size through check_map_access(). Also from syscall side map_lookup_elem() only copies map->value_size back to user, so nothing could leak. [1] http://github.com/google/syzkaller Fixes: 28fbcfa0 ("bpf: add array type of eBPF maps") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Quentin Casasnovas authored
[ Upstream commit 8c7188b2 ] Sasha's found a NULL pointer dereference in the RDS connection code when sending a message to an apparently unbound socket. The problem is caused by the code checking if the socket is bound in rds_sendmsg(), which checks the rs_bound_addr field without taking a lock on the socket. This opens a race where rs_bound_addr is temporarily set but where the transport is not in rds_bind(), leading to a NULL pointer dereference when trying to dereference 'trans' in __rds_conn_create(). Vegard wrote a reproducer for this issue, so kindly ask him to share if you're interested. I cannot reproduce the NULL pointer dereference using Vegard's reproducer with this patch, whereas I could without. Complete earlier incomplete fix to CVE-2015-6937: 74e98eb0 ("RDS: verify the underlying transport exists before creating a connection") Cc: David S. Miller <davem@davemloft.net> Cc: stable@vger.kernel.org Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com> Reviewed-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michal Kubeček authored
[ Upstream commit 264640fc ] If a fragmented multicast packet is received on an ethernet device which has an active macvlan on top of it, each fragment is duplicated and received both on the underlying device and the macvlan. If some fragments for macvlan are processed before the whole packet for the underlying device is reassembled, the "overlapping fragments" test in ip6_frag_queue() discards the whole fragment queue. To resolve this, add device ifindex to the search key and require it to match reassembling multicast packets and packets to link-local addresses. Note: similar patch has been already submitted by Yoshifuji Hideaki in http://patchwork.ozlabs.org/patch/220979/ but got lost and forgotten for some reason. Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Aaro Koskinen authored
[ Upstream commit 3c25a860 ] Commit fcb26ec5 ("broadcom: move all PHY_ID's to header") updated broadcom_tbl to use PHY_IDs, but incorrectly replaced 0x0143bca0 with PHY_ID_BCM5482 (making a duplicate entry, and completely omitting the original). Fix that. Fixes: fcb26ec5 ("broadcom: move all PHY_ID's to header") Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nikolay Aleksandrov authored
[ Upstream commit 4c698046 ] Similar to ipv4, when destroying an mrt table the static mfc entries and the static devices are kept, which leads to devices that can never be destroyed (because of refcnt taken) and leaked memory. Make sure that everything is cleaned up on netns destruction. Fixes: 8229efda ("netns: ip6mr: enable namespace support in ipv6 multicast forwarding code") CC: Benjamin Thery <benjamin.thery@bull.net> Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nikolay Aleksandrov authored
[ Upstream commit 0e615e96 ] When destroying an mrt table the static mfc entries and the static devices are kept, which leads to devices that can never be destroyed (because of refcnt taken) and leaked memory, for example: unreferenced object 0xffff880034c144c0 (size 192): comm "mfc-broken", pid 4777, jiffies 4320349055 (age 46001.964s) hex dump (first 32 bytes): 98 53 f0 34 00 88 ff ff 98 53 f0 34 00 88 ff ff .S.4.....S.4.... ef 0a 0a 14 01 02 03 04 00 00 00 00 01 00 00 00 ................ backtrace: [<ffffffff815c1b9e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff811ea6e0>] kmem_cache_alloc+0x190/0x300 [<ffffffff815931cb>] ip_mroute_setsockopt+0x5cb/0x910 [<ffffffff8153d575>] do_ip_setsockopt.isra.11+0x105/0xff0 [<ffffffff8153e490>] ip_setsockopt+0x30/0xa0 [<ffffffff81564e13>] raw_setsockopt+0x33/0x90 [<ffffffff814d1e14>] sock_common_setsockopt+0x14/0x20 [<ffffffff814d0b51>] SyS_setsockopt+0x71/0xc0 [<ffffffff815cdbf6>] entry_SYSCALL_64_fastpath+0x16/0x7a [<ffffffffffffffff>] 0xffffffffffffffff Make sure that everything is cleaned on netns destruction. Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 6900317f ] David and HacKurx reported a following/similar size overflow triggered in a grsecurity kernel, thanks to PaX's gcc size overflow plugin: (Already fixed in later grsecurity versions by Brad and PaX Team.) [ 1002.296137] PAX: size overflow detected in function scm_detach_fds net/core/scm.c:314 cicus.202_127 min, count: 4, decl: msg_controllen; num: 0; context: msghdr; [ 1002.296145] CPU: 0 PID: 3685 Comm: scm_rights_recv Not tainted 4.2.3-grsec+ #7 [ 1002.296149] Hardware name: Apple Inc. MacBookAir5,1/Mac-66F35F19FE2A0D05, [...] [ 1002.296153] ffffffff81c27366 0000000000000000 ffffffff81c27375 ffffc90007843aa8 [ 1002.296162] ffffffff818129ba 0000000000000000 ffffffff81c27366 ffffc90007843ad8 [ 1002.296169] ffffffff8121f838 fffffffffffffffc fffffffffffffffc ffffc90007843e60 [ 1002.296176] Call Trace: [ 1002.296190] [<ffffffff818129ba>] dump_stack+0x45/0x57 [ 1002.296200] [<ffffffff8121f838>] report_size_overflow+0x38/0x60 [ 1002.296209] [<ffffffff816a979e>] scm_detach_fds+0x2ce/0x300 [ 1002.296220] [<ffffffff81791899>] unix_stream_read_generic+0x609/0x930 [ 1002.296228] [<ffffffff81791c9f>] unix_stream_recvmsg+0x4f/0x60 [ 1002.296236] [<ffffffff8178dc00>] ? unix_set_peek_off+0x50/0x50 [ 1002.296243] [<ffffffff8168fac7>] sock_recvmsg+0x47/0x60 [ 1002.296248] [<ffffffff81691522>] ___sys_recvmsg+0xe2/0x1e0 [ 1002.296257] [<ffffffff81693496>] __sys_recvmsg+0x46/0x80 [ 1002.296263] [<ffffffff816934fc>] SyS_recvmsg+0x2c/0x40 [ 1002.296271] [<ffffffff8181a3ab>] entry_SYSCALL_64_fastpath+0x12/0x85 Further investigation showed that this can happen when an *odd* number of fds are being passed over AF_UNIX sockets. In these cases CMSG_LEN(i * sizeof(int)) and CMSG_SPACE(i * sizeof(int)), where i is the number of successfully passed fds, differ by 4 bytes due to the extra CMSG_ALIGN() padding in CMSG_SPACE() to an 8 byte boundary on 64 bit. The padding is used to align subsequent cmsg headers in the control buffer. When the control buffer passed in from the receiver side *lacks* these 4 bytes (e.g. due to buggy/wrong API usage), then msg->msg_controllen will overflow in scm_detach_fds(): int cmlen = CMSG_LEN(i * sizeof(int)); <--- cmlen w/o tail-padding err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG_SPACE(i * sizeof(int)); <--- cmlen w/ 4 byte extra tail-padding msg->msg_control += cmlen; msg->msg_controllen -= cmlen; <--- iff no tail-padding space here ... } ... wrap-around F.e. it will wrap to a length of 18446744073709551612 bytes in case the receiver passed in msg->msg_controllen of 20 bytes, and the sender properly transferred 1 fd to the receiver, so that its CMSG_LEN results in 20 bytes and CMSG_SPACE in 24 bytes. In case of MSG_CMSG_COMPAT (scm_detach_fds_compat()), I haven't seen an issue in my tests as alignment seems always on 4 byte boundary. Same should be in case of native 32 bit, where we end up with 4 byte boundaries as well. In practice, passing msg->msg_controllen of 20 to recvmsg() while receiving a single fd would mean that on successful return, msg->msg_controllen is being set by the kernel to 24 bytes instead, thus more than the input buffer advertised. It could f.e. become an issue if such application later on zeroes or copies the control buffer based on the returned msg->msg_controllen elsewhere. Maximum number of fds we can send is a hard upper limit SCM_MAX_FD (253). Going over the code, it seems like msg->msg_controllen is not being read after scm_detach_fds() in scm_recv() anymore by the kernel, good! Relevant recvmsg() handler are unix_dgram_recvmsg() (unix_seqpacket_recvmsg()) and unix_stream_recvmsg(). Both return back to their recvmsg() caller, and ___sys_recvmsg() places the updated length, that is, new msg_control - old msg_control pointer into msg->msg_controllen (hence the 24 bytes seen in the example). Long time ago, Wei Yongjun fixed something related in commit 1ac70e7a ("[NET]: Fix function put_cmsg() which may cause usr application memory overflow"). RFC3542, section 20.2. says: The fields shown as "XX" are possible padding, between the cmsghdr structure and the data, and between the data and the next cmsghdr structure, if required by the implementation. While sending an application may or may not include padding at the end of last ancillary data in msg_controllen and implementations must accept both as valid. On receiving a portable application must provide space for padding at the end of the last ancillary data as implementations may copy out the padding at the end of the control message buffer and include it in the received msg_controllen. When recvmsg() is called if msg_controllen is too small for all the ancillary data items including any trailing padding after the last item an implementation may set MSG_CTRUNC. Since we didn't place MSG_CTRUNC for already quite a long time, just do the same as in 1ac70e7a to avoid an overflow. Btw, even man-page author got this wrong :/ See db939c9b26e9 ("cmsg.3: Fix error in SCM_RIGHTS code sample"). Some people must have copied this (?), thus it got triggered in the wild (reported several times during boot by David and HacKurx). No Fixes tag this time as pre 2002 (that is, pre history tree). Reported-by: David Sterba <dave@jikos.cz> Reported-by: HacKurx <hackurx@gmail.com> Cc: PaX Team <pageexec@freemail.hu> Cc: Emese Revfy <re.emese@gmail.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: Eric Dumazet <edumazet@google.com> Reviewed-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 142a2e7e ] Dmitry provided a syzkaller (http://github.com/google/syzkaller) generated program that triggers the WARNING at net/ipv4/tcp.c:1729 in tcp_recvmsg() : WARN_ON(tp->copied_seq != tp->rcv_nxt && !(flags & (MSG_PEEK | MSG_TRUNC))); His program is specifically attempting a Cross SYN TCP exchange, that we support (for the pleasure of hackers ?), but it looks we lack proper tcp->copied_seq initialization. Thanks again Dmitry for your report and testings. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 5d4c9bfb ] tcp_send_rcvq() is used for re-injecting data into tcp receive queue. Problems : - No check against size is performed, allowed user to fool kernel in attempting very large memory allocations, eventually triggering OOM when memory is fragmented. - In case of fault during the copy we do not return correct errno. Lets use alloc_skb_with_frags() to cook optimal skbs. Fixes: 292e8d8c ("tcp: Move rcvq sending to tcp_input.c") Fixes: c0e88ff0 ("tcp: Repair socket queues") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Acked-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Yuchung Cheng authored
[ Upstream commit 0e45f4da ] Some middle-boxes black-hole the data after the Fast Open handshake (https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf). The exact reason is unknown. The work-around is to disable Fast Open temporarily after multiple recurring timeouts with few or no data delivered in the established state. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 1b8e6a01 ] When a passive TCP is created, we eventually call tcp_md5_do_add() with sk pointing to the child. It is not owner by the user yet (we will add this socket into listener accept queue a bit later anyway) But we do own the spinlock, so amend the lockdep annotation to avoid following splat : [ 8451.090932] net/ipv4/tcp_ipv4.c:923 suspicious rcu_dereference_protected() usage! [ 8451.090932] [ 8451.090932] other info that might help us debug this: [ 8451.090932] [ 8451.090934] [ 8451.090934] rcu_scheduler_active = 1, debug_locks = 1 [ 8451.090936] 3 locks held by socket_sockopt_/214795: [ 8451.090936] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff855c6ac1>] __netif_receive_skb_core+0x151/0xe90 [ 8451.090947] #1: (rcu_read_lock){.+.+..}, at: [<ffffffff85618143>] ip_local_deliver_finish+0x43/0x2b0 [ 8451.090952] #2: (slock-AF_INET){+.-...}, at: [<ffffffff855acda5>] sk_clone_lock+0x1c5/0x500 [ 8451.090958] [ 8451.090958] stack backtrace: [ 8451.090960] CPU: 7 PID: 214795 Comm: socket_sockopt_ [ 8451.091215] Call Trace: [ 8451.091216] <IRQ> [<ffffffff856fb29c>] dump_stack+0x55/0x76 [ 8451.091229] [<ffffffff85123b5b>] lockdep_rcu_suspicious+0xeb/0x110 [ 8451.091235] [<ffffffff8564544f>] tcp_md5_do_add+0x1bf/0x1e0 [ 8451.091239] [<ffffffff85645751>] tcp_v4_syn_recv_sock+0x1f1/0x4c0 [ 8451.091242] [<ffffffff85642b27>] ? tcp_v4_md5_hash_skb+0x167/0x190 [ 8451.091246] [<ffffffff85647c78>] tcp_check_req+0x3c8/0x500 [ 8451.091249] [<ffffffff856451ae>] ? tcp_v4_inbound_md5_hash+0x11e/0x190 [ 8451.091253] [<ffffffff85647170>] tcp_v4_rcv+0x3c0/0x9f0 [ 8451.091256] [<ffffffff85618143>] ? ip_local_deliver_finish+0x43/0x2b0 [ 8451.091260] [<ffffffff856181b6>] ip_local_deliver_finish+0xb6/0x2b0 [ 8451.091263] [<ffffffff85618143>] ? ip_local_deliver_finish+0x43/0x2b0 [ 8451.091267] [<ffffffff85618d38>] ip_local_deliver+0x48/0x80 [ 8451.091270] [<ffffffff85618510>] ip_rcv_finish+0x160/0x700 [ 8451.091273] [<ffffffff8561900e>] ip_rcv+0x29e/0x3d0 [ 8451.091277] [<ffffffff855c74b7>] __netif_receive_skb_core+0xb47/0xe90 Fixes: a8afca03 ("tcp: md5: protects md5sig_info with RCU") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Bjørn Mork authored
[ Upstream commit 68242a5a ] Thomas reports " 4gsystems sells two total different LTE-surfsticks under the same name. .. The newer version of XS Stick W100 is from "omega" .. Under windows the driver switches to the same ID, and uses MI03\6 for network and MI01\6 for modem. .. echo "1c9e 9b01" > /sys/bus/usb/drivers/qmi_wwan/new_id echo "1c9e 9b01" > /sys/bus/usb-serial/drivers/option1/new_id T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 4 Spd=480 MxCh= 0 D: Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs= 1 P: Vendor=1c9e ProdID=9b01 Rev=02.32 S: Manufacturer=USB Modem S: Product=USB Modem S: SerialNumber= C: #Ifs= 5 Cfg#= 1 Atr=80 MxPwr=500mA I: If#= 0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 1 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 2 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=option I: If#= 3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=qmi_wwan I: If#= 4 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-storage Now all important things are there: wwp0s29f7u2i3 (net), ttyUSB2 (at), cdc-wdm0 (qmi), ttyUSB1 (at) There is also ttyUSB0, but it is not usable, at least not for at. The device works well with qmi and ModemManager-NetworkManager. " Reported-by: Thomas Schäfer <tschaefer@t-online.de> Signed-off-by: Bjørn Mork <bjorn@mork.no> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Neil Horman authored
[ Upstream commit 41033f02 ] the OUTMCAST stat is double incremented, getting bumped once in the mcast code itself, and again in the common ip output path. Remove the mcast bump, as its not needed Validated by the reporter, with good results Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Claus Jensen <claus.jensen@microsemi.com> CC: Claus Jensen <claus.jensen@microsemi.com> CC: David Miller <davem@davemloft.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Fedin authored
[ Upstream commit 7750130d ] In some cases the crash is caused by nicvf_remove() being called from outside. For example, if we try to feed the device to vfio after the probe has failed for some reason. So, move the check to better place. Signed-off-by: Pavel Fedin <p.fedin@samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dragos Tatulea authored
[ Upstream commit 24cb7055 ] rtnl_fdb_dump always expects an index to be returned by the ndo_fdb_dump op, but when CONFIG_NET_SWITCHDEV is off, it returns an error. Fix that by returning the given unmodified idx. A similar fix was 0890cf6c ("switchdev: fix return value of switchdev_port_fdb_dump in case of error") but for the CONFIG_NET_SWITCHDEV=y case. Fixes: 45d4122c ("switchdev: add support for fdb add/del/dump via switchdev_port_obj ops.") Signed-off-by: Dragos Tatulea <dragos@endocode.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jason A. Donenfeld authored
[ Upstream commit b4fe85f9 ] Drivers like vxlan use the recently introduced udp_tunnel_xmit_skb/udp_tunnel6_xmit_skb APIs. udp_tunnel6_xmit_skb makes use of ip6tunnel_xmit, and ip6tunnel_xmit, after sending the packet, updates the struct stats using the usual u64_stats_update_begin/end calls on this_cpu_ptr(dev->tstats). udp_tunnel_xmit_skb makes use of iptunnel_xmit, which doesn't touch tstats, so drivers like vxlan, immediately after, call iptunnel_xmit_stats, which does the same thing - calls u64_stats_update_begin/end on this_cpu_ptr(dev->tstats). While vxlan is probably fine (I don't know?), calling a similar function from, say, an unbound workqueue, on a fully preemptable kernel causes real issues: [ 188.434537] BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u8:0/6 [ 188.435579] caller is debug_smp_processor_id+0x17/0x20 [ 188.435583] CPU: 0 PID: 6 Comm: kworker/u8:0 Not tainted 4.2.6 #2 [ 188.435607] Call Trace: [ 188.435611] [<ffffffff8234e936>] dump_stack+0x4f/0x7b [ 188.435615] [<ffffffff81915f3d>] check_preemption_disabled+0x19d/0x1c0 [ 188.435619] [<ffffffff81915f77>] debug_smp_processor_id+0x17/0x20 The solution would be to protect the whole this_cpu_ptr(dev->tstats)/u64_stats_update_begin/end blocks with disabling preemption and then reenabling it. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eran Ben Elisha authored
[ Upstream commit f5adbfee ] When cleaning slave's counter resources, we hold a spinlock that protects the slave's counters list. As part of the clean, we call __mlx4_clear_if_stat which calls mlx4_alloc_cmd_mailbox which is a sleepable function. In order to fix this issue, hold the spinlock, and copy all counter indices into a temporary array, and release the spinlock. Afterwards, iterate over this array and free every counter. Repeat this scenario until the original list is empty (a new counter might have been added while releasing the counters from the temporary array). Fixes: b72ca7e9 ("net/mlx4_core: Reset counters data when freed") Reported-by: Moni Shoua <monis@mellanox.com> Tested-by: Moni Shoua <monis@mellanox.com> Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Eran Ben Elisha <eranbe@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
lucien authored
[ Upstream commit ed5a377d ] now sctp auth cannot work well when setting a hmacid manually, which is caused by that we didn't use the network order for hmacid, so fix it by adding the transformation in sctp_auth_ep_set_hmacs. even we set hmacid with the network order in userspace, it still can't work, because of this condition in sctp_auth_ep_set_hmacs(): if (id > SCTP_AUTH_HMAC_ID_MAX) return -EOPNOTSUPP; so this wasn't working before and thus it won't break compatibility. Fixes: 65b07e5d ("[SCTP]: API updates to suport SCTP-AUTH extensions.") Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 5cfb4c8d ] Since it's introduction in commit 69e3c75f ("net: TX_RING and packet mmap"), TX_RING could be used from SOCK_DGRAM and SOCK_RAW side. When used with SOCK_DGRAM only, the size_max > dev->mtu + reserve check should have reserve as 0, but currently, this is unconditionally set (in it's original form as dev->hard_header_len). I think this is not correct since tpacket_fill_skb() would then take dev->mtu and dev->hard_header_len into account for SOCK_DGRAM, the extra VLAN_HLEN could be possible in both cases. Presumably, the reserve code was copied from packet_snd(), but later on missed the check. Make it similar as we have it in packet_snd(). Fixes: 69e3c75f ("net: TX_RING and packet mmap") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit c72219b7 ] In case no struct sockaddr_ll has been passed to packet socket's sendmsg() when doing a TX_RING flush run, then skb->protocol is set to po->num instead, which is the protocol passed via socket(2)/bind(2). Applications only xmitting can go the path of allocating the socket as socket(PF_PACKET, <mode>, 0) and do a bind(2) on the TX_RING with sll_protocol of 0. That way, register_prot_hook() is neither called on creation nor on bind time, which saves cycles when there's no interest in capturing anyway. That leaves us however with po->num 0 instead and therefore the TX_RING flush run sets skb->protocol to 0 as well. Eric reported that this leads to problems when using tools like trafgen over bonding device. I.e. the bonding's hash function could invoke the kernel's flow dissector, which depends on skb->protocol being properly set. In the current situation, all the traffic is then directed to a single slave. Fix it up by inferring skb->protocol from the Ethernet header when not set and we have ARPHRD_ETHER device type. This is only done in case of SOCK_RAW and where we have a dev->hard_header_len length. In case of ARPHRD_ETHER devices, this is guaranteed to cover ETH_HLEN, and therefore being accessed on the skb after the skb_store_bits(). Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 3c70c132 ] Packet sockets can be used by various net devices and are not really restricted to ARPHRD_ETHER device types. However, when currently checking for the extra 4 bytes that can be transmitted in VLAN case, our assumption is that we generally probe on ARPHRD_ETHER devices. Therefore, before looking into Ethernet header, check the device type first. This also fixes the issue where non-ARPHRD_ETHER devices could have no dev->hard_header_len in TX_RING SOCK_RAW case, and thus the check would test unfilled linear part of the skb (instead of non-linear). Fixes: 57f89bfa ("network: Allow af_packet to transmit +4 bytes for VLAN packets.") Fixes: 52f1454f ("packet: allow to transmit +4 byte in TX_RING slot for VLAN case") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 8fd6c80d ] We concluded that the skb_probe_transport_header() should better be called unconditionally. Avoiding the call into the flow dissector has also not really much to do with the direct xmit mode. While it seems that only virtio_net code makes use of GSO from non RX/TX ring packet socket paths, we should probe for a transport header nevertheless before they hit devices. Reference: http://thread.gmane.org/gmane.linux.network/386173/Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-