#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
mainmenu "IA-64 Linux Kernel Configuration"
source "init/Kconfig"
menu "Processor type and features"
config IA64
bool
default y
help
The Itanium Processor Family is Intel's 64-bit successor to
the 32-bit X86 line. The IA-64 Linux project has a home
page at and a mailing list at
linux-ia64@linuxia64.org.
config MMU
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
default y
config TIME_INTERPOLATION
bool
default y
choice
prompt "IA-64 processor type"
default ITANIUM
config ITANIUM
bool "Itanium"
help
Select your IA-64 processor type. The default is Intel Itanium.
This choice is safe for all IA-64 systems, but may not perform
optimally on systems with, say, Itanium 2 or newer processors.
config MCKINLEY
bool "Itanium 2"
help
Select this to configure for an Itanium 2 (McKinley) processor.
endchoice
choice
prompt "IA-64 system type"
default IA64_GENERIC
config IA64_GENERIC
bool "generic"
---help---
This selects the system type of your hardware. A "generic" kernel
will run on any supported IA-64 system. However, if you configure
a kernel for your specific system, it will be faster and smaller.
To find out what type of IA-64 system you have, you may want to
check the IA-64 Linux web site at .
As of the time of this writing, most hardware is DIG compliant,
so the "DIG-compliant" option is usually the right choice.
HP-simulator For the HP simulator
().
HP-zx1 For HP zx1-based systems.
SGI-SN2 For SGI Altix systems
DIG-compliant For DIG ("Developer's Interface Guide") compliant
systems.
If you don't know what to do, choose "generic".
config IA64_DIG
bool "DIG-compliant"
config IA64_HP_SIM
bool "HP-simulator"
config IA64_HP_ZX1
bool "HP-zx1"
help
Build a kernel that runs on HP zx1-based systems. This adds support
for the zx1 I/O MMU and makes root bus bridges appear in PCI config
space (required for zx1 agpgart support).
config IA64_SGI_SN2
bool "SGI-SN2"
endchoice
choice
prompt "Kernel page size"
default IA64_PAGE_SIZE_16KB
config IA64_PAGE_SIZE_4KB
bool "4KB"
---help---
This lets you select the page size of the kernel. For best IA-64
performance, a page size of 8KB or 16KB is recommended. For best
IA-32 compatibility, a page size of 4KB should be selected (the vast
majority of IA-32 binaries work perfectly fine with a larger page
size). For Itanium 2 or newer systems, a page size of 64KB can also
be selected.
4KB For best IA-32 compatibility
8KB For best IA-64 performance
16KB For best IA-64 performance
64KB Requires Itanium 2 or newer processor.
If you don't know what to do, choose 16KB.
config IA64_PAGE_SIZE_8KB
bool "8KB"
config IA64_PAGE_SIZE_16KB
bool "16KB"
config IA64_PAGE_SIZE_64KB
depends on !ITANIUM
bool "64KB"
endchoice
config ACPI
bool
depends on !IA64_HP_SIM
default y
---help---
ACPI/OSPM support for Linux is currently under development. As such,
this support is preliminary and EXPERIMENTAL. Configuring ACPI
support enables kernel interfaces that allow higher level software
(OSPM) to manipulate ACPI defined hardware and software interfaces,
including the evaluation of ACPI control methods. If unsure, choose
N here. Note, this option will enlarge your kernel by about 120K.
This support requires an ACPI compliant platform (hardware/firmware).
If both ACPI and Advanced Power Management (APM) support are
configured, whichever is loaded first shall be used.
This code DOES NOT currently provide a complete OSPM implementation
-- it has not yet reached APM's level of functionality. When fully
implemented, Linux ACPI/OSPM will provide a more robust functional
replacement for legacy configuration and power management
interfaces, including the Plug-and-Play BIOS specification (PnP
BIOS), the Multi-Processor Specification (MPS), and the Advanced
Power Management specification (APM).
Linux support for ACPI/OSPM is based on Intel Corporation's ACPI
Component Architecture (ACPI CA). The latest ACPI CA source code,
documentation, debug builds, and implementation status information
can be downloaded from:
.
The ACPI Sourceforge project may also be of interest:
config ACPI_EFI
bool
depends on !IA64_HP_SIM
default y
config ACPI_INTERPRETER
bool
depends on !IA64_HP_SIM
default y
config ACPI_KERNEL_CONFIG
bool
depends on !IA64_HP_SIM
default y
help
If you say `Y' here, Linux's ACPI support will use the
hardware-level system descriptions found on IA-64 systems.
config IA64_BRL_EMU
bool
depends on ITANIUM
default y
config ITANIUM_BSTEP_SPECIFIC
bool "Enable Itanium B-step specific code"
depends on ITANIUM
help
Select this option to build a kernel for an Itanium prototype system
with a B-step CPU. You have a B-step CPU if the "revision" field in
/proc/cpuinfo has a value in the range from 1 to 4.
# align cache-sensitive data to 128 bytes
config IA64_L1_CACHE_SHIFT
int
default "7" if MCKINLEY
default "6" if ITANIUM
# align cache-sensitive data to 64 bytes
config MCKINLEY_ASTEP_SPECIFIC
bool "Enable McKinley A-step specific code"
depends on MCKINLEY
help
Select this option to build a kernel for an IA-64 McKinley prototype
system with any A-stepping CPU.
config MCKINLEY_A0_SPECIFIC
bool "Enable McKinley A0/A1-step specific code"
depends on MCKINLEY_ASTEP_SPECIFIC
help
Select this option to build a kernel for an IA-64 McKinley prototype
system with an A0 or A1 stepping CPU.
config NUMA
bool "Enable NUMA support" if IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y if IA64_SGI_SN2
help
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
Access). This option is for configuring high-end multiprocessor
server systems. If in doubt, say N.
choice
prompt "Maximum Memory per NUMA Node" if NUMA && IA64_DIG
depends on NUMA && IA64_DIG
default IA64_NODESIZE_16GB
config IA64_NODESIZE_16GB
bool "16GB"
config IA64_NODESIZE_64GB
bool "64GB"
config IA64_NODESIZE_256GB
bool "256GB"
endchoice
config DISCONTIGMEM
bool
depends on IA64_SGI_SN2 || (IA64_GENERIC || IA64_DIG || IA64_HP_ZX1) && NUMA
default y
help
Say Y to support efficient handling of discontiguous physical memory,
for architectures which are either NUMA (Non-Uniform Memory Access)
or have huge holes in the physical address space for other reasons.
See for more.
config VIRTUAL_MEM_MAP
bool "Enable Virtual Mem Map"
depends on !NUMA
default y if IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
help
Say Y to compile the kernel with support for a virtual mem map.
This is an alternate method of supporting large holes in the
physical address space on non NUMA machines. Since the DISCONTIGMEM
option is not supported on machines with the ZX1 chipset, this is
the only way of supporting more than 1 Gb of memory on those
machines. This code also only takes effect if a memory hole of
greater than 1 Gb is found during boot, so it is safe to enable
unless you require the DISCONTIGMEM option for your machine. If you
are unsure, say Y.
config IA64_MCA
bool "Enable IA-64 Machine Check Abort" if IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y if IA64_SGI_SN2
help
Say Y here to enable machine check support for IA-64. If you're
unsure, answer Y.
config PM
bool
depends on IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y
---help---
"Power Management" means that parts of your computer are shut
off or put into a power conserving "sleep" mode if they are not
being used. There are two competing standards for doing this: APM
and ACPI. If you want to use either one, say Y here and then also
to the requisite support below.
Power Management is most important for battery powered laptop
computers; if you have a laptop, check out the Linux Laptop home
page on the WWW at
and the
Battery Powered Linux mini-HOWTO, available from
.
Note that, even if you say N here, Linux on the x86 architecture
will issue the hlt instruction if nothing is to be done, thereby
sending the processor to sleep and saving power.
config IOSAPIC
bool
depends on IA64_GENERIC || IA64_DIG || IA64_HP_ZX1 || IA64_SGI_SN2
default y
config IA64_SGI_SN_DEBUG
bool "Enable extra debugging code"
depends on IA64_SGI_SN2
help
Turns on extra debugging code in the SGI SN (Scalable NUMA) platform
for IA-64. Unless you are debugging problems on an SGI SN IA-64 box,
say N.
config IA64_SGI_SN_SIM
bool "Enable SGI Medusa Simulator Support"
depends on IA64_SGI_SN2
help
If you are compiling a kernel that will run under SGI's IA-64
simulator (Medusa) then say Y, otherwise say N.
config IA64_SGI_AUTOTEST
bool "Enable autotest (llsc). Option to run cache test instead of booting"
depends on IA64_SGI_SN2
help
Build a kernel used for hardware validation. If you include the
keyword "autotest" on the boot command line, the kernel does NOT boot.
Instead, it starts all cpus and runs cache coherency tests instead.
If unsure, say N.
config SERIAL_SGI_L1_PROTOCOL
bool "Enable protocol mode for the L1 console"
depends on IA64_SGI_SN2
help
Uses protocol mode instead of raw mode for the level 1 console on the
SGI SN (Scalable NUMA) platform for IA-64. If you are compiling for
an SGI SN box then Y is the recommended value, otherwise say N.
config PERCPU_IRQ
bool
depends on IA64_SGI_SN2
default y
# On IA-64, we always want an ELF /proc/kcore.
config KCORE_ELF
bool
default y
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config FORCE_MAX_ZONEORDER
int
default "18"
config HUGETLB_PAGE
bool "IA-64 Huge TLB Page Support"
choice
prompt "IA-64 Huge TLB Page Size"
depends on HUGETLB_PAGE
default HUGETLB_PAGE_SIZE_16MB
config HUGETLB_PAGE_SIZE_4GB
depends on MCKINLEY
bool "4GB"
config HUGETLB_PAGE_SIZE_1GB
depends on MCKINLEY
bool "1GB"
config HUGETLB_PAGE_SIZE_256MB
bool "256MB"
config HUGETLB_PAGE_SIZE_64MB
bool "64MB"
config HUGETLB_PAGE_SIZE_16MB
bool "16MB"
config HUGETLB_PAGE_SIZE_4MB
bool "4MB"
config HUGETLB_PAGE_SIZE_1MB
bool "1MB"
config HUGETLB_PAGE_SIZE_256KB
bool "256KB"
endchoice
config IA64_PAL_IDLE
bool "Use PAL_HALT_LIGHT in idle loop"
---help---
Say Y here to enable use of PAL_HALT_LIGHT in the cpu_idle loop.
This allows the CPU to enter a low power state when idle. You
can enable CONFIG_IA64_PALINFO and check /proc/pal/cpu0/power_info
to see the power consumption and latency for this state. If you're
unsure your firmware supports it, answer N.
config SMP
bool "SMP support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU say N. If you have a system with more than
one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
systems, but will use only one CPU of a multiprocessor system. If
you say Y here, the kernel will run on many, but not all,
singleprocessor system. On a singleprocessor system, the kernel
will run faster if you say N here.
See also the ,
, and the SMP-HOWTO available at
.
If you don't know what to do here, say N.
config PREEMPT
bool "Preemptible Kernel"
help
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
This allows applications to run more reliably even when the system is
under load.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
config IA32_SUPPORT
bool "Support running of Linux/x86 binaries"
help
IA-64 processors can execute IA-32 (X86) instructions. By
saying Y here, the kernel will include IA-32 system call
emulation support which makes it possible to transparently
run IA-32 Linux binaries on an IA-64 Linux system.
If in doubt, say Y.
config COMPAT
bool
depends on IA32_SUPPORT
default y
config PERFMON
bool "Performance monitor support"
help
Selects whether support for the IA-64 performance monitor hardware
is included in the kernel. This makes some kernel data-structures a
little bigger and slows down execution a bit, but it is generally
a good idea to turn this on. If you're unsure, say Y.
config IA64_PALINFO
tristate "/proc/pal support"
help
If you say Y here, you are able to get PAL (Processor Abstraction
Layer) information in /proc/pal. This contains useful information
about the processors in your systems, such as cache and TLB sizes
and the PAL firmware version in use.
To use this option, you have to ensure that the "/proc file system
support" (CONFIG_PROC_FS) is enabled, too.
config EFI_VARS
tristate "/proc/efi/vars support"
help
If you say Y here, you are able to get EFI (Extensible Firmware
Interface) variable information in /proc/efi/vars. You may read,
write, create, and destroy EFI variables through this interface.
To use this option, you have to check that the "/proc file system
support" (CONFIG_PROC_FS) is enabled, too.
config NR_CPUS
int "Maximum number of CPUs (2-64)"
depends on SMP
default "64"
source "fs/Kconfig.binfmt"
if !IA64_HP_SIM
source "drivers/acpi/Kconfig"
config PCI
bool "PCI support"
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config PCI_DOMAINS
bool
default PCI
source "drivers/pci/Kconfig"
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at ) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/pci/hotplug/Kconfig"
source "drivers/pcmcia/Kconfig"
source "drivers/parport/Kconfig"
endif
endmenu
source "drivers/base/Kconfig"
if !IA64_HP_SIM
source "drivers/mtd/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/ide/Kconfig"
source "drivers/ieee1394/Kconfig"
source "drivers/message/i2o/Kconfig"
source "drivers/md/Kconfig"
source "drivers/message/fusion/Kconfig"
endif
source "drivers/scsi/Kconfig"
source "net/Kconfig"
if !IA64_HP_SIM
source "net/ax25/Kconfig"
source "drivers/isdn/Kconfig"
source "drivers/cdrom/Kconfig"
#
# input before char - char/joystick depends on it. As does USB.
#
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
#source drivers/misc/Config.in
source "drivers/media/Kconfig"
endif
menu "Block devices"
depends on IA64_HP_SIM
config BLK_DEV_LOOP
tristate "Loopback device support"
config BLK_DEV_NBD
tristate "Network block device support"
depends on NET
config BLK_DEV_RAM
tristate "RAM disk support"
config BLK_DEV_RAM_SIZE
int "Default RAM disk size"
depends on BLK_DEV_RAM
default "4096"
endmenu
source "fs/Kconfig"
if !IA64_HP_SIM
source "drivers/video/Kconfig"
source "sound/Kconfig"
source "drivers/usb/Kconfig"
source "net/bluetooth/Kconfig"
endif
source "lib/Kconfig"
source "arch/ia64/hp/sim/Kconfig"
menu "Kernel hacking"
choice
prompt "Physical memory granularity"
default IA64_GRANULE_64MB
config IA64_GRANULE_16MB
bool "16MB"
help
IA-64 identity-mapped regions use a large page size called "granules".
Select "16MB" for a small granule size.
Select "64MB" for a large granule size. This is the current default.
config IA64_GRANULE_64MB
bool "64MB"
endchoice
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
config IA64_PRINT_HAZARDS
bool "Print possible IA-64 dependency violations to console"
depends on DEBUG_KERNEL
help
Selecting this option prints more information for Illegal Dependency
Faults, that is, for Read-after-Write (RAW), Write-after-Write (WAW),
or Write-after-Read (WAR) violations. This option is ignored if you
are compiling for an Itanium A step processor
(CONFIG_ITANIUM_ASTEP_SPECIFIC). If you're unsure, select Y.
config DISABLE_VHPT
bool "Disable VHPT"
depends on DEBUG_KERNEL
help
The Virtual Hash Page Table (VHPT) enhances virtual address
translation performance. Normally you want the VHPT active but you
can select this option to disable the VHPT for debugging. If you're
unsure, answer N.
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in . Don't say Y
unless you really know what this hack does.
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
config DEBUG_SPINLOCK
bool "Spinlock debugging"
depends on DEBUG_KERNEL
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config DEBUG_SPINLOCK_SLEEP
bool "Sleep-inside-spinlock checking"
help
If you say Y here, various routines which may sleep will become very
noisy if they are called with a spinlock held.
config IA64_DEBUG_CMPXCHG
bool "Turn on compare-and-exchange bug checking (slow!)"
depends on DEBUG_KERNEL
help
Selecting this option turns on bug checking for the IA-64
compare-and-exchange instructions. This is slow! Itaniums
from step B3 or later don't have this problem. If you're unsure,
select N.
config IA64_DEBUG_IRQ
bool "Turn on irq debug checks (slow!)"
depends on DEBUG_KERNEL
help
Selecting this option turns on bug checking for the IA-64 irq_save
and restore instructions. It's useful for tracking down spinlock
problems, but slow! If you're unsure, select N.
config DEBUG_INFO
bool "Compile the kernel with debug info"
depends on DEBUG_KERNEL
help
If you say Y here the resulting kernel image will include
debugging info resulting in a larger kernel image.
Say Y here only if you plan to use gdb to debug the kernel.
If you don't debug the kernel, you can say N.
endmenu
source "security/Kconfig"
source "crypto/Kconfig"