// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved. * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com> * Author: Zhichang Yuan <yuanzhichang@hisilicon.com> */ #define pr_fmt(fmt) "LOGIC PIO: " fmt #include <linux/of.h> #include <linux/io.h> #include <linux/logic_pio.h> #include <linux/mm.h> #include <linux/rculist.h> #include <linux/sizes.h> #include <linux/slab.h> /* The unique hardware address list */ static LIST_HEAD(io_range_list); static DEFINE_MUTEX(io_range_mutex); /* Consider a kernel general helper for this */ #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) /** * logic_pio_register_range - register logical PIO range for a host * @new_range: pointer to the IO range to be registered. * * Returns 0 on success, the error code in case of failure. * * Register a new IO range node in the IO range list. */ int logic_pio_register_range(struct logic_pio_hwaddr *new_range) { struct logic_pio_hwaddr *range; resource_size_t start; resource_size_t end; resource_size_t mmio_end = 0; resource_size_t iio_sz = MMIO_UPPER_LIMIT; int ret = 0; if (!new_range || !new_range->fwnode || !new_range->size) return -EINVAL; start = new_range->hw_start; end = new_range->hw_start + new_range->size; mutex_lock(&io_range_mutex); list_for_each_entry(range, &io_range_list, list) { if (range->fwnode == new_range->fwnode) { /* range already there */ goto end_register; } if (range->flags == LOGIC_PIO_CPU_MMIO && new_range->flags == LOGIC_PIO_CPU_MMIO) { /* for MMIO ranges we need to check for overlap */ if (start >= range->hw_start + range->size || end < range->hw_start) { mmio_end = range->io_start + range->size; } else { ret = -EFAULT; goto end_register; } } else if (range->flags == LOGIC_PIO_INDIRECT && new_range->flags == LOGIC_PIO_INDIRECT) { iio_sz += range->size; } } /* range not registered yet, check for available space */ if (new_range->flags == LOGIC_PIO_CPU_MMIO) { if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) { /* if it's too big check if 64K space can be reserved */ if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) { ret = -E2BIG; goto end_register; } new_range->size = SZ_64K; pr_warn("Requested IO range too big, new size set to 64K\n"); } new_range->io_start = mmio_end; } else if (new_range->flags == LOGIC_PIO_INDIRECT) { if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) { ret = -E2BIG; goto end_register; } new_range->io_start = iio_sz; } else { /* invalid flag */ ret = -EINVAL; goto end_register; } list_add_tail_rcu(&new_range->list, &io_range_list); end_register: mutex_unlock(&io_range_mutex); return ret; } /** * logic_pio_unregister_range - unregister a logical PIO range for a host * @range: pointer to the IO range which has been already registered. * * Unregister a previously-registered IO range node. */ void logic_pio_unregister_range(struct logic_pio_hwaddr *range) { mutex_lock(&io_range_mutex); list_del_rcu(&range->list); mutex_unlock(&io_range_mutex); synchronize_rcu(); } /** * find_io_range_by_fwnode - find logical PIO range for given FW node * @fwnode: FW node handle associated with logical PIO range * * Returns pointer to node on success, NULL otherwise. * * Traverse the io_range_list to find the registered node for @fwnode. */ struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode) { struct logic_pio_hwaddr *range, *found_range = NULL; rcu_read_lock(); list_for_each_entry_rcu(range, &io_range_list, list) { if (range->fwnode == fwnode) { found_range = range; break; } } rcu_read_unlock(); return found_range; } /* Return a registered range given an input PIO token */ static struct logic_pio_hwaddr *find_io_range(unsigned long pio) { struct logic_pio_hwaddr *range, *found_range = NULL; rcu_read_lock(); list_for_each_entry_rcu(range, &io_range_list, list) { if (in_range(pio, range->io_start, range->size)) { found_range = range; break; } } rcu_read_unlock(); if (!found_range) pr_err("PIO entry token 0x%lx invalid\n", pio); return found_range; } /** * logic_pio_to_hwaddr - translate logical PIO to HW address * @pio: logical PIO value * * Returns HW address if valid, ~0 otherwise. * * Translate the input logical PIO to the corresponding hardware address. * The input PIO should be unique in the whole logical PIO space. */ resource_size_t logic_pio_to_hwaddr(unsigned long pio) { struct logic_pio_hwaddr *range; range = find_io_range(pio); if (range) return range->hw_start + pio - range->io_start; return (resource_size_t)~0; } /** * logic_pio_trans_hwaddr - translate HW address to logical PIO * @fwnode: FW node reference for the host * @addr: Host-relative HW address * @size: size to translate * * Returns Logical PIO value if successful, ~0UL otherwise */ unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode, resource_size_t addr, resource_size_t size) { struct logic_pio_hwaddr *range; range = find_io_range_by_fwnode(fwnode); if (!range || range->flags == LOGIC_PIO_CPU_MMIO) { pr_err("IO range not found or invalid\n"); return ~0UL; } if (range->size < size) { pr_err("resource size %pa cannot fit in IO range size %pa\n", &size, &range->size); return ~0UL; } return addr - range->hw_start + range->io_start; } unsigned long logic_pio_trans_cpuaddr(resource_size_t addr) { struct logic_pio_hwaddr *range; rcu_read_lock(); list_for_each_entry_rcu(range, &io_range_list, list) { if (range->flags != LOGIC_PIO_CPU_MMIO) continue; if (in_range(addr, range->hw_start, range->size)) { unsigned long cpuaddr; cpuaddr = addr - range->hw_start + range->io_start; rcu_read_unlock(); return cpuaddr; } } rcu_read_unlock(); pr_err("addr %pa not registered in io_range_list\n", &addr); return ~0UL; } #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE) #define BUILD_LOGIC_IO(bw, type) \ type logic_in##bw(unsigned long addr) \ { \ type ret = (type)~0; \ \ if (addr < MMIO_UPPER_LIMIT) { \ ret = read##bw(PCI_IOBASE + addr); \ } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \ struct logic_pio_hwaddr *entry = find_io_range(addr); \ \ if (entry && entry->ops) \ ret = entry->ops->in(entry->hostdata, \ addr, sizeof(type)); \ else \ WARN_ON_ONCE(1); \ } \ return ret; \ } \ \ void logic_out##bw(type value, unsigned long addr) \ { \ if (addr < MMIO_UPPER_LIMIT) { \ write##bw(value, PCI_IOBASE + addr); \ } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \ struct logic_pio_hwaddr *entry = find_io_range(addr); \ \ if (entry && entry->ops) \ entry->ops->out(entry->hostdata, \ addr, value, sizeof(type)); \ else \ WARN_ON_ONCE(1); \ } \ } \ \ void logic_ins##bw(unsigned long addr, void *buffer, \ unsigned int count) \ { \ if (addr < MMIO_UPPER_LIMIT) { \ reads##bw(PCI_IOBASE + addr, buffer, count); \ } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \ struct logic_pio_hwaddr *entry = find_io_range(addr); \ \ if (entry && entry->ops) \ entry->ops->ins(entry->hostdata, \ addr, buffer, sizeof(type), count); \ else \ WARN_ON_ONCE(1); \ } \ \ } \ \ void logic_outs##bw(unsigned long addr, const void *buffer, \ unsigned int count) \ { \ if (addr < MMIO_UPPER_LIMIT) { \ writes##bw(PCI_IOBASE + addr, buffer, count); \ } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \ struct logic_pio_hwaddr *entry = find_io_range(addr); \ \ if (entry && entry->ops) \ entry->ops->outs(entry->hostdata, \ addr, buffer, sizeof(type), count); \ else \ WARN_ON_ONCE(1); \ } \ } BUILD_LOGIC_IO(b, u8) EXPORT_SYMBOL(logic_inb); EXPORT_SYMBOL(logic_insb); EXPORT_SYMBOL(logic_outb); EXPORT_SYMBOL(logic_outsb); BUILD_LOGIC_IO(w, u16) EXPORT_SYMBOL(logic_inw); EXPORT_SYMBOL(logic_insw); EXPORT_SYMBOL(logic_outw); EXPORT_SYMBOL(logic_outsw); BUILD_LOGIC_IO(l, u32) EXPORT_SYMBOL(logic_inl); EXPORT_SYMBOL(logic_insl); EXPORT_SYMBOL(logic_outl); EXPORT_SYMBOL(logic_outsl); #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */