/* * zsmalloc memory allocator * * Copyright (C) 2011 Nitin Gupta * Copyright (C) 2012, 2013 Minchan Kim * * This code is released using a dual license strategy: BSD/GPL * You can choose the license that better fits your requirements. * * Released under the terms of 3-clause BSD License * Released under the terms of GNU General Public License Version 2.0 */ /* * Following is how we use various fields and flags of underlying * struct page(s) to form a zspage. * * Usage of struct page fields: * page->private: points to zspage * page->index: links together all component pages of a zspage * For the huge page, this is always 0, so we use this field * to store handle. * page->page_type: first object offset in a subpage of zspage * * Usage of struct page flags: * PG_private: identifies the first component page * PG_owner_priv_1: identifies the huge component page * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* * lock ordering: * page_lock * pool->lock * zspage->lock */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/bitops.h> #include <linux/errno.h> #include <linux/highmem.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/pgtable.h> #include <asm/tlbflush.h> #include <linux/cpumask.h> #include <linux/cpu.h> #include <linux/vmalloc.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <linux/shrinker.h> #include <linux/types.h> #include <linux/debugfs.h> #include <linux/zsmalloc.h> #include <linux/zpool.h> #include <linux/migrate.h> #include <linux/wait.h> #include <linux/pagemap.h> #include <linux/fs.h> #include <linux/local_lock.h> #define ZSPAGE_MAGIC 0x58 /* * This must be power of 2 and greater than or equal to sizeof(link_free). * These two conditions ensure that any 'struct link_free' itself doesn't * span more than 1 page which avoids complex case of mapping 2 pages simply * to restore link_free pointer values. */ #define ZS_ALIGN 8 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) /* * Object location (<PFN>, <obj_idx>) is encoded as * a single (unsigned long) handle value. * * Note that object index <obj_idx> starts from 0. * * This is made more complicated by various memory models and PAE. */ #ifndef MAX_POSSIBLE_PHYSMEM_BITS #ifdef MAX_PHYSMEM_BITS #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS #else /* * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just * be PAGE_SHIFT */ #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG #endif #endif #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) /* * Head in allocated object should have OBJ_ALLOCATED_TAG * to identify the object was allocated or not. * It's okay to add the status bit in the least bit because * header keeps handle which is 4byte-aligned address so we * have room for two bit at least. */ #define OBJ_ALLOCATED_TAG 1 #define OBJ_TAG_BITS 1 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) #define HUGE_BITS 1 #define FULLNESS_BITS 4 #define CLASS_BITS 8 #define ISOLATED_BITS 5 #define MAGIC_VAL_BITS 8 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ #define ZS_MIN_ALLOC_SIZE \ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) /* each chunk includes extra space to keep handle */ #define ZS_MAX_ALLOC_SIZE PAGE_SIZE /* * On systems with 4K page size, this gives 255 size classes! There is a * trader-off here: * - Large number of size classes is potentially wasteful as free page are * spread across these classes * - Small number of size classes causes large internal fragmentation * - Probably its better to use specific size classes (empirically * determined). NOTE: all those class sizes must be set as multiple of * ZS_ALIGN to make sure link_free itself never has to span 2 pages. * * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN * (reason above) */ #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ ZS_SIZE_CLASS_DELTA) + 1) /* * Pages are distinguished by the ratio of used memory (that is the ratio * of ->inuse objects to all objects that page can store). For example, * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. * * The number of fullness groups is not random. It allows us to keep * difference between the least busy page in the group (minimum permitted * number of ->inuse objects) and the most busy page (maximum permitted * number of ->inuse objects) at a reasonable value. */ enum fullness_group { ZS_INUSE_RATIO_0, ZS_INUSE_RATIO_10, /* NOTE: 8 more fullness groups here */ ZS_INUSE_RATIO_99 = 10, ZS_INUSE_RATIO_100, NR_FULLNESS_GROUPS, }; enum class_stat_type { /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, ZS_OBJS_INUSE, NR_CLASS_STAT_TYPES, }; struct zs_size_stat { unsigned long objs[NR_CLASS_STAT_TYPES]; }; #ifdef CONFIG_ZSMALLOC_STAT static struct dentry *zs_stat_root; #endif static size_t huge_class_size; struct size_class { struct list_head fullness_list[NR_FULLNESS_GROUPS]; /* * Size of objects stored in this class. Must be multiple * of ZS_ALIGN. */ int size; int objs_per_zspage; /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ int pages_per_zspage; unsigned int index; struct zs_size_stat stats; }; /* * Placed within free objects to form a singly linked list. * For every zspage, zspage->freeobj gives head of this list. * * This must be power of 2 and less than or equal to ZS_ALIGN */ struct link_free { union { /* * Free object index; * It's valid for non-allocated object */ unsigned long next; /* * Handle of allocated object. */ unsigned long handle; }; }; struct zs_pool { const char *name; struct size_class *size_class[ZS_SIZE_CLASSES]; struct kmem_cache *handle_cachep; struct kmem_cache *zspage_cachep; atomic_long_t pages_allocated; struct zs_pool_stats stats; /* Compact classes */ struct shrinker *shrinker; #ifdef CONFIG_ZSMALLOC_STAT struct dentry *stat_dentry; #endif #ifdef CONFIG_COMPACTION struct work_struct free_work; #endif spinlock_t lock; atomic_t compaction_in_progress; }; struct zspage { struct { unsigned int huge:HUGE_BITS; unsigned int fullness:FULLNESS_BITS; unsigned int class:CLASS_BITS + 1; unsigned int isolated:ISOLATED_BITS; unsigned int magic:MAGIC_VAL_BITS; }; unsigned int inuse; unsigned int freeobj; struct page *first_page; struct list_head list; /* fullness list */ struct zs_pool *pool; rwlock_t lock; }; struct mapping_area { local_lock_t lock; char *vm_buf; /* copy buffer for objects that span pages */ char *vm_addr; /* address of kmap_atomic()'ed pages */ enum zs_mapmode vm_mm; /* mapping mode */ }; /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ static void SetZsHugePage(struct zspage *zspage) { zspage->huge = 1; } static bool ZsHugePage(struct zspage *zspage) { return zspage->huge; } static void migrate_lock_init(struct zspage *zspage); static void migrate_read_lock(struct zspage *zspage); static void migrate_read_unlock(struct zspage *zspage); static void migrate_write_lock(struct zspage *zspage); static void migrate_write_lock_nested(struct zspage *zspage); static void migrate_write_unlock(struct zspage *zspage); #ifdef CONFIG_COMPACTION static void kick_deferred_free(struct zs_pool *pool); static void init_deferred_free(struct zs_pool *pool); static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); #else static void kick_deferred_free(struct zs_pool *pool) {} static void init_deferred_free(struct zs_pool *pool) {} static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} #endif static int create_cache(struct zs_pool *pool) { pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 0, 0, NULL); if (!pool->handle_cachep) return 1; pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 0, 0, NULL); if (!pool->zspage_cachep) { kmem_cache_destroy(pool->handle_cachep); pool->handle_cachep = NULL; return 1; } return 0; } static void destroy_cache(struct zs_pool *pool) { kmem_cache_destroy(pool->handle_cachep); kmem_cache_destroy(pool->zspage_cachep); } static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) { return (unsigned long)kmem_cache_alloc(pool->handle_cachep, gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); } static void cache_free_handle(struct zs_pool *pool, unsigned long handle) { kmem_cache_free(pool->handle_cachep, (void *)handle); } static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) { return kmem_cache_zalloc(pool->zspage_cachep, flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); } static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) { kmem_cache_free(pool->zspage_cachep, zspage); } /* pool->lock(which owns the handle) synchronizes races */ static void record_obj(unsigned long handle, unsigned long obj) { *(unsigned long *)handle = obj; } /* zpool driver */ #ifdef CONFIG_ZPOOL static void *zs_zpool_create(const char *name, gfp_t gfp) { /* * Ignore global gfp flags: zs_malloc() may be invoked from * different contexts and its caller must provide a valid * gfp mask. */ return zs_create_pool(name); } static void zs_zpool_destroy(void *pool) { zs_destroy_pool(pool); } static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, unsigned long *handle) { *handle = zs_malloc(pool, size, gfp); if (IS_ERR_VALUE(*handle)) return PTR_ERR((void *)*handle); return 0; } static void zs_zpool_free(void *pool, unsigned long handle) { zs_free(pool, handle); } static void *zs_zpool_map(void *pool, unsigned long handle, enum zpool_mapmode mm) { enum zs_mapmode zs_mm; switch (mm) { case ZPOOL_MM_RO: zs_mm = ZS_MM_RO; break; case ZPOOL_MM_WO: zs_mm = ZS_MM_WO; break; case ZPOOL_MM_RW: default: zs_mm = ZS_MM_RW; break; } return zs_map_object(pool, handle, zs_mm); } static void zs_zpool_unmap(void *pool, unsigned long handle) { zs_unmap_object(pool, handle); } static u64 zs_zpool_total_size(void *pool) { return zs_get_total_pages(pool) << PAGE_SHIFT; } static struct zpool_driver zs_zpool_driver = { .type = "zsmalloc", .owner = THIS_MODULE, .create = zs_zpool_create, .destroy = zs_zpool_destroy, .malloc_support_movable = true, .malloc = zs_zpool_malloc, .free = zs_zpool_free, .map = zs_zpool_map, .unmap = zs_zpool_unmap, .total_size = zs_zpool_total_size, }; MODULE_ALIAS("zpool-zsmalloc"); #endif /* CONFIG_ZPOOL */ /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { .lock = INIT_LOCAL_LOCK(lock), }; static __maybe_unused int is_first_page(struct page *page) { return PagePrivate(page); } /* Protected by pool->lock */ static inline int get_zspage_inuse(struct zspage *zspage) { return zspage->inuse; } static inline void mod_zspage_inuse(struct zspage *zspage, int val) { zspage->inuse += val; } static inline struct page *get_first_page(struct zspage *zspage) { struct page *first_page = zspage->first_page; VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); return first_page; } static inline unsigned int get_first_obj_offset(struct page *page) { return page->page_type; } static inline void set_first_obj_offset(struct page *page, unsigned int offset) { page->page_type = offset; } static inline unsigned int get_freeobj(struct zspage *zspage) { return zspage->freeobj; } static inline void set_freeobj(struct zspage *zspage, unsigned int obj) { zspage->freeobj = obj; } static void get_zspage_mapping(struct zspage *zspage, unsigned int *class_idx, int *fullness) { BUG_ON(zspage->magic != ZSPAGE_MAGIC); *fullness = zspage->fullness; *class_idx = zspage->class; } static struct size_class *zspage_class(struct zs_pool *pool, struct zspage *zspage) { return pool->size_class[zspage->class]; } static void set_zspage_mapping(struct zspage *zspage, unsigned int class_idx, int fullness) { zspage->class = class_idx; zspage->fullness = fullness; } /* * zsmalloc divides the pool into various size classes where each * class maintains a list of zspages where each zspage is divided * into equal sized chunks. Each allocation falls into one of these * classes depending on its size. This function returns index of the * size class which has chunk size big enough to hold the given size. */ static int get_size_class_index(int size) { int idx = 0; if (likely(size > ZS_MIN_ALLOC_SIZE)) idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, ZS_SIZE_CLASS_DELTA); return min_t(int, ZS_SIZE_CLASSES - 1, idx); } static inline void class_stat_inc(struct size_class *class, int type, unsigned long cnt) { class->stats.objs[type] += cnt; } static inline void class_stat_dec(struct size_class *class, int type, unsigned long cnt) { class->stats.objs[type] -= cnt; } static inline unsigned long zs_stat_get(struct size_class *class, int type) { return class->stats.objs[type]; } #ifdef CONFIG_ZSMALLOC_STAT static void __init zs_stat_init(void) { if (!debugfs_initialized()) { pr_warn("debugfs not available, stat dir not created\n"); return; } zs_stat_root = debugfs_create_dir("zsmalloc", NULL); } static void __exit zs_stat_exit(void) { debugfs_remove_recursive(zs_stat_root); } static unsigned long zs_can_compact(struct size_class *class); static int zs_stats_size_show(struct seq_file *s, void *v) { int i, fg; struct zs_pool *pool = s->private; struct size_class *class; int objs_per_zspage; unsigned long obj_allocated, obj_used, pages_used, freeable; unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; unsigned long total_freeable = 0; unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", "class", "size", "10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "99%", "100%", "obj_allocated", "obj_used", "pages_used", "pages_per_zspage", "freeable"); for (i = 0; i < ZS_SIZE_CLASSES; i++) { class = pool->size_class[i]; if (class->index != i) continue; spin_lock(&pool->lock); seq_printf(s, " %5u %5u ", i, class->size); for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { inuse_totals[fg] += zs_stat_get(class, fg); seq_printf(s, "%9lu ", zs_stat_get(class, fg)); } obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); obj_used = zs_stat_get(class, ZS_OBJS_INUSE); freeable = zs_can_compact(class); spin_unlock(&pool->lock); objs_per_zspage = class->objs_per_zspage; pages_used = obj_allocated / objs_per_zspage * class->pages_per_zspage; seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", obj_allocated, obj_used, pages_used, class->pages_per_zspage, freeable); total_objs += obj_allocated; total_used_objs += obj_used; total_pages += pages_used; total_freeable += freeable; } seq_puts(s, "\n"); seq_printf(s, " %5s %5s ", "Total", ""); for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) seq_printf(s, "%9lu ", inuse_totals[fg]); seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", total_objs, total_used_objs, total_pages, "", total_freeable); return 0; } DEFINE_SHOW_ATTRIBUTE(zs_stats_size); static void zs_pool_stat_create(struct zs_pool *pool, const char *name) { if (!zs_stat_root) { pr_warn("no root stat dir, not creating <%s> stat dir\n", name); return; } pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, &zs_stats_size_fops); } static void zs_pool_stat_destroy(struct zs_pool *pool) { debugfs_remove_recursive(pool->stat_dentry); } #else /* CONFIG_ZSMALLOC_STAT */ static void __init zs_stat_init(void) { } static void __exit zs_stat_exit(void) { } static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) { } static inline void zs_pool_stat_destroy(struct zs_pool *pool) { } #endif /* * For each size class, zspages are divided into different groups * depending on their usage ratio. This function returns fullness * status of the given page. */ static int get_fullness_group(struct size_class *class, struct zspage *zspage) { int inuse, objs_per_zspage, ratio; inuse = get_zspage_inuse(zspage); objs_per_zspage = class->objs_per_zspage; if (inuse == 0) return ZS_INUSE_RATIO_0; if (inuse == objs_per_zspage) return ZS_INUSE_RATIO_100; ratio = 100 * inuse / objs_per_zspage; /* * Take integer division into consideration: a page with one inuse * object out of 127 possible, will end up having 0 usage ratio, * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. */ return ratio / 10 + 1; } /* * Each size class maintains various freelists and zspages are assigned * to one of these freelists based on the number of live objects they * have. This functions inserts the given zspage into the freelist * identified by <class, fullness_group>. */ static void insert_zspage(struct size_class *class, struct zspage *zspage, int fullness) { class_stat_inc(class, fullness, 1); list_add(&zspage->list, &class->fullness_list[fullness]); } /* * This function removes the given zspage from the freelist identified * by <class, fullness_group>. */ static void remove_zspage(struct size_class *class, struct zspage *zspage, int fullness) { VM_BUG_ON(list_empty(&class->fullness_list[fullness])); list_del_init(&zspage->list); class_stat_dec(class, fullness, 1); } /* * Each size class maintains zspages in different fullness groups depending * on the number of live objects they contain. When allocating or freeing * objects, the fullness status of the page can change, for instance, from * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function * checks if such a status change has occurred for the given page and * accordingly moves the page from the list of the old fullness group to that * of the new fullness group. */ static int fix_fullness_group(struct size_class *class, struct zspage *zspage) { int class_idx; int currfg, newfg; get_zspage_mapping(zspage, &class_idx, &currfg); newfg = get_fullness_group(class, zspage); if (newfg == currfg) goto out; remove_zspage(class, zspage, currfg); insert_zspage(class, zspage, newfg); set_zspage_mapping(zspage, class_idx, newfg); out: return newfg; } static struct zspage *get_zspage(struct page *page) { struct zspage *zspage = (struct zspage *)page_private(page); BUG_ON(zspage->magic != ZSPAGE_MAGIC); return zspage; } static struct page *get_next_page(struct page *page) { struct zspage *zspage = get_zspage(page); if (unlikely(ZsHugePage(zspage))) return NULL; return (struct page *)page->index; } /** * obj_to_location - get (<page>, <obj_idx>) from encoded object value * @obj: the encoded object value * @page: page object resides in zspage * @obj_idx: object index */ static void obj_to_location(unsigned long obj, struct page **page, unsigned int *obj_idx) { obj >>= OBJ_TAG_BITS; *page = pfn_to_page(obj >> OBJ_INDEX_BITS); *obj_idx = (obj & OBJ_INDEX_MASK); } static void obj_to_page(unsigned long obj, struct page **page) { obj >>= OBJ_TAG_BITS; *page = pfn_to_page(obj >> OBJ_INDEX_BITS); } /** * location_to_obj - get obj value encoded from (<page>, <obj_idx>) * @page: page object resides in zspage * @obj_idx: object index */ static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) { unsigned long obj; obj = page_to_pfn(page) << OBJ_INDEX_BITS; obj |= obj_idx & OBJ_INDEX_MASK; obj <<= OBJ_TAG_BITS; return obj; } static unsigned long handle_to_obj(unsigned long handle) { return *(unsigned long *)handle; } static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) { unsigned long handle; struct zspage *zspage = get_zspage(page); if (unlikely(ZsHugePage(zspage))) { VM_BUG_ON_PAGE(!is_first_page(page), page); handle = page->index; } else handle = *(unsigned long *)obj; if (!(handle & OBJ_ALLOCATED_TAG)) return false; /* Clear all tags before returning the handle */ *phandle = handle & ~OBJ_TAG_MASK; return true; } static void reset_page(struct page *page) { __ClearPageMovable(page); ClearPagePrivate(page); set_page_private(page, 0); page_mapcount_reset(page); page->index = 0; } static int trylock_zspage(struct zspage *zspage) { struct page *cursor, *fail; for (cursor = get_first_page(zspage); cursor != NULL; cursor = get_next_page(cursor)) { if (!trylock_page(cursor)) { fail = cursor; goto unlock; } } return 1; unlock: for (cursor = get_first_page(zspage); cursor != fail; cursor = get_next_page(cursor)) unlock_page(cursor); return 0; } static void __free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage) { struct page *page, *next; int fg; unsigned int class_idx; get_zspage_mapping(zspage, &class_idx, &fg); assert_spin_locked(&pool->lock); VM_BUG_ON(get_zspage_inuse(zspage)); VM_BUG_ON(fg != ZS_INUSE_RATIO_0); next = page = get_first_page(zspage); do { VM_BUG_ON_PAGE(!PageLocked(page), page); next = get_next_page(page); reset_page(page); unlock_page(page); dec_zone_page_state(page, NR_ZSPAGES); put_page(page); page = next; } while (page != NULL); cache_free_zspage(pool, zspage); class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); } static void free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage) { VM_BUG_ON(get_zspage_inuse(zspage)); VM_BUG_ON(list_empty(&zspage->list)); /* * Since zs_free couldn't be sleepable, this function cannot call * lock_page. The page locks trylock_zspage got will be released * by __free_zspage. */ if (!trylock_zspage(zspage)) { kick_deferred_free(pool); return; } remove_zspage(class, zspage, ZS_INUSE_RATIO_0); __free_zspage(pool, class, zspage); } /* Initialize a newly allocated zspage */ static void init_zspage(struct size_class *class, struct zspage *zspage) { unsigned int freeobj = 1; unsigned long off = 0; struct page *page = get_first_page(zspage); while (page) { struct page *next_page; struct link_free *link; void *vaddr; set_first_obj_offset(page, off); vaddr = kmap_atomic(page); link = (struct link_free *)vaddr + off / sizeof(*link); while ((off += class->size) < PAGE_SIZE) { link->next = freeobj++ << OBJ_TAG_BITS; link += class->size / sizeof(*link); } /* * We now come to the last (full or partial) object on this * page, which must point to the first object on the next * page (if present) */ next_page = get_next_page(page); if (next_page) { link->next = freeobj++ << OBJ_TAG_BITS; } else { /* * Reset OBJ_TAG_BITS bit to last link to tell * whether it's allocated object or not. */ link->next = -1UL << OBJ_TAG_BITS; } kunmap_atomic(vaddr); page = next_page; off %= PAGE_SIZE; } set_freeobj(zspage, 0); } static void create_page_chain(struct size_class *class, struct zspage *zspage, struct page *pages[]) { int i; struct page *page; struct page *prev_page = NULL; int nr_pages = class->pages_per_zspage; /* * Allocate individual pages and link them together as: * 1. all pages are linked together using page->index * 2. each sub-page point to zspage using page->private * * we set PG_private to identify the first page (i.e. no other sub-page * has this flag set). */ for (i = 0; i < nr_pages; i++) { page = pages[i]; set_page_private(page, (unsigned long)zspage); page->index = 0; if (i == 0) { zspage->first_page = page; SetPagePrivate(page); if (unlikely(class->objs_per_zspage == 1 && class->pages_per_zspage == 1)) SetZsHugePage(zspage); } else { prev_page->index = (unsigned long)page; } prev_page = page; } } /* * Allocate a zspage for the given size class */ static struct zspage *alloc_zspage(struct zs_pool *pool, struct size_class *class, gfp_t gfp) { int i; struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; struct zspage *zspage = cache_alloc_zspage(pool, gfp); if (!zspage) return NULL; zspage->magic = ZSPAGE_MAGIC; migrate_lock_init(zspage); for (i = 0; i < class->pages_per_zspage; i++) { struct page *page; page = alloc_page(gfp); if (!page) { while (--i >= 0) { dec_zone_page_state(pages[i], NR_ZSPAGES); __free_page(pages[i]); } cache_free_zspage(pool, zspage); return NULL; } inc_zone_page_state(page, NR_ZSPAGES); pages[i] = page; } create_page_chain(class, zspage, pages); init_zspage(class, zspage); zspage->pool = pool; return zspage; } static struct zspage *find_get_zspage(struct size_class *class) { int i; struct zspage *zspage; for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { zspage = list_first_entry_or_null(&class->fullness_list[i], struct zspage, list); if (zspage) break; } return zspage; } static inline int __zs_cpu_up(struct mapping_area *area) { /* * Make sure we don't leak memory if a cpu UP notification * and zs_init() race and both call zs_cpu_up() on the same cpu */ if (area->vm_buf) return 0; area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); if (!area->vm_buf) return -ENOMEM; return 0; } static inline void __zs_cpu_down(struct mapping_area *area) { kfree(area->vm_buf); area->vm_buf = NULL; } static void *__zs_map_object(struct mapping_area *area, struct page *pages[2], int off, int size) { int sizes[2]; void *addr; char *buf = area->vm_buf; /* disable page faults to match kmap_atomic() return conditions */ pagefault_disable(); /* no read fastpath */ if (area->vm_mm == ZS_MM_WO) goto out; sizes[0] = PAGE_SIZE - off; sizes[1] = size - sizes[0]; /* copy object to per-cpu buffer */ addr = kmap_atomic(pages[0]); memcpy(buf, addr + off, sizes[0]); kunmap_atomic(addr); addr = kmap_atomic(pages[1]); memcpy(buf + sizes[0], addr, sizes[1]); kunmap_atomic(addr); out: return area->vm_buf; } static void __zs_unmap_object(struct mapping_area *area, struct page *pages[2], int off, int size) { int sizes[2]; void *addr; char *buf; /* no write fastpath */ if (area->vm_mm == ZS_MM_RO) goto out; buf = area->vm_buf; buf = buf + ZS_HANDLE_SIZE; size -= ZS_HANDLE_SIZE; off += ZS_HANDLE_SIZE; sizes[0] = PAGE_SIZE - off; sizes[1] = size - sizes[0]; /* copy per-cpu buffer to object */ addr = kmap_atomic(pages[0]); memcpy(addr + off, buf, sizes[0]); kunmap_atomic(addr); addr = kmap_atomic(pages[1]); memcpy(addr, buf + sizes[0], sizes[1]); kunmap_atomic(addr); out: /* enable page faults to match kunmap_atomic() return conditions */ pagefault_enable(); } static int zs_cpu_prepare(unsigned int cpu) { struct mapping_area *area; area = &per_cpu(zs_map_area, cpu); return __zs_cpu_up(area); } static int zs_cpu_dead(unsigned int cpu) { struct mapping_area *area; area = &per_cpu(zs_map_area, cpu); __zs_cpu_down(area); return 0; } static bool can_merge(struct size_class *prev, int pages_per_zspage, int objs_per_zspage) { if (prev->pages_per_zspage == pages_per_zspage && prev->objs_per_zspage == objs_per_zspage) return true; return false; } static bool zspage_full(struct size_class *class, struct zspage *zspage) { return get_zspage_inuse(zspage) == class->objs_per_zspage; } static bool zspage_empty(struct zspage *zspage) { return get_zspage_inuse(zspage) == 0; } /** * zs_lookup_class_index() - Returns index of the zsmalloc &size_class * that hold objects of the provided size. * @pool: zsmalloc pool to use * @size: object size * * Context: Any context. * * Return: the index of the zsmalloc &size_class that hold objects of the * provided size. */ unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) { struct size_class *class; class = pool->size_class[get_size_class_index(size)]; return class->index; } EXPORT_SYMBOL_GPL(zs_lookup_class_index); unsigned long zs_get_total_pages(struct zs_pool *pool) { return atomic_long_read(&pool->pages_allocated); } EXPORT_SYMBOL_GPL(zs_get_total_pages); /** * zs_map_object - get address of allocated object from handle. * @pool: pool from which the object was allocated * @handle: handle returned from zs_malloc * @mm: mapping mode to use * * Before using an object allocated from zs_malloc, it must be mapped using * this function. When done with the object, it must be unmapped using * zs_unmap_object. * * Only one object can be mapped per cpu at a time. There is no protection * against nested mappings. * * This function returns with preemption and page faults disabled. */ void *zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm) { struct zspage *zspage; struct page *page; unsigned long obj, off; unsigned int obj_idx; struct size_class *class; struct mapping_area *area; struct page *pages[2]; void *ret; /* * Because we use per-cpu mapping areas shared among the * pools/users, we can't allow mapping in interrupt context * because it can corrupt another users mappings. */ BUG_ON(in_interrupt()); /* It guarantees it can get zspage from handle safely */ spin_lock(&pool->lock); obj = handle_to_obj(handle); obj_to_location(obj, &page, &obj_idx); zspage = get_zspage(page); /* * migration cannot move any zpages in this zspage. Here, pool->lock * is too heavy since callers would take some time until they calls * zs_unmap_object API so delegate the locking from class to zspage * which is smaller granularity. */ migrate_read_lock(zspage); spin_unlock(&pool->lock); class = zspage_class(pool, zspage); off = offset_in_page(class->size * obj_idx); local_lock(&zs_map_area.lock); area = this_cpu_ptr(&zs_map_area); area->vm_mm = mm; if (off + class->size <= PAGE_SIZE) { /* this object is contained entirely within a page */ area->vm_addr = kmap_atomic(page); ret = area->vm_addr + off; goto out; } /* this object spans two pages */ pages[0] = page; pages[1] = get_next_page(page); BUG_ON(!pages[1]); ret = __zs_map_object(area, pages, off, class->size); out: if (likely(!ZsHugePage(zspage))) ret += ZS_HANDLE_SIZE; return ret; } EXPORT_SYMBOL_GPL(zs_map_object); void zs_unmap_object(struct zs_pool *pool, unsigned long handle) { struct zspage *zspage; struct page *page; unsigned long obj, off; unsigned int obj_idx; struct size_class *class; struct mapping_area *area; obj = handle_to_obj(handle); obj_to_location(obj, &page, &obj_idx); zspage = get_zspage(page); class = zspage_class(pool, zspage); off = offset_in_page(class->size * obj_idx); area = this_cpu_ptr(&zs_map_area); if (off + class->size <= PAGE_SIZE) kunmap_atomic(area->vm_addr); else { struct page *pages[2]; pages[0] = page; pages[1] = get_next_page(page); BUG_ON(!pages[1]); __zs_unmap_object(area, pages, off, class->size); } local_unlock(&zs_map_area.lock); migrate_read_unlock(zspage); } EXPORT_SYMBOL_GPL(zs_unmap_object); /** * zs_huge_class_size() - Returns the size (in bytes) of the first huge * zsmalloc &size_class. * @pool: zsmalloc pool to use * * The function returns the size of the first huge class - any object of equal * or bigger size will be stored in zspage consisting of a single physical * page. * * Context: Any context. * * Return: the size (in bytes) of the first huge zsmalloc &size_class. */ size_t zs_huge_class_size(struct zs_pool *pool) { return huge_class_size; } EXPORT_SYMBOL_GPL(zs_huge_class_size); static unsigned long obj_malloc(struct zs_pool *pool, struct zspage *zspage, unsigned long handle) { int i, nr_page, offset; unsigned long obj; struct link_free *link; struct size_class *class; struct page *m_page; unsigned long m_offset; void *vaddr; class = pool->size_class[zspage->class]; handle |= OBJ_ALLOCATED_TAG; obj = get_freeobj(zspage); offset = obj * class->size; nr_page = offset >> PAGE_SHIFT; m_offset = offset_in_page(offset); m_page = get_first_page(zspage); for (i = 0; i < nr_page; i++) m_page = get_next_page(m_page); vaddr = kmap_atomic(m_page); link = (struct link_free *)vaddr + m_offset / sizeof(*link); set_freeobj(zspage, link->next >> OBJ_TAG_BITS); if (likely(!ZsHugePage(zspage))) /* record handle in the header of allocated chunk */ link->handle = handle; else /* record handle to page->index */ zspage->first_page->index = handle; kunmap_atomic(vaddr); mod_zspage_inuse(zspage, 1); obj = location_to_obj(m_page, obj); return obj; } /** * zs_malloc - Allocate block of given size from pool. * @pool: pool to allocate from * @size: size of block to allocate * @gfp: gfp flags when allocating object * * On success, handle to the allocated object is returned, * otherwise an ERR_PTR(). * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. */ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) { unsigned long handle, obj; struct size_class *class; int newfg; struct zspage *zspage; if (unlikely(!size)) return (unsigned long)ERR_PTR(-EINVAL); if (unlikely(size > ZS_MAX_ALLOC_SIZE)) return (unsigned long)ERR_PTR(-ENOSPC); handle = cache_alloc_handle(pool, gfp); if (!handle) return (unsigned long)ERR_PTR(-ENOMEM); /* extra space in chunk to keep the handle */ size += ZS_HANDLE_SIZE; class = pool->size_class[get_size_class_index(size)]; /* pool->lock effectively protects the zpage migration */ spin_lock(&pool->lock); zspage = find_get_zspage(class); if (likely(zspage)) { obj = obj_malloc(pool, zspage, handle); /* Now move the zspage to another fullness group, if required */ fix_fullness_group(class, zspage); record_obj(handle, obj); class_stat_inc(class, ZS_OBJS_INUSE, 1); goto out; } spin_unlock(&pool->lock); zspage = alloc_zspage(pool, class, gfp); if (!zspage) { cache_free_handle(pool, handle); return (unsigned long)ERR_PTR(-ENOMEM); } spin_lock(&pool->lock); obj = obj_malloc(pool, zspage, handle); newfg = get_fullness_group(class, zspage); insert_zspage(class, zspage, newfg); set_zspage_mapping(zspage, class->index, newfg); record_obj(handle, obj); atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); class_stat_inc(class, ZS_OBJS_INUSE, 1); /* We completely set up zspage so mark them as movable */ SetZsPageMovable(pool, zspage); out: spin_unlock(&pool->lock); return handle; } EXPORT_SYMBOL_GPL(zs_malloc); static void obj_free(int class_size, unsigned long obj) { struct link_free *link; struct zspage *zspage; struct page *f_page; unsigned long f_offset; unsigned int f_objidx; void *vaddr; obj_to_location(obj, &f_page, &f_objidx); f_offset = offset_in_page(class_size * f_objidx); zspage = get_zspage(f_page); vaddr = kmap_atomic(f_page); link = (struct link_free *)(vaddr + f_offset); /* Insert this object in containing zspage's freelist */ if (likely(!ZsHugePage(zspage))) link->next = get_freeobj(zspage) << OBJ_TAG_BITS; else f_page->index = 0; set_freeobj(zspage, f_objidx); kunmap_atomic(vaddr); mod_zspage_inuse(zspage, -1); } void zs_free(struct zs_pool *pool, unsigned long handle) { struct zspage *zspage; struct page *f_page; unsigned long obj; struct size_class *class; int fullness; if (IS_ERR_OR_NULL((void *)handle)) return; /* * The pool->lock protects the race with zpage's migration * so it's safe to get the page from handle. */ spin_lock(&pool->lock); obj = handle_to_obj(handle); obj_to_page(obj, &f_page); zspage = get_zspage(f_page); class = zspage_class(pool, zspage); class_stat_dec(class, ZS_OBJS_INUSE, 1); obj_free(class->size, obj); fullness = fix_fullness_group(class, zspage); if (fullness == ZS_INUSE_RATIO_0) free_zspage(pool, class, zspage); spin_unlock(&pool->lock); cache_free_handle(pool, handle); } EXPORT_SYMBOL_GPL(zs_free); static void zs_object_copy(struct size_class *class, unsigned long dst, unsigned long src) { struct page *s_page, *d_page; unsigned int s_objidx, d_objidx; unsigned long s_off, d_off; void *s_addr, *d_addr; int s_size, d_size, size; int written = 0; s_size = d_size = class->size; obj_to_location(src, &s_page, &s_objidx); obj_to_location(dst, &d_page, &d_objidx); s_off = offset_in_page(class->size * s_objidx); d_off = offset_in_page(class->size * d_objidx); if (s_off + class->size > PAGE_SIZE) s_size = PAGE_SIZE - s_off; if (d_off + class->size > PAGE_SIZE) d_size = PAGE_SIZE - d_off; s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); while (1) { size = min(s_size, d_size); memcpy(d_addr + d_off, s_addr + s_off, size); written += size; if (written == class->size) break; s_off += size; s_size -= size; d_off += size; d_size -= size; /* * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() * calls must occurs in reverse order of calls to kmap_atomic(). * So, to call kunmap_atomic(s_addr) we should first call * kunmap_atomic(d_addr). For more details see * Documentation/mm/highmem.rst. */ if (s_off >= PAGE_SIZE) { kunmap_atomic(d_addr); kunmap_atomic(s_addr); s_page = get_next_page(s_page); s_addr = kmap_atomic(s_page); d_addr = kmap_atomic(d_page); s_size = class->size - written; s_off = 0; } if (d_off >= PAGE_SIZE) { kunmap_atomic(d_addr); d_page = get_next_page(d_page); d_addr = kmap_atomic(d_page); d_size = class->size - written; d_off = 0; } } kunmap_atomic(d_addr); kunmap_atomic(s_addr); } /* * Find alloced object in zspage from index object and * return handle. */ static unsigned long find_alloced_obj(struct size_class *class, struct page *page, int *obj_idx) { unsigned int offset; int index = *obj_idx; unsigned long handle = 0; void *addr = kmap_atomic(page); offset = get_first_obj_offset(page); offset += class->size * index; while (offset < PAGE_SIZE) { if (obj_allocated(page, addr + offset, &handle)) break; offset += class->size; index++; } kunmap_atomic(addr); *obj_idx = index; return handle; } static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, struct zspage *dst_zspage) { unsigned long used_obj, free_obj; unsigned long handle; int obj_idx = 0; struct page *s_page = get_first_page(src_zspage); struct size_class *class = pool->size_class[src_zspage->class]; while (1) { handle = find_alloced_obj(class, s_page, &obj_idx); if (!handle) { s_page = get_next_page(s_page); if (!s_page) break; obj_idx = 0; continue; } used_obj = handle_to_obj(handle); free_obj = obj_malloc(pool, dst_zspage, handle); zs_object_copy(class, free_obj, used_obj); obj_idx++; record_obj(handle, free_obj); obj_free(class->size, used_obj); /* Stop if there is no more space */ if (zspage_full(class, dst_zspage)) break; /* Stop if there are no more objects to migrate */ if (zspage_empty(src_zspage)) break; } } static struct zspage *isolate_src_zspage(struct size_class *class) { struct zspage *zspage; int fg; for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { zspage = list_first_entry_or_null(&class->fullness_list[fg], struct zspage, list); if (zspage) { remove_zspage(class, zspage, fg); return zspage; } } return zspage; } static struct zspage *isolate_dst_zspage(struct size_class *class) { struct zspage *zspage; int fg; for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { zspage = list_first_entry_or_null(&class->fullness_list[fg], struct zspage, list); if (zspage) { remove_zspage(class, zspage, fg); return zspage; } } return zspage; } /* * putback_zspage - add @zspage into right class's fullness list * @class: destination class * @zspage: target page * * Return @zspage's fullness status */ static int putback_zspage(struct size_class *class, struct zspage *zspage) { int fullness; fullness = get_fullness_group(class, zspage); insert_zspage(class, zspage, fullness); set_zspage_mapping(zspage, class->index, fullness); return fullness; } #ifdef CONFIG_COMPACTION /* * To prevent zspage destroy during migration, zspage freeing should * hold locks of all pages in the zspage. */ static void lock_zspage(struct zspage *zspage) { struct page *curr_page, *page; /* * Pages we haven't locked yet can be migrated off the list while we're * trying to lock them, so we need to be careful and only attempt to * lock each page under migrate_read_lock(). Otherwise, the page we lock * may no longer belong to the zspage. This means that we may wait for * the wrong page to unlock, so we must take a reference to the page * prior to waiting for it to unlock outside migrate_read_lock(). */ while (1) { migrate_read_lock(zspage); page = get_first_page(zspage); if (trylock_page(page)) break; get_page(page); migrate_read_unlock(zspage); wait_on_page_locked(page); put_page(page); } curr_page = page; while ((page = get_next_page(curr_page))) { if (trylock_page(page)) { curr_page = page; } else { get_page(page); migrate_read_unlock(zspage); wait_on_page_locked(page); put_page(page); migrate_read_lock(zspage); } } migrate_read_unlock(zspage); } #endif /* CONFIG_COMPACTION */ static void migrate_lock_init(struct zspage *zspage) { rwlock_init(&zspage->lock); } static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) { read_lock(&zspage->lock); } static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) { read_unlock(&zspage->lock); } static void migrate_write_lock(struct zspage *zspage) { write_lock(&zspage->lock); } static void migrate_write_lock_nested(struct zspage *zspage) { write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); } static void migrate_write_unlock(struct zspage *zspage) { write_unlock(&zspage->lock); } #ifdef CONFIG_COMPACTION /* Number of isolated subpage for *page migration* in this zspage */ static void inc_zspage_isolation(struct zspage *zspage) { zspage->isolated++; } static void dec_zspage_isolation(struct zspage *zspage) { VM_BUG_ON(zspage->isolated == 0); zspage->isolated--; } static const struct movable_operations zsmalloc_mops; static void replace_sub_page(struct size_class *class, struct zspage *zspage, struct page *newpage, struct page *oldpage) { struct page *page; struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; int idx = 0; page = get_first_page(zspage); do { if (page == oldpage) pages[idx] = newpage; else pages[idx] = page; idx++; } while ((page = get_next_page(page)) != NULL); create_page_chain(class, zspage, pages); set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); if (unlikely(ZsHugePage(zspage))) newpage->index = oldpage->index; __SetPageMovable(newpage, &zsmalloc_mops); } static bool zs_page_isolate(struct page *page, isolate_mode_t mode) { struct zs_pool *pool; struct zspage *zspage; /* * Page is locked so zspage couldn't be destroyed. For detail, look at * lock_zspage in free_zspage. */ VM_BUG_ON_PAGE(PageIsolated(page), page); zspage = get_zspage(page); pool = zspage->pool; spin_lock(&pool->lock); inc_zspage_isolation(zspage); spin_unlock(&pool->lock); return true; } static int zs_page_migrate(struct page *newpage, struct page *page, enum migrate_mode mode) { struct zs_pool *pool; struct size_class *class; struct zspage *zspage; struct page *dummy; void *s_addr, *d_addr, *addr; unsigned int offset; unsigned long handle; unsigned long old_obj, new_obj; unsigned int obj_idx; /* * We cannot support the _NO_COPY case here, because copy needs to * happen under the zs lock, which does not work with * MIGRATE_SYNC_NO_COPY workflow. */ if (mode == MIGRATE_SYNC_NO_COPY) return -EINVAL; VM_BUG_ON_PAGE(!PageIsolated(page), page); /* The page is locked, so this pointer must remain valid */ zspage = get_zspage(page); pool = zspage->pool; /* * The pool's lock protects the race between zpage migration * and zs_free. */ spin_lock(&pool->lock); class = zspage_class(pool, zspage); /* the migrate_write_lock protects zpage access via zs_map_object */ migrate_write_lock(zspage); offset = get_first_obj_offset(page); s_addr = kmap_atomic(page); /* * Here, any user cannot access all objects in the zspage so let's move. */ d_addr = kmap_atomic(newpage); copy_page(d_addr, s_addr); kunmap_atomic(d_addr); for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; addr += class->size) { if (obj_allocated(page, addr, &handle)) { old_obj = handle_to_obj(handle); obj_to_location(old_obj, &dummy, &obj_idx); new_obj = (unsigned long)location_to_obj(newpage, obj_idx); record_obj(handle, new_obj); } } kunmap_atomic(s_addr); replace_sub_page(class, zspage, newpage, page); dec_zspage_isolation(zspage); /* * Since we complete the data copy and set up new zspage structure, * it's okay to release the pool's lock. */ spin_unlock(&pool->lock); migrate_write_unlock(zspage); get_page(newpage); if (page_zone(newpage) != page_zone(page)) { dec_zone_page_state(page, NR_ZSPAGES); inc_zone_page_state(newpage, NR_ZSPAGES); } reset_page(page); put_page(page); return MIGRATEPAGE_SUCCESS; } static void zs_page_putback(struct page *page) { struct zs_pool *pool; struct zspage *zspage; VM_BUG_ON_PAGE(!PageIsolated(page), page); zspage = get_zspage(page); pool = zspage->pool; spin_lock(&pool->lock); dec_zspage_isolation(zspage); spin_unlock(&pool->lock); } static const struct movable_operations zsmalloc_mops = { .isolate_page = zs_page_isolate, .migrate_page = zs_page_migrate, .putback_page = zs_page_putback, }; /* * Caller should hold page_lock of all pages in the zspage * In here, we cannot use zspage meta data. */ static void async_free_zspage(struct work_struct *work) { int i; struct size_class *class; unsigned int class_idx; int fullness; struct zspage *zspage, *tmp; LIST_HEAD(free_pages); struct zs_pool *pool = container_of(work, struct zs_pool, free_work); for (i = 0; i < ZS_SIZE_CLASSES; i++) { class = pool->size_class[i]; if (class->index != i) continue; spin_lock(&pool->lock); list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], &free_pages); spin_unlock(&pool->lock); } list_for_each_entry_safe(zspage, tmp, &free_pages, list) { list_del(&zspage->list); lock_zspage(zspage); get_zspage_mapping(zspage, &class_idx, &fullness); VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); class = pool->size_class[class_idx]; spin_lock(&pool->lock); __free_zspage(pool, class, zspage); spin_unlock(&pool->lock); } }; static void kick_deferred_free(struct zs_pool *pool) { schedule_work(&pool->free_work); } static void zs_flush_migration(struct zs_pool *pool) { flush_work(&pool->free_work); } static void init_deferred_free(struct zs_pool *pool) { INIT_WORK(&pool->free_work, async_free_zspage); } static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) { struct page *page = get_first_page(zspage); do { WARN_ON(!trylock_page(page)); __SetPageMovable(page, &zsmalloc_mops); unlock_page(page); } while ((page = get_next_page(page)) != NULL); } #else static inline void zs_flush_migration(struct zs_pool *pool) { } #endif /* * * Based on the number of unused allocated objects calculate * and return the number of pages that we can free. */ static unsigned long zs_can_compact(struct size_class *class) { unsigned long obj_wasted; unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); if (obj_allocated <= obj_used) return 0; obj_wasted = obj_allocated - obj_used; obj_wasted /= class->objs_per_zspage; return obj_wasted * class->pages_per_zspage; } static unsigned long __zs_compact(struct zs_pool *pool, struct size_class *class) { struct zspage *src_zspage = NULL; struct zspage *dst_zspage = NULL; unsigned long pages_freed = 0; /* * protect the race between zpage migration and zs_free * as well as zpage allocation/free */ spin_lock(&pool->lock); while (zs_can_compact(class)) { int fg; if (!dst_zspage) { dst_zspage = isolate_dst_zspage(class); if (!dst_zspage) break; migrate_write_lock(dst_zspage); } src_zspage = isolate_src_zspage(class); if (!src_zspage) break; migrate_write_lock_nested(src_zspage); migrate_zspage(pool, src_zspage, dst_zspage); fg = putback_zspage(class, src_zspage); migrate_write_unlock(src_zspage); if (fg == ZS_INUSE_RATIO_0) { free_zspage(pool, class, src_zspage); pages_freed += class->pages_per_zspage; } src_zspage = NULL; if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 || spin_is_contended(&pool->lock)) { putback_zspage(class, dst_zspage); migrate_write_unlock(dst_zspage); dst_zspage = NULL; spin_unlock(&pool->lock); cond_resched(); spin_lock(&pool->lock); } } if (src_zspage) { putback_zspage(class, src_zspage); migrate_write_unlock(src_zspage); } if (dst_zspage) { putback_zspage(class, dst_zspage); migrate_write_unlock(dst_zspage); } spin_unlock(&pool->lock); return pages_freed; } unsigned long zs_compact(struct zs_pool *pool) { int i; struct size_class *class; unsigned long pages_freed = 0; /* * Pool compaction is performed under pool->lock so it is basically * single-threaded. Having more than one thread in __zs_compact() * will increase pool->lock contention, which will impact other * zsmalloc operations that need pool->lock. */ if (atomic_xchg(&pool->compaction_in_progress, 1)) return 0; for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { class = pool->size_class[i]; if (class->index != i) continue; pages_freed += __zs_compact(pool, class); } atomic_long_add(pages_freed, &pool->stats.pages_compacted); atomic_set(&pool->compaction_in_progress, 0); return pages_freed; } EXPORT_SYMBOL_GPL(zs_compact); void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) { memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); } EXPORT_SYMBOL_GPL(zs_pool_stats); static unsigned long zs_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) { unsigned long pages_freed; struct zs_pool *pool = shrinker->private_data; /* * Compact classes and calculate compaction delta. * Can run concurrently with a manually triggered * (by user) compaction. */ pages_freed = zs_compact(pool); return pages_freed ? pages_freed : SHRINK_STOP; } static unsigned long zs_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) { int i; struct size_class *class; unsigned long pages_to_free = 0; struct zs_pool *pool = shrinker->private_data; for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { class = pool->size_class[i]; if (class->index != i) continue; pages_to_free += zs_can_compact(class); } return pages_to_free; } static void zs_unregister_shrinker(struct zs_pool *pool) { shrinker_free(pool->shrinker); } static int zs_register_shrinker(struct zs_pool *pool) { pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); if (!pool->shrinker) return -ENOMEM; pool->shrinker->scan_objects = zs_shrinker_scan; pool->shrinker->count_objects = zs_shrinker_count; pool->shrinker->batch = 0; pool->shrinker->private_data = pool; shrinker_register(pool->shrinker); return 0; } static int calculate_zspage_chain_size(int class_size) { int i, min_waste = INT_MAX; int chain_size = 1; if (is_power_of_2(class_size)) return chain_size; for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { int waste; waste = (i * PAGE_SIZE) % class_size; if (waste < min_waste) { min_waste = waste; chain_size = i; } } return chain_size; } /** * zs_create_pool - Creates an allocation pool to work from. * @name: pool name to be created * * This function must be called before anything when using * the zsmalloc allocator. * * On success, a pointer to the newly created pool is returned, * otherwise NULL. */ struct zs_pool *zs_create_pool(const char *name) { int i; struct zs_pool *pool; struct size_class *prev_class = NULL; pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return NULL; init_deferred_free(pool); spin_lock_init(&pool->lock); atomic_set(&pool->compaction_in_progress, 0); pool->name = kstrdup(name, GFP_KERNEL); if (!pool->name) goto err; if (create_cache(pool)) goto err; /* * Iterate reversely, because, size of size_class that we want to use * for merging should be larger or equal to current size. */ for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { int size; int pages_per_zspage; int objs_per_zspage; struct size_class *class; int fullness; size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; if (size > ZS_MAX_ALLOC_SIZE) size = ZS_MAX_ALLOC_SIZE; pages_per_zspage = calculate_zspage_chain_size(size); objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; /* * We iterate from biggest down to smallest classes, * so huge_class_size holds the size of the first huge * class. Any object bigger than or equal to that will * endup in the huge class. */ if (pages_per_zspage != 1 && objs_per_zspage != 1 && !huge_class_size) { huge_class_size = size; /* * The object uses ZS_HANDLE_SIZE bytes to store the * handle. We need to subtract it, because zs_malloc() * unconditionally adds handle size before it performs * size class search - so object may be smaller than * huge class size, yet it still can end up in the huge * class because it grows by ZS_HANDLE_SIZE extra bytes * right before class lookup. */ huge_class_size -= (ZS_HANDLE_SIZE - 1); } /* * size_class is used for normal zsmalloc operation such * as alloc/free for that size. Although it is natural that we * have one size_class for each size, there is a chance that we * can get more memory utilization if we use one size_class for * many different sizes whose size_class have same * characteristics. So, we makes size_class point to * previous size_class if possible. */ if (prev_class) { if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { pool->size_class[i] = prev_class; continue; } } class = kzalloc(sizeof(struct size_class), GFP_KERNEL); if (!class) goto err; class->size = size; class->index = i; class->pages_per_zspage = pages_per_zspage; class->objs_per_zspage = objs_per_zspage; pool->size_class[i] = class; fullness = ZS_INUSE_RATIO_0; while (fullness < NR_FULLNESS_GROUPS) { INIT_LIST_HEAD(&class->fullness_list[fullness]); fullness++; } prev_class = class; } /* debug only, don't abort if it fails */ zs_pool_stat_create(pool, name); /* * Not critical since shrinker is only used to trigger internal * defragmentation of the pool which is pretty optional thing. If * registration fails we still can use the pool normally and user can * trigger compaction manually. Thus, ignore return code. */ zs_register_shrinker(pool); return pool; err: zs_destroy_pool(pool); return NULL; } EXPORT_SYMBOL_GPL(zs_create_pool); void zs_destroy_pool(struct zs_pool *pool) { int i; zs_unregister_shrinker(pool); zs_flush_migration(pool); zs_pool_stat_destroy(pool); for (i = 0; i < ZS_SIZE_CLASSES; i++) { int fg; struct size_class *class = pool->size_class[i]; if (!class) continue; if (class->index != i) continue; for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { if (list_empty(&class->fullness_list[fg])) continue; pr_err("Class-%d fullness group %d is not empty\n", class->size, fg); } kfree(class); } destroy_cache(pool); kfree(pool->name); kfree(pool); } EXPORT_SYMBOL_GPL(zs_destroy_pool); static int __init zs_init(void) { int ret; ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", zs_cpu_prepare, zs_cpu_dead); if (ret) goto out; #ifdef CONFIG_ZPOOL zpool_register_driver(&zs_zpool_driver); #endif zs_stat_init(); return 0; out: return ret; } static void __exit zs_exit(void) { #ifdef CONFIG_ZPOOL zpool_unregister_driver(&zs_zpool_driver); #endif cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); zs_stat_exit(); } module_init(zs_init); module_exit(zs_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");