/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "htc.h" #include "htt.h" #include "txrx.h" #include "debug.h" #include "trace.h" #include "mac.h" #include <linux/log2.h> #define HTT_RX_RING_SIZE 1024 #define HTT_RX_RING_FILL_LEVEL 1000 /* when under memory pressure rx ring refill may fail and needs a retry */ #define HTT_RX_RING_REFILL_RETRY_MS 50 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); static void ath10k_htt_txrx_compl_task(unsigned long ptr); static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) { struct sk_buff *skb; struct ath10k_skb_cb *cb; int i; for (i = 0; i < htt->rx_ring.fill_cnt; i++) { skb = htt->rx_ring.netbufs_ring[i]; cb = ATH10K_SKB_CB(skb); dma_unmap_single(htt->ar->dev, cb->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } htt->rx_ring.fill_cnt = 0; } static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { struct htt_rx_desc *rx_desc; struct sk_buff *skb; dma_addr_t paddr; int ret = 0, idx; idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); while (num > 0) { skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); if (!skb) { ret = -ENOMEM; goto fail; } if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) skb_pull(skb, PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - skb->data); /* Clear rx_desc attention word before posting to Rx ring */ rx_desc = (struct htt_rx_desc *)skb->data; rx_desc->attention.flags = __cpu_to_le32(0); paddr = dma_map_single(htt->ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { dev_kfree_skb_any(skb); ret = -ENOMEM; goto fail; } ATH10K_SKB_CB(skb)->paddr = paddr; htt->rx_ring.netbufs_ring[idx] = skb; htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); htt->rx_ring.fill_cnt++; num--; idx++; idx &= htt->rx_ring.size_mask; } fail: /* * Make sure the rx buffer is updated before available buffer * index to avoid any potential rx ring corruption. */ mb(); *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); return ret; } static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) { lockdep_assert_held(&htt->rx_ring.lock); return __ath10k_htt_rx_ring_fill_n(htt, num); } static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) { int ret, num_deficit, num_to_fill; /* Refilling the whole RX ring buffer proves to be a bad idea. The * reason is RX may take up significant amount of CPU cycles and starve * other tasks, e.g. TX on an ethernet device while acting as a bridge * with ath10k wlan interface. This ended up with very poor performance * once CPU the host system was overwhelmed with RX on ath10k. * * By limiting the number of refills the replenishing occurs * progressively. This in turns makes use of the fact tasklets are * processed in FIFO order. This means actual RX processing can starve * out refilling. If there's not enough buffers on RX ring FW will not * report RX until it is refilled with enough buffers. This * automatically balances load wrt to CPU power. * * This probably comes at a cost of lower maximum throughput but * improves the avarage and stability. */ spin_lock_bh(&htt->rx_ring.lock); num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); num_deficit -= num_to_fill; ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); if (ret == -ENOMEM) { /* * Failed to fill it to the desired level - * we'll start a timer and try again next time. * As long as enough buffers are left in the ring for * another A-MPDU rx, no special recovery is needed. */ mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); } else if (num_deficit > 0) { tasklet_schedule(&htt->rx_replenish_task); } spin_unlock_bh(&htt->rx_ring.lock); } static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) { struct ath10k_htt *htt = (struct ath10k_htt *)arg; ath10k_htt_rx_msdu_buff_replenish(htt); } static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt) { struct sk_buff *skb; int i; for (i = 0; i < htt->rx_ring.size; i++) { skb = htt->rx_ring.netbufs_ring[i]; if (!skb) continue; dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); htt->rx_ring.netbufs_ring[i] = NULL; } } void ath10k_htt_rx_free(struct ath10k_htt *htt) { del_timer_sync(&htt->rx_ring.refill_retry_timer); tasklet_kill(&htt->rx_replenish_task); tasklet_kill(&htt->txrx_compl_task); skb_queue_purge(&htt->tx_compl_q); skb_queue_purge(&htt->rx_compl_q); ath10k_htt_rx_ring_clean_up(htt); dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); dma_free_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), htt->rx_ring.alloc_idx.vaddr, htt->rx_ring.alloc_idx.paddr); kfree(htt->rx_ring.netbufs_ring); } static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; int idx; struct sk_buff *msdu; lockdep_assert_held(&htt->rx_ring.lock); if (htt->rx_ring.fill_cnt == 0) { ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); return NULL; } idx = htt->rx_ring.sw_rd_idx.msdu_payld; msdu = htt->rx_ring.netbufs_ring[idx]; htt->rx_ring.netbufs_ring[idx] = NULL; idx++; idx &= htt->rx_ring.size_mask; htt->rx_ring.sw_rd_idx.msdu_payld = idx; htt->rx_ring.fill_cnt--; dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(msdu)->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", msdu->data, msdu->len + skb_tailroom(msdu)); return msdu; } /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, u8 **fw_desc, int *fw_desc_len, struct sk_buff_head *amsdu) { struct ath10k *ar = htt->ar; int msdu_len, msdu_chaining = 0; struct sk_buff *msdu; struct htt_rx_desc *rx_desc; lockdep_assert_held(&htt->rx_ring.lock); for (;;) { int last_msdu, msdu_len_invalid, msdu_chained; msdu = ath10k_htt_rx_netbuf_pop(htt); if (!msdu) { __skb_queue_purge(amsdu); return -ENOENT; } __skb_queue_tail(amsdu, msdu); rx_desc = (struct htt_rx_desc *)msdu->data; /* FIXME: we must report msdu payload since this is what caller * expects now */ skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); /* * Sanity check - confirm the HW is finished filling in the * rx data. * If the HW and SW are working correctly, then it's guaranteed * that the HW's MAC DMA is done before this point in the SW. * To prevent the case that we handle a stale Rx descriptor, * just assert for now until we have a way to recover. */ if (!(__le32_to_cpu(rx_desc->attention.flags) & RX_ATTENTION_FLAGS_MSDU_DONE)) { __skb_queue_purge(amsdu); return -EIO; } /* * Copy the FW rx descriptor for this MSDU from the rx * indication message into the MSDU's netbuf. HL uses the * same rx indication message definition as LL, and simply * appends new info (fields from the HW rx desc, and the * MSDU payload itself). So, the offset into the rx * indication message only has to account for the standard * offset of the per-MSDU FW rx desc info within the * message, and how many bytes of the per-MSDU FW rx desc * info have already been consumed. (And the endianness of * the host, since for a big-endian host, the rx ind * message contents, including the per-MSDU rx desc bytes, * were byteswapped during upload.) */ if (*fw_desc_len > 0) { rx_desc->fw_desc.info0 = **fw_desc; /* * The target is expected to only provide the basic * per-MSDU rx descriptors. Just to be sure, verify * that the target has not attached extension data * (e.g. LRO flow ID). */ /* or more, if there's extension data */ (*fw_desc)++; (*fw_desc_len)--; } else { /* * When an oversized AMSDU happened, FW will lost * some of MSDU status - in this case, the FW * descriptors provided will be less than the * actual MSDUs inside this MPDU. Mark the FW * descriptors so that it will still deliver to * upper stack, if no CRC error for this MPDU. * * FIX THIS - the FW descriptors are actually for * MSDUs in the end of this A-MSDU instead of the * beginning. */ rx_desc->fw_desc.info0 = 0; } msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), RX_MSDU_START_INFO0_MSDU_LENGTH); msdu_chained = rx_desc->frag_info.ring2_more_count; if (msdu_len_invalid) msdu_len = 0; skb_trim(msdu, 0); skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); msdu_len -= msdu->len; /* Note: Chained buffers do not contain rx descriptor */ while (msdu_chained--) { msdu = ath10k_htt_rx_netbuf_pop(htt); if (!msdu) { __skb_queue_purge(amsdu); return -ENOENT; } __skb_queue_tail(amsdu, msdu); skb_trim(msdu, 0); skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); msdu_len -= msdu->len; msdu_chaining = 1; } last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & RX_MSDU_END_INFO0_LAST_MSDU; trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, sizeof(*rx_desc) - sizeof(u32)); if (last_msdu) break; } if (skb_queue_empty(amsdu)) msdu_chaining = -1; /* * Don't refill the ring yet. * * First, the elements popped here are still in use - it is not * safe to overwrite them until the matching call to * mpdu_desc_list_next. Second, for efficiency it is preferable to * refill the rx ring with 1 PPDU's worth of rx buffers (something * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers * (something like 3 buffers). Consequently, we'll rely on the txrx * SW to tell us when it is done pulling all the PPDU's rx buffers * out of the rx ring, and then refill it just once. */ return msdu_chaining; } static void ath10k_htt_rx_replenish_task(unsigned long ptr) { struct ath10k_htt *htt = (struct ath10k_htt *)ptr; ath10k_htt_rx_msdu_buff_replenish(htt); } int ath10k_htt_rx_alloc(struct ath10k_htt *htt) { struct ath10k *ar = htt->ar; dma_addr_t paddr; void *vaddr; size_t size; struct timer_list *timer = &htt->rx_ring.refill_retry_timer; htt->rx_confused = false; /* XXX: The fill level could be changed during runtime in response to * the host processing latency. Is this really worth it? */ htt->rx_ring.size = HTT_RX_RING_SIZE; htt->rx_ring.size_mask = htt->rx_ring.size - 1; htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; if (!is_power_of_2(htt->rx_ring.size)) { ath10k_warn(ar, "htt rx ring size is not power of 2\n"); return -EINVAL; } htt->rx_ring.netbufs_ring = kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), GFP_KERNEL); if (!htt->rx_ring.netbufs_ring) goto err_netbuf; size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA); if (!vaddr) goto err_dma_ring; htt->rx_ring.paddrs_ring = vaddr; htt->rx_ring.base_paddr = paddr; vaddr = dma_alloc_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), &paddr, GFP_DMA); if (!vaddr) goto err_dma_idx; htt->rx_ring.alloc_idx.vaddr = vaddr; htt->rx_ring.alloc_idx.paddr = paddr; htt->rx_ring.sw_rd_idx.msdu_payld = 0; *htt->rx_ring.alloc_idx.vaddr = 0; /* Initialize the Rx refill retry timer */ setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); spin_lock_init(&htt->rx_ring.lock); htt->rx_ring.fill_cnt = 0; if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) goto err_fill_ring; tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, (unsigned long)htt); skb_queue_head_init(&htt->tx_compl_q); skb_queue_head_init(&htt->rx_compl_q); tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, (unsigned long)htt); ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", htt->rx_ring.size, htt->rx_ring.fill_level); return 0; err_fill_ring: ath10k_htt_rx_ring_free(htt); dma_free_coherent(htt->ar->dev, sizeof(*htt->rx_ring.alloc_idx.vaddr), htt->rx_ring.alloc_idx.vaddr, htt->rx_ring.alloc_idx.paddr); err_dma_idx: dma_free_coherent(htt->ar->dev, (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), htt->rx_ring.paddrs_ring, htt->rx_ring.base_paddr); err_dma_ring: kfree(htt->rx_ring.netbufs_ring); err_netbuf: return -ENOMEM; } static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_NONE: return 0; case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: return IEEE80211_WEP_IV_LEN; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: return IEEE80211_TKIP_IV_LEN; case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return IEEE80211_CCMP_HDR_LEN; case HTT_RX_MPDU_ENCRYPT_WEP128: case HTT_RX_MPDU_ENCRYPT_WAPI: break; } ath10k_warn(ar, "unsupported encryption type %d\n", type); return 0; } #define MICHAEL_MIC_LEN 8 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, enum htt_rx_mpdu_encrypt_type type) { switch (type) { case HTT_RX_MPDU_ENCRYPT_NONE: return 0; case HTT_RX_MPDU_ENCRYPT_WEP40: case HTT_RX_MPDU_ENCRYPT_WEP104: return IEEE80211_WEP_ICV_LEN; case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: return IEEE80211_TKIP_ICV_LEN; case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: return IEEE80211_CCMP_MIC_LEN; case HTT_RX_MPDU_ENCRYPT_WEP128: case HTT_RX_MPDU_ENCRYPT_WAPI: break; } ath10k_warn(ar, "unsupported encryption type %d\n", type); return 0; } struct rfc1042_hdr { u8 llc_dsap; u8 llc_ssap; u8 llc_ctrl; u8 snap_oui[3]; __be16 snap_type; } __packed; struct amsdu_subframe_hdr { u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; __be16 len; } __packed; static const u8 rx_legacy_rate_idx[] = { 3, /* 0x00 - 11Mbps */ 2, /* 0x01 - 5.5Mbps */ 1, /* 0x02 - 2Mbps */ 0, /* 0x03 - 1Mbps */ 3, /* 0x04 - 11Mbps */ 2, /* 0x05 - 5.5Mbps */ 1, /* 0x06 - 2Mbps */ 0, /* 0x07 - 1Mbps */ 10, /* 0x08 - 48Mbps */ 8, /* 0x09 - 24Mbps */ 6, /* 0x0A - 12Mbps */ 4, /* 0x0B - 6Mbps */ 11, /* 0x0C - 54Mbps */ 9, /* 0x0D - 36Mbps */ 7, /* 0x0E - 18Mbps */ 5, /* 0x0F - 9Mbps */ }; static void ath10k_htt_rx_h_rates(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { enum ieee80211_band band; u8 cck, rate, rate_idx, bw, sgi, mcs, nss; u8 preamble = 0; u32 info1, info2, info3; /* Band value can't be set as undefined but freq can be 0 - use that to * determine whether band is provided. * * FIXME: Perhaps this can go away if CCK rate reporting is a little * reworked? */ if (!status->freq) return; band = status->band; info1 = __le32_to_cpu(rxd->ppdu_start.info1); info2 = __le32_to_cpu(rxd->ppdu_start.info2); info3 = __le32_to_cpu(rxd->ppdu_start.info3); preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); switch (preamble) { case HTT_RX_LEGACY: cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); rate_idx = 0; if (rate < 0x08 || rate > 0x0F) break; switch (band) { case IEEE80211_BAND_2GHZ: if (cck) rate &= ~BIT(3); rate_idx = rx_legacy_rate_idx[rate]; break; case IEEE80211_BAND_5GHZ: rate_idx = rx_legacy_rate_idx[rate]; /* We are using same rate table registering HW - ath10k_rates[]. In case of 5GHz skip CCK rates, so -4 here */ rate_idx -= 4; break; default: break; } status->rate_idx = rate_idx; break; case HTT_RX_HT: case HTT_RX_HT_WITH_TXBF: /* HT-SIG - Table 20-11 in info2 and info3 */ mcs = info2 & 0x1F; nss = mcs >> 3; bw = (info2 >> 7) & 1; sgi = (info3 >> 7) & 1; status->rate_idx = mcs; status->flag |= RX_FLAG_HT; if (sgi) status->flag |= RX_FLAG_SHORT_GI; if (bw) status->flag |= RX_FLAG_40MHZ; break; case HTT_RX_VHT: case HTT_RX_VHT_WITH_TXBF: /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 TODO check this */ mcs = (info3 >> 4) & 0x0F; nss = ((info2 >> 10) & 0x07) + 1; bw = info2 & 3; sgi = info3 & 1; status->rate_idx = mcs; status->vht_nss = nss; if (sgi) status->flag |= RX_FLAG_SHORT_GI; switch (bw) { /* 20MHZ */ case 0: break; /* 40MHZ */ case 1: status->flag |= RX_FLAG_40MHZ; break; /* 80MHZ */ case 2: status->vht_flag |= RX_VHT_FLAG_80MHZ; } status->flag |= RX_FLAG_VHT; break; default: break; } } static bool ath10k_htt_rx_h_channel(struct ath10k *ar, struct ieee80211_rx_status *status) { struct ieee80211_channel *ch; spin_lock_bh(&ar->data_lock); ch = ar->scan_channel; if (!ch) ch = ar->rx_channel; spin_unlock_bh(&ar->data_lock); if (!ch) return false; status->band = ch->band; status->freq = ch->center_freq; return true; } static void ath10k_htt_rx_h_signal(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { /* FIXME: Get real NF */ status->signal = ATH10K_DEFAULT_NOISE_FLOOR + rxd->ppdu_start.rssi_comb; status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; } static void ath10k_htt_rx_h_mactime(struct ath10k *ar, struct ieee80211_rx_status *status, struct htt_rx_desc *rxd) { /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This * means all prior MSDUs in a PPDU are reported to mac80211 without the * TSF. Is it worth holding frames until end of PPDU is known? * * FIXME: Can we get/compute 64bit TSF? */ status->mactime = __le32_to_cpu(rxd->ppdu_end.tsf_timestamp); status->flag |= RX_FLAG_MACTIME_END; } static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status) { struct sk_buff *first; struct htt_rx_desc *rxd; bool is_first_ppdu; bool is_last_ppdu; if (skb_queue_empty(amsdu)) return; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); is_first_ppdu = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); is_last_ppdu = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); if (is_first_ppdu) { /* New PPDU starts so clear out the old per-PPDU status. */ status->freq = 0; status->rate_idx = 0; status->vht_nss = 0; status->vht_flag &= ~RX_VHT_FLAG_80MHZ; status->flag &= ~(RX_FLAG_HT | RX_FLAG_VHT | RX_FLAG_SHORT_GI | RX_FLAG_40MHZ | RX_FLAG_MACTIME_END); status->flag |= RX_FLAG_NO_SIGNAL_VAL; ath10k_htt_rx_h_signal(ar, status, rxd); ath10k_htt_rx_h_channel(ar, status); ath10k_htt_rx_h_rates(ar, status, rxd); } if (is_last_ppdu) ath10k_htt_rx_h_mactime(ar, status, rxd); } static const char * const tid_to_ac[] = { "BE", "BK", "BK", "BE", "VI", "VI", "VO", "VO", }; static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) { u8 *qc; int tid; if (!ieee80211_is_data_qos(hdr->frame_control)) return ""; qc = ieee80211_get_qos_ctl(hdr); tid = *qc & IEEE80211_QOS_CTL_TID_MASK; if (tid < 8) snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); else snprintf(out, size, "tid %d", tid); return out; } static void ath10k_process_rx(struct ath10k *ar, struct ieee80211_rx_status *rx_status, struct sk_buff *skb) { struct ieee80211_rx_status *status; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; char tid[32]; status = IEEE80211_SKB_RXCB(skb); *status = *rx_status; ath10k_dbg(ar, ATH10K_DBG_DATA, "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", skb, skb->len, ieee80211_get_SA(hdr), ath10k_get_tid(hdr, tid, sizeof(tid)), is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? "mcast" : "ucast", (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, status->flag == 0 ? "legacy" : "", status->flag & RX_FLAG_HT ? "ht" : "", status->flag & RX_FLAG_VHT ? "vht" : "", status->flag & RX_FLAG_40MHZ ? "40" : "", status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", status->rate_idx, status->vht_nss, status->freq, status->band, status->flag, !!(status->flag & RX_FLAG_FAILED_FCS_CRC), !!(status->flag & RX_FLAG_MMIC_ERROR), !!(status->flag & RX_FLAG_AMSDU_MORE)); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", skb->data, skb->len); trace_ath10k_rx_hdr(ar, skb->data, skb->len); trace_ath10k_rx_payload(ar, skb->data, skb->len); ieee80211_rx(ar->hw, skb); } static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr) { /* nwifi header is padded to 4 bytes. this fixes 4addr rx */ return round_up(ieee80211_hdrlen(hdr->frame_control), 4); } static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, enum htt_rx_mpdu_encrypt_type enctype, bool is_decrypted) { struct ieee80211_hdr *hdr; struct htt_rx_desc *rxd; size_t hdr_len; size_t crypto_len; bool is_first; bool is_last; rxd = (void *)msdu->data - sizeof(*rxd); is_first = !!(rxd->msdu_end.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); is_last = !!(rxd->msdu_end.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); /* Delivered decapped frame: * [802.11 header] * [crypto param] <-- can be trimmed if !fcs_err && * !decrypt_err && !peer_idx_invalid * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] * [payload] * [FCS] <-- at end, needs to be trimmed */ /* This probably shouldn't happen but warn just in case */ if (unlikely(WARN_ON_ONCE(!is_first))) return; /* This probably shouldn't happen but warn just in case */ if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) return; skb_trim(msdu, msdu->len - FCS_LEN); /* In most cases this will be true for sniffed frames. It makes sense * to deliver them as-is without stripping the crypto param. This would * also make sense for software based decryption (which is not * implemented in ath10k). * * If there's no error then the frame is decrypted. At least that is * the case for frames that come in via fragmented rx indication. */ if (!is_decrypted) return; /* The payload is decrypted so strip crypto params. Start from tail * since hdr is used to compute some stuff. */ hdr = (void *)msdu->data; /* Tail */ skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype)); /* MMIC */ if (!ieee80211_has_morefrags(hdr->frame_control) && enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) skb_trim(msdu, msdu->len - 8); /* Head */ hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); memmove((void *)msdu->data + crypto_len, (void *)msdu->data, hdr_len); skb_pull(msdu, crypto_len); } static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64]) { struct ieee80211_hdr *hdr; size_t hdr_len; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; /* Delivered decapped frame: * [nwifi 802.11 header] <-- replaced with 802.11 hdr * [rfc1042/llc] * * Note: The nwifi header doesn't have QoS Control and is * (always?) a 3addr frame. * * Note2: There's no A-MSDU subframe header. Even if it's part * of an A-MSDU. */ /* pull decapped header and copy SA & DA */ hdr = (struct ieee80211_hdr *)msdu->data; hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); ether_addr_copy(da, ieee80211_get_DA(hdr)); ether_addr_copy(sa, ieee80211_get_SA(hdr)); skb_pull(msdu, hdr_len); /* push original 802.11 header */ hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); /* original 802.11 header has a different DA and in * case of 4addr it may also have different SA */ hdr = (struct ieee80211_hdr *)msdu->data; ether_addr_copy(ieee80211_get_DA(hdr), da); ether_addr_copy(ieee80211_get_SA(hdr), sa); } static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, struct sk_buff *msdu, enum htt_rx_mpdu_encrypt_type enctype) { struct ieee80211_hdr *hdr; struct htt_rx_desc *rxd; size_t hdr_len, crypto_len; void *rfc1042; bool is_first, is_last, is_amsdu; rxd = (void *)msdu->data - sizeof(*rxd); hdr = (void *)rxd->rx_hdr_status; is_first = !!(rxd->msdu_end.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); is_last = !!(rxd->msdu_end.info0 & __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); is_amsdu = !(is_first && is_last); rfc1042 = hdr; if (is_first) { hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); rfc1042 += round_up(hdr_len, 4) + round_up(crypto_len, 4); } if (is_amsdu) rfc1042 += sizeof(struct amsdu_subframe_hdr); return rfc1042; } static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64], enum htt_rx_mpdu_encrypt_type enctype) { struct ieee80211_hdr *hdr; struct ethhdr *eth; size_t hdr_len; void *rfc1042; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; /* Delivered decapped frame: * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc * [payload] */ rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); if (WARN_ON_ONCE(!rfc1042)) return; /* pull decapped header and copy SA & DA */ eth = (struct ethhdr *)msdu->data; ether_addr_copy(da, eth->h_dest); ether_addr_copy(sa, eth->h_source); skb_pull(msdu, sizeof(struct ethhdr)); /* push rfc1042/llc/snap */ memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, sizeof(struct rfc1042_hdr)); /* push original 802.11 header */ hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); /* original 802.11 header has a different DA and in * case of 4addr it may also have different SA */ hdr = (struct ieee80211_hdr *)msdu->data; ether_addr_copy(ieee80211_get_DA(hdr), da); ether_addr_copy(ieee80211_get_SA(hdr), sa); } static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, const u8 first_hdr[64]) { struct ieee80211_hdr *hdr; size_t hdr_len; /* Delivered decapped frame: * [amsdu header] <-- replaced with 802.11 hdr * [rfc1042/llc] * [payload] */ skb_pull(msdu, sizeof(struct amsdu_subframe_hdr)); hdr = (struct ieee80211_hdr *)first_hdr; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); } static void ath10k_htt_rx_h_undecap(struct ath10k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, u8 first_hdr[64], enum htt_rx_mpdu_encrypt_type enctype, bool is_decrypted) { struct htt_rx_desc *rxd; enum rx_msdu_decap_format decap; struct ieee80211_hdr *hdr; /* First msdu's decapped header: * [802.11 header] <-- padded to 4 bytes long * [crypto param] <-- padded to 4 bytes long * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] * * Other (2nd, 3rd, ..) msdu's decapped header: * [amsdu header] <-- only if A-MSDU * [rfc1042/llc] */ rxd = (void *)msdu->data - sizeof(*rxd); hdr = (void *)rxd->rx_hdr_status; decap = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); switch (decap) { case RX_MSDU_DECAP_RAW: ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, is_decrypted); break; case RX_MSDU_DECAP_NATIVE_WIFI: ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); break; case RX_MSDU_DECAP_ETHERNET2_DIX: ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); break; case RX_MSDU_DECAP_8023_SNAP_LLC: ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); break; } } static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) { struct htt_rx_desc *rxd; u32 flags, info; bool is_ip4, is_ip6; bool is_tcp, is_udp; bool ip_csum_ok, tcpudp_csum_ok; rxd = (void *)skb->data - sizeof(*rxd); flags = __le32_to_cpu(rxd->attention.flags); info = __le32_to_cpu(rxd->msdu_start.info1); is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); if (!is_ip4 && !is_ip6) return CHECKSUM_NONE; if (!is_tcp && !is_udp) return CHECKSUM_NONE; if (!ip_csum_ok) return CHECKSUM_NONE; if (!tcpudp_csum_ok) return CHECKSUM_NONE; return CHECKSUM_UNNECESSARY; } static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) { msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); } static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status) { struct sk_buff *first; struct sk_buff *last; struct sk_buff *msdu; struct htt_rx_desc *rxd; struct ieee80211_hdr *hdr; enum htt_rx_mpdu_encrypt_type enctype; u8 first_hdr[64]; u8 *qos; size_t hdr_len; bool has_fcs_err; bool has_crypto_err; bool has_tkip_err; bool has_peer_idx_invalid; bool is_decrypted; u32 attention; if (skb_queue_empty(amsdu)) return; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), RX_MPDU_START_INFO0_ENCRYPT_TYPE); /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 * decapped header. It'll be used for undecapping of each MSDU. */ hdr = (void *)rxd->rx_hdr_status; hdr_len = ieee80211_hdrlen(hdr->frame_control); memcpy(first_hdr, hdr, hdr_len); /* Each A-MSDU subframe will use the original header as the base and be * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. */ hdr = (void *)first_hdr; qos = ieee80211_get_qos_ctl(hdr); qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; /* Some attention flags are valid only in the last MSDU. */ last = skb_peek_tail(amsdu); rxd = (void *)last->data - sizeof(*rxd); attention = __le32_to_cpu(rxd->attention.flags); has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); /* Note: If hardware captures an encrypted frame that it can't decrypt, * e.g. due to fcs error, missing peer or invalid key data it will * report the frame as raw. */ is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && !has_fcs_err && !has_crypto_err && !has_peer_idx_invalid); /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | RX_FLAG_MMIC_ERROR | RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED); if (has_fcs_err) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (has_tkip_err) status->flag |= RX_FLAG_MMIC_ERROR; if (is_decrypted) status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; skb_queue_walk(amsdu, msdu) { ath10k_htt_rx_h_csum_offload(msdu); ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, is_decrypted); /* Undecapping involves copying the original 802.11 header back * to sk_buff. If frame is protected and hardware has decrypted * it then remove the protected bit. */ if (!is_decrypted) continue; hdr = (void *)msdu->data; hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } static void ath10k_htt_rx_h_deliver(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *status) { struct sk_buff *msdu; while ((msdu = __skb_dequeue(amsdu))) { /* Setup per-MSDU flags */ if (skb_queue_empty(amsdu)) status->flag &= ~RX_FLAG_AMSDU_MORE; else status->flag |= RX_FLAG_AMSDU_MORE; ath10k_process_rx(ar, status, msdu); } } static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) { struct sk_buff *skb, *first; int space; int total_len = 0; /* TODO: Might could optimize this by using * skb_try_coalesce or similar method to * decrease copying, or maybe get mac80211 to * provide a way to just receive a list of * skb? */ first = __skb_dequeue(amsdu); /* Allocate total length all at once. */ skb_queue_walk(amsdu, skb) total_len += skb->len; space = total_len - skb_tailroom(first); if ((space > 0) && (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { /* TODO: bump some rx-oom error stat */ /* put it back together so we can free the * whole list at once. */ __skb_queue_head(amsdu, first); return -1; } /* Walk list again, copying contents into * msdu_head */ while ((skb = __skb_dequeue(amsdu))) { skb_copy_from_linear_data(skb, skb_put(first, skb->len), skb->len); dev_kfree_skb_any(skb); } __skb_queue_head(amsdu, first); return 0; } static void ath10k_htt_rx_h_unchain(struct ath10k *ar, struct sk_buff_head *amsdu, bool chained) { struct sk_buff *first; struct htt_rx_desc *rxd; enum rx_msdu_decap_format decap; first = skb_peek(amsdu); rxd = (void *)first->data - sizeof(*rxd); decap = MS(__le32_to_cpu(rxd->msdu_start.info1), RX_MSDU_START_INFO1_DECAP_FORMAT); if (!chained) return; /* FIXME: Current unchaining logic can only handle simple case of raw * msdu chaining. If decapping is other than raw the chaining may be * more complex and this isn't handled by the current code. Don't even * try re-constructing such frames - it'll be pretty much garbage. */ if (decap != RX_MSDU_DECAP_RAW || skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { __skb_queue_purge(amsdu); return; } ath10k_unchain_msdu(amsdu); } static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *rx_status) { struct sk_buff *msdu; struct htt_rx_desc *rxd; bool is_mgmt; bool has_fcs_err; msdu = skb_peek(amsdu); rxd = (void *)msdu->data - sizeof(*rxd); /* FIXME: It might be a good idea to do some fuzzy-testing to drop * invalid/dangerous frames. */ if (!rx_status->freq) { ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); return false; } is_mgmt = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); has_fcs_err = !!(rxd->attention.flags & __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR)); /* Management frames are handled via WMI events. The pros of such * approach is that channel is explicitly provided in WMI events * whereas HTT doesn't provide channel information for Rxed frames. * * However some firmware revisions don't report corrupted frames via * WMI so don't drop them. */ if (is_mgmt && !has_fcs_err) { ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); return false; } if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); return false; } return true; } static void ath10k_htt_rx_h_filter(struct ath10k *ar, struct sk_buff_head *amsdu, struct ieee80211_rx_status *rx_status) { if (skb_queue_empty(amsdu)) return; if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) return; __skb_queue_purge(amsdu); } static void ath10k_htt_rx_handler(struct ath10k_htt *htt, struct htt_rx_indication *rx) { struct ath10k *ar = htt->ar; struct ieee80211_rx_status *rx_status = &htt->rx_status; struct htt_rx_indication_mpdu_range *mpdu_ranges; struct sk_buff_head amsdu; int num_mpdu_ranges; int fw_desc_len; u8 *fw_desc; int i, ret, mpdu_count = 0; lockdep_assert_held(&htt->rx_ring.lock); if (htt->rx_confused) return; fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); fw_desc = (u8 *)&rx->fw_desc; num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", rx, sizeof(*rx) + (sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges)); for (i = 0; i < num_mpdu_ranges; i++) mpdu_count += mpdu_ranges[i].mpdu_count; while (mpdu_count--) { __skb_queue_head_init(&amsdu); ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, &amsdu); if (ret < 0) { ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); __skb_queue_purge(&amsdu); /* FIXME: It's probably a good idea to reboot the * device instead of leaving it inoperable. */ htt->rx_confused = true; break; } ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status); ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0); ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); } tasklet_schedule(&htt->rx_replenish_task); } static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, struct htt_rx_fragment_indication *frag) { struct ath10k *ar = htt->ar; struct ieee80211_rx_status *rx_status = &htt->rx_status; struct sk_buff_head amsdu; int ret; u8 *fw_desc; int fw_desc_len; fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); fw_desc = (u8 *)frag->fw_msdu_rx_desc; __skb_queue_head_init(&amsdu); spin_lock_bh(&htt->rx_ring.lock); ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, &amsdu); spin_unlock_bh(&htt->rx_ring.lock); tasklet_schedule(&htt->rx_replenish_task); ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); if (ret) { ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n", ret); __skb_queue_purge(&amsdu); return; } if (skb_queue_len(&amsdu) != 1) { ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n"); __skb_queue_purge(&amsdu); return; } ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status); ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); if (fw_desc_len > 0) { ath10k_dbg(ar, ATH10K_DBG_HTT, "expecting more fragmented rx in one indication %d\n", fw_desc_len); } } static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (struct htt_resp *)skb->data; struct htt_tx_done tx_done = {}; int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); __le16 msdu_id; int i; lockdep_assert_held(&htt->tx_lock); switch (status) { case HTT_DATA_TX_STATUS_NO_ACK: tx_done.no_ack = true; break; case HTT_DATA_TX_STATUS_OK: break; case HTT_DATA_TX_STATUS_DISCARD: case HTT_DATA_TX_STATUS_POSTPONE: case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: tx_done.discard = true; break; default: ath10k_warn(ar, "unhandled tx completion status %d\n", status); tx_done.discard = true; break; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", resp->data_tx_completion.num_msdus); for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { msdu_id = resp->data_tx_completion.msdus[i]; tx_done.msdu_id = __le16_to_cpu(msdu_id); ath10k_txrx_tx_unref(htt, &tx_done); } } static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) { struct htt_rx_addba *ev = &resp->rx_addba; struct ath10k_peer *peer; struct ath10k_vif *arvif; u16 info0, tid, peer_id; info0 = __le16_to_cpu(ev->info0); tid = MS(info0, HTT_RX_BA_INFO0_TID); peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx addba tid %hu peer_id %hu size %hhu\n", tid, peer_id, ev->window_size); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) { ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", peer_id); spin_unlock_bh(&ar->data_lock); return; } arvif = ath10k_get_arvif(ar, peer->vdev_id); if (!arvif) { ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", peer->vdev_id); spin_unlock_bh(&ar->data_lock); return; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx start rx ba session sta %pM tid %hu size %hhu\n", peer->addr, tid, ev->window_size); ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); spin_unlock_bh(&ar->data_lock); } static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) { struct htt_rx_delba *ev = &resp->rx_delba; struct ath10k_peer *peer; struct ath10k_vif *arvif; u16 info0, tid, peer_id; info0 = __le16_to_cpu(ev->info0); tid = MS(info0, HTT_RX_BA_INFO0_TID); peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx delba tid %hu peer_id %hu\n", tid, peer_id); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find_by_id(ar, peer_id); if (!peer) { ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", peer_id); spin_unlock_bh(&ar->data_lock); return; } arvif = ath10k_get_arvif(ar, peer->vdev_id); if (!arvif) { ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", peer->vdev_id); spin_unlock_bh(&ar->data_lock); return; } ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx stop rx ba session sta %pM tid %hu\n", peer->addr, tid); ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); spin_unlock_bh(&ar->data_lock); } void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; struct htt_resp *resp = (struct htt_resp *)skb->data; /* confirm alignment */ if (!IS_ALIGNED((unsigned long)skb->data, 4)) ath10k_warn(ar, "unaligned htt message, expect trouble\n"); ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", resp->hdr.msg_type); switch (resp->hdr.msg_type) { case HTT_T2H_MSG_TYPE_VERSION_CONF: { htt->target_version_major = resp->ver_resp.major; htt->target_version_minor = resp->ver_resp.minor; complete(&htt->target_version_received); break; } case HTT_T2H_MSG_TYPE_RX_IND: spin_lock_bh(&htt->rx_ring.lock); __skb_queue_tail(&htt->rx_compl_q, skb); spin_unlock_bh(&htt->rx_ring.lock); tasklet_schedule(&htt->txrx_compl_task); return; case HTT_T2H_MSG_TYPE_PEER_MAP: { struct htt_peer_map_event ev = { .vdev_id = resp->peer_map.vdev_id, .peer_id = __le16_to_cpu(resp->peer_map.peer_id), }; memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); ath10k_peer_map_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_PEER_UNMAP: { struct htt_peer_unmap_event ev = { .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), }; ath10k_peer_unmap_event(htt, &ev); break; } case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { struct htt_tx_done tx_done = {}; int status = __le32_to_cpu(resp->mgmt_tx_completion.status); tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); switch (status) { case HTT_MGMT_TX_STATUS_OK: break; case HTT_MGMT_TX_STATUS_RETRY: tx_done.no_ack = true; break; case HTT_MGMT_TX_STATUS_DROP: tx_done.discard = true; break; } spin_lock_bh(&htt->tx_lock); ath10k_txrx_tx_unref(htt, &tx_done); spin_unlock_bh(&htt->tx_lock); break; } case HTT_T2H_MSG_TYPE_TX_COMPL_IND: spin_lock_bh(&htt->tx_lock); __skb_queue_tail(&htt->tx_compl_q, skb); spin_unlock_bh(&htt->tx_lock); tasklet_schedule(&htt->txrx_compl_task); return; case HTT_T2H_MSG_TYPE_SEC_IND: { struct ath10k *ar = htt->ar; struct htt_security_indication *ev = &resp->security_indication; ath10k_dbg(ar, ATH10K_DBG_HTT, "sec ind peer_id %d unicast %d type %d\n", __le16_to_cpu(ev->peer_id), !!(ev->flags & HTT_SECURITY_IS_UNICAST), MS(ev->flags, HTT_SECURITY_TYPE)); complete(&ar->install_key_done); break; } case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); break; } case HTT_T2H_MSG_TYPE_TEST: /* FIX THIS */ break; case HTT_T2H_MSG_TYPE_STATS_CONF: trace_ath10k_htt_stats(ar, skb->data, skb->len); break; case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: /* Firmware can return tx frames if it's unable to fully * process them and suspects host may be able to fix it. ath10k * sends all tx frames as already inspected so this shouldn't * happen unless fw has a bug. */ ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); break; case HTT_T2H_MSG_TYPE_RX_ADDBA: ath10k_htt_rx_addba(ar, resp); break; case HTT_T2H_MSG_TYPE_RX_DELBA: ath10k_htt_rx_delba(ar, resp); break; case HTT_T2H_MSG_TYPE_PKTLOG: { struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload; trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, sizeof(*hdr) + __le16_to_cpu(hdr->size)); break; } case HTT_T2H_MSG_TYPE_RX_FLUSH: { /* Ignore this event because mac80211 takes care of Rx * aggregation reordering. */ break; } default: ath10k_warn(ar, "htt event (%d) not handled\n", resp->hdr.msg_type); ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", skb->data, skb->len); break; }; /* Free the indication buffer */ dev_kfree_skb_any(skb); } static void ath10k_htt_txrx_compl_task(unsigned long ptr) { struct ath10k_htt *htt = (struct ath10k_htt *)ptr; struct htt_resp *resp; struct sk_buff *skb; spin_lock_bh(&htt->tx_lock); while ((skb = __skb_dequeue(&htt->tx_compl_q))) { ath10k_htt_rx_frm_tx_compl(htt->ar, skb); dev_kfree_skb_any(skb); } spin_unlock_bh(&htt->tx_lock); spin_lock_bh(&htt->rx_ring.lock); while ((skb = __skb_dequeue(&htt->rx_compl_q))) { resp = (struct htt_resp *)skb->data; ath10k_htt_rx_handler(htt, &resp->rx_ind); dev_kfree_skb_any(skb); } spin_unlock_bh(&htt->rx_ring.lock); }