/* * linux/mm/vmalloc.c * * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 */ #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> #include <asm/tlbflush.h> rwlock_t vmlist_lock = RW_LOCK_UNLOCKED; struct vm_struct *vmlist; static void unmap_area_pte(pmd_t *pmd, unsigned long address, unsigned long size) { unsigned long end; pte_t *pte; if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return; } pte = pte_offset_kernel(pmd, address); address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t page; page = ptep_get_and_clear(pte); address += PAGE_SIZE; pte++; if (pte_none(page)) continue; if (pte_present(page)) continue; printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n"); } while (address < end); } static void unmap_area_pmd(pgd_t *dir, unsigned long address, unsigned long size) { unsigned long end; pmd_t *pmd; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, address); address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { unmap_area_pte(pmd, address, end - address); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); } static int map_area_pte(pte_t *pte, unsigned long address, unsigned long size, pgprot_t prot, struct page ***pages) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { struct page *page = **pages; WARN_ON(!pte_none(*pte)); if (!page) return -ENOMEM; set_pte(pte, mk_pte(page, prot)); address += PAGE_SIZE; pte++; (*pages)++; } while (address < end); return 0; } static int map_area_pmd(pmd_t *pmd, unsigned long address, unsigned long size, pgprot_t prot, struct page ***pages) { unsigned long base, end; base = address & PGDIR_MASK; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { pte_t * pte = pte_alloc_kernel(&init_mm, pmd, base + address); if (!pte) return -ENOMEM; if (map_area_pte(pte, address, end - address, prot, pages)) return -ENOMEM; address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); return 0; } void unmap_vm_area(struct vm_struct *area) { unsigned long address = (unsigned long) area->addr; unsigned long end = (address + area->size); pgd_t *dir; dir = pgd_offset_k(address); flush_cache_vunmap(address, end); do { unmap_area_pmd(dir, address, end - address); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); flush_tlb_kernel_range((unsigned long) area->addr, end); } int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) { unsigned long address = (unsigned long) area->addr; unsigned long end = address + (area->size-PAGE_SIZE); pgd_t *dir; int err = 0; dir = pgd_offset_k(address); spin_lock(&init_mm.page_table_lock); do { pmd_t *pmd = pmd_alloc(&init_mm, dir, address); if (!pmd) { err = -ENOMEM; break; } if (map_area_pmd(pmd, address, end - address, prot, pages)) { err = -ENOMEM; break; } address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); spin_unlock(&init_mm.page_table_lock); flush_cache_vmap((unsigned long) area->addr, end); return err; } #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, unsigned long start, unsigned long end) { struct vm_struct **p, *tmp, *area; unsigned long align = 1; unsigned long addr; if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; } addr = ALIGN(start, align); area = kmalloc(sizeof(*area), GFP_KERNEL); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ size += PAGE_SIZE; if (unlikely(!size)) { kfree (area); return NULL; } write_lock(&vmlist_lock); for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { if ((unsigned long)tmp->addr < addr) { if((unsigned long)tmp->addr + tmp->size >= addr) addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); continue; } if ((size + addr) < addr) goto out; if (size + addr <= (unsigned long)tmp->addr) goto found; addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); if (addr > end - size) goto out; } found: area->next = *p; *p = area; area->flags = flags; area->addr = (void *)addr; area->size = size; area->pages = NULL; area->nr_pages = 0; area->phys_addr = 0; write_unlock(&vmlist_lock); return area; out: write_unlock(&vmlist_lock); kfree(area); return NULL; } /** * get_vm_area - reserve a contingous kernel virtual area * * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); } /** * remove_vm_area - find and remove a contingous kernel virtual area * * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines. */ struct vm_struct *remove_vm_area(void *addr) { struct vm_struct **p, *tmp; write_lock(&vmlist_lock); for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { if (tmp->addr == addr) goto found; } write_unlock(&vmlist_lock); return NULL; found: unmap_vm_area(tmp); *p = tmp->next; write_unlock(&vmlist_lock); return tmp; } void __vunmap(void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if ((PAGE_SIZE-1) & (unsigned long)addr) { printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); WARN_ON(1); return; } area = remove_vm_area(addr); if (unlikely(!area)) { printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); WARN_ON(1); return; } if (deallocate_pages) { int i; for (i = 0; i < area->nr_pages; i++) { if (unlikely(!area->pages[i])) BUG(); __free_page(area->pages[i]); } kfree(area->pages); } kfree(area); return; } /** * vfree - release memory allocated by vmalloc() * * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, as * obtained from vmalloc(), vmalloc_32() or __vmalloc(). * * May not be called in interrupt context. */ void vfree(void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 1); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * May not be called in interrupt context. */ void vunmap(void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual * space. */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; if (count > num_physpages) return NULL; area = get_vm_area((count << PAGE_SHIFT), flags); if (!area) return NULL; if (map_vm_area(area, prot, &pages)) { vunmap(area->addr); return NULL; } return area->addr; } EXPORT_SYMBOL(vmap); /** * __vmalloc - allocate virtually contiguous memory * * @size: allocation size * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ void *__vmalloc(unsigned long size, int gfp_mask, pgprot_t prot) { struct vm_struct *area; struct page **pages; unsigned int nr_pages, array_size, i; size = PAGE_ALIGN(size); if (!size || (size >> PAGE_SHIFT) > num_physpages) return NULL; area = get_vm_area(size, VM_ALLOC); if (!area) return NULL; nr_pages = size >> PAGE_SHIFT; array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; area->pages = pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM)); if (!area->pages) { remove_vm_area(area->addr); kfree(area); return NULL; } memset(area->pages, 0, array_size); for (i = 0; i < area->nr_pages; i++) { area->pages[i] = alloc_page(gfp_mask); if (unlikely(!area->pages[i])) { /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } } if (map_vm_area(area, prot, &pages)) goto fail; return area->addr; fail: vfree(area->addr); return NULL; } EXPORT_SYMBOL(__vmalloc); /** * vmalloc - allocate virtually contiguous memory * * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight cotrol over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); } EXPORT_SYMBOL(vmalloc); /** * vmalloc_exec - allocate virtually contiguous, executable memory * * @size: allocation size * * Kernel-internal function to allocate enough pages to cover @size * the page level allocator and map them into contiguous and * executable kernel virtual space. * * For tight cotrol over page level allocator and protection flags * use __vmalloc() instead. */ #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif void *vmalloc_exec(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); } /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. */ void *vmalloc_32(unsigned long size) { return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); } EXPORT_SYMBOL(vmalloc_32); long vread(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr, *buf_start = buf; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; read_lock(&vmlist_lock); for (tmp = vmlist; tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; *buf = '\0'; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; do { if (count == 0) goto finished; *buf = *addr; buf++; addr++; count--; } while (--n > 0); } finished: read_unlock(&vmlist_lock); return buf - buf_start; } long vwrite(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr, *buf_start = buf; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; read_lock(&vmlist_lock); for (tmp = vmlist; tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; do { if (count == 0) goto finished; *addr = *buf; buf++; addr++; count--; } while (--n > 0); } finished: read_unlock(&vmlist_lock); return buf - buf_start; }