Commit 0a23863b authored by Rich Prohaska's avatar Rich Prohaska Committed by Yoni Fogel

refs #5258 move handlerton alter table common functions to a separate file

git-svn-id: file:///svn/mysql/tokudb-engine/tokudb-engine@45810 c7de825b-a66e-492c-adef-691d508d4ae1
parent 362e37b2
......@@ -106,226 +106,7 @@ ha_tokudb::final_drop_index(TABLE *table_arg) {
#if defined(HA_GENERAL_ONLINE)
//
// MySQL sets the null_bit as a number that you can bit-wise AND a byte to
// to evaluate whether a field is NULL or not. This value is a power of 2, from
// 2^0 to 2^7. We return the position of the bit within the byte, which is
// lg null_bit
//
static inline u_int32_t
get_null_bit_position(u_int32_t null_bit) {
u_int32_t retval = 0;
switch(null_bit) {
case (1):
retval = 0;
break;
case (2):
retval = 1;
break;
case (4):
retval = 2;
break;
case (8):
retval = 3;
break;
case (16):
retval = 4;
break;
case (32):
retval = 5;
break;
case (64):
retval = 6;
break;
case (128):
retval = 7;
break;
default:
assert(false);
}
return retval;
}
//
// returns the index of the null bit of field.
//
static inline u_int32_t
get_overall_null_bit_position(TABLE* table, Field* field) {
u_int32_t offset = get_null_offset(table, field);
u_int32_t null_bit = field->null_bit;
return offset*8 + get_null_bit_position(null_bit);
}
static bool
are_null_bits_in_order(TABLE* table) {
u_int32_t curr_null_pos = 0;
bool first = true;
bool retval = true;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
u_int32_t pos = get_overall_null_bit_position(
table,
curr_field
);
if (!first && pos != curr_null_pos+1){
retval = false;
break;
}
first = false;
curr_null_pos = pos;
}
}
return retval;
}
static u_int32_t
get_first_null_bit_pos(TABLE* table) {
u_int32_t table_pos = 0;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
table_pos = get_overall_null_bit_position(
table,
curr_field
);
break;
}
}
return table_pos;
}
#if 0
static bool
is_column_default_null(TABLE* src_table, u_int32_t field_index) {
Field* curr_field = src_table->field[field_index];
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (nullable) {
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
}
return is_null_default;
}
#endif
static bool
tables_have_same_keys(TABLE* table, TABLE* altered_table, bool print_error, bool check_field_index) {
bool retval;
if (table->s->keys != altered_table->s->keys) {
if (print_error) {
sql_print_error("tables have different number of keys");
}
retval = false;
goto cleanup;
}
if (table->s->primary_key != altered_table->s->primary_key) {
if (print_error) {
sql_print_error(
"Tables have different primary keys, %d %d",
table->s->primary_key,
altered_table->s->primary_key
);
}
retval = false;
goto cleanup;
}
for (u_int32_t i=0; i < table->s->keys; i++) {
KEY* curr_orig_key = &table->key_info[i];
KEY* curr_altered_key = &altered_table->key_info[i];
if (strcmp(curr_orig_key->name, curr_altered_key->name)) {
if (print_error) {
sql_print_error(
"key %d has different name, %s %s",
i,
curr_orig_key->name,
curr_altered_key->name
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_CLUSTERING) == 0) != ((curr_altered_key->flags & HA_CLUSTERING) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are clustering, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_NOSAME) == 0) != ((curr_altered_key->flags & HA_NOSAME) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are unique, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (curr_orig_key->key_parts != curr_altered_key->key_parts) {
if (print_error) {
sql_print_error(
"keys have different number of parts, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
//
// now verify that each field in the key is the same
//
for (u_int32_t j = 0; j < curr_orig_key->key_parts; j++) {
KEY_PART_INFO* curr_orig_part = &curr_orig_key->key_part[j];
KEY_PART_INFO* curr_altered_part = &curr_altered_key->key_part[j];
Field* curr_orig_field = curr_orig_part->field;
Field* curr_altered_field = curr_altered_part->field;
if (curr_orig_part->length != curr_altered_part->length) {
if (print_error) {
sql_print_error(
"Key %s has different length at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
bool are_fields_same;
are_fields_same = (check_field_index) ?
(curr_orig_part->fieldnr == curr_altered_part->fieldnr &&
fields_are_same_type(curr_orig_field, curr_altered_field)) :
(are_two_fields_same(curr_orig_field,curr_altered_field));
if (!are_fields_same) {
if (print_error) {
sql_print_error(
"Key %s has different field at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
}
}
retval = true;
cleanup:
return retval;
}
#include "ha_tokudb_alter_common.cc"
void
ha_tokudb::print_alter_info(
......@@ -380,123 +161,8 @@ ha_tokudb::print_alter_info(
printf("******\n");
}
static int
find_changed_columns(
u_int32_t* changed_columns,
u_int32_t* num_changed_columns,
TABLE* smaller_table,
TABLE* bigger_table
)
{
uint curr_new_col_index = 0;
uint i = 0;
int retval;
u_int32_t curr_num_changed_columns=0;
assert(bigger_table->s->fields > smaller_table->s->fields);
for (i = 0; i < smaller_table->s->fields; i++, curr_new_col_index++) {
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
Field* curr_field_in_new = bigger_table->field[curr_new_col_index];
Field* curr_field_in_orig = smaller_table->field[i];
while (!fields_have_same_name(curr_field_in_orig, curr_field_in_new)) {
changed_columns[curr_num_changed_columns] = curr_new_col_index;
curr_num_changed_columns++;
curr_new_col_index++;
curr_field_in_new = bigger_table->field[curr_new_col_index];
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
}
// at this point, curr_field_in_orig and curr_field_in_new should be the same, let's verify
// make sure the two fields that have the same name are ok
if (!are_two_fields_same(curr_field_in_orig, curr_field_in_new)) {
sql_print_error(
"Two fields that were supposedly the same are not: \
%s in original, %s in new",
curr_field_in_orig->field_name,
curr_field_in_new->field_name
);
retval = 1;
goto cleanup;
}
}
for (i = curr_new_col_index; i < bigger_table->s->fields; i++) {
changed_columns[curr_num_changed_columns] = i;
curr_num_changed_columns++;
}
*num_changed_columns = curr_num_changed_columns;
retval = 0;
cleanup:
return retval;
}
static bool
column_rename_supported(
HA_ALTER_INFO* alter_info,
TABLE* orig_table,
TABLE* new_table
)
{
bool retval = false;
bool keys_same_for_cr;
uint num_fields_with_different_names = 0;
uint field_with_different_name = orig_table->s->fields;
if (orig_table->s->fields != new_table->s->fields) {
retval = false;
goto cleanup;
}
if (alter_info->contains_first_or_after) {
retval = false;
goto cleanup;
}
for (uint i = 0; i < orig_table->s->fields; i++) {
Field* orig_field = orig_table->field[i];
Field* new_field = new_table->field[i];
if (!fields_are_same_type(orig_field, new_field)) {
retval = false;
goto cleanup;
}
if (!fields_have_same_name(orig_field, new_field)) {
num_fields_with_different_names++;
field_with_different_name = i;
}
}
// only allow one renamed field
if (num_fields_with_different_names != 1) {
retval = false;
goto cleanup;
}
assert(field_with_different_name < orig_table->s->fields);
//
// at this point, we have verified that the two tables have
// the same field types and with ONLY one field with a different name.
// We have also identified the field with the different name
//
// Now we need to check the indexes
//
keys_same_for_cr = tables_have_same_keys(
orig_table,
new_table,
false,
true
);
if (!keys_same_for_cr) {
retval = false;
goto cleanup;
}
retval = true;
cleanup:
return retval;
}
bool alter_has_other_flag_set(HA_ALTER_FLAGS* alter_flags, uint flag) {
alter_has_other_flag_set(HA_ALTER_FLAGS* alter_flags, uint flag) {
bool retval = false;
for (uint i = 0; i < HA_MAX_ALTER_FLAGS; i++) {
if (i == flag)
......@@ -720,7 +386,7 @@ ha_tokudb::check_if_supported_alter(TABLE *altered_table,
// has changed only its name. If we find anything to
// the contrary, we don't allow it, also check indexes
bool cr_supported = column_rename_supported(alter_info, table, altered_table);
bool cr_supported = column_rename_supported(table, altered_table, alter_info->contains_first_or_after);
if (cr_supported) {
retval = HA_ALTER_SUPPORTED_WAIT_LOCK;
}
......@@ -735,405 +401,6 @@ cleanup:
DBUG_RETURN(retval);
}
#define UP_COL_ADD_OR_DROP 0
#define COL_DROP 0xaa
#define COL_ADD 0xbb
#define COL_FIXED 0xcc
#define COL_VAR 0xdd
#define COL_BLOB 0xee
#define STATIC_ROW_MUTATOR_SIZE 1+8+2+8+8+8
/*
how much space do I need for the mutators?
static stuff first:
1 - UP_COL_ADD_OR_DROP
8 - old null, new null
2 - old num_offset, new num_offset
8 - old fixed_field size, new fixed_field_size
8 - old and new length of offsets
8 - old and new starting null bit position
TOTAL: 27
dynamic stuff:
4 - number of columns
for each column:
1 - add or drop
1 - is nullable
4 - if nullable, position
1 - if add, whether default is null or not
1 - if fixed, var, or not
for fixed, entire default
for var, 4 bytes length, then entire default
for blob, nothing
So, an upperbound is 4 + num_fields(12) + all default stuff
static blob stuff:
4 - num blobs
1 byte for each num blobs in old table
So, an upperbound is 4 + kc_info->num_blobs
dynamic blob stuff:
for each blob added:
1 - state if we are adding or dropping
4 - blob index
if add, 1 len bytes
at most, 4 0's
So, upperbound is num_blobs(1+4+1+4) = num_columns*10
*/
static u_int32_t
fill_static_row_mutator(
uchar* buf,
TABLE* orig_table,
TABLE* altered_table,
KEY_AND_COL_INFO* orig_kc_info,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr
)
{
//
// start packing extra
//
uchar* pos = buf;
// says what the operation is
pos[0] = UP_COL_ADD_OR_DROP;
pos++;
//
// null byte information
//
memcpy(pos, &orig_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(orig_table->s->null_bytes);
memcpy(pos, &altered_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(altered_table->s->null_bytes);
//
// num_offset_bytes
//
assert(orig_kc_info->num_offset_bytes <= 2);
pos[0] = orig_kc_info->num_offset_bytes;
pos++;
assert(altered_kc_info->num_offset_bytes <= 2);
pos[0] = altered_kc_info->num_offset_bytes;
pos++;
//
// size of fixed fields
//
u_int32_t fixed_field_size = orig_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
fixed_field_size = altered_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
//
// length of offsets
//
u_int32_t len_of_offsets = orig_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
len_of_offsets = altered_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
u_int32_t orig_start_null_pos = get_first_null_bit_pos(orig_table);
memcpy(pos, &orig_start_null_pos, sizeof(orig_start_null_pos));
pos += sizeof(orig_start_null_pos);
u_int32_t altered_start_null_pos = get_first_null_bit_pos(altered_table);
memcpy(pos, &altered_start_null_pos, sizeof(altered_start_null_pos));
pos += sizeof(altered_start_null_pos);
assert((pos-buf) == STATIC_ROW_MUTATOR_SIZE);
return pos - buf;
}
static u_int32_t
fill_dynamic_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
u_int32_t keynr,
bool is_add,
bool* out_has_blobs
)
{
uchar* pos = buf;
bool has_blobs = false;
u_int32_t cols = num_columns;
memcpy(pos, &cols, sizeof(cols));
pos += sizeof(cols);
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_index = columns[i];
Field* curr_field = src_table->field[curr_index];
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
//
// NULL bit information
//
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (!nullable) {
pos[0] = 0;
pos++;
}
else {
pos[0] = 1;
pos++;
// write position of null byte that is to be removed
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
memcpy(pos, &null_bit_position, sizeof(null_bit_position));
pos += sizeof(null_bit_position);
//
// if adding a column, write the value of the default null_bit
//
if (is_add) {
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
pos[0] = is_null_default ? 1 : 0;
pos++;
}
}
if (src_kc_info->field_lengths[curr_index] != 0) {
// we have a fixed field being dropped
// store the offset and the number of bytes
pos[0] = COL_FIXED;
pos++;
//store the offset
u_int32_t fixed_field_offset = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &fixed_field_offset, sizeof(fixed_field_offset));
pos += sizeof(fixed_field_offset);
//store the number of bytes
u_int32_t num_bytes = src_kc_info->field_lengths[curr_index];
memcpy(pos, &num_bytes, sizeof(num_bytes));
pos += sizeof(num_bytes);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
memcpy(
pos,
src_table->s->default_values + curr_field_offset,
num_bytes
);
pos += num_bytes;
}
}
else if (src_kc_info->length_bytes[curr_index] != 0) {
pos[0] = COL_VAR;
pos++;
//store the index of the variable column
u_int32_t var_field_index = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &var_field_index, sizeof(var_field_index));
pos += sizeof(var_field_index);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
u_int32_t len_bytes = src_kc_info->length_bytes[curr_index];
u_int32_t data_length = get_var_data_length(
src_table->s->default_values + curr_field_offset,
len_bytes
);
memcpy(pos, &data_length, sizeof(data_length));
pos += sizeof(data_length);
memcpy(
pos,
src_table->s->default_values + curr_field_offset + len_bytes,
data_length
);
pos += data_length;
}
}
else {
pos[0] = COL_BLOB;
pos++;
has_blobs = true;
}
}
*out_has_blobs = has_blobs;
return pos-buf;
}
static u_int32_t
fill_static_blob_row_mutator(
uchar* buf,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info
)
{
uchar* pos = buf;
// copy number of blobs
memcpy(pos, &src_kc_info->num_blobs, sizeof(src_kc_info->num_blobs));
pos += sizeof(src_kc_info->num_blobs);
// copy length bytes for each blob
for (u_int32_t i = 0; i < src_kc_info->num_blobs; i++) {
u_int32_t curr_field_index = src_kc_info->blob_fields[i];
Field* field = src_table->field[curr_field_index];
u_int32_t len_bytes = field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
}
return pos-buf;
}
static u_int32_t
fill_dynamic_blob_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
bool is_add
)
{
uchar* pos = buf;
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_field_index = columns[i];
Field* curr_field = src_table->field[curr_field_index];
if (src_kc_info->field_lengths[curr_field_index] == 0 &&
src_kc_info->length_bytes[curr_field_index]== 0
)
{
// find out which blob it is
u_int32_t blob_index = src_kc_info->num_blobs;
for (u_int32_t j = 0; j < src_kc_info->num_blobs; j++) {
if (curr_field_index == src_kc_info->blob_fields[j]) {
blob_index = j;
break;
}
}
// assert we found blob in list
assert(blob_index < src_kc_info->num_blobs);
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
memcpy(pos, &blob_index, sizeof(blob_index));
pos += sizeof(blob_index);
if (is_add) {
u_int32_t len_bytes = curr_field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
// create a zero length blob field that can be directly copied in
// for now, in MySQL, we can only have blob fields
// that have no default value
memset(pos, 0, len_bytes);
pos += len_bytes;
}
}
else {
// not a blob, continue
continue;
}
}
return pos-buf;
}
// TODO: carefully review to make sure that the right information is used
// TODO: namely, when do we get stuff from share->kc_info and when we get
// TODO: it from altered_kc_info, and when is keynr associated with the right thing
u_int32_t
ha_tokudb::fill_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* altered_table,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr,
bool is_add
)
{
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
printf("*****some info:*************\n");
printf(
"old things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
table->s->null_bytes,
share->kc_info.num_offset_bytes,
share->kc_info.mcp_info[keynr].fixed_field_size,
share->kc_info.mcp_info[keynr].len_of_offsets
);
printf(
"new things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
altered_table->s->null_bytes,
altered_kc_info->num_offset_bytes,
altered_kc_info->mcp_info[keynr].fixed_field_size,
altered_kc_info->mcp_info[keynr].len_of_offsets
);
printf("****************************\n");
}
uchar* pos = buf;
bool has_blobs = false;
pos += fill_static_row_mutator(
pos,
table,
altered_table,
&share->kc_info,
altered_kc_info,
keynr
);
if (is_add) {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
keynr,
is_add,
&has_blobs
);
}
else {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
keynr,
is_add,
&has_blobs
);
}
if (has_blobs) {
pos += fill_static_blob_row_mutator(
pos,
table,
&share->kc_info
);
if (is_add) {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
is_add
);
}
else {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
is_add
);
}
}
return pos-buf;
}
int
ha_tokudb::alter_table_phase2(
THD *thd,
......
#if TOKU_INCLUDE_ALTER_56
static bool
tables_have_same_keys(TABLE* table, TABLE* altered_table, bool print_error, bool check_field_index) {
bool retval;
if (table->s->keys != altered_table->s->keys) {
if (print_error) {
sql_print_error("tables have different number of keys");
}
retval = false;
goto cleanup;
}
if (table->s->primary_key != altered_table->s->primary_key) {
if (print_error) {
sql_print_error(
"Tables have different primary keys, %d %d",
table->s->primary_key,
altered_table->s->primary_key
);
}
retval = false;
goto cleanup;
}
for (u_int32_t i=0; i < table->s->keys; i++) {
KEY* curr_orig_key = &table->key_info[i];
KEY* curr_altered_key = &altered_table->key_info[i];
if (strcmp(curr_orig_key->name, curr_altered_key->name)) {
if (print_error) {
sql_print_error(
"key %d has different name, %s %s",
i,
curr_orig_key->name,
curr_altered_key->name
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_CLUSTERING) == 0) != ((curr_altered_key->flags & HA_CLUSTERING) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are clustering, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_NOSAME) == 0) != ((curr_altered_key->flags & HA_NOSAME) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are unique, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (curr_orig_key->key_parts != curr_altered_key->key_parts) {
if (print_error) {
sql_print_error(
"keys have different number of parts, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
//
// now verify that each field in the key is the same
//
for (u_int32_t j = 0; j < curr_orig_key->key_parts; j++) {
KEY_PART_INFO* curr_orig_part = &curr_orig_key->key_part[j];
KEY_PART_INFO* curr_altered_part = &curr_altered_key->key_part[j];
Field* curr_orig_field = curr_orig_part->field;
Field* curr_altered_field = curr_altered_part->field;
if (curr_orig_part->length != curr_altered_part->length) {
if (print_error) {
sql_print_error(
"Key %s has different length at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
bool are_fields_same;
are_fields_same = (check_field_index) ?
(curr_orig_part->fieldnr == curr_altered_part->fieldnr &&
fields_are_same_type(curr_orig_field, curr_altered_field)) :
(are_two_fields_same(curr_orig_field,curr_altered_field));
if (!are_fields_same) {
if (print_error) {
sql_print_error(
"Key %s has different field at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
}
}
retval = true;
cleanup:
return retval;
}
//
// MySQL sets the null_bit as a number that you can bit-wise AND a byte to
// to evaluate whether a field is NULL or not. This value is a power of 2, from
// 2^0 to 2^7. We return the position of the bit within the byte, which is
// lg null_bit
//
static inline u_int32_t
get_null_bit_position(u_int32_t null_bit) {
u_int32_t retval = 0;
switch(null_bit) {
case (1):
retval = 0;
break;
case (2):
retval = 1;
break;
case (4):
retval = 2;
break;
case (8):
retval = 3;
break;
case (16):
retval = 4;
break;
case (32):
retval = 5;
break;
case (64):
retval = 6;
break;
case (128):
retval = 7;
break;
default:
assert(false);
}
return retval;
}
#include "ha_tokudb_alter_common.cc"
//
// returns the index of the null bit of field.
//
static inline u_int32_t
get_overall_null_bit_position(TABLE* table, Field* field) {
u_int32_t offset = get_null_offset(table, field);
u_int32_t null_bit = field->null_bit;
return offset*8 + get_null_bit_position(null_bit);
}
#if 0
static bool
are_null_bits_in_order(TABLE* table) {
u_int32_t curr_null_pos = 0;
bool first = true;
bool retval = true;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
u_int32_t pos = get_overall_null_bit_position(
table,
curr_field
);
if (!first && pos != curr_null_pos+1){
retval = false;
break;
}
first = false;
curr_null_pos = pos;
void
ha_tokudb::print_alter_info(TABLE *altered_table, Alter_inplace_info *ha_alter_info) {
printf("***are keys of two tables same? %d\n", tables_have_same_keys(table, altered_table, false, false));
if (ha_alter_info->handler_flags) {
printf("***alter flags set ***\n");
for (int i = 0; i < 32; i++) {
if (ha_alter_info->handler_flags & (1 << i))
printf("%d\n", i);
}
}
return retval;
}
#endif
static u_int32_t
get_first_null_bit_pos(TABLE* table) {
u_int32_t table_pos = 0;
// everyone calculates data by doing some default_values - record[0], but I do not see why
// that is necessary
printf("******\n");
printf("***orig table***\n");
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
table_pos = get_overall_null_bit_position(
table,
curr_field
);
break;
}
}
return table_pos;
}
#if 0
static bool
is_column_default_null(TABLE* src_table, u_int32_t field_index) {
Field* curr_field = src_table->field[field_index];
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (nullable) {
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
}
return is_null_default;
}
#endif
static u_int32_t
fill_static_row_mutator(
uchar* buf,
TABLE* orig_table,
TABLE* altered_table,
KEY_AND_COL_INFO* orig_kc_info,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr
)
{
//
// start packing extra
//
uchar* pos = buf;
// says what the operation is
pos[0] = UP_COL_ADD_OR_DROP;
pos++;
//
// null byte information
//
memcpy(pos, &orig_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(orig_table->s->null_bytes);
memcpy(pos, &altered_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(altered_table->s->null_bytes);
//
// num_offset_bytes
//
assert(orig_kc_info->num_offset_bytes <= 2);
pos[0] = orig_kc_info->num_offset_bytes;
pos++;
assert(altered_kc_info->num_offset_bytes <= 2);
pos[0] = altered_kc_info->num_offset_bytes;
pos++;
//
// size of fixed fields
//
u_int32_t fixed_field_size = orig_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
fixed_field_size = altered_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
//
// length of offsets
//
u_int32_t len_of_offsets = orig_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
len_of_offsets = altered_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
u_int32_t orig_start_null_pos = get_first_null_bit_pos(orig_table);
memcpy(pos, &orig_start_null_pos, sizeof(orig_start_null_pos));
pos += sizeof(orig_start_null_pos);
u_int32_t altered_start_null_pos = get_first_null_bit_pos(altered_table);
memcpy(pos, &altered_start_null_pos, sizeof(altered_start_null_pos));
pos += sizeof(altered_start_null_pos);
assert((pos-buf) == STATIC_ROW_MUTATOR_SIZE);
return pos - buf;
}
static u_int32_t
fill_dynamic_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
u_int32_t keynr,
bool is_add,
bool* out_has_blobs
)
{
uchar* pos = buf;
bool has_blobs = false;
u_int32_t cols = num_columns;
memcpy(pos, &cols, sizeof(cols));
pos += sizeof(cols);
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_index = columns[i];
Field* curr_field = src_table->field[curr_index];
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
//
// NULL bit information
//
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (!nullable) {
pos[0] = 0;
pos++;
}
else {
pos[0] = 1;
pos++;
// write position of null byte that is to be removed
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
memcpy(pos, &null_bit_position, sizeof(null_bit_position));
pos += sizeof(null_bit_position);
//
// if adding a column, write the value of the default null_bit
//
if (is_add) {
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
pos[0] = is_null_default ? 1 : 0;
pos++;
}
}
if (src_kc_info->field_lengths[curr_index] != 0) {
// we have a fixed field being dropped
// store the offset and the number of bytes
pos[0] = COL_FIXED;
pos++;
//store the offset
u_int32_t fixed_field_offset = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &fixed_field_offset, sizeof(fixed_field_offset));
pos += sizeof(fixed_field_offset);
//store the number of bytes
u_int32_t num_bytes = src_kc_info->field_lengths[curr_index];
memcpy(pos, &num_bytes, sizeof(num_bytes));
pos += sizeof(num_bytes);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
memcpy(
pos,
src_table->s->default_values + curr_field_offset,
num_bytes
);
pos += num_bytes;
}
}
else if (src_kc_info->length_bytes[curr_index] != 0) {
pos[0] = COL_VAR;
pos++;
//store the index of the variable column
u_int32_t var_field_index = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &var_field_index, sizeof(var_field_index));
pos += sizeof(var_field_index);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
u_int32_t len_bytes = src_kc_info->length_bytes[curr_index];
u_int32_t data_length = get_var_data_length(
src_table->s->default_values + curr_field_offset,
len_bytes
);
memcpy(pos, &data_length, sizeof(data_length));
pos += sizeof(data_length);
memcpy(
pos,
src_table->s->default_values + curr_field_offset + len_bytes,
data_length
);
pos += data_length;
}
}
else {
pos[0] = COL_BLOB;
pos++;
has_blobs = true;
}
}
*out_has_blobs = has_blobs;
return pos-buf;
}
static u_int32_t
fill_static_blob_row_mutator(
uchar* buf,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info
)
{
uchar* pos = buf;
// copy number of blobs
memcpy(pos, &src_kc_info->num_blobs, sizeof(src_kc_info->num_blobs));
pos += sizeof(src_kc_info->num_blobs);
// copy length bytes for each blob
for (u_int32_t i = 0; i < src_kc_info->num_blobs; i++) {
u_int32_t curr_field_index = src_kc_info->blob_fields[i];
Field* field = src_table->field[curr_field_index];
u_int32_t len_bytes = field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
}
return pos-buf;
}
static u_int32_t
fill_dynamic_blob_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
bool is_add
)
{
uchar* pos = buf;
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_field_index = columns[i];
Field* curr_field = src_table->field[curr_field_index];
if (src_kc_info->field_lengths[curr_field_index] == 0 &&
src_kc_info->length_bytes[curr_field_index]== 0
)
{
// find out which blob it is
u_int32_t blob_index = src_kc_info->num_blobs;
for (u_int32_t j = 0; j < src_kc_info->num_blobs; j++) {
if (curr_field_index == src_kc_info->blob_fields[j]) {
blob_index = j;
break;
}
}
// assert we found blob in list
assert(blob_index < src_kc_info->num_blobs);
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
memcpy(pos, &blob_index, sizeof(blob_index));
pos += sizeof(blob_index);
if (is_add) {
u_int32_t len_bytes = curr_field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
// create a zero length blob field that can be directly copied in
// for now, in MySQL, we can only have blob fields
// that have no default value
memset(pos, 0, len_bytes);
pos += len_bytes;
}
}
else {
// not a blob, continue
continue;
}
}
return pos-buf;
}
// TODO: carefully review to make sure that the right information is used
// TODO: namely, when do we get stuff from share->kc_info and when we get
// TODO: it from altered_kc_info, and when is keynr associated with the right thing
u_int32_t
ha_tokudb::fill_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* altered_table,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr,
bool is_add
)
{
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
printf("*****some info:*************\n");
printf(
"old things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
table->s->null_bytes,
share->kc_info.num_offset_bytes,
share->kc_info.mcp_info[keynr].fixed_field_size,
share->kc_info.mcp_info[keynr].len_of_offsets
);
printf(
"new things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
altered_table->s->null_bytes,
altered_kc_info->num_offset_bytes,
altered_kc_info->mcp_info[keynr].fixed_field_size,
altered_kc_info->mcp_info[keynr].len_of_offsets
);
printf("****************************\n");
}
uchar* pos = buf;
bool has_blobs = false;
pos += fill_static_row_mutator(
pos,
table,
altered_table,
&share->kc_info,
altered_kc_info,
keynr
);
if (is_add) {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
keynr,
is_add,
&has_blobs
);
}
else {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
keynr,
is_add,
&has_blobs
);
}
if (has_blobs) {
pos += fill_static_blob_row_mutator(
pos,
table,
&share->kc_info
);
if (is_add) {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
is_add
);
}
else {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
is_add
);
}
}
return pos-buf;
}
static bool
column_rename_supported(
Alter_inplace_info *ha_alter_info,
TABLE* orig_table,
TABLE* new_table
)
{
bool retval = false;
bool keys_same_for_cr;
uint num_fields_with_different_names = 0;
uint field_with_different_name = orig_table->s->fields;
if (orig_table->s->fields != new_table->s->fields) {
retval = false;
goto cleanup;
}
if (ha_alter_info->handler_flags & Alter_inplace_info::ALTER_COLUMN_ORDER) {
retval = false;
goto cleanup;
}
for (uint i = 0; i < orig_table->s->fields; i++) {
Field* orig_field = orig_table->field[i];
Field* new_field = new_table->field[i];
if (!fields_are_same_type(orig_field, new_field)) {
retval = false;
goto cleanup;
}
if (!fields_have_same_name(orig_field, new_field)) {
num_fields_with_different_names++;
field_with_different_name = i;
}
}
// only allow one renamed field
if (num_fields_with_different_names != 1) {
retval = false;
goto cleanup;
}
assert(field_with_different_name < orig_table->s->fields);
//
// at this point, we have verified that the two tables have
// the same field types and with ONLY one field with a different name.
// We have also identified the field with the different name
//
// Now we need to check the indexes
//
keys_same_for_cr = tables_have_same_keys(
orig_table,
new_table,
false,
true
);
if (!keys_same_for_cr) {
retval = false;
goto cleanup;
}
retval = true;
cleanup:
return retval;
}
static int
find_changed_columns(
u_int32_t* changed_columns,
u_int32_t* num_changed_columns,
TABLE* smaller_table,
TABLE* bigger_table
)
{
int retval;
uint curr_new_col_index = 0;
u_int32_t curr_num_changed_columns=0;
assert(bigger_table->s->fields > smaller_table->s->fields);
for (uint i = 0; i < smaller_table->s->fields; i++, curr_new_col_index++) {
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
Field* curr_field_in_new = bigger_table->field[curr_new_col_index];
Field* curr_field_in_orig = smaller_table->field[i];
while (!fields_have_same_name(curr_field_in_orig, curr_field_in_new)) {
changed_columns[curr_num_changed_columns] = curr_new_col_index;
curr_num_changed_columns++;
curr_new_col_index++;
curr_field_in_new = bigger_table->field[curr_new_col_index];
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
}
// at this point, curr_field_in_orig and curr_field_in_new should be the same, let's verify
// make sure the two fields that have the same name are ok
if (!are_two_fields_same(curr_field_in_orig, curr_field_in_new)) {
sql_print_error(
"Two fields that were supposedly the same are not: \
%s in original, %s in new",
curr_field_in_orig->field_name,
curr_field_in_new->field_name
);
retval = 1;
goto cleanup;
}
//
// make sure to use table->field, and NOT table->s->field
//
Field* curr_field = table->field[i];
uint null_offset = get_null_offset(table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
for (uint i = curr_new_col_index; i < bigger_table->s->fields; i++) {
changed_columns[curr_num_changed_columns] = i;
curr_num_changed_columns++;
printf("******\n");
printf("***altered table***\n");
for (uint i = 0; i < altered_table->s->fields; i++) {
Field* curr_field = altered_table->field[i];
uint null_offset = get_null_offset(altered_table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? altered_table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
*num_changed_columns = curr_num_changed_columns;
retval = 0;
cleanup:
return retval;
printf("******\n");
}
class ha_tokudb_add_index_ctx : public inplace_alter_handler_ctx {
......@@ -744,7 +108,7 @@ ha_tokudb::check_if_supported_inplace_alter(TABLE *altered_table, Alter_inplace_
// now need to verify that one and only one column
// has changed only its name. If we find anything to
// the contrary, we don't allow it, also check indexes
bool cr_supported = column_rename_supported(ha_alter_info, table, altered_table);
bool cr_supported = column_rename_supported(table, altered_table, (ha_alter_info->handler_flags & Alter_inplace_info::ALTER_COLUMN_ORDER) != 0);
if (cr_supported)
result = HA_ALTER_INPLACE_NO_LOCK;
} else
......@@ -1095,51 +459,4 @@ ha_tokudb::commit_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *
DBUG_RETURN(result);
}
void
ha_tokudb::print_alter_info(TABLE *altered_table, Alter_inplace_info *ha_alter_info) {
printf("***are keys of two tables same? %d\n", tables_have_same_keys(table, altered_table, false, false));
if (ha_alter_info->handler_flags) {
printf("***alter flags set ***\n");
for (int i = 0; i < 32; i++) {
if (ha_alter_info->handler_flags & (1 << i))
printf("%d\n", i);
}
}
// everyone calculates data by doing some default_values - record[0], but I do not see why
// that is necessary
printf("******\n");
printf("***orig table***\n");
for (uint i = 0; i < table->s->fields; i++) {
//
// make sure to use table->field, and NOT table->s->field
//
Field* curr_field = table->field[i];
uint null_offset = get_null_offset(table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
printf("******\n");
printf("***altered table***\n");
for (uint i = 0; i < altered_table->s->fields; i++) {
Field* curr_field = altered_table->field[i];
uint null_offset = get_null_offset(altered_table, curr_field);
printf(
"name: %s, nullable: %d, null_offset: %d, is_null_field: %d, is_null %d, \n",
curr_field->field_name,
curr_field->null_bit,
null_offset,
(curr_field->null_ptr != NULL),
(curr_field->null_ptr != NULL) ? altered_table->s->default_values[null_offset] & curr_field->null_bit : 0xffffffff
);
}
printf("******\n");
}
#endif
static bool
tables_have_same_keys(TABLE* table, TABLE* altered_table, bool print_error, bool check_field_index) {
bool retval;
if (table->s->keys != altered_table->s->keys) {
if (print_error) {
sql_print_error("tables have different number of keys");
}
retval = false;
goto cleanup;
}
if (table->s->primary_key != altered_table->s->primary_key) {
if (print_error) {
sql_print_error(
"Tables have different primary keys, %d %d",
table->s->primary_key,
altered_table->s->primary_key
);
}
retval = false;
goto cleanup;
}
for (u_int32_t i=0; i < table->s->keys; i++) {
KEY* curr_orig_key = &table->key_info[i];
KEY* curr_altered_key = &altered_table->key_info[i];
if (strcmp(curr_orig_key->name, curr_altered_key->name)) {
if (print_error) {
sql_print_error(
"key %d has different name, %s %s",
i,
curr_orig_key->name,
curr_altered_key->name
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_CLUSTERING) == 0) != ((curr_altered_key->flags & HA_CLUSTERING) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are clustering, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (((curr_orig_key->flags & HA_NOSAME) == 0) != ((curr_altered_key->flags & HA_NOSAME) == 0)) {
if (print_error) {
sql_print_error(
"keys disagree on if they are unique, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
if (curr_orig_key->key_parts != curr_altered_key->key_parts) {
if (print_error) {
sql_print_error(
"keys have different number of parts, %d, %d",
curr_orig_key->key_parts,
curr_altered_key->key_parts
);
}
retval = false;
goto cleanup;
}
//
// now verify that each field in the key is the same
//
for (u_int32_t j = 0; j < curr_orig_key->key_parts; j++) {
KEY_PART_INFO* curr_orig_part = &curr_orig_key->key_part[j];
KEY_PART_INFO* curr_altered_part = &curr_altered_key->key_part[j];
Field* curr_orig_field = curr_orig_part->field;
Field* curr_altered_field = curr_altered_part->field;
if (curr_orig_part->length != curr_altered_part->length) {
if (print_error) {
sql_print_error(
"Key %s has different length at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
bool are_fields_same;
are_fields_same = (check_field_index) ?
(curr_orig_part->fieldnr == curr_altered_part->fieldnr &&
fields_are_same_type(curr_orig_field, curr_altered_field)) :
(are_two_fields_same(curr_orig_field,curr_altered_field));
if (!are_fields_same) {
if (print_error) {
sql_print_error(
"Key %s has different field at index %d",
curr_orig_key->name,
j
);
}
retval = false;
goto cleanup;
}
}
}
retval = true;
cleanup:
return retval;
}
// MySQL sets the null_bit as a number that you can bit-wise AND a byte to
// to evaluate whether a field is NULL or not. This value is a power of 2, from
// 2^0 to 2^7. We return the position of the bit within the byte, which is
// lg null_bit
static inline u_int32_t
get_null_bit_position(u_int32_t null_bit) {
u_int32_t retval = 0;
switch(null_bit) {
case (1):
retval = 0;
break;
case (2):
retval = 1;
break;
case (4):
retval = 2;
break;
case (8):
retval = 3;
break;
case (16):
retval = 4;
break;
case (32):
retval = 5;
break;
case (64):
retval = 6;
break;
case (128):
retval = 7;
break;
default:
assert(false);
}
return retval;
}
// returns the index of the null bit of field.
static inline u_int32_t
get_overall_null_bit_position(TABLE* table, Field* field) {
u_int32_t offset = get_null_offset(table, field);
u_int32_t null_bit = field->null_bit;
return offset*8 + get_null_bit_position(null_bit);
}
// not static since 51 uses this and 56 does not
bool
are_null_bits_in_order(TABLE* table) {
u_int32_t curr_null_pos = 0;
bool first = true;
bool retval = true;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
u_int32_t pos = get_overall_null_bit_position(
table,
curr_field
);
if (!first && pos != curr_null_pos+1){
retval = false;
break;
}
first = false;
curr_null_pos = pos;
}
}
return retval;
}
static u_int32_t
get_first_null_bit_pos(TABLE* table) {
u_int32_t table_pos = 0;
for (uint i = 0; i < table->s->fields; i++) {
Field* curr_field = table->field[i];
bool nullable = (curr_field->null_bit != 0);
if (nullable) {
table_pos = get_overall_null_bit_position(
table,
curr_field
);
break;
}
}
return table_pos;
}
#if 0
static bool
is_column_default_null(TABLE* src_table, u_int32_t field_index) {
Field* curr_field = src_table->field[field_index];
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (nullable) {
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
}
return is_null_default;
}
#endif
static u_int32_t
fill_static_row_mutator(
uchar* buf,
TABLE* orig_table,
TABLE* altered_table,
KEY_AND_COL_INFO* orig_kc_info,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr
)
{
//
// start packing extra
//
uchar* pos = buf;
// says what the operation is
pos[0] = UP_COL_ADD_OR_DROP;
pos++;
//
// null byte information
//
memcpy(pos, &orig_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(orig_table->s->null_bytes);
memcpy(pos, &altered_table->s->null_bytes, sizeof(orig_table->s->null_bytes));
pos += sizeof(altered_table->s->null_bytes);
//
// num_offset_bytes
//
assert(orig_kc_info->num_offset_bytes <= 2);
pos[0] = orig_kc_info->num_offset_bytes;
pos++;
assert(altered_kc_info->num_offset_bytes <= 2);
pos[0] = altered_kc_info->num_offset_bytes;
pos++;
//
// size of fixed fields
//
u_int32_t fixed_field_size = orig_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
fixed_field_size = altered_kc_info->mcp_info[keynr].fixed_field_size;
memcpy(pos, &fixed_field_size, sizeof(fixed_field_size));
pos += sizeof(fixed_field_size);
//
// length of offsets
//
u_int32_t len_of_offsets = orig_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
len_of_offsets = altered_kc_info->mcp_info[keynr].len_of_offsets;
memcpy(pos, &len_of_offsets, sizeof(len_of_offsets));
pos += sizeof(len_of_offsets);
u_int32_t orig_start_null_pos = get_first_null_bit_pos(orig_table);
memcpy(pos, &orig_start_null_pos, sizeof(orig_start_null_pos));
pos += sizeof(orig_start_null_pos);
u_int32_t altered_start_null_pos = get_first_null_bit_pos(altered_table);
memcpy(pos, &altered_start_null_pos, sizeof(altered_start_null_pos));
pos += sizeof(altered_start_null_pos);
assert((pos-buf) == STATIC_ROW_MUTATOR_SIZE);
return pos - buf;
}
static u_int32_t
fill_dynamic_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
u_int32_t keynr,
bool is_add,
bool* out_has_blobs
)
{
uchar* pos = buf;
bool has_blobs = false;
u_int32_t cols = num_columns;
memcpy(pos, &cols, sizeof(cols));
pos += sizeof(cols);
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_index = columns[i];
Field* curr_field = src_table->field[curr_index];
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
//
// NULL bit information
//
bool is_null_default = false;
bool nullable = curr_field->null_bit != 0;
if (!nullable) {
pos[0] = 0;
pos++;
}
else {
pos[0] = 1;
pos++;
// write position of null byte that is to be removed
u_int32_t null_bit_position = get_overall_null_bit_position(src_table, curr_field);
memcpy(pos, &null_bit_position, sizeof(null_bit_position));
pos += sizeof(null_bit_position);
//
// if adding a column, write the value of the default null_bit
//
if (is_add) {
is_null_default = is_overall_null_position_set(
src_table->s->default_values,
null_bit_position
);
pos[0] = is_null_default ? 1 : 0;
pos++;
}
}
if (src_kc_info->field_lengths[curr_index] != 0) {
// we have a fixed field being dropped
// store the offset and the number of bytes
pos[0] = COL_FIXED;
pos++;
//store the offset
u_int32_t fixed_field_offset = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &fixed_field_offset, sizeof(fixed_field_offset));
pos += sizeof(fixed_field_offset);
//store the number of bytes
u_int32_t num_bytes = src_kc_info->field_lengths[curr_index];
memcpy(pos, &num_bytes, sizeof(num_bytes));
pos += sizeof(num_bytes);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
memcpy(
pos,
src_table->s->default_values + curr_field_offset,
num_bytes
);
pos += num_bytes;
}
}
else if (src_kc_info->length_bytes[curr_index] != 0) {
pos[0] = COL_VAR;
pos++;
//store the index of the variable column
u_int32_t var_field_index = src_kc_info->cp_info[keynr][curr_index].col_pack_val;
memcpy(pos, &var_field_index, sizeof(var_field_index));
pos += sizeof(var_field_index);
if (is_add && !is_null_default) {
uint curr_field_offset = field_offset(curr_field, src_table);
u_int32_t len_bytes = src_kc_info->length_bytes[curr_index];
u_int32_t data_length = get_var_data_length(
src_table->s->default_values + curr_field_offset,
len_bytes
);
memcpy(pos, &data_length, sizeof(data_length));
pos += sizeof(data_length);
memcpy(
pos,
src_table->s->default_values + curr_field_offset + len_bytes,
data_length
);
pos += data_length;
}
}
else {
pos[0] = COL_BLOB;
pos++;
has_blobs = true;
}
}
*out_has_blobs = has_blobs;
return pos-buf;
}
static u_int32_t
fill_static_blob_row_mutator(
uchar* buf,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info
)
{
uchar* pos = buf;
// copy number of blobs
memcpy(pos, &src_kc_info->num_blobs, sizeof(src_kc_info->num_blobs));
pos += sizeof(src_kc_info->num_blobs);
// copy length bytes for each blob
for (u_int32_t i = 0; i < src_kc_info->num_blobs; i++) {
u_int32_t curr_field_index = src_kc_info->blob_fields[i];
Field* field = src_table->field[curr_field_index];
u_int32_t len_bytes = field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
}
return pos-buf;
}
static u_int32_t
fill_dynamic_blob_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* src_table,
KEY_AND_COL_INFO* src_kc_info,
bool is_add
)
{
uchar* pos = buf;
for (u_int32_t i = 0; i < num_columns; i++) {
u_int32_t curr_field_index = columns[i];
Field* curr_field = src_table->field[curr_field_index];
if (src_kc_info->field_lengths[curr_field_index] == 0 &&
src_kc_info->length_bytes[curr_field_index]== 0
)
{
// find out which blob it is
u_int32_t blob_index = src_kc_info->num_blobs;
for (u_int32_t j = 0; j < src_kc_info->num_blobs; j++) {
if (curr_field_index == src_kc_info->blob_fields[j]) {
blob_index = j;
break;
}
}
// assert we found blob in list
assert(blob_index < src_kc_info->num_blobs);
pos[0] = is_add ? COL_ADD : COL_DROP;
pos++;
memcpy(pos, &blob_index, sizeof(blob_index));
pos += sizeof(blob_index);
if (is_add) {
u_int32_t len_bytes = curr_field->row_pack_length();
assert(len_bytes <= 4);
pos[0] = len_bytes;
pos++;
// create a zero length blob field that can be directly copied in
// for now, in MySQL, we can only have blob fields
// that have no default value
memset(pos, 0, len_bytes);
pos += len_bytes;
}
}
else {
// not a blob, continue
continue;
}
}
return pos-buf;
}
// TODO: carefully review to make sure that the right information is used
// TODO: namely, when do we get stuff from share->kc_info and when we get
// TODO: it from altered_kc_info, and when is keynr associated with the right thing
u_int32_t
ha_tokudb::fill_row_mutator(
uchar* buf,
u_int32_t* columns,
u_int32_t num_columns,
TABLE* altered_table,
KEY_AND_COL_INFO* altered_kc_info,
u_int32_t keynr,
bool is_add
)
{
if (tokudb_debug & TOKUDB_DEBUG_ALTER_TABLE_INFO) {
printf("*****some info:*************\n");
printf(
"old things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
table->s->null_bytes,
share->kc_info.num_offset_bytes,
share->kc_info.mcp_info[keynr].fixed_field_size,
share->kc_info.mcp_info[keynr].len_of_offsets
);
printf(
"new things: num_null_bytes %d, num_offset_bytes %d, fixed_field_size %d, fixed_field_size %d\n",
altered_table->s->null_bytes,
altered_kc_info->num_offset_bytes,
altered_kc_info->mcp_info[keynr].fixed_field_size,
altered_kc_info->mcp_info[keynr].len_of_offsets
);
printf("****************************\n");
}
uchar* pos = buf;
bool has_blobs = false;
pos += fill_static_row_mutator(
pos,
table,
altered_table,
&share->kc_info,
altered_kc_info,
keynr
);
if (is_add) {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
keynr,
is_add,
&has_blobs
);
}
else {
pos += fill_dynamic_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
keynr,
is_add,
&has_blobs
);
}
if (has_blobs) {
pos += fill_static_blob_row_mutator(
pos,
table,
&share->kc_info
);
if (is_add) {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
altered_table,
altered_kc_info,
is_add
);
}
else {
pos += fill_dynamic_blob_row_mutator(
pos,
columns,
num_columns,
table,
&share->kc_info,
is_add
);
}
}
return pos-buf;
}
static bool
column_rename_supported(
TABLE* orig_table,
TABLE* new_table,
bool alter_column_order
)
{
bool retval = false;
bool keys_same_for_cr;
uint num_fields_with_different_names = 0;
uint field_with_different_name = orig_table->s->fields;
if (orig_table->s->fields != new_table->s->fields) {
retval = false;
goto cleanup;
}
if (alter_column_order) {
retval = false;
goto cleanup;
}
for (uint i = 0; i < orig_table->s->fields; i++) {
Field* orig_field = orig_table->field[i];
Field* new_field = new_table->field[i];
if (!fields_are_same_type(orig_field, new_field)) {
retval = false;
goto cleanup;
}
if (!fields_have_same_name(orig_field, new_field)) {
num_fields_with_different_names++;
field_with_different_name = i;
}
}
// only allow one renamed field
if (num_fields_with_different_names != 1) {
retval = false;
goto cleanup;
}
assert(field_with_different_name < orig_table->s->fields);
//
// at this point, we have verified that the two tables have
// the same field types and with ONLY one field with a different name.
// We have also identified the field with the different name
//
// Now we need to check the indexes
//
keys_same_for_cr = tables_have_same_keys(
orig_table,
new_table,
false,
true
);
if (!keys_same_for_cr) {
retval = false;
goto cleanup;
}
retval = true;
cleanup:
return retval;
}
static int
find_changed_columns(
u_int32_t* changed_columns,
u_int32_t* num_changed_columns,
TABLE* smaller_table,
TABLE* bigger_table
)
{
int retval;
uint curr_new_col_index = 0;
u_int32_t curr_num_changed_columns=0;
assert(bigger_table->s->fields > smaller_table->s->fields);
for (uint i = 0; i < smaller_table->s->fields; i++, curr_new_col_index++) {
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
Field* curr_field_in_new = bigger_table->field[curr_new_col_index];
Field* curr_field_in_orig = smaller_table->field[i];
while (!fields_have_same_name(curr_field_in_orig, curr_field_in_new)) {
changed_columns[curr_num_changed_columns] = curr_new_col_index;
curr_num_changed_columns++;
curr_new_col_index++;
curr_field_in_new = bigger_table->field[curr_new_col_index];
if (curr_new_col_index >= bigger_table->s->fields) {
sql_print_error("error in determining changed columns");
retval = 1;
goto cleanup;
}
}
// at this point, curr_field_in_orig and curr_field_in_new should be the same, let's verify
// make sure the two fields that have the same name are ok
if (!are_two_fields_same(curr_field_in_orig, curr_field_in_new)) {
sql_print_error(
"Two fields that were supposedly the same are not: \
%s in original, %s in new",
curr_field_in_orig->field_name,
curr_field_in_new->field_name
);
retval = 1;
goto cleanup;
}
}
for (uint i = curr_new_col_index; i < bigger_table->s->fields; i++) {
changed_columns[curr_num_changed_columns] = i;
curr_num_changed_columns++;
}
*num_changed_columns = curr_num_changed_columns;
retval = 0;
cleanup:
return retval;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment