Commit 0d8e1397 authored by monty@hundin.mysql.fi's avatar monty@hundin.mysql.fi

Made keyread (key scanning) a key specific attribute.

This avoids using fulltext keys for table scanning.
This also reverts Sinisa's original fix for this problem.
parent b1f7c125
......@@ -27645,6 +27645,12 @@ flag again, the @code{SQL_MAX_JOIN_SIZE} variable will be ignored.
You can set a default value for this variable by starting @code{mysqld} with
@code{-O max_join_size=#}.
Note that if the result of the query is in the query cache, the above
check will not be made, but MySQL will instead send the result to the
client. We regard this as a feature as in this case the query result is
already computed and it will not cause any big burden for the server to
send the result to the client.
@item SQL_QUERY_CACHE_TYPE = OFF | ON | DEMAND
@item SQL_QUERY_CACHE_TYPE = 0 | 1 | 2
Set query cache setting for this thread.
......@@ -1438,8 +1438,8 @@ int main(int argc, char **argv)
else if (opt_single_transaction) /* Just to make it beautiful enough */
{
/*
In case we were locking all tables, we did not start transaction
so there is no need to commit it.
In case we were locking all tables, we did not start transaction
so there is no need to commit it.
*/
/* This should just free locks as we did not change anything */
......
......@@ -4,81 +4,63 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Header file for my_aes.c */
/* Wrapper to give simple interface for MySQL to AES standard encryption */
#ifndef __MY_AES_H
#define __MY_AES_H
#include "my_global.h"
#include <stdio.h>
#include "rijndael.h"
#define AES_KEY_LENGTH 128
/* Must be 128 192 or 256 */
C_MODE_START
#ifdef __cplusplus
extern "C" {
#endif
#define AES_KEY_LENGTH 128 /* Must be 128 192 or 256 */
/*
my_aes_encrypt - Crypt buffer with AES encryption algorithm.
source - Pinter to data for encryption
source_length - size of encruption data
dest - buffer to place encrypted data (must be large enough)
key - Key to be used for encryption
kel_length - Lenght of the key. Will handle keys of any length
returns - size of encrypted data, or negative in case of error.
my_aes_encrypt - Crypt buffer with AES encryption algorithm.
source - Pointer to data for encryption
source_length - size of encryption data
dest - buffer to place encrypted data (must be large enough)
key - Key to be used for encryption
kel_length - Length of the key. Will handle keys of any length
returns - size of encrypted data, or negative in case of error.
*/
int my_aes_encrypt(const char* source, int source_length, const char* dest,
const char* key, int key_length);
int my_aes_encrypt(const char *source, int source_length, char *dest,
const char *key, int key_length);
/*
my_aes_decrypt - DeCrypt buffer with AES encryption algorithm.
source - Pinter to data for decryption
source_length - size of encrypted data
dest - buffer to place decrypted data (must be large enough)
key - Key to be used for decryption
kel_length - Lenght of the key. Will handle keys of any length
returns - size of original data, or negative in case of error.
my_aes_decrypt - DeCrypt buffer with AES encryption algorithm.
source - Pointer to data for decryption
source_length - size of encrypted data
dest - buffer to place decrypted data (must be large enough)
key - Key to be used for decryption
kel_length - Length of the key. Will handle keys of any length
returns - size of original data, or negative in case of error.
*/
int my_aes_decrypt(const char* source, int source_length, const char* dest,
const char* key, int key_length);
int my_aes_decrypt(const char *source, int source_length, char *dest,
const char *key, int key_length);
/*
my_aes_get_size - get size of buffer which will be large enough for encrypted
data
source_length - length of data to be encrypted
returns - size of buffer required to store encrypted data
my_aes_get_size - get size of buffer which will be large enough for encrypted
data
source_length - length of data to be encrypted
returns - size of buffer required to store encrypted data
*/
int my_aes_get_size(int source_length);
#ifdef __cplusplus
}
#endif
#endif
C_MODE_END
......@@ -4,45 +4,39 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
rijndael-alg-fst.h
@version 3.0 (December 2000)
Optimised ANSI C code for the Rijndael cipher (now AES)
@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
@author Paulo Barreto <paulo.barreto@terra.com.br>
This code is hereby placed in the public domain.
Modified by Peter Zaitsev to fit MySQL coding style.
rijndael-alg-fst.h
@version 3.0 (December 2000)
Optimised ANSI C code for the Rijndael cipher (now AES)
@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
@author Paulo Barreto <paulo.barreto@terra.com.br>
This code is hereby placed in the public domain.
Modified by Peter Zaitsev to fit MySQL coding style.
*/
#ifndef __RIJNDAEL_ALG_FST_H
#define __RIJNDAEL_ALG_FST_H
#define MAXKC (256/32)
#define MAXKB (256/8)
#define MAXNR 14
#define AES_MAXKC (256/32)
#define AES_MAXKB (256/8)
#define AES_MAXNR 14
int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits);
int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits);
int rijndaelKeySetupDec(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits);
int keyBits);
void rijndaelEncrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 pt[16], uint8 ct[16]);
const uint8 pt[16], uint8 ct[16]);
void rijndaelDecrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 ct[16], uint8 pt[16]);
#endif /* __RIJNDAEL_ALG_FST_H */
const uint8 ct[16], uint8 pt[16]);
......@@ -4,81 +4,64 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
sha1.h
Description:
This is the header file for code which implements the Secure
Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
April 17, 1995.
Many of the variable names in this code, especially the
single character names, were used because those were the names
used in the publication.
Please read the file sha1.c for more information.
*/
/* Modified 2002 by Peter Zaitsev to better follow MySQL standards */
This is the header file for code which implements the Secure
Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
April 17, 1995.
Many of the variable names in this code, especially the
single character names, were used because those were the names
used in the publication.
#ifndef _SHA1_H_
#define _SHA1_H_
Please read the file sha1.c for more information.
#include "my_global.h"
Modified 2002 by Peter Zaitsev to better follow MySQL standards
*/
/* Required for uint32, uint8, int16 ulonglong types */
enum sha_result_codes
{
SHA_SUCCESS = 0,
SHA_NULL, /* Null pointer parameter */
SHA_INPUT_TOO_LONG, /* input data too long */
SHA_STATE_ERROR /* called Input after Result */
SHA_SUCCESS = 0,
SHA_NULL, /* Null pointer parameter */
SHA_INPUT_TOO_LONG, /* input data too long */
SHA_STATE_ERROR /* called Input after Result */
};
#define SHA1_HASH_SIZE 20 /* Hash size in bytes */
/*
This structure will hold context information for the SHA-1
hashing operation
*/
This structure will hold context information for the SHA-1
hashing operation
*/
typedef struct SHA1_CONTEXT
{
ulonglong Length; /* Message length in bits */
ulonglong Length; /* Message length in bits */
uint32 Intermediate_Hash[SHA1_HASH_SIZE/4]; /* Message Digest */
int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
int16 Message_Block_Index; /* Index into message block array */
uint8 Message_Block[64]; /* 512-bit message blocks */
int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
int16 Message_Block_Index; /* Index into message block array */
uint8 Message_Block[64]; /* 512-bit message blocks */
} SHA1_CONTEXT;
/*
* Function Prototypes
*/
Function Prototypes
*/
#ifdef __cplusplus
extern "C" {
#endif
C_MODE_START
int sha1_reset( SHA1_CONTEXT* );
int sha1_input( SHA1_CONTEXT*, const uint8 *, unsigned int );
int sha1_result( SHA1_CONTEXT* , uint8 Message_Digest[SHA1_HASH_SIZE] );
#ifdef __cplusplus
}
#endif
#endif
C_MODE_END
......@@ -4,184 +4,196 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Implementation of AES Encryption for MySQL
Initial version by Peter Zaitsev June 2002
*/
/*
Implementation of AES Encryption for MySQL
Initial version by Peter Zaitsev June 2002
*/
#include "my_global.h"
#include "m_string.h"
#include <my_global.h>
#include <m_string.h>
#include "my_aes.h"
enum encrypt_dir { AES_ENCRYPT, AES_DECRYPT };
#define AES_BLOCK_SIZE 16
/* Block size in bytes */
#define AES_BAD_DATA -1
/* If bad data discovered during decoding */
#define AES_BLOCK_SIZE 16 /* Block size in bytes */
/* The structure for key information */
#define AES_BAD_DATA -1 /* If bad data discovered during decoding */
/* The structure for key information */
typedef struct {
int nr; /* Number of rounds */
uint32 rk[4*(MAXNR + 1)]; /* key schedule */
int nr; /* Number of rounds */
uint32 rk[4*(AES_MAXNR + 1)]; /* key schedule */
} KEYINSTANCE;
/*
This is internal function just keeps joint code of Key generation
rkey - Address of Key Instance to be created
direction - Direction (are we encoding or decoding)
key - key to use for real key creation
key_length - length of the key
returns - returns 0 on success and negative on error
*/
static int my_aes_create_key(KEYINSTANCE* aes_key,char direction, char* key,
int key_length)
{
char rkey[AES_KEY_LENGTH/8]; /* The real key to be used for encryption */
char *ptr; /* Start of the real key*/
/*
This is internal function just keeps joint code of Key generation
SYNOPSIS
my_aes_create_key()
aes_key Address of Key Instance to be created
direction Direction (are we encoding or decoding)
key Key to use for real key creation
key_length Length of the key
DESCRIPTION
RESULT
0 ok
-1 Error Note: The current impementation never returns this
*/
static int my_aes_create_key(KEYINSTANCE *aes_key,
enum encrypt_dir direction, const char *key,
int key_length)
{
char rkey[AES_KEY_LENGTH/8]; /* The real key to be used for encryption */
char *rkey_end=rkey+AES_KEY_LENGTH/8; /* Real key boundary */
char *sptr; /* Start of the working key */
char *key_end=key+key_length; /* Working key boundary*/
char *ptr; /* Start of the real key*/
const char *sptr; /* Start of the working key */
const char *key_end=key+key_length; /* Working key boundary*/
bzero(rkey,AES_KEY_LENGTH/8); /* Set initial key */
for (ptr= rkey, sptr= key; sptr < key_end; ptr++,sptr++)
{
if (ptr == rkey_end)
ptr= rkey; /* Just loop over tmp_key until we used all key */
*ptr^= *sptr;
*ptr^= *sptr;
}
if (direction==AES_DECRYPT)
if (direction == AES_DECRYPT)
aes_key->nr = rijndaelKeySetupDec(aes_key->rk, rkey, AES_KEY_LENGTH);
else
else
aes_key->nr = rijndaelKeySetupEnc(aes_key->rk, rkey, AES_KEY_LENGTH);
return 0;
return 0;
}
/*
my_aes_encrypt - Crypt buffer with AES encryption algorithm.
source - Pinter to data for encryption
source_length - size of encruption data
dest - buffer to place encrypted data (must be large enough)
key - Key to be used for encryption
kel_length - Lenght of the key. Will handle keys of any length
returns - size of encrypted data, or negative in case of error.
Crypt buffer with AES encryption algorithm.
SYNOPSIS
my_aes_encrypt()
source Pointer to data for encryption
source_length Size of encryption data
dest Buffer to place encrypted data (must be large enough)
key Key to be used for encryption
key_length Length of the key. Will handle keys of any length
RETURN
>= 0 Size of encrypted data
< 0 Error
*/
int my_aes_encrypt(const char* source, int source_length, const char* dest,
const char* key, int key_length)
int my_aes_encrypt(const char* source, int source_length, char* dest,
const char* key, int key_length)
{
KEYINSTANCE aes_key;
char block[AES_BLOCK_SIZE]; /* 128 bit block used for padding */
int rc; /* result codes */
int num_blocks; /* number of complete blocks */
char pad_len; /* pad size for the last block */
char block[AES_BLOCK_SIZE]; /* 128 bit block used for padding */
int rc; /* result codes */
int num_blocks; /* number of complete blocks */
char pad_len; /* pad size for the last block */
int i;
if ((rc=my_aes_create_key(&aes_key,AES_ENCRYPT,key,key_length)))
if ((rc= my_aes_create_key(&aes_key,AES_ENCRYPT,key,key_length)))
return rc;
num_blocks = source_length/AES_BLOCK_SIZE;
num_blocks = source_length/AES_BLOCK_SIZE;
for (i = num_blocks; i > 0; i--) /* Encode complete blocks */
{
rijndaelEncrypt(aes_key.rk, aes_key.nr, source, dest);
source+= AES_BLOCK_SIZE;
dest+= AES_BLOCK_SIZE;
}
/* Encode the rest. We always have incomplete block */
pad_len = AES_BLOCK_SIZE - (source_length - AES_BLOCK_SIZE*num_blocks);
memcpy(block, source, 16 - pad_len);
pad_len = AES_BLOCK_SIZE - (source_length - AES_BLOCK_SIZE*num_blocks);
memcpy(block, source, 16 - pad_len);
bfill(block + AES_BLOCK_SIZE - pad_len, pad_len, pad_len);
rijndaelEncrypt(aes_key.rk, aes_key.nr, block, dest);
return AES_BLOCK_SIZE*(num_blocks + 1);
return AES_BLOCK_SIZE*(num_blocks + 1);
}
/*
my_aes_decrypt - DeCrypt buffer with AES encryption algorithm.
source - Pinter to data for decryption
source_length - size of encrypted data
dest - buffer to place decrypted data (must be large enough)
key - Key to be used for decryption
kel_length - Lenght of the key. Will handle keys of any length
returns - size of original data, or negative in case of error.
*/
DeCrypt buffer with AES encryption algorithm.
SYNOPSIS
my_aes_decrypt()
source Pointer to data for decryption
source_length Size of encrypted data
dest Buffer to place decrypted data (must be large enough)
key Key to be used for decryption
key_length Length of the key. Will handle keys of any length
RETURN
>= 0 Size of encrypted data
< 0 Error
*/
int my_aes_decrypt(const char* source, int source_length, const char* dest,
const char* key, int key_length)
int my_aes_decrypt(const char *source, int source_length, char *dest,
const char *key, int key_length)
{
KEYINSTANCE aes_key;
char block[AES_BLOCK_SIZE]; /* 128 bit block used for padding */
int rc; /* result codes */
int num_blocks; /* number of complete blocks */
char pad_len; /* pad size for the last block */
char block[AES_BLOCK_SIZE]; /* 128 bit block used for padding */
int rc; /* Result codes */
int num_blocks; /* Number of complete blocks */
char pad_len; /* Pad size for the last block */
int i;
if ((rc=my_aes_create_key(&aes_key,AES_DECRYPT,key,key_length)))
return rc;
num_blocks = source_length/AES_BLOCK_SIZE;
if ( (source_length!=num_blocks*AES_BLOCK_SIZE) || num_blocks==0)
return AES_BAD_DATA; /* Input size has to be even and at leas one block */
num_blocks = source_length/AES_BLOCK_SIZE;
if ((source_length != num_blocks*AES_BLOCK_SIZE) || num_blocks ==0 )
return AES_BAD_DATA; /* Input size has to be even and at least one block */
for (i = num_blocks-1; i > 0; i--) /* Decode all but last blocks */
{
rijndaelDecrypt(aes_key.rk, aes_key.nr, source, dest);
source+= AES_BLOCK_SIZE;
dest+= AES_BLOCK_SIZE;
}
rijndaelDecrypt(aes_key.rk, aes_key.nr, source, block);
pad_len = block[AES_BLOCK_SIZE-1]; /* Just use last char in the block as size*/
pad_len = block[AES_BLOCK_SIZE-1]; /* Use last char in the block as size */
if (pad_len > AES_BLOCK_SIZE)
if (pad_len > AES_BLOCK_SIZE)
return AES_BAD_DATA;
/* We could also check whole padding but we do not really need this */
memcpy(dest, block, AES_BLOCK_SIZE - pad_len);
return AES_BLOCK_SIZE*num_blocks - pad_len;
return AES_BLOCK_SIZE*num_blocks - pad_len;
}
/*
my_aes_get_size - get size of buffer which will be large enough for encrypted
data
source_length - length of data to be encrypted
returns - size of buffer required to store encrypted data
Get size of buffer which will be large enough for encrypted data
SYNOPSIS
my_aes_get_size()
source_length Length of data to be encrypted
RETURN
Size of buffer required to store encrypted data
*/
int my_aes_get_size(int source_length)
{
{
return AES_BLOCK_SIZE*(source_length/AES_BLOCK_SIZE)+AES_BLOCK_SIZE;
}
......@@ -4,46 +4,38 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
rijndael-alg-fst.c
@version 3.0 (December 2000)
Based on version 3.0 (December 2000)
Optimised ANSI C code for the Rijndael cipher (now AES)
@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
@author Paulo Barreto <paulo.barreto@terra.com.br>
This code is hereby placed in the public domain.
*/
#include <my_global.h>
#include <assert.h>
author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
author Paulo Barreto <paulo.barreto@terra.com.br>
*/
#include <my_global.h>
#include <assert.h>
#include "rijndael.h"
/*
May be defined to use fastest and much larger code (~10K extra code)
#define FULL_UNROLL
/*
Define the following to use fastest and much larger code (~10K extra code)
#define FULL_UNROLL
*/
#ifdef NOT_USED
/*
Te0[x] = S [x].[02, 01, 01, 03];
Te1[x] = S [x].[03, 02, 01, 01];
Te2[x] = S [x].[01, 03, 02, 01];
......@@ -55,10 +47,9 @@ Td1[x] = Si[x].[0b, 0e, 09, 0d];
Td2[x] = Si[x].[0d, 0b, 0e, 09];
Td3[x] = Si[x].[09, 0d, 0b, 0e];
Td4[x] = Si[x].[01, 01, 01, 01];
*/
#endif
static const uint32 Te0[256]=
{
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
......@@ -126,6 +117,7 @@ static const uint32 Te0[256]=
0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
};
static const uint32 Te1[256]=
{
0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,
......@@ -194,7 +186,8 @@ static const uint32 Te1[256]=
0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U,
};
static const uint32 Te2[256] = {
static const uint32 Te2[256]=
{
0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,
0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U,
0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU,
......@@ -738,85 +731,86 @@ static const uint32 Td4[256]=
0x55555555U, 0x21212121U, 0x0c0c0c0cU, 0x7d7d7d7dU,
};
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
static const uint32 rcon[]=
{
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000,
0x1B000000, 0x36000000,
};
#define RJ_SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00)
#ifdef _MSC_VER
#if defined(_MSC_VER) && defined(__i386__)
#define RJ_SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00)
#define GETuint32(p) RJ_SWAP(*((uint32 *)(p)))
#define PUTuint32(ct, st) { *((uint32 *)(ct)) = RJ_SWAP((st)); }
#else
#define GETuint32(pt) (((uint32)(pt)[0] << 24) ^ ((uint32)(pt)[1] << 16)\
^ ((uint32)(pt)[2] << 8) ^ ((uint32)(pt)[3]))
^ ((uint32)(pt)[2] << 8) ^ ((uint32)(pt)[3]))
#define PUTuint32(ct, st) { (ct)[0] = (uint8)((st) >> 24); (ct)[1]\
= (uint8)((st) >> 16); (ct)[2] = (uint8)((st) >> 8); (ct)[3] = (uint8)(st); }
#endif
#endif /* defined(_MSC_VER) && defined(__i386__) */
/*
Expand the cipher key into the encryption key schedule.
@return the number of rounds for the given cipher key size.
Expand the cipher key into the encryption key schedule.
RETURN
The number of rounds for the given cipher key size.
*/
int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits)
int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits)
{
int i = 0;
uint32 temp;
rk[0] = GETuint32(cipherKey );
rk[0] = GETuint32(cipherKey );
rk[1] = GETuint32(cipherKey + 4);
rk[2] = GETuint32(cipherKey + 8);
rk[3] = GETuint32(cipherKey + 12);
if (keyBits == 128)
{
for (;;)
for (;;)
{
temp = rk[3];
rk[4] = rk[0] ^
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i];
rk[4] = (rk[0] ^
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i]);
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10)
return 10;
if (++i == 10)
return 10;
rk += 4;
}
}
rk[4] = GETuint32(cipherKey + 16);
rk[5] = GETuint32(cipherKey + 20);
if (keyBits == 192)
if (keyBits == 192)
{
for (;;)
for (;;)
{
temp = rk[ 5];
rk[ 6] = (rk[ 0] ^
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i]);
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i]);
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8)
if (++i == 8)
{
return 12;
return 12;
}
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
......@@ -825,30 +819,30 @@ int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
}
rk[6] = GETuint32(cipherKey + 24);
rk[7] = GETuint32(cipherKey + 28);
if (keyBits == 256)
if (keyBits == 256)
{
for (;;)
for (;;)
{
temp = rk[ 7];
rk[ 8] = (rk[ 0] ^
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i]);
(Te4[(temp >> 16) & 0xff] & 0xff000000) ^
(Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
(Te4[(temp ) & 0xff] & 0x0000ff00) ^
(Te4[(temp >> 24) ] & 0x000000ff) ^
rcon[i]);
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7)
if (++i == 7)
{
return 14;
return 14;
}
temp = rk[11];
rk[12] = (rk[ 4] ^
(Te4[(temp >> 24) ] & 0xff000000) ^
(Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(temp ) & 0xff] & 0x000000ff));
(Te4[(temp >> 24) ] & 0xff000000) ^
(Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(temp ) & 0xff] & 0x000000ff));
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
......@@ -860,584 +854,544 @@ int rijndaelKeySetupEnc(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
/*
Expand the cipher key into the decryption key schedule.
Expand the cipher key into the decryption key schedule.
@return the number of rounds for the given cipher key size.
RETURN
The number of rounds for the given cipher key size.
*/
int rijndaelKeySetupDec(uint32 rk[/*4*(Nr + 1)*/], const uint8 cipherKey[],
int keyBits)
int keyBits)
{
int Nr, i, j;
int nr, i, j;
uint32 temp;
/* expand the cipher key: */
Nr = rijndaelKeySetupEnc(rk, cipherKey, keyBits);
nr = rijndaelKeySetupEnc(rk, cipherKey, keyBits);
/* invert the order of the round keys: */
for (i = 0, j = 4*Nr; i < j; i += 4, j -= 4)
for (i = 0, j = 4*nr; i < j; i += 4, j -= 4)
{
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
}
/*
apply the inverse MixColumn transform to
all round keys but the first and the last:
/*
Apply the inverse MixColumn transform to all round keys but the first
and the last:
*/
for (i = 1; i < Nr; i++)
for (i = 1; i < nr; i++)
{
rk += 4;
rk[0] =
Td0[Te4[(rk[0] >> 24) ] & 0xff] ^
Td1[Te4[(rk[0] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[0] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[0] ) & 0xff] & 0xff];
rk[1] =
Td0[Te4[(rk[1] >> 24) ] & 0xff] ^
Td1[Te4[(rk[1] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[1] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[1] ) & 0xff] & 0xff];
rk[2] =
Td0[Te4[(rk[2] >> 24) ] & 0xff] ^
Td1[Te4[(rk[2] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[2] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[2] ) & 0xff] & 0xff];
rk[3] =
Td0[Te4[(rk[3] >> 24) ] & 0xff] ^
Td1[Te4[(rk[3] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[3] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[3] ) & 0xff] & 0xff];
rk[0]= (
Td0[Te4[(rk[0] >> 24) ] & 0xff] ^
Td1[Te4[(rk[0] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[0] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[0] ) & 0xff] & 0xff]);
rk[1]= (Td0[Te4[(rk[1] >> 24) ] & 0xff] ^
Td1[Te4[(rk[1] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[1] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[1] ) & 0xff] & 0xff]);
rk[2]= (Td0[Te4[(rk[2] >> 24) ] & 0xff] ^
Td1[Te4[(rk[2] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[2] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[2] ) & 0xff] & 0xff]);
rk[3]= (Td0[Te4[(rk[3] >> 24) ] & 0xff] ^
Td1[Te4[(rk[3] >> 16) & 0xff] & 0xff] ^
Td2[Te4[(rk[3] >> 8) & 0xff] & 0xff] ^
Td3[Te4[(rk[3] ) & 0xff] & 0xff]);
}
return Nr;
return nr;
}
void rijndaelEncrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 pt[16], uint8 ct[16])
void rijndaelEncrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 pt[16], uint8 ct[16])
{
uint32 s0, s1, s2, s3, t0, t1, t2, t3;
#ifndef FULL_UNROLL
int r;
#endif /* ?FULL_UNROLL */
int r;
#endif /* FULL_UNROLL */
/*
map byte array block to cipher state
and add initial round key:
*/
s0 = GETuint32(pt ) ^ rk[0];
/* map byte array block to cipher state and add initial round key: */
s0 = GETuint32(pt ) ^ rk[0];
s1 = GETuint32(pt + 4) ^ rk[1];
s2 = GETuint32(pt + 8) ^ rk[2];
s3 = GETuint32(pt + 12) ^ rk[3];
#ifdef FULL_UNROLL
/* round 1: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[ 4];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[ 5];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[ 6];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[ 7];
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[ 4]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[ 5]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[ 6]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[ 7]);
/* round 2: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[ 8];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[ 9];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[10];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[11];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[ 8]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[ 9]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[10]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[11]);
/* round 3: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[12];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[13];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[14];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[15];
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[12]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[13]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[14]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[15]);
/* round 4: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[16];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[17];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[18];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[19];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[16]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[17]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[18]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[19]);
/* round 5: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[20];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[21];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[22];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[23];
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[20]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[21]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[22]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[23]);
/* round 6: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[24];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[25];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[26];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[27];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[24]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[25]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[26]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[27]);
/* round 7: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[28];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[29];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[30];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[31];
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[28]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[29]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[30]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[31]);
/* round 8: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[32];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[33];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[34];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[35];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[32]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[33]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[34]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[35]);
/* round 9: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[36];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[37];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[38];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[39];
if (Nr > 10)
{
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[36]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[37]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[38]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[39]);
if (Nr > 10)
{
/* round 10: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[40];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[41];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[42];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[43];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[40]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[41]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[42]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[43]);
/* round 11: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[44];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[45];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[46];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[47];
if (Nr > 12)
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[44]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[45]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[46]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[47]);
if (Nr > 12)
{
/* round 12: */
s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[48];
s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[49];
s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[50];
s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[51];
/* round 13: */
t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[52];
t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[53];
t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[54];
t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[55];
s0= (Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff]
^ Te3[t3 & 0xff] ^ rk[48]);
s1= (Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff]
^ Te3[t0 & 0xff] ^ rk[49]);
s2= (Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff]
^ Te3[t1 & 0xff] ^ rk[50]);
s3= (Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff]
^ Te3[t2 & 0xff] ^ rk[51]);
/* round 13: */
t0= (Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff]
^ Te3[s3 & 0xff] ^ rk[52]);
t1= (Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff]
^ Te3[s0 & 0xff] ^ rk[53]);
t2= (Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff]
^ Te3[s1 & 0xff] ^ rk[54]);
t3= (Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff]
^ Te3[s2 & 0xff] ^ rk[55]);
}
}
rk += Nr << 2;
#else /* !FULL_UNROLL */
/* Nr - 1 full rounds: */
r = Nr >> 1;
for (;;)
for (;;)
{
t0 =
Te0[(s0 >> 24) ] ^
Te1[(s1 >> 16) & 0xff] ^
Te2[(s2 >> 8) & 0xff] ^
Te3[(s3 ) & 0xff] ^
rk[4];
t1 =
Te0[(s1 >> 24) ] ^
Te1[(s2 >> 16) & 0xff] ^
Te2[(s3 >> 8) & 0xff] ^
Te3[(s0 ) & 0xff] ^
rk[5];
t2 =
Te0[(s2 >> 24) ] ^
Te1[(s3 >> 16) & 0xff] ^
Te2[(s0 >> 8) & 0xff] ^
Te3[(s1 ) & 0xff] ^
rk[6];
t3 =
Te0[(s3 >> 24) ] ^
Te1[(s0 >> 16) & 0xff] ^
Te2[(s1 >> 8) & 0xff] ^
Te3[(s2 ) & 0xff] ^
rk[7];
rk += 8;
if (--r == 0)
{
t0= (Te0[(s0 >> 24) ] ^
Te1[(s1 >> 16) & 0xff] ^
Te2[(s2 >> 8) & 0xff] ^
Te3[(s3 ) & 0xff] ^
rk[4]);
t1= (Te0[(s1 >> 24) ] ^
Te1[(s2 >> 16) & 0xff] ^
Te2[(s3 >> 8) & 0xff] ^
Te3[(s0 ) & 0xff] ^
rk[5]);
t2= (Te0[(s2 >> 24) ] ^
Te1[(s3 >> 16) & 0xff] ^
Te2[(s0 >> 8) & 0xff] ^
Te3[(s1 ) & 0xff] ^
rk[6]);
t3= (Te0[(s3 >> 24) ] ^
Te1[(s0 >> 16) & 0xff] ^
Te2[(s1 >> 8) & 0xff] ^
Te3[(s2 ) & 0xff] ^
rk[7]);
rk+= 8;
if (--r == 0)
break;
}
s0 =
Te0[(t0 >> 24) ] ^
Te1[(t1 >> 16) & 0xff] ^
Te2[(t2 >> 8) & 0xff] ^
Te3[(t3 ) & 0xff] ^
rk[0];
s1 =
Te0[(t1 >> 24) ] ^
Te1[(t2 >> 16) & 0xff] ^
Te2[(t3 >> 8) & 0xff] ^
Te3[(t0 ) & 0xff] ^
rk[1];
s2 =
Te0[(t2 >> 24) ] ^
Te1[(t3 >> 16) & 0xff] ^
Te2[(t0 >> 8) & 0xff] ^
Te3[(t1 ) & 0xff] ^
rk[2];
s3 =
Te0[(t3 >> 24) ] ^
Te1[(t0 >> 16) & 0xff] ^
Te2[(t1 >> 8) & 0xff] ^
Te3[(t2 ) & 0xff] ^
rk[3];
s0= (Te0[(t0 >> 24) ] ^
Te1[(t1 >> 16) & 0xff] ^
Te2[(t2 >> 8) & 0xff] ^
Te3[(t3 ) & 0xff] ^
rk[0]);
s1= (Te0[(t1 >> 24) ] ^
Te1[(t2 >> 16) & 0xff] ^
Te2[(t3 >> 8) & 0xff] ^
Te3[(t0 ) & 0xff] ^
rk[1]);
s2= (Te0[(t2 >> 24) ] ^
Te1[(t3 >> 16) & 0xff] ^
Te2[(t0 >> 8) & 0xff] ^
Te3[(t1 ) & 0xff] ^
rk[2]);
s3= (Te0[(t3 >> 24) ] ^
Te1[(t0 >> 16) & 0xff] ^
Te2[(t1 >> 8) & 0xff] ^
Te3[(t2 ) & 0xff] ^
rk[3]);
}
#endif /* ?FULL_UNROLL */
#endif /* FULL_UNROLL */
/*
apply last round and
map cipher state to byte array block:
*/
s0 =
(Te4[(t0 >> 24) ] & 0xff000000) ^
(Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t3 ) & 0xff] & 0x000000ff) ^
rk[0];
PUTuint32(ct , s0);
s1 =
(Te4[(t1 >> 24) ] & 0xff000000) ^
(Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t0 ) & 0xff] & 0x000000ff) ^
rk[1];
/* Apply last round and map cipher state to byte array block: */
s0= ((Te4[(t0 >> 24) ] & 0xff000000) ^
(Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t3 ) & 0xff] & 0x000000ff) ^
rk[0]);
PUTuint32(ct , s0);
s1= ((Te4[(t1 >> 24) ] & 0xff000000) ^
(Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t0 ) & 0xff] & 0x000000ff) ^
rk[1]);
PUTuint32(ct + 4, s1);
s2 =
(Te4[(t2 >> 24) ] & 0xff000000) ^
(Te4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t1 ) & 0xff] & 0x000000ff) ^
rk[2];
s2= ((Te4[(t2 >> 24) ] & 0xff000000) ^
(Te4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t1 ) & 0xff] & 0x000000ff) ^
rk[2]);
PUTuint32(ct + 8, s2);
s3 =
(Te4[(t3 >> 24) ] & 0xff000000) ^
(Te4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t2 ) & 0xff] & 0x000000ff) ^
rk[3];
s3= ((Te4[(t3 >> 24) ] & 0xff000000) ^
(Te4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t2 ) & 0xff] & 0x000000ff) ^
rk[3]);
PUTuint32(ct + 12, s3);
}
void rijndaelDecrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 ct[16], uint8 pt[16])
void rijndaelDecrypt(const uint32 rk[/*4*(Nr + 1)*/], int Nr,
const uint8 ct[16], uint8 pt[16])
{
uint32 s0, s1, s2, s3, t0, t1, t2, t3;
#ifndef FULL_UNROLL
int r;
#endif /* ?FULL_UNROLL */
#endif /* FULL_UNROLL */
/*
map byte array block to cipher state
and add initial round key:
*/
s0 = GETuint32(ct ) ^ rk[0];
/* Map byte array block to cipher state and add initial round key: */
s0 = GETuint32(ct ) ^ rk[0];
s1 = GETuint32(ct + 4) ^ rk[1];
s2 = GETuint32(ct + 8) ^ rk[2];
s3 = GETuint32(ct + 12) ^ rk[3];
#ifdef FULL_UNROLL
/* round 1: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[ 4];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[ 5];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[ 6];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[ 7];
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[ 4]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[ 5]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[ 6]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[ 7]);
/* round 2: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[ 8];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[ 9];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[10];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[11];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[ 8]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[ 9]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[10]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[11]);
/* round 3: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[12];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[13];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[14];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[15];
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[12]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[13]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[14]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[15]);
/* round 4: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[16];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[17];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[18];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[19];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[16]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[17]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[18]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[19]);
/* round 5: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[20];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[21];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[22];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[23];
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[20]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[21]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[22]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[23]);
/* round 6: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[24];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[25];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[26];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[27];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[24]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[25]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[26]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[27]);
/* round 7: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[28];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[29];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[30];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[31];
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[28]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[29]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[30]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[31]);
/* round 8: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[32];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[33];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[34];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[35];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[32]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[33]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[34]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[35]);
/* round 9: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[36];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[37];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[38];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[39];
if (Nr > 10)
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[36]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[37]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[38]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[39]);
if (Nr > 10)
{
/* round 10: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[40];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[41];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[42];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[43];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[40]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[41]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[42]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[43]);
/* round 11: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[44];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[45];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[46];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[47];
if (Nr > 12)
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[44]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[45]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[46]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[47]);
if (Nr > 12)
{
/* round 12: */
s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[48];
s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[49];
s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[50];
s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[51];
s0= (Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff]
^ Td3[t1 & 0xff] ^ rk[48]);
s1= (Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff]
^ Td3[t2 & 0xff] ^ rk[49]);
s2= (Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff]
^ Td3[t3 & 0xff] ^ rk[50]);
s3= (Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff]
^ Td3[t0 & 0xff] ^ rk[51]);
/* round 13: */
t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[52];
t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[53];
t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[54];
t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[55];
t0= (Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff]
^ Td3[s1 & 0xff] ^ rk[52]);
t1= (Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff]
^ Td3[s2 & 0xff] ^ rk[53]);
t2= (Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff]
^ Td3[s3 & 0xff] ^ rk[54]);
t3= (Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff]
^ Td3[s0 & 0xff] ^ rk[55]);
}
}
rk += Nr << 2;
#else /* !FULL_UNROLL */
/* Nr - 1 full rounds: */
r = Nr >> 1;
for (;;)
r= (Nr >> 1);
for (;;)
{
t0 =
Td0[(s0 >> 24) ] ^
Td1[(s3 >> 16) & 0xff] ^
Td2[(s2 >> 8) & 0xff] ^
Td3[(s1 ) & 0xff] ^
rk[4];
t1 =
Td0[(s1 >> 24) ] ^
Td1[(s0 >> 16) & 0xff] ^
Td2[(s3 >> 8) & 0xff] ^
Td3[(s2 ) & 0xff] ^
rk[5];
t2 =
Td0[(s2 >> 24) ] ^
Td1[(s1 >> 16) & 0xff] ^
Td2[(s0 >> 8) & 0xff] ^
Td3[(s3 ) & 0xff] ^
rk[6];
t3 =
Td0[(s3 >> 24) ] ^
Td1[(s2 >> 16) & 0xff] ^
Td2[(s1 >> 8) & 0xff] ^
Td3[(s0 ) & 0xff] ^
rk[7];
rk += 8;
if (--r == 0)
{
t0= (Td0[(s0 >> 24) ] ^
Td1[(s3 >> 16) & 0xff] ^
Td2[(s2 >> 8) & 0xff] ^
Td3[(s1 ) & 0xff] ^
rk[4]);
t1= (Td0[(s1 >> 24) ] ^
Td1[(s0 >> 16) & 0xff] ^
Td2[(s3 >> 8) & 0xff] ^
Td3[(s2 ) & 0xff] ^
rk[5]);
t2= (Td0[(s2 >> 24) ] ^
Td1[(s1 >> 16) & 0xff] ^
Td2[(s0 >> 8) & 0xff] ^
Td3[(s3 ) & 0xff] ^
rk[6]);
t3= (Td0[(s3 >> 24) ] ^
Td1[(s2 >> 16) & 0xff] ^
Td2[(s1 >> 8) & 0xff] ^
Td3[(s0 ) & 0xff] ^
rk[7]);
rk+= 8;
if (--r == 0)
break;
}
s0 =
Td0[(t0 >> 24) ] ^
Td1[(t3 >> 16) & 0xff] ^
Td2[(t2 >> 8) & 0xff] ^
Td3[(t1 ) & 0xff] ^
rk[0];
s1 =
Td0[(t1 >> 24) ] ^
Td1[(t0 >> 16) & 0xff] ^
Td2[(t3 >> 8) & 0xff] ^
Td3[(t2 ) & 0xff] ^
rk[1];
s2 =
Td0[(t2 >> 24) ] ^
Td1[(t1 >> 16) & 0xff] ^
Td2[(t0 >> 8) & 0xff] ^
Td3[(t3 ) & 0xff] ^
rk[2];
s3 =
Td0[(t3 >> 24) ] ^
Td1[(t2 >> 16) & 0xff] ^
Td2[(t1 >> 8) & 0xff] ^
Td3[(t0 ) & 0xff] ^
rk[3];
s0= (Td0[(t0 >> 24) ] ^
Td1[(t3 >> 16) & 0xff] ^
Td2[(t2 >> 8) & 0xff] ^
Td3[(t1 ) & 0xff] ^
rk[0]);
s1= (Td0[(t1 >> 24) ] ^
Td1[(t0 >> 16) & 0xff] ^
Td2[(t3 >> 8) & 0xff] ^
Td3[(t2 ) & 0xff] ^
rk[1]);
s2= (Td0[(t2 >> 24) ] ^
Td1[(t1 >> 16) & 0xff] ^
Td2[(t0 >> 8) & 0xff] ^
Td3[(t3 ) & 0xff] ^
rk[2]);
s3= (Td0[(t3 >> 24) ] ^
Td1[(t2 >> 16) & 0xff] ^
Td2[(t1 >> 8) & 0xff] ^
Td3[(t0 ) & 0xff] ^
rk[3]);
}
#endif /* ?FULL_UNROLL */
/*
apply last round and
map cipher state to byte array block:
*/
s0 =
(Td4[(t0 >> 24) ] & 0xff000000) ^
(Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t1 ) & 0xff] & 0x000000ff) ^
rk[0];
PUTuint32(pt , s0);
s1 =
(Td4[(t1 >> 24) ] & 0xff000000) ^
(Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t2 ) & 0xff] & 0x000000ff) ^
rk[1];
#endif /* FULL_UNROLL */
/* Apply last round and map cipher state to byte array block: */
s0= ((Td4[(t0 >> 24) ] & 0xff000000) ^
(Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t1 ) & 0xff] & 0x000000ff) ^
rk[0]);
PUTuint32(pt , s0);
s1= ((Td4[(t1 >> 24) ] & 0xff000000) ^
(Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t2 ) & 0xff] & 0x000000ff) ^
rk[1]);
PUTuint32(pt + 4, s1);
s2 =
(Td4[(t2 >> 24) ] & 0xff000000) ^
(Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t3 ) & 0xff] & 0x000000ff) ^
rk[2];
s2= ((Td4[(t2 >> 24) ] & 0xff000000) ^
(Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t3 ) & 0xff] & 0x000000ff) ^
rk[2]);
PUTuint32(pt + 8, s2);
s3 =
(Td4[(t3 >> 24) ] & 0xff000000) ^
(Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t0 ) & 0xff] & 0x000000ff) ^
rk[3];
PUTuint32(pt + 12, s3);
s3= ((Td4[(t3 >> 24) ] & 0xff000000) ^
(Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
(Td4[(t0 ) & 0xff] & 0x000000ff) ^
rk[3]);
PUTuint32(pt + 12, s3);
}
......@@ -4,54 +4,49 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
sha1.c
Original Source from: http://www.faqs.org/rfcs/rfc3174.html
Description:
This file implements the Secure Hashing Algorithm 1 as
defined in FIPS PUB 180-1 published April 17, 1995.
The SHA-1, produces a 160-bit message digest for a given
data stream. It should take about 2**n steps to find a
message with the same digest as a given message and
2**(n/2) to find any two messages with the same digest,
when n is the digest size in bits. Therefore, this
algorithm can serve as a means of providing a
"fingerprint" for a message.
Portability Issues:
SHA-1 is defined in terms of 32-bit "words". This code
uses <stdint.h> (included via "sha1.h" to define 32 and 8
bit unsigned integer types. If your C compiler does not
support 32 bit unsigned integers, this code is not
appropriate.
Caveats:
SHA-1 is designed to work with messages less than 2^64 bits
long. Although SHA-1 allows a message digest to be generated
for messages of any number of bits less than 2^64, this
implementation only works with messages with a length that is
a multiple of the size of an 8-bit character.
*/
/*
Modified 2002 by Peter Zaitsev to
- fit to new prototypes according to MySQL standard
- Some optimizations
- All checking is now done in debug only mode
- More comments
Original Source from: http://www.faqs.org/rfcs/rfc3174.html
DESCRIPTION
This file implements the Secure Hashing Algorithm 1 as
defined in FIPS PUB 180-1 published April 17, 1995.
The SHA-1, produces a 160-bit message digest for a given data
stream. It should take about 2**n steps to find a message with the
same digest as a given message and 2**(n/2) to find any two
messages with the same digest, when n is the digest size in bits.
Therefore, this algorithm can serve as a means of providing a
"fingerprint" for a message.
PORTABILITY ISSUES
SHA-1 is defined in terms of 32-bit "words". This code uses
<stdint.h> (included via "sha1.h" to define 32 and 8 bit unsigned
integer types. If your C compiler does not support 32 bit unsigned
integers, this code is not appropriate.
CAVEATS
SHA-1 is designed to work with messages less than 2^64 bits long.
Although SHA-1 allows a message digest to be generated for messages
of any number of bits less than 2^64, this implementation only
works with messages with a length that is a multiple of the size of
an 8-bit character.
CHANGES
2002 by Peter Zaitsev to
- fit to new prototypes according to MySQL standard
- Some optimizations
- All checking is now done in debug only mode
- More comments
*/
#include "my_global.h"
......@@ -59,32 +54,33 @@
#include "sha1.h"
/*
Define the SHA1 circular left shift macro
Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
(((word) << (bits)) | ((word) >> (32-(bits))))
/* Local Function Prototyptes */
void SHA1PadMessage(SHA1_CONTEXT*);
void SHA1ProcessMessageBlock(SHA1_CONTEXT*);
static void SHA1PadMessage(SHA1_CONTEXT*);
static void SHA1ProcessMessageBlock(SHA1_CONTEXT*);
/*
sha1_reset
Description:
This function will initialize the SHA1Context in preparation
for computing a new SHA1 message digest.
Parameters:
context: [in/out]
The context to reset.
Returns:
sha Error Code.
Initialize SHA1Context
SYNOPSIS
sha1_reset()
context [in/out] The context to reset.
DESCRIPTION
This function will initialize the SHA1Context in preparation
for computing a new SHA1 message digest.
RETURN
SHA_SUCCESS ok
!= SHA_SUCCESS sha Error Code.
*/
const uint32 sha_const_key[5]=
{
......@@ -98,17 +94,14 @@ const uint32 sha_const_key[5]=
int sha1_reset(SHA1_CONTEXT *context)
{
#ifndef DBUG_OFF
#ifndef DBUG_OFF
if (!context)
{
return SHA_NULL;
}
#endif
#endif
context->Length = 0;
context->Message_Block_Index = 0;
context->Length = 0;
context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = sha_const_key[0];
context->Intermediate_Hash[1] = sha_const_key[1];
context->Intermediate_Hash[2] = sha_const_key[2];
......@@ -121,165 +114,124 @@ int sha1_reset(SHA1_CONTEXT *context)
return SHA_SUCCESS;
}
/*
sha1_result
Description:
This function will return the 160-bit message digest into the
Message_Digest array provided by the caller.
NOTE: The first octet of hash is stored in the 0th element,
the last octet of hash in the 19th element.
Parameters:
context: [in/out]
The context to use to calculate the SHA-1 hash.
Message_Digest: [out]
Where the digest is returned.
Returns:
sha Error Code.
Return the 160-bit message digest into the array provided by the caller
SYNOPSIS
sha1_result()
context [in/out] The context to use to calculate the SHA-1 hash.
Message_Digest: [out] Where the digest is returned.
DESCRIPTION
NOTE: The first octet of hash is stored in the 0th element,
the last octet of hash in the 19th element.
RETURN
SHA_SUCCESS ok
!= SHA_SUCCESS sha Error Code.
*/
int sha1_result( SHA1_CONTEXT *context,
uint8 Message_Digest[SHA1_HASH_SIZE])
int sha1_result(SHA1_CONTEXT *context,
uint8 Message_Digest[SHA1_HASH_SIZE])
{
int i;
#ifndef DBUG_OFF
#ifndef DBUG_OFF
if (!context || !Message_Digest)
{
return SHA_NULL;
}
if (context->Corrupted)
{
return context->Corrupted;
}
#endif
if (!context->Computed)
{
#endif
SHA1PadMessage(context);
/* message may be sensitive, clear it out */
bzero((char*) context->Message_Block,64);
context->Length = 0; /* and clear length */
context->Computed = 1;
#ifndef DBUG_OFF
}
#endif
for (i = 0; i < SHA1_HASH_SIZE; i++)
{
Message_Digest[i] = (context->Intermediate_Hash[i>>2] >> 8
* ( 3 - ( i & 0x03 ) ));
}
Message_Digest[i] = (context->Intermediate_Hash[i>>2] >> 8
* ( 3 - ( i & 0x03 ) ));
return SHA_SUCCESS;
}
/*
sha1_input
Description:
This function accepts an array of octets as the next portion
of the message.
Parameters:
context: [in/out]
The SHA context to update
message_array: [in]
An array of characters representing the next portion of
the message.
length: [in]
The length of the message in message_array
Returns:
sha Error Code.
Accepts an array of octets as the next portion of the message.
SYNOPSIS
sha1_input()
context [in/out] The SHA context to update
message_array An array of characters representing the next portion
of the message.
length The length of the message in message_array
RETURN
SHA_SUCCESS ok
!= SHA_SUCCESS sha Error Code.
*/
int sha1_input(SHA1_CONTEXT *context, const uint8 *message_array,
unsigned length)
unsigned length)
{
if (!length)
{
return SHA_SUCCESS;
}
#ifndef DBUG_OFF
#ifndef DBUG_OFF
/* We assume client konows what it is doing in non-debug mode */
if (!context || !message_array)
{
return SHA_NULL;
}
if (context->Computed)
{
context->Corrupted = SHA_STATE_ERROR;
return SHA_STATE_ERROR;
}
return (context->Corrupted= SHA_STATE_ERROR);
if (context->Corrupted)
{
return context->Corrupted;
}
#endif
#endif
while (length--)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
context->Length += 8; /* Length is in bits */
#ifndef DBUG_OFF
/*
Then we're not debugging we assume we never will get message longer
2^64 bits.
context->Message_Block[context->Message_Block_Index++]=
(*message_array & 0xFF);
context->Length += 8; /* Length is in bits */
#ifndef DBUG_OFF
/*
Then we're not debugging we assume we never will get message longer
2^64 bits.
*/
if (context->Length == 0)
{
/* Message is too long */
context->Corrupted = 1;
return 1;
}
#endif
return (context->Corrupted= 1); /* Message is too long */
#endif
if (context->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(context);
}
message_array++;
message_array++;
}
return SHA_SUCCESS;
}
/*
SHA1ProcessMessageBlock
Description:
This function will process the next 512 bits of the message
stored in the Message_Block array.
Parameters:
None.
Returns:
Nothing.
Comments:
Many of the variable names in this code, especially the
single character names, were used because those were the
names used in the publication.
Process the next 512 bits of the message stored in the Message_Block array.
SYNOPSIS
SHA1ProcessMessageBlock()
DESCRIPTION
Many of the variable names in this code, especially the single
character names, were used because those were the names used in
the publication.
*/
/* Constants defined in SHA-1 */
static const uint32 K[]=
{
/* Constants defined in SHA-1 */
static const uint32 K[]=
{
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
......@@ -287,17 +239,17 @@ static const uint32 K[]=
};
void SHA1ProcessMessageBlock(SHA1_CONTEXT *context)
static void SHA1ProcessMessageBlock(SHA1_CONTEXT *context)
{
int t; /* Loop counter */
uint32 temp; /* Temporary word value */
uint32 W[80]; /* Word sequence */
uint32 A, B, C, D, E; /* Word buffers */
int t; /* Loop counter */
uint32 temp; /* Temporary word value */
uint32 W[80]; /* Word sequence */
uint32 A, B, C, D, E; /* Word buffers */
int index;
/*
Initialize the first 16 words in the array W
*/
Initialize the first 16 words in the array W
*/
for (t = 0; t < 16; t++)
{
......@@ -322,15 +274,14 @@ void SHA1ProcessMessageBlock(SHA1_CONTEXT *context)
for (t = 0; t < 20; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
temp= SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
......@@ -343,8 +294,8 @@ void SHA1ProcessMessageBlock(SHA1_CONTEXT *context)
for (t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
temp= (SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] +
K[2]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
......@@ -367,73 +318,67 @@ void SHA1ProcessMessageBlock(SHA1_CONTEXT *context)
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0;
}
/*
SHA1PadMessage
Description:
According to the standard, the message must be padded to an even
512 bits. The first padding bit must be a '1'. The last 64
bits represent the length of the original message. All bits in
between should be 0. This function will pad the message
according to those rules by filling the Message_Block array
accordingly. It will also call the ProcessMessageBlock function
provided appropriately. When it returns, it can be assumed that
the message digest has been computed.
Parameters:
context: [in/out]
The context to pad
ProcessMessageBlock: [in]
The appropriate SHA*ProcessMessageBlock function
Returns:
Nothing.
Pad message
SYNOPSIS
SHA1PadMessage()
context: [in/out] The context to pad
DESCRIPTION
According to the standard, the message must be padded to an even
512 bits. The first padding bit must be a '1'. The last 64 bits
represent the length of the original message. All bits in between
should be 0. This function will pad the message according to
those rules by filling the Message_Block array accordingly. It
will also call the ProcessMessageBlock function provided
appropriately. When it returns, it can be assumed that the message
digest has been computed.
*/
void SHA1PadMessage(SHA1_CONTEXT *context)
{
/*
Check to see if the current message block is too small to hold
the initial padding bits and length. If so, we will pad the
block, process it, and then continue padding into a second
block.
Check to see if the current message block is too small to hold
the initial padding bits and length. If so, we will pad the
block, process it, and then continue padding into a second
block.
*/
int i=context->Message_Block_Index;
if (i > 55)
{
context->Message_Block[i++] = 0x80;
bzero((char*) &context->Message_Block[i],
sizeof(context->Message_Block[0])*(64-i));
sizeof(context->Message_Block[0])*(64-i));
context->Message_Block_Index=64;
/* This function sets context->Message_Block_Index to zero */
SHA1ProcessMessageBlock(context);
/* This function sets context->Message_Block_Index to zero */
SHA1ProcessMessageBlock(context);
bzero((char*) &context->Message_Block[0],
sizeof(context->Message_Block[0])*56);
sizeof(context->Message_Block[0])*56);
context->Message_Block_Index=56;
}
}
else
{
context->Message_Block[i++] = 0x80;
bzero((char*) &context->Message_Block[i],
sizeof(context->Message_Block[0])*(56-i));
sizeof(context->Message_Block[0])*(56-i));
context->Message_Block_Index=56;
}
/*
Store the message length as the last 8 octets
Store the message length as the last 8 octets
*/
context->Message_Block[56] = context->Length >> 56;
context->Message_Block[57] = context->Length >> 48;
context->Message_Block[58] = context->Length >> 40;
......@@ -445,4 +390,3 @@ void SHA1PadMessage(SHA1_CONTEXT *context)
SHA1ProcessMessageBlock(context);
}
......@@ -88,8 +88,7 @@ class ha_berkeley: public handler
ha_berkeley(TABLE *table): handler(table), alloc_ptr(0),rec_buff(0), file(0),
int_table_flags(HA_REC_NOT_IN_SEQ |
HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_NULL_KEY | HA_HAVE_KEY_READ_ONLY |
HA_BLOB_KEY | HA_NOT_EXACT_COUNT |
HA_NULL_KEY | HA_BLOB_KEY | HA_NOT_EXACT_COUNT |
HA_PRIMARY_KEY_IN_READ_INDEX | HA_DROP_BEFORE_CREATE |
HA_AUTO_PART_KEY | HA_TABLE_SCAN_ON_INDEX),
changed_rows(0),last_dup_key((uint) -1),version(0),using_ignore(0)
......
......@@ -356,13 +356,12 @@ ha_innobase::update_thd(
/*************************************************************************
Opens an InnoDB database. */
char current_lib[3]; // Set if using current lib
bool
innobase_init(void)
/*===============*/
/* out: TRUE if error */
{
static char current_lib[3]; // Set if using current lib
int err;
bool ret;
char *default_path;
......
......@@ -77,7 +77,6 @@ class ha_innobase: public handler
ha_innobase(TABLE *table): handler(table),
int_table_flags(HA_REC_NOT_IN_SEQ |
HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_HAVE_KEY_READ_ONLY |
HA_NULL_KEY |
HA_NOT_EXACT_COUNT |
HA_NO_WRITE_DELAYED |
......@@ -98,7 +97,7 @@ class ha_innobase: public handler
ulong index_flags(uint idx) const
{
return (HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER |
HA_NOT_READ_PREFIX_LAST);
HA_NOT_READ_PREFIX_LAST | HA_KEY_READ_ONLY);
}
uint max_record_length() const { return HA_MAX_REC_LENGTH; }
uint max_keys() const { return MAX_KEY; }
......
......@@ -51,8 +51,6 @@ int ha_isam::open(const char *name, int mode, uint test_if_locked)
info(HA_STATUS_NO_LOCK | HA_STATUS_VARIABLE | HA_STATUS_CONST);
if (!(test_if_locked & HA_OPEN_WAIT_IF_LOCKED))
(void) nisam_extra(file,HA_EXTRA_WAIT_LOCK);
if (!table->db_record_offset)
int_table_flags|=HA_REC_NOT_IN_SEQ;
return (0);
}
......
......@@ -26,21 +26,20 @@
class ha_isam: public handler
{
N_INFO *file;
uint int_table_flags;
public:
ha_isam(TABLE *table): handler(table), file(0),
int_table_flags(HA_READ_RND_SAME |
HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_HAVE_KEY_READ_ONLY |
HA_KEY_READ_WRONG_STR | HA_DUPP_POS |
HA_NOT_DELETE_WITH_CACHE)
{}
ha_isam(TABLE *table): handler(table), file(0)
{}
~ha_isam() {}
const char *table_type() const { return "ISAM"; }
const char *index_type(uint key_number) { return "BTREE"; }
const char **bas_ext() const;
ulong table_flags() const { return int_table_flags; }
ulong table_flags() const
{
return (HA_READ_RND_SAME | HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_KEY_READ_WRONG_STR | HA_DUPP_POS | HA_NOT_DELETE_WITH_CACHE |
((table->db_record_offset) ? 0 : HA_REC_NOT_IN_SEQ));
}
uint max_record_length() const { return HA_MAX_REC_LENGTH; }
uint max_keys() const { return N_MAXKEY; }
uint max_key_parts() const { return N_MAXKEY_SEG; }
......@@ -80,5 +79,4 @@ class ha_isam: public handler
int create(const char *name, TABLE *form, HA_CREATE_INFO *create_info);
THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to,
enum thr_lock_type lock_type);
};
......@@ -885,7 +885,8 @@ void ha_myisam::info(uint flag)
ref_length=info.reflength;
table->db_options_in_use = info.options;
block_size=myisam_block_size;
table->keys_in_use &= info.key_map;
table->keys_in_use&= info.key_map;
table->keys_for_keyread&= info.key_map;
table->db_record_offset=info.record_offset;
if (table->key_parts)
memcpy((char*) table->key_info[0].rec_per_key,
......
......@@ -45,7 +45,6 @@ class ha_myisam: public handler
public:
ha_myisam(TABLE *table): handler(table), file(0),
int_table_flags(HA_READ_RND_SAME | HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_HAVE_KEY_READ_ONLY |
HA_NULL_KEY | HA_CAN_FULLTEXT | HA_CAN_SQL_HANDLER |
HA_DUPP_POS | HA_BLOB_KEY | HA_AUTO_PART_KEY),
enable_activate_all_index(1)
......@@ -55,6 +54,12 @@ class ha_myisam: public handler
const char *index_type(uint key_number);
const char **bas_ext() const;
ulong table_flags() const { return int_table_flags; }
ulong index_flags(uint inx) const
{
ulong flags=(HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER);
return (flags | ((table->key_info[inx].algorithm == HA_KEY_ALG_FULLTEXT) ?
0 : HA_KEY_READ_ONLY));
}
uint max_record_length() const { return HA_MAX_REC_LENGTH; }
uint max_keys() const { return MI_MAX_KEY; }
uint max_key_parts() const { return MAX_REF_PARTS; }
......
......@@ -35,10 +35,15 @@ class ha_myisammrg: public handler
ulong table_flags() const
{
return (HA_REC_NOT_IN_SEQ | HA_READ_RND_SAME |
HA_HAVE_KEY_READ_ONLY | HA_KEYPOS_TO_RNDPOS |
HA_LASTKEY_ORDER |
HA_KEYPOS_TO_RNDPOS | HA_LASTKEY_ORDER |
HA_NULL_KEY | HA_BLOB_KEY);
}
ulong index_flags(uint inx) const
{
ulong flags=(HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER);
return (flags | ((table->key_info[inx].algorithm == HA_KEY_ALG_FULLTEXT) ?
0 : HA_KEY_READ_ONLY));
}
uint max_record_length() const { return HA_MAX_REC_LENGTH; }
uint max_keys() const { return MI_MAX_KEY; }
uint max_key_parts() const { return MAX_REF_PARTS; }
......
......@@ -48,7 +48,6 @@
#define HA_TABLE_SCAN_ON_INDEX 4 /* No separate data/index file */
#define HA_REC_NOT_IN_SEQ 8 /* ha_info don't return recnumber;
It returns a position to ha_r_rnd */
#define HA_HAVE_KEY_READ_ONLY 16 /* Can read only keys (no record) */
#define HA_NO_INDEX 32 /* No index needed for next/prev */
#define HA_KEY_READ_WRONG_STR 64 /* keyread returns converted strings */
#define HA_NULL_KEY 128 /* One can have keys with NULL */
......@@ -83,6 +82,7 @@
#define HA_READ_ORDER 8 /* Read through record-keys in order */
#define HA_ONLY_WHOLE_INDEX 16 /* Can't use part key searches */
#define HA_NOT_READ_PREFIX_LAST 32
#define HA_KEY_READ_ONLY 64 /* Support HA_EXTRA_KEYREAD */
/*
Parameters for open() (in register form->filestat)
......@@ -321,7 +321,7 @@ public:
virtual ulong table_flags(void) const =0;
virtual ulong index_flags(uint idx) const
{
return (HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER);
return (HA_READ_NEXT | HA_READ_PREV | HA_READ_ORDER | HA_KEY_READ_ONLY);
}
virtual uint max_record_length() const =0;
virtual uint max_keys() const =0;
......
......@@ -153,15 +153,15 @@ String *Item_func_aes_encrypt::val_str(String *str)
null_value=0;
aes_length=my_aes_get_size(sptr->length()); // calculate result length
if ( !str->alloc(aes_length) ) // Ensure that memory is free
if (!str->alloc(aes_length)) // Ensure that memory is free
{
// finally encrypt directly to allocated buffer.
if (my_aes_encrypt(sptr->ptr(),sptr->length(),str->ptr(),key->ptr(),
key->length()) == aes_length)
if (my_aes_encrypt(sptr->ptr(),sptr->length(), (char*) str->ptr(),
key->ptr(), key->length()) == aes_length)
{
// we have to get expected result length
str->length((uint) aes_length);
return str;
// We got the expected result length
str->length((uint) aes_length);
return str;
}
}
}
......@@ -169,9 +169,10 @@ String *Item_func_aes_encrypt::val_str(String *str)
return 0;
}
void Item_func_aes_encrypt::fix_length_and_dec()
{
max_length=my_aes_get_size(args[0]->max_length);
max_length=my_aes_get_size(args[0]->max_length);
}
......@@ -184,12 +185,12 @@ String *Item_func_aes_decrypt::val_str(String *str)
if (sptr && key) // Need to have both arguments not NULL
{
null_value=0;
if ( !str->alloc(sptr->length()) ) // Ensure that memory is free
if (!str->alloc(sptr->length())) // Ensure that memory is free
{
// finally decencrypt directly to allocated buffer.
length=my_aes_decrypt(sptr->ptr(),sptr->length(),str->ptr(),
key->ptr(),key->length());
if (length>=0) // if we got correct data data
// finally decrypt directly to allocated buffer.
length=my_aes_decrypt(sptr->ptr(), sptr->length(), (char*) str->ptr(),
key->ptr(), key->length());
if (length >= 0) // if we got correct data data
{
str->length((uint) length);
return str;
......@@ -208,9 +209,9 @@ void Item_func_aes_decrypt::fix_length_and_dec()
/*
** Concatinate args with the following premissess
** If only one arg which is ok, return value of arg
** Don't reallocate val_str() if not absolute necessary.
Concatenate args with the following premises:
If only one arg (which is ok), return value of arg
Don't reallocate val_str() if not absolute necessary.
*/
String *Item_func_concat::val_str(String *str)
......
......@@ -682,27 +682,27 @@ int SQL_SELECT::test_quick_select(key_map keys_to_use, table_map prev_tables,
{
ha_rows found_records;
double found_read_time;
if (*key)
{
uint keynr= param.real_keynr[idx];
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
(*key)->maybe_flag)
needed_reg|= (key_map) 1 << param.real_keynr[idx];
needed_reg|= (key_map) 1 << keynr;
found_records=check_quick_select(&param,idx, *key);
found_records=check_quick_select(&param, idx, *key);
if (found_records != HA_POS_ERROR && found_records > 2 &&
head->used_keys & ((table_map) 1 << param.real_keynr[idx]) &&
(head->file->table_flags() & HA_HAVE_KEY_READ_ONLY))
head->used_keys & ((table_map) 1 << keynr) &&
(head->file->index_flags(keynr) & HA_KEY_READ_ONLY))
{
/*
** We can resolve this by only reading through this key
** Assume that we will read trough the whole key range
** and that all key blocks are half full (normally things are
** much better)
We can resolve this by only reading through this key.
Assume that we will read trough the whole key range
and that all key blocks are half full (normally things are
much better).
*/
uint keys_per_block= head->file->block_size/2/
(head->key_info[param.real_keynr[idx]].key_length+
head->file->ref_length) + 1;
uint keys_per_block= (head->file->block_size/2/
(head->key_info[keynr].key_length+
head->file->ref_length) + 1);
found_read_time=((double) (found_records+keys_per_block-1)/
(double) keys_per_block);
}
......
......@@ -730,7 +730,8 @@ TABLE *reopen_name_locked_table(THD* thd, TABLE_LIST* table_list)
table->const_table=0;
table->outer_join=table->null_row=table->maybe_null=0;
table->status=STATUS_NO_RECORD;
table->keys_in_use_for_query=table->used_keys= table->keys_in_use;
table->keys_in_use_for_query= table->keys_in_use;
table->used_keys= table->keys_for_keyread;
DBUG_RETURN(table);
}
......@@ -884,7 +885,8 @@ TABLE *open_table(THD *thd,const char *db,const char *table_name,
table->const_table=0;
table->outer_join=table->null_row=table->maybe_null=0;
table->status=STATUS_NO_RECORD;
table->keys_in_use_for_query=table->used_keys= table->keys_in_use;
table->keys_in_use_for_query= table->keys_in_use;
table->used_keys= table->keys_for_keyread;
DBUG_ASSERT(table->key_read == 0);
DBUG_RETURN(table);
}
......@@ -950,7 +952,8 @@ bool reopen_table(TABLE *table,bool locked)
tmp.null_row= table->null_row;
tmp.maybe_null= table->maybe_null;
tmp.status= table->status;
tmp.keys_in_use_for_query=tmp.used_keys=tmp.keys_in_use;
tmp.keys_in_use_for_query= tmp.keys_in_use;
tmp.used_keys= tmp.keys_for_keyread;
/* Get state */
tmp.key_length= table->key_length;
......@@ -1578,7 +1581,7 @@ Field *find_field_in_table(THD *thd,TABLE *table,const char *name,uint length,
{
field->query_id=thd->query_id;
table->used_fields++;
table->used_keys&=field->part_of_key;
table->used_keys&= field->part_of_key;
}
else
thd->dupp_field=field;
......@@ -1783,7 +1786,8 @@ bool setup_tables(TABLE_LIST *tables)
table->const_table=0;
table->outer_join=table->null_row=0;
table->status=STATUS_NO_RECORD;
table->keys_in_use_for_query=table->used_keys= table->keys_in_use;
table->keys_in_use_for_query= table->keys_in_use;
table->used_keys= table->keys_for_keyread;
table->maybe_null=test(table->outer_join=table_list->outer_join);
table->tablenr=tablenr;
table->map= (table_map) 1 << tablenr;
......@@ -1873,7 +1877,7 @@ insert_fields(THD *thd,TABLE_LIST *tables, const char *db_name,
if (field->query_id == thd->query_id)
thd->dupp_field=field;
field->query_id=thd->query_id;
table->used_keys&=field->part_of_key;
table->used_keys&= field->part_of_key;
}
/* All fields are used */
table->used_fields=table->fields;
......
......@@ -3063,8 +3063,8 @@ my_bool Query_cache::check_integrity(bool not_locked)
DBUG_PRINT("qcache", ("block 0x%lx, type %u...",
(ulong) block, (uint) block->type));
// Check allignment
if ((((ulonglong)block) % (ulonglong)ALIGN_SIZE(1)) !=
(((ulonglong)first_block) % (ulonglong)ALIGN_SIZE(1)))
if ((((long)block) % (long) ALIGN_SIZE(1)) !=
(((long)first_block) % (long)ALIGN_SIZE(1)))
{
DBUG_PRINT("error",
("block 0x%lx do not aligned by %d", (ulong) block,
......
......@@ -233,7 +233,7 @@ mysql_select(THD *thd,TABLE_LIST *tables,List<Item> &fields,COND *conds,
and no GROUP BY.
TODO: Add check of calculation of GROUP functions and fields:
SELECT COUNT(*)+table.col1 from table1;
*/
*/
join.table=0;
join.tables=0;
{
......@@ -257,14 +257,7 @@ mysql_select(THD *thd,TABLE_LIST *tables,List<Item> &fields,COND *conds,
}
TABLE_LIST *table;
for (table=tables ; table ; table=table->next)
{
join.tables++;
if (!thd->used_tables)
{
TABLE *tbl=table->table;
tbl->keys_in_use_for_query=tbl->used_keys= tbl->keys_in_use=0;
}
}
}
procedure=setup_procedure(thd,proc_param,result,fields,&error);
if (error)
......
......@@ -133,7 +133,7 @@ int openfrm(const char *name, const char *alias, uint db_stat, uint prgflag,
if (read_string(file,(gptr*) &disk_buff,key_info_length))
goto err_not_open; /* purecov: inspected */
outparam->keys=keys= disk_buff[0];
outparam->keys_in_use= set_bits(key_map, keys);
outparam->keys_for_keyread= outparam->keys_in_use= set_bits(key_map, keys);
outparam->key_parts=key_parts=disk_buff[1];
n_length=keys*sizeof(KEY)+key_parts*sizeof(KEY_PART_INFO);
......@@ -199,6 +199,7 @@ int openfrm(const char *name, const char *alias, uint db_stat, uint prgflag,
for (i=0 ; i < keys ; i++, keyinfo++)
keyinfo->algorithm= (enum ha_key_alg) *(strpos++);
}
outparam->reclength = uint2korr((head+16));
if (*(head+26) == 1)
outparam->system=1; /* one-record-database */
......@@ -386,7 +387,17 @@ int openfrm(const char *name, const char *alias, uint db_stat, uint prgflag,
for (uint key=0 ; key < outparam->keys ; key++,keyinfo++)
{
uint usable_parts=0;
ulong index_flags;
keyinfo->name=(char*) outparam->keynames.type_names[key];
/* Fix fulltext keys for old .frm files */
if (outparam->key_info[key].flags & HA_FULLTEXT)
outparam->key_info[key].algorithm= HA_KEY_ALG_FULLTEXT;
/* This has to be done after the above fulltext correction */
index_flags=outparam->file->index_flags(key);
if (!(index_flags & HA_KEY_READ_ONLY))
outparam->keys_for_keyread&= ~((key_map) 1 << key);
if (primary_key >= MAX_KEY && (keyinfo->flags & HA_NOSAME))
{
/*
......@@ -444,7 +455,7 @@ int openfrm(const char *name, const char *alias, uint db_stat, uint prgflag,
keyinfo->key_length ? UNIQUE_KEY_FLAG : MULTIPLE_KEY_FLAG);
if (i == 0)
field->key_start|= ((key_map) 1 << key);
if ((ha_option & HA_HAVE_KEY_READ_ONLY) &&
if ((index_flags & HA_KEY_READ_ONLY) &&
field->key_length() == key_part->length &&
field->type() != FIELD_TYPE_BLOB)
{
......@@ -454,8 +465,7 @@ int openfrm(const char *name, const char *alias, uint db_stat, uint prgflag,
field->part_of_key|= ((key_map) 1 << key);
if ((field->key_type() != HA_KEYTYPE_TEXT ||
!(keyinfo->flags & HA_FULLTEXT)) &&
!(outparam->file->index_flags(key) &
HA_WRONG_ASCII_ORDER))
!(index_flags & HA_WRONG_ASCII_ORDER))
field->part_of_sortkey|= ((key_map) 1 << key);
}
if (!(key_part->key_part_flag & HA_REVERSE_SORT) &&
......
......@@ -61,7 +61,8 @@ struct st_table {
uint uniques;
uint null_fields; /* number of null fields */
uint blob_fields; /* number of blob fields */
key_map keys_in_use, keys_in_use_for_query;
key_map keys_in_use, keys_for_keyread;
key_map quick_keys, used_keys, keys_in_use_for_query;
KEY *key_info; /* data of keys in database */
TYPELIB keynames; /* Pointers to keynames */
ha_rows max_rows; /* create information */
......@@ -119,7 +120,6 @@ struct st_table {
byte *record_pointers; /* If sorted in memory */
ha_rows found_records; /* How many records in sort */
ORDER *group;
key_map quick_keys, used_keys;
ha_rows quick_rows[MAX_KEY];
uint quick_key_parts[MAX_KEY];
key_part_map const_key_parts[MAX_KEY];
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment