Commit 60985e53 authored by Alexander Barkov's avatar Alexander Barkov

MDEV-8610 "WHERE CONTAINS(indexed_geometry_column,1)" causes full table scan

parent 9d884fd3
......@@ -1618,5 +1618,29 @@ id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 range a a 34 NULL 1 Using where
DROP TABLE t1;
#
# MDEV-8610 "WHERE CONTAINS(indexed_geometry_column,1)" causes full table scan
#
CREATE TABLE t1 (a GEOMETRY NOT NULL, SPATIAL KEY(a)) ENGINE=MyISAM;
INSERT INTO t1 VALUES (Point(1,1)),(Point(2,2)),(Point(3,3));
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1.0);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1e0);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,TIME'00:00:00');
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,DATE'2001-01-01');
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,TIMESTAMP'2001-01-01 00:00:00');
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables
DROP TABLE t1;
#
# End of 10.1 tests
#
......@@ -993,6 +993,20 @@ EXPLAIN SELECT * FROM t1 WHERE MBRINTERSECTS(Point(1,2),a);
EXPLAIN SELECT * FROM t1 WHERE ST_INTERSECTS(Point(1,2),a);
DROP TABLE t1;
--echo #
--echo # MDEV-8610 "WHERE CONTAINS(indexed_geometry_column,1)" causes full table scan
--echo #
CREATE TABLE t1 (a GEOMETRY NOT NULL, SPATIAL KEY(a)) ENGINE=MyISAM;
INSERT INTO t1 VALUES (Point(1,1)),(Point(2,2)),(Point(3,3));
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1);
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1.0);
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,1e0);
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,TIME'00:00:00');
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,DATE'2001-01-01');
EXPLAIN SELECT * FROM t1 WHERE CONTAINS(a,TIMESTAMP'2001-01-01 00:00:00');
DROP TABLE t1;
--echo #
--echo # End of 10.1 tests
--echo #
......@@ -38,6 +38,7 @@
#include "set_var.h"
#ifdef HAVE_SPATIAL
#include <m_ctype.h>
#include "opt_range.h"
Field *Item_geometry_func::tmp_table_field(TABLE *t_arg)
......@@ -929,6 +930,78 @@ err:
Functions for spatial relations
*/
static SEL_ARG sel_arg_impossible(SEL_ARG::IMPOSSIBLE);
SEL_ARG *
Item_func_spatial_rel::get_mm_leaf(RANGE_OPT_PARAM *param,
Field *field, KEY_PART *key_part,
Item_func::Functype type, Item *value)
{
DBUG_ENTER("Item_func_spatial_rel::get_mm_leaf");
if (key_part->image_type != Field::itMBR)
DBUG_RETURN(0);
if (value->cmp_type() != STRING_RESULT)
DBUG_RETURN(&sel_arg_impossible);
if (param->using_real_indexes &&
!field->optimize_range(param->real_keynr[key_part->key],
key_part->part))
DBUG_RETURN(0);
if (value->save_in_field_no_warnings(field, 1))
DBUG_RETURN(&sel_arg_impossible); // Bad GEOMETRY value
DBUG_ASSERT(!field->real_maybe_null()); // SPATIAL keys do not support NULL
uchar *str= (uchar*) alloc_root(param->mem_root, key_part->store_length + 1);
if (!str)
DBUG_RETURN(0); // out of memory
field->get_key_image(str, key_part->length, key_part->image_type);
SEL_ARG *tree;
if (!(tree= new (param->mem_root) SEL_ARG(field, str, str)))
DBUG_RETURN(0); // out of memory
switch (type) {
case SP_EQUALS_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_DISJOINT_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_INTERSECTS_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_TOUCHES_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_CROSSES_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_WITHIN_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_CONTAINS_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
case SP_OVERLAPS_FUNC:
tree->min_flag= GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag= NO_MAX_RANGE;
break;
default:
DBUG_ASSERT(0);
break;
}
DBUG_RETURN(tree);
}
const char *Item_func_spatial_mbr_rel::func_name() const
{
switch (spatial_rel) {
......
......@@ -277,6 +277,9 @@ class Item_func_spatial_rel: public Item_bool_func2
protected:
enum Functype spatial_rel;
String tmp_value1, tmp_value2;
SEL_ARG *get_mm_leaf(RANGE_OPT_PARAM *param, Field *field,
KEY_PART *key_part,
Item_func::Functype type, Item *value);
public:
Item_func_spatial_rel(Item *a, Item *b, enum Functype sp_rel)
:Item_bool_func2(a, b), spatial_rel(sp_rel)
......
......@@ -132,8 +132,6 @@
*/
#define double2rows(x) ((ha_rows)(x))
static int sel_cmp(Field *f,uchar *a,uchar *b,uint8 a_flag,uint8 b_flag);
/*
this should be long enough so that any memcmp with a string that
starts from '\0' won't cross is_null_string boundaries, even
......@@ -141,543 +139,6 @@ static int sel_cmp(Field *f,uchar *a,uchar *b,uint8 a_flag,uint8 b_flag);
*/
static uchar is_null_string[20]= {1,0};
class RANGE_OPT_PARAM;
/*
A construction block of the SEL_ARG-graph.
The following description only covers graphs of SEL_ARG objects with
sel_arg->type==KEY_RANGE:
One SEL_ARG object represents an "elementary interval" in form
min_value <=? table.keypartX <=? max_value
The interval is a non-empty interval of any kind: with[out] minimum/maximum
bound, [half]open/closed, single-point interval, etc.
1. SEL_ARG GRAPH STRUCTURE
SEL_ARG objects are linked together in a graph. The meaning of the graph
is better demostrated by an example:
tree->keys[i]
|
| $ $
| part=1 $ part=2 $ part=3
| $ $
| +-------+ $ +-------+ $ +--------+
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
| +-------+ $ +-------+ $ +--------+
| | $ $ |
| | $ $ +--------+
| | $ $ | kp3=12 |
| | $ $ +--------+
| +-------+ $ $
\->| kp1=2 |--$--------------$-+
+-------+ $ $ | +--------+
| $ $ ==>| kp3=11 |
+-------+ $ $ | +--------+
| kp1=3 |--$--------------$-+ |
+-------+ $ $ +--------+
| $ $ | kp3=14 |
... $ $ +--------+
The entire graph is partitioned into "interval lists".
An interval list is a sequence of ordered disjoint intervals over the same
key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
all intervals in the list form an RB-tree, linked via left/right/parent
pointers. The RB-tree root SEL_ARG object will be further called "root of the
interval list".
In the example pic, there are 4 interval lists:
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
The vertical lines represent SEL_ARG::next/prev pointers.
In an interval list, each member X may have SEL_ARG::next_key_part pointer
pointing to the root of another interval list Y. The pointed interval list
must cover a key part with greater number (i.e. Y->part > X->part).
In the example pic, the next_key_part pointers are represented by
horisontal lines.
2. SEL_ARG GRAPH SEMANTICS
It represents a condition in a special form (we don't have a name for it ATM)
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
For example, the picture represents the condition in form:
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
(kp1=2 AND (kp3=11 OR kp3=14)) OR
(kp1=3 AND (kp3=11 OR kp3=14))
3. SEL_ARG GRAPH USE
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
intervals (i.e. intervals in form
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
Those intervals can be used to access the index. The uses are in:
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
how many table records are contained within all
intervals.
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
and create QUICK_RANGE_SELECT object that will
read records within these intervals.
4. SPACE COMPLEXITY NOTES
SEL_ARG graph is a representation of an ordered disjoint sequence of
intervals over the ordered set of index tuple values.
For multi-part keys, one can construct a WHERE expression such that its
list of intervals will be of combinatorial size. Here is an example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
(keypart3 IN (1,2, ..., n3))
For this WHERE clause the list of intervals will have n1*n2*n3 intervals
of form
(keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
SEL_ARG graph structure aims to reduce the amount of required space by
"sharing" the elementary intervals when possible (the pic at the
beginning of this comment has examples of such sharing). The sharing may
prevent combinatorial blowup:
There are WHERE clauses that have combinatorial-size interval lists but
will be represented by a compact SEL_ARG graph.
Example:
(keypartN IN (1,2, ..., n1)) AND
...
(keypart2 IN (1,2, ..., n2)) AND
(keypart1 IN (1,2, ..., n3))
but not in all cases:
- There are WHERE clauses that do have a compact SEL_ARG-graph
representation but get_mm_tree() and its callees will construct a
graph of combinatorial size.
Example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
...
(keypartN IN (1,2, ..., n3))
- There are WHERE clauses for which the minimal possible SEL_ARG graph
representation will have combinatorial size.
Example:
By induction: Let's take any interval on some keypart in the middle:
kp15=c0
Then let's AND it with this interval 'structure' from preceding and
following keyparts:
(kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
We will obtain this SEL_ARG graph:
kp14 $ kp15 $ kp16
$ $
+---------+ $ +---------+ $ +---------+
| kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
+---------+ $ +---------+ $ +---------+
| $ $
+---------+ $ +---------+ $
| kp14=c2 |--$-->| kp15=c0 | $
+---------+ $ +---------+ $
$ $
Note that we had to duplicate "kp15=c0" and there was no way to avoid
that.
The induction step: AND the obtained expression with another "wrapping"
expression like (*).
When the process ends because of the limit on max. number of keyparts
we'll have:
WHERE clause length is O(3*#max_keyparts)
SEL_ARG graph size is O(2^(#max_keyparts/2))
(it is also possible to construct a case where instead of 2 in 2^n we
have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
nodes)
We avoid consuming too much memory by setting a limit on the number of
SEL_ARG object we can construct during one range analysis invocation.
*/
class SEL_ARG :public Sql_alloc
{
public:
uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part
uint8 maybe_null;
/*
The ordinal number the least significant component encountered in
the ranges of the SEL_ARG tree (the first component has number 1)
*/
uint16 max_part_no;
/*
Number of children of this element in the RB-tree, plus 1 for this
element itself.
*/
uint16 elements;
/*
Valid only for elements which are RB-tree roots: Number of times this
RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
*/
ulong use_count;
Field *field;
uchar *min_value,*max_value; // Pointer to range
/*
eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
*/
SEL_ARG *left,*right; /* R-B tree children */
SEL_ARG *next,*prev; /* Links for bi-directional interval list */
SEL_ARG *parent; /* R-B tree parent */
SEL_ARG *next_key_part;
enum leaf_color { BLACK,RED } color;
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
enum { MAX_SEL_ARGS = 16000 };
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *,const uchar *, const uchar *);
SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
SEL_ARG(enum Type type_arg)
:min_flag(0), max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
elements(1),use_count(1),left(0),right(0),
next_key_part(0), color(BLACK), type(type_arg)
{}
/**
returns true if a range predicate is equal. Use all_same()
to check for equality of all the predicates on this keypart.
*/
inline bool is_same(const SEL_ARG *arg) const
{
if (type != arg->type || part != arg->part)
return false;
if (type != KEY_RANGE)
return true;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
/**
returns true if all the predicates in the keypart tree are equal
*/
bool all_same(const SEL_ARG *arg) const
{
if (type != arg->type || part != arg->part)
return false;
if (type != KEY_RANGE)
return true;
if (arg == this)
return true;
const SEL_ARG *cmp_arg= arg->first();
const SEL_ARG *cur_arg= first();
for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg);
cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ;
if (cur_arg || cmp_arg)
return false;
return true;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
/* Return true iff it's a single-point null interval */
inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
inline int cmp_min_to_min(const SEL_ARG* arg) const
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(const SEL_ARG* arg) const
{
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(const SEL_ARG* arg) const
{
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(const SEL_ARG* arg) const
{
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(THD *thd, SEL_ARG* arg)
{ // Get overlapping range
uchar *new_min,*new_max;
uint8 flag_min,flag_max;
if (cmp_min_to_min(arg) >= 0)
{
new_min=min_value; flag_min=min_flag;
}
else
{
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0)
{
new_max=max_value; flag_max=max_flag;
}
else
{
new_max=arg->max_value; flag_max=arg->max_flag;
}
return new (thd->mem_root) SEL_ARG(field, part, new_min, new_max, flag_min,
flag_max,
MY_TEST(maybe_flag && arg->maybe_flag));
}
SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min
return new SEL_ARG(field,part, min_value, arg->min_value,
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max
return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
bool copy_min(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_min_to_min(arg) > 0)
{
min_value=arg->min_value; min_flag=arg->min_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
bool copy_max(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_max_to_max(arg) <= 0)
{
max_value=arg->max_value; max_flag=arg->max_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
void copy_min_to_min(SEL_ARG *arg)
{
min_value=arg->min_value; min_flag=arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg)
{
max_value=arg->min_value;
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg)
{
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_min(uint length, uchar **min_key,uint min_key_flag)
{
/* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
{
if (maybe_null && *min_value)
{
**min_key=1;
bzero(*min_key+1,length-1);
}
else
memcpy(*min_key,min_value,length);
(*min_key)+= length;
return 1;
}
return 0;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_max(uint length, uchar **max_key, uint max_key_flag)
{
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
if (maybe_null && *max_value)
{
**max_key=1;
bzero(*max_key+1,length-1);
}
else
memcpy(*max_key,max_value,length);
(*max_key)+= length;
return 1;
}
return 0;
}
/*
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
*/
int store_min_key(KEY_PART *key,
uchar **range_key,
uint *range_key_flag,
uint last_part)
{
SEL_ARG *key_tree= first();
uint res= key_tree->store_min(key[key_tree->part].store_length,
range_key, *range_key_flag);
*range_key_flag|= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
res+= key_tree->next_key_part->store_min_key(key,
range_key,
range_key_flag,
last_part);
return res;
}
/* returns a number of keypart values appended to the key buffer */
int store_max_key(KEY_PART *key,
uchar **range_key,
uint *range_key_flag,
uint last_part)
{
SEL_ARG *key_tree= last();
uint res=key_tree->store_max(key[key_tree->part].store_length,
range_key, *range_key_flag);
(*range_key_flag)|= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
res+= key_tree->next_key_part->store_max_key(key,
range_key,
range_key_flag,
last_part);
return res;
}
SEL_ARG *insert(SEL_ARG *key);
SEL_ARG *tree_delete(SEL_ARG *key);
SEL_ARG *find_range(SEL_ARG *key);
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
void test_use_count(SEL_ARG *root);
#endif
SEL_ARG *first();
const SEL_ARG *first() const;
SEL_ARG *last();
void make_root();
inline bool simple_key()
{
return !next_key_part && elements == 1;
}
void increment_use_count(long count)
{
if (next_key_part)
{
next_key_part->use_count+=count;
count*= (next_key_part->use_count-count);
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
if (pos->next_key_part)
pos->increment_use_count(count);
}
}
void incr_refs()
{
increment_use_count(1);
use_count++;
}
void incr_refs_all()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
{
pos->increment_use_count(1);
}
use_count++;
}
void free_tree()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
if (pos->next_key_part)
{
pos->next_key_part->use_count--;
pos->next_key_part->free_tree();
}
}
inline SEL_ARG **parent_ptr()
{
return parent->left == this ? &parent->left : &parent->right;
}
/*
Check if this SEL_ARG object represents a single-point interval
SYNOPSIS
is_singlepoint()
DESCRIPTION
Check if this SEL_ARG object (not tree) represents a single-point
interval, i.e. if it represents a "keypart = const" or
"keypart IS NULL".
RETURN
TRUE This SEL_ARG object represents a singlepoint interval
FALSE Otherwise
*/
bool is_singlepoint()
{
/*
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
flags, and the same for right edge.
*/
if (min_flag || max_flag)
return FALSE;
uchar *min_val= min_value;
uchar *max_val= max_value;
if (maybe_null)
{
/* First byte is a NULL value indicator */
if (*min_val != *max_val)
return FALSE;
if (*min_val)
return TRUE; /* This "x IS NULL" */
min_val++;
max_val++;
}
return !field->key_cmp(min_val, max_val);
}
SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
};
/**
Helper function to compare two SEL_ARG's.
*/
......@@ -832,73 +293,6 @@ public:
bool without_imerges() { return merges.is_empty(); }
};
class RANGE_OPT_PARAM
{
public:
THD *thd; /* Current thread handle */
TABLE *table; /* Table being analyzed */
table_map prev_tables;
table_map read_tables;
table_map current_table; /* Bit of the table being analyzed */
/* Array of parts of all keys for which range analysis is performed */
KEY_PART *key_parts;
KEY_PART *key_parts_end;
MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
MEM_ROOT *old_root; /* Memory that will last until the query end */
/*
Number of indexes used in range analysis (In SEL_TREE::keys only first
#keys elements are not empty)
*/
uint keys;
/*
If true, the index descriptions describe real indexes (and it is ok to
call field->optimize_range(real_keynr[...], ...).
Otherwise index description describes fake indexes.
*/
bool using_real_indexes;
/*
Aggressively remove "scans" that do not have conditions on first
keyparts. Such scans are usable when doing partition pruning but not
regular range optimization.
*/
bool remove_jump_scans;
/*
TRUE <=> Range analyzer should remove parts of condition that are found
to be always FALSE.
*/
bool remove_false_where_parts;
/*
used_key_no -> table_key_no translation table. Only makes sense if
using_real_indexes==TRUE
*/
uint real_keynr[MAX_KEY];
/*
Used to store 'current key tuples', in both range analysis and
partitioning (list) analysis
*/
uchar min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
/* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
uint alloced_sel_args;
bool force_default_mrr;
KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
bool statement_should_be_aborted() const
{
return
thd->is_fatal_error ||
thd->is_error() ||
alloced_sel_args > SEL_ARG::MAX_SEL_ARGS;
}
};
class PARAM : public RANGE_OPT_PARAM
{
......@@ -2571,8 +1965,8 @@ SEL_ARG *SEL_ARG::last()
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
uint8 b_flag)
int SEL_ARG::sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
uint8 b_flag)
{
int cmp;
/* First check if there was a compare to a min or max element */
......@@ -8410,6 +7804,9 @@ Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
DBUG_ASSERT(value); // IS NULL and IS NOT NULL are handled separately
if (key_part->image_type != Field::itRAW)
DBUG_RETURN(0); // e.g. SPATIAL index
/*
1. Usually we can't use an index if the column collation
differ from the operation collation.
......@@ -8425,7 +7822,6 @@ Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
if (field->result_type() == STRING_RESULT &&
field->match_collation_to_optimize_range() &&
value->result_type() == STRING_RESULT &&
key_part->image_type == Field::itRAW &&
field->charset() != compare_collation() &&
!((type == EQUAL_FUNC || type == EQ_FUNC) &&
compare_collation()->state & MY_CS_BINSORT))
......@@ -8433,28 +7829,6 @@ Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
if (value->cmp_type() == TIME_RESULT && field->cmp_type() != TIME_RESULT)
goto end;
if (key_part->image_type == Field::itMBR)
{
// @todo: use is_spatial_operator() instead?
switch (type) {
case SP_EQUALS_FUNC:
case SP_DISJOINT_FUNC:
case SP_INTERSECTS_FUNC:
case SP_TOUCHES_FUNC:
case SP_CROSSES_FUNC:
case SP_WITHIN_FUNC:
case SP_CONTAINS_FUNC:
case SP_OVERLAPS_FUNC:
break;
default:
/*
We cannot involve spatial indexes for queries that
don't use MBREQUALS(), MBRDISJOINT(), etc. functions.
*/
goto end;
}
}
if (param->using_real_indexes &&
!field->optimize_range(param->real_keynr[key_part->key],
key_part->part) &&
......@@ -8632,38 +8006,6 @@ Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
tree->min_flag= NEAR_MIN;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_EQUALS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_DISJOINT_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_INTERSECTS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_TOUCHES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_CROSSES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_WITHIN_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_CONTAINS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case SP_OVERLAPS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case EQ_FUNC:
case EQUAL_FUNC:
break;
......
......@@ -52,6 +52,616 @@ struct KEY_PART {
Field::imagetype image_type;
};
class RANGE_OPT_PARAM;
/*
A construction block of the SEL_ARG-graph.
The following description only covers graphs of SEL_ARG objects with
sel_arg->type==KEY_RANGE:
One SEL_ARG object represents an "elementary interval" in form
min_value <=? table.keypartX <=? max_value
The interval is a non-empty interval of any kind: with[out] minimum/maximum
bound, [half]open/closed, single-point interval, etc.
1. SEL_ARG GRAPH STRUCTURE
SEL_ARG objects are linked together in a graph. The meaning of the graph
is better demostrated by an example:
tree->keys[i]
|
| $ $
| part=1 $ part=2 $ part=3
| $ $
| +-------+ $ +-------+ $ +--------+
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
| +-------+ $ +-------+ $ +--------+
| | $ $ |
| | $ $ +--------+
| | $ $ | kp3=12 |
| | $ $ +--------+
| +-------+ $ $
\->| kp1=2 |--$--------------$-+
+-------+ $ $ | +--------+
| $ $ ==>| kp3=11 |
+-------+ $ $ | +--------+
| kp1=3 |--$--------------$-+ |
+-------+ $ $ +--------+
| $ $ | kp3=14 |
... $ $ +--------+
The entire graph is partitioned into "interval lists".
An interval list is a sequence of ordered disjoint intervals over the same
key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
all intervals in the list form an RB-tree, linked via left/right/parent
pointers. The RB-tree root SEL_ARG object will be further called "root of the
interval list".
In the example pic, there are 4 interval lists:
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
The vertical lines represent SEL_ARG::next/prev pointers.
In an interval list, each member X may have SEL_ARG::next_key_part pointer
pointing to the root of another interval list Y. The pointed interval list
must cover a key part with greater number (i.e. Y->part > X->part).
In the example pic, the next_key_part pointers are represented by
horisontal lines.
2. SEL_ARG GRAPH SEMANTICS
It represents a condition in a special form (we don't have a name for it ATM)
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
For example, the picture represents the condition in form:
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
(kp1=2 AND (kp3=11 OR kp3=14)) OR
(kp1=3 AND (kp3=11 OR kp3=14))
3. SEL_ARG GRAPH USE
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
intervals (i.e. intervals in form
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
Those intervals can be used to access the index. The uses are in:
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
how many table records are contained within all
intervals.
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
and create QUICK_RANGE_SELECT object that will
read records within these intervals.
4. SPACE COMPLEXITY NOTES
SEL_ARG graph is a representation of an ordered disjoint sequence of
intervals over the ordered set of index tuple values.
For multi-part keys, one can construct a WHERE expression such that its
list of intervals will be of combinatorial size. Here is an example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
(keypart3 IN (1,2, ..., n3))
For this WHERE clause the list of intervals will have n1*n2*n3 intervals
of form
(keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
SEL_ARG graph structure aims to reduce the amount of required space by
"sharing" the elementary intervals when possible (the pic at the
beginning of this comment has examples of such sharing). The sharing may
prevent combinatorial blowup:
There are WHERE clauses that have combinatorial-size interval lists but
will be represented by a compact SEL_ARG graph.
Example:
(keypartN IN (1,2, ..., n1)) AND
...
(keypart2 IN (1,2, ..., n2)) AND
(keypart1 IN (1,2, ..., n3))
but not in all cases:
- There are WHERE clauses that do have a compact SEL_ARG-graph
representation but get_mm_tree() and its callees will construct a
graph of combinatorial size.
Example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
...
(keypartN IN (1,2, ..., n3))
- There are WHERE clauses for which the minimal possible SEL_ARG graph
representation will have combinatorial size.
Example:
By induction: Let's take any interval on some keypart in the middle:
kp15=c0
Then let's AND it with this interval 'structure' from preceding and
following keyparts:
(kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
We will obtain this SEL_ARG graph:
kp14 $ kp15 $ kp16
$ $
+---------+ $ +---------+ $ +---------+
| kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
+---------+ $ +---------+ $ +---------+
| $ $
+---------+ $ +---------+ $
| kp14=c2 |--$-->| kp15=c0 | $
+---------+ $ +---------+ $
$ $
Note that we had to duplicate "kp15=c0" and there was no way to avoid
that.
The induction step: AND the obtained expression with another "wrapping"
expression like (*).
When the process ends because of the limit on max. number of keyparts
we'll have:
WHERE clause length is O(3*#max_keyparts)
SEL_ARG graph size is O(2^(#max_keyparts/2))
(it is also possible to construct a case where instead of 2 in 2^n we
have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
nodes)
We avoid consuming too much memory by setting a limit on the number of
SEL_ARG object we can construct during one range analysis invocation.
*/
class SEL_ARG :public Sql_alloc
{
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
uint8 b_flag);
public:
uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part
uint8 maybe_null;
/*
The ordinal number the least significant component encountered in
the ranges of the SEL_ARG tree (the first component has number 1)
*/
uint16 max_part_no;
/*
Number of children of this element in the RB-tree, plus 1 for this
element itself.
*/
uint16 elements;
/*
Valid only for elements which are RB-tree roots: Number of times this
RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
*/
ulong use_count;
Field *field;
uchar *min_value,*max_value; // Pointer to range
/*
eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
*/
SEL_ARG *left,*right; /* R-B tree children */
SEL_ARG *next,*prev; /* Links for bi-directional interval list */
SEL_ARG *parent; /* R-B tree parent */
SEL_ARG *next_key_part;
enum leaf_color { BLACK,RED } color;
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
enum { MAX_SEL_ARGS = 16000 };
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *,const uchar *, const uchar *);
SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
SEL_ARG(enum Type type_arg)
:min_flag(0), max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
elements(1),use_count(1),left(0),right(0),
next_key_part(0), color(BLACK), type(type_arg)
{}
/**
returns true if a range predicate is equal. Use all_same()
to check for equality of all the predicates on this keypart.
*/
inline bool is_same(const SEL_ARG *arg) const
{
if (type != arg->type || part != arg->part)
return false;
if (type != KEY_RANGE)
return true;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
/**
returns true if all the predicates in the keypart tree are equal
*/
bool all_same(const SEL_ARG *arg) const
{
if (type != arg->type || part != arg->part)
return false;
if (type != KEY_RANGE)
return true;
if (arg == this)
return true;
const SEL_ARG *cmp_arg= arg->first();
const SEL_ARG *cur_arg= first();
for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg);
cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ;
if (cur_arg || cmp_arg)
return false;
return true;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
/* Return true iff it's a single-point null interval */
inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
inline int cmp_min_to_min(const SEL_ARG* arg) const
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(const SEL_ARG* arg) const
{
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(const SEL_ARG* arg) const
{
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(const SEL_ARG* arg) const
{
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(THD *thd, SEL_ARG* arg)
{ // Get overlapping range
uchar *new_min,*new_max;
uint8 flag_min,flag_max;
if (cmp_min_to_min(arg) >= 0)
{
new_min=min_value; flag_min=min_flag;
}
else
{
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0)
{
new_max=max_value; flag_max=max_flag;
}
else
{
new_max=arg->max_value; flag_max=arg->max_flag;
}
return new (thd->mem_root) SEL_ARG(field, part, new_min, new_max, flag_min,
flag_max,
MY_TEST(maybe_flag && arg->maybe_flag));
}
SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min
return new SEL_ARG(field,part, min_value, arg->min_value,
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max
return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
bool copy_min(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_min_to_min(arg) > 0)
{
min_value=arg->min_value; min_flag=arg->min_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
bool copy_max(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_max_to_max(arg) <= 0)
{
max_value=arg->max_value; max_flag=arg->max_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
void copy_min_to_min(SEL_ARG *arg)
{
min_value=arg->min_value; min_flag=arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg)
{
max_value=arg->min_value;
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg)
{
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_min(uint length, uchar **min_key,uint min_key_flag)
{
/* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
{
if (maybe_null && *min_value)
{
**min_key=1;
bzero(*min_key+1,length-1);
}
else
memcpy(*min_key,min_value,length);
(*min_key)+= length;
return 1;
}
return 0;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_max(uint length, uchar **max_key, uint max_key_flag)
{
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
if (maybe_null && *max_value)
{
**max_key=1;
bzero(*max_key+1,length-1);
}
else
memcpy(*max_key,max_value,length);
(*max_key)+= length;
return 1;
}
return 0;
}
/*
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
*/
int store_min_key(KEY_PART *key,
uchar **range_key,
uint *range_key_flag,
uint last_part)
{
SEL_ARG *key_tree= first();
uint res= key_tree->store_min(key[key_tree->part].store_length,
range_key, *range_key_flag);
*range_key_flag|= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
res+= key_tree->next_key_part->store_min_key(key,
range_key,
range_key_flag,
last_part);
return res;
}
/* returns a number of keypart values appended to the key buffer */
int store_max_key(KEY_PART *key,
uchar **range_key,
uint *range_key_flag,
uint last_part)
{
SEL_ARG *key_tree= last();
uint res=key_tree->store_max(key[key_tree->part].store_length,
range_key, *range_key_flag);
(*range_key_flag)|= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
res+= key_tree->next_key_part->store_max_key(key,
range_key,
range_key_flag,
last_part);
return res;
}
SEL_ARG *insert(SEL_ARG *key);
SEL_ARG *tree_delete(SEL_ARG *key);
SEL_ARG *find_range(SEL_ARG *key);
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
void test_use_count(SEL_ARG *root);
#endif
SEL_ARG *first();
const SEL_ARG *first() const;
SEL_ARG *last();
void make_root();
inline bool simple_key()
{
return !next_key_part && elements == 1;
}
void increment_use_count(long count)
{
if (next_key_part)
{
next_key_part->use_count+=count;
count*= (next_key_part->use_count-count);
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
if (pos->next_key_part)
pos->increment_use_count(count);
}
}
void incr_refs()
{
increment_use_count(1);
use_count++;
}
void incr_refs_all()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
{
pos->increment_use_count(1);
}
use_count++;
}
void free_tree()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
if (pos->next_key_part)
{
pos->next_key_part->use_count--;
pos->next_key_part->free_tree();
}
}
inline SEL_ARG **parent_ptr()
{
return parent->left == this ? &parent->left : &parent->right;
}
/*
Check if this SEL_ARG object represents a single-point interval
SYNOPSIS
is_singlepoint()
DESCRIPTION
Check if this SEL_ARG object (not tree) represents a single-point
interval, i.e. if it represents a "keypart = const" or
"keypart IS NULL".
RETURN
TRUE This SEL_ARG object represents a singlepoint interval
FALSE Otherwise
*/
bool is_singlepoint()
{
/*
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
flags, and the same for right edge.
*/
if (min_flag || max_flag)
return FALSE;
uchar *min_val= min_value;
uchar *max_val= max_value;
if (maybe_null)
{
/* First byte is a NULL value indicator */
if (*min_val != *max_val)
return FALSE;
if (*min_val)
return TRUE; /* This "x IS NULL" */
min_val++;
max_val++;
}
return !field->key_cmp(min_val, max_val);
}
SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
};
class RANGE_OPT_PARAM
{
public:
THD *thd; /* Current thread handle */
TABLE *table; /* Table being analyzed */
table_map prev_tables;
table_map read_tables;
table_map current_table; /* Bit of the table being analyzed */
/* Array of parts of all keys for which range analysis is performed */
KEY_PART *key_parts;
KEY_PART *key_parts_end;
MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
MEM_ROOT *old_root; /* Memory that will last until the query end */
/*
Number of indexes used in range analysis (In SEL_TREE::keys only first
#keys elements are not empty)
*/
uint keys;
/*
If true, the index descriptions describe real indexes (and it is ok to
call field->optimize_range(real_keynr[...], ...).
Otherwise index description describes fake indexes.
*/
bool using_real_indexes;
/*
Aggressively remove "scans" that do not have conditions on first
keyparts. Such scans are usable when doing partition pruning but not
regular range optimization.
*/
bool remove_jump_scans;
/*
TRUE <=> Range analyzer should remove parts of condition that are found
to be always FALSE.
*/
bool remove_false_where_parts;
/*
used_key_no -> table_key_no translation table. Only makes sense if
using_real_indexes==TRUE
*/
uint real_keynr[MAX_KEY];
/*
Used to store 'current key tuples', in both range analysis and
partitioning (list) analysis
*/
uchar min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
/* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
uint alloced_sel_args;
bool force_default_mrr;
KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
bool statement_should_be_aborted() const
{
return
thd->is_fatal_error ||
thd->is_error() ||
alloced_sel_args > SEL_ARG::MAX_SEL_ARGS;
}
};
class Explain_quick_select;
/*
A "MIN_TUPLE < tbl.key_tuple < MAX_TUPLE" interval.
......@@ -401,7 +1011,6 @@ public:
struct st_qsel_param;
class PARAM;
class SEL_ARG;
/*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment