Commit 8cb72c3d authored by Leif Walsh's avatar Leif Walsh Committed by Yoni Fogel

[t:4113] refactored test3884 and ensured its correctness

git-svn-id: file:///svn/toku/tokudb@37238 c7de825b-a66e-492c-adef-691d508d4ae1
parent 8d6ea79f
...@@ -10,6 +10,18 @@ ...@@ -10,6 +10,18 @@
#include "includes.h" #include "includes.h"
// Some constants to be used in calculations below
static const int nodesize = 1024; // Target max node size
static const int eltsize = 64; // Element size (for most elements)
static const int bnsize = 256; // Target basement node size
static const int eltsperbn = 256 / 64; // bnsize / eltsize
static const int keylen = sizeof(long);
// vallen is eltsize - keylen and leafentry overhead
static const int vallen = 64 - sizeof(long) - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
#define dummy_msn_3884 ((MSN) { (u_int64_t) 3884 * MIN_MSN.msn })
static TOKUTXN const null_txn = 0; static TOKUTXN const null_txn = 0;
static DB * const null_db = 0; static DB * const null_db = 0;
static const char fname[]= __FILE__ ".brt"; static const char fname[]= __FILE__ ".brt";
...@@ -28,28 +40,95 @@ static int omt_long_cmp(OMTVALUE p, void *q) ...@@ -28,28 +40,95 @@ static int omt_long_cmp(OMTVALUE p, void *q)
} }
static size_t static size_t
calc_le_size(int keylen, int vallen) { calc_le_size(int key_size, int val_size) {
size_t rval; size_t rval;
LEAFENTRY le; LEAFENTRY le;
rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + keylen + vallen; rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + key_size + val_size;
return rval; return rval;
} }
static LEAFENTRY static LEAFENTRY
le_fastmalloc(struct mempool * mp, char *key, int keylen, char *val, int vallen) le_fastmalloc(struct mempool * mp, char *key, int key_size, char *val, int val_size)
{ {
LEAFENTRY le; LEAFENTRY le;
size_t le_size = calc_le_size(keylen, vallen); size_t le_size = calc_le_size(key_size, val_size);
le = toku_mempool_malloc(mp, le_size, 1); le = toku_mempool_malloc(mp, le_size, 1);
resource_assert(le); resource_assert(le);
le->type = LE_CLEAN; le->type = LE_CLEAN;
le->keylen = keylen; le->keylen = key_size;
le->u.clean.vallen = vallen; le->u.clean.vallen = val_size;
memcpy(&le->u.clean.key_val[0], key, keylen); memcpy(&le->u.clean.key_val[0], key, key_size);
memcpy(&le->u.clean.key_val[keylen], val, vallen); memcpy(&le->u.clean.key_val[keylen], val, val_size);
return le; return le;
} }
static size_t
insert_dummy_value(BRTNODE node, int bn, long k)
{
char val[vallen];
memset(val, k, sizeof val);
struct mempool *mp = &BLB(node, bn)->buffer_mempool;
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
int r = toku_omt_insert(BLB_BUFFER(node, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(node, bn) += leafentry_disksize(le);
return leafentry_disksize(le);
}
static void
setup_brtnode_header(struct brtnode *node)
{
node->nodesize = nodesize;
node->flags = 0x11223344;
node->thisnodename.b = 20;
node->layout_version = BRT_LAYOUT_VERSION;
node->layout_version_original = BRT_LAYOUT_VERSION;
node->height = 0;
node->optimized_for_upgrade = 1324;
node->dirty = 1;
node->totalchildkeylens = 0;
}
static void
setup_brtnode_partitions(struct brtnode *node, int n_children, const MSN msn, size_t maxbnsize)
{
node->n_children = n_children;
node->max_msn_applied_to_node_on_disk = msn;
MALLOC_N(node->n_children, node->bp);
MALLOC_N(node->n_children - 1, node->childkeys);
for (int bn = 0; bn < node->n_children; ++bn) {
BP_STATE(node, bn) = PT_AVAIL;
set_BLB(node, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(node, bn);
struct mempool *mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(node, bn) = 0;
BLB_MAX_MSN_APPLIED(node, bn) = msn;
}
}
static void
destroy_brtnode_and_internals(struct brtnode *node)
{
for (int i = 0; i < node->n_children - 1; ++i) {
kv_pair_free(node->childkeys[i]);
}
for (int i = 0; i < node->n_children; ++i) {
BASEMENTNODE bn = BLB(node, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(node, i));
}
toku_free(node->bp);
toku_free(node->childkeys);
}
static void
verify_basement_node_msns(BRTNODE node, MSN expected)
{
for(int i = 0; i < node->n_children; ++i) {
assert(expected.msn == BLB_MAX_MSN_APPLIED(node, i).msn);
}
}
// //
// Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum node size according to the BRT: 1024 (expected node size after split)
...@@ -60,50 +139,20 @@ le_fastmalloc(struct mempool * mp, char *key, int keylen, char *val, int vallen) ...@@ -60,50 +139,20 @@ le_fastmalloc(struct mempool * mp, char *key, int keylen, char *val, int vallen)
static void static void
test_split_on_boundary(void) test_split_on_boundary(void)
{ {
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const size_t maxbnsize = bnsize;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
const int nelts = 2 * nodesize / eltsize; const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
const MSN new_msn = { .msn = 2 * MIN_MSN.msn };
for (int bn = 0; bn < sn.n_children; ++bn) { for (int bn = 0; bn < sn.n_children; ++bn) {
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
// Write an MSN to this basement node.
BLB_MAX_MSN_APPLIED(&sn, bn) = new_msn;
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
for (int i = 0; i < eltsperbn; ++i) { for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
char val[vallen]; insert_dummy_value(&sn, bn, k);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
} }
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
...@@ -122,18 +171,8 @@ test_split_on_boundary(void) ...@@ -122,18 +171,8 @@ test_split_on_boundary(void)
// if we haven't done it right, we should hit the assert in the top of move_leafentries // if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
// Verify that the MSN is the same on the basement nodes after the split. verify_basement_node_msns(nodea, dummy_msn_3884);
int a_children = nodea->n_children; verify_basement_node_msns(nodeb, dummy_msn_3884);
int b_children = nodeb->n_children;
for(int i = 0; i < a_children; ++i)
{
assert(new_msn.msn == BLB_MAX_MSN_APPLIED(nodea, i).msn);
}
for(int i = 0; i < b_children; ++i)
{
assert(new_msn.msn == BLB_MAX_MSN_APPLIED(nodeb, i).msn);
}
toku_unpin_brtnode(brt, nodeb); toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0); r = toku_close_brt(brt, NULL); assert(r == 0);
...@@ -143,17 +182,7 @@ test_split_on_boundary(void) ...@@ -143,17 +182,7 @@ test_split_on_boundary(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
// //
...@@ -169,56 +198,34 @@ test_split_on_boundary(void) ...@@ -169,56 +198,34 @@ test_split_on_boundary(void)
static void static void
test_split_with_everything_on_the_left(void) test_split_with_everything_on_the_left(void)
{ {
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const size_t maxbnsize = 1024 * 2;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
const int nelts = 2 * nodesize / eltsize; const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize + 1; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, 2 * nodesize);
sn.dirty = 1; size_t big_val_size = 0;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
for (int bn = 0; bn < sn.n_children; ++bn) { for (int bn = 0; bn < sn.n_children; ++bn) {
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) { for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
char val[vallen]; big_val_size += insert_dummy_value(&sn, bn, k);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
} }
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k); sn.totalchildkeylens += (sizeof k);
} else { } else {
k = bn * eltsperbn; k = bn * eltsperbn;
size_t big_val_size = (nelts * eltsize - 1); // TODO: Explain this // we want this to be as big as the rest of our data and a
// little bigger, so the halfway mark will land inside this
// value and it will be split to the left
big_val_size += 100;
char * big_val = toku_xmalloc(big_val_size); char * big_val = toku_xmalloc(big_val_size);
memset(big_val, k, big_val_size); memset(big_val, k, big_val_size);
struct mempool *mp = &BLB(&sn, bn)->buffer_mempool;
LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size); LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size);
toku_free(big_val); toku_free(big_val);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0); r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
...@@ -245,17 +252,7 @@ test_split_with_everything_on_the_left(void) ...@@ -245,17 +252,7 @@ test_split_with_everything_on_the_left(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
...@@ -272,57 +269,38 @@ test_split_with_everything_on_the_left(void) ...@@ -272,57 +269,38 @@ test_split_with_everything_on_the_left(void)
static void static void
test_split_on_boundary_of_last_node(void) test_split_on_boundary_of_last_node(void)
{ {
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const size_t maxbnsize = 1024 * 2;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
const int nelts = 2 * nodesize / eltsize; const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize + 1; const size_t maxbnsize = 2 * nodesize;
sn.dirty = 1; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, maxbnsize);
MALLOC_N(sn.n_children, sn.bp); size_t big_val_size = 0;
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
for (int bn = 0; bn < sn.n_children; ++bn) { for (int bn = 0; bn < sn.n_children; ++bn) {
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) { for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
char val[vallen]; big_val_size += insert_dummy_value(&sn, bn, k);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
} }
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k); sn.totalchildkeylens += (sizeof k);
} else { } else {
k = bn * eltsperbn; k = bn * eltsperbn;
size_t big_val_size = (nelts * eltsize - 100); // TODO: This looks wrong, should perhaps be +100? // we want this to be slightly smaller than all the rest of
// the data combined, so the halfway mark will be just to its
// left and just this element will end up on the right of the split
big_val_size -= 1 + (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
invariant(big_val_size <= maxbnsize); invariant(big_val_size <= maxbnsize);
char * big_val = toku_xmalloc(big_val_size); char * big_val = toku_xmalloc(big_val_size);
memset(big_val, k, big_val_size); memset(big_val, k, big_val_size);
struct mempool *mp = &BLB(&sn, bn)->buffer_mempool;
LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size); LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size);
toku_free(big_val); toku_free(big_val);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0); r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
...@@ -349,56 +327,24 @@ test_split_on_boundary_of_last_node(void) ...@@ -349,56 +327,24 @@ test_split_on_boundary_of_last_node(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
static void static void
test_split_at_begin(void) test_split_at_begin(void)
{ {
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const size_t maxbnsize = 1024 * 2;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
const int nelts = 2 * nodesize / eltsize; const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize; const size_t maxbnsize = 2 * nodesize;
sn.dirty = 1; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
size_t totalbytes = 0; size_t totalbytes = 0;
for (int bn = 0; bn < sn.n_children; ++bn) { for (int bn = 0; bn < sn.n_children; ++bn) {
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
for (int i = 0; i < eltsperbn; ++i) { for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
...@@ -407,12 +353,7 @@ test_split_at_begin(void) ...@@ -407,12 +353,7 @@ test_split_at_begin(void)
// to make it // to make it
continue; continue;
} }
char val[vallen]; totalbytes += insert_dummy_value(&sn, bn, k);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
totalbytes += leafentry_disksize(le);
} }
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
...@@ -423,6 +364,9 @@ test_split_at_begin(void) ...@@ -423,6 +364,9 @@ test_split_at_begin(void)
int bn = 0; long k = 0; int bn = 0; long k = 0;
BASEMENTNODE basement = BLB(&sn, bn); BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool; struct mempool * mp = &basement->buffer_mempool;
// add a few bytes so the halfway mark is definitely inside this
// val, which will make it go to the left and everything else to
// the right
char val[totalbytes + 3]; char val[totalbytes + 3];
invariant(totalbytes + 3 <= maxbnsize); invariant(totalbytes + 3 <= maxbnsize);
memset(val, k, sizeof val); memset(val, k, sizeof val);
...@@ -451,72 +395,44 @@ test_split_at_begin(void) ...@@ -451,72 +395,44 @@ test_split_at_begin(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
static void static void
test_split_at_end(void) test_split_at_end(void)
{ {
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const size_t maxbnsize = 1024 * 2;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
const int nelts = 2 * nodesize / eltsize; const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize; const size_t maxbnsize = 2 * nodesize;
sn.dirty = 1; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
long totalbytes = 0; long totalbytes = 0;
for (int bn = 0; bn < sn.n_children; ++bn) { int bn, i;
BP_STATE(&sn,bn) = PT_AVAIL; for (bn = 0; bn < sn.n_children; ++bn) {
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
for (int i = 0; i < eltsperbn; ++i) { for (i = 0; i < eltsperbn; ++i) {
LEAFENTRY le;
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
if (bn < sn.n_children - 1 || i < eltsperbn - 1) { if (bn == sn.n_children - 1 && i == eltsperbn - 1) {
char val[vallen]; BASEMENTNODE basement = BLB(&sn, bn);
memset(val, k, sizeof val); struct mempool * mp = &basement->buffer_mempool;
le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen); // add a few bytes so the halfway mark is definitely inside this
} else { // the last element // val, which will make it go to the left and everything else to
char val[totalbytes + 3]; // just to be sure // the right, which is nothing, so we actually split at the very end
char val[totalbytes + 3];
invariant(totalbytes + 3 <= (long) maxbnsize);
memset(val, k, sizeof val); memset(val, k, sizeof val);
le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3); LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3);
}
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0); r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le); BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
totalbytes += leafentry_disksize(le); totalbytes += leafentry_disksize(le);
} else {
totalbytes += insert_dummy_value(&sn, bn, k);
}
} }
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
...@@ -543,17 +459,7 @@ test_split_at_end(void) ...@@ -543,17 +459,7 @@ test_split_at_end(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
// Maximum node size according to the BRT: 1024 (expected node size after split) // Maximum node size according to the BRT: 1024 (expected node size after split)
...@@ -565,18 +471,6 @@ test_split_at_end(void) ...@@ -565,18 +471,6 @@ test_split_at_end(void)
static void static void
test_split_odd_nodes(void) test_split_odd_nodes(void)
{ {
const int nodesize = 1024; // Max node size.
const int eltsize = 64; // Element size?
const int bnsize = 256; // Basement Node size.
const size_t maxbnsize = bnsize;
const int eltsperbn = bnsize / eltsize; // How many elements in a basement node.
const int keylen = sizeof(long);
const MSN new_msn = { .msn = 2 * MIN_MSN.msn }; // Arbitrary MSN larger than min MSN.
// Overhead from LE_CLEAN_MEMSIZE.
const int vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type)
+ sizeof(((LEAFENTRY)NULL)->keylen)
+ sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
struct brtnode sn; struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO);
...@@ -584,38 +478,15 @@ test_split_odd_nodes(void) ...@@ -584,38 +478,15 @@ test_split_odd_nodes(void)
int r; int r;
sn.max_msn_applied_to_node_on_disk.msn = 0; setup_brtnode_header(&sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.optimized_for_upgrade = 1324;
// This will give us 9 children. // This will give us 9 children.
const int nelts = 2 * (nodesize + 128) / eltsize; const int nelts = 2 * (nodesize + 128) / eltsize;
sn.n_children = nelts * eltsize / bnsize; setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
for (int bn = 0; bn < sn.n_children; ++bn) { for (int bn = 0; bn < sn.n_children; ++bn) {
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(&sn, bn);
// Write an MSN to this basement node.
BLB_MAX_MSN_APPLIED(&sn, bn) = new_msn;
struct mempool * mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(&sn,bn) = 0;
long k; long k;
for (int i = 0; i < eltsperbn; ++i) { for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i; k = bn * eltsperbn + i;
char val[vallen]; insert_dummy_value(&sn, bn, k);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
} }
if (bn < sn.n_children - 1) { if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0); sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
...@@ -634,18 +505,8 @@ test_split_odd_nodes(void) ...@@ -634,18 +505,8 @@ test_split_odd_nodes(void)
// if we haven't done it right, we should hit the assert in the top of move_leafentries // if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL); brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
// Verify that the MSN is the same on the basement nodes after the split. verify_basement_node_msns(nodea, dummy_msn_3884);
int a_children = nodea->n_children; verify_basement_node_msns(nodeb, dummy_msn_3884);
int b_children = nodeb->n_children;
for(int i = 0; i < a_children; ++i)
{
assert(new_msn.msn == BLB_MAX_MSN_APPLIED(nodea, i).msn);
}
for(int i = 0; i < b_children; ++i)
{
assert(new_msn.msn == BLB_MAX_MSN_APPLIED(nodeb, i).msn);
}
toku_unpin_brtnode(brt, nodeb); toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0); r = toku_close_brt(brt, NULL); assert(r == 0);
...@@ -655,17 +516,7 @@ test_split_odd_nodes(void) ...@@ -655,17 +516,7 @@ test_split_odd_nodes(void)
toku_free(splitk.data); toku_free(splitk.data);
} }
for (int i = 0; i < sn.n_children - 1; ++i) { destroy_brtnode_and_internals(&sn);
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
} }
int int
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment