Commit a8824182 authored by sunny's avatar sunny

branches/innodb+: Port red-black tree code from branches/fts:r2283

parent fceb78e6
......@@ -130,7 +130,7 @@ noinst_HEADERS = include/btr0btr.h include/btr0btr.ic \
include/ut0list.ic include/ut0wqueue.h \
include/ha_prototypes.h handler/ha_innodb.h \
include/handler0alter.h \
handler/i_s.h
handler/i_s.h include/ut0rbt.h
EXTRA_LIBRARIES = libinnobase.a
noinst_LIBRARIES = @plugin_innobase_static_target@
......@@ -173,7 +173,7 @@ libinnobase_a_SOURCES = btr/btr0btr.c btr/btr0cur.c btr/btr0pcur.c \
ut/ut0ut.c ut/ut0vec.c ut/ut0wqueue.c \
handler/ha_innodb.cc handler/handler0alter.cc \
handler/i_s.cc \
handler/mysql_addons.cc
handler/mysql_addons.cc ut/ut0rbt.c
libinnobase_a_CXXFLAGS= $(AM_CFLAGS) $(INNODB_CFLAGS)
libinnobase_a_CFLAGS = $(AM_CFLAGS) $(INNODB_CFLAGS)
......
/******************************************************
Red-Black tree implementation.
(c) 2007 Oracle/Innobase Oy
Created 2007-03-20 Sunny Bains
*******************************************************/
#ifndef INNOBASE_UT0RBT_H
#define INNOBASE_UT0RBT_H
#if !defined(IB_RBT_TESTING)
#include "univ.i"
#include "ut0mem.h"
#else
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define ut_malloc malloc
#define ut_free free
#define ulint unsigned long
#define ut_a(c) assert(c)
#define ut_error assert(0)
#define ibool unsigned int
#define TRUE 1
#define FALSE 0
#endif
/* Red black tree typedefs */
typedef struct ib_rbt_struct ib_rbt_t;
typedef struct ib_rbt_node_struct ib_rbt_node_t;
// FIXME: Iterator is a better name than _bound_
typedef struct ib_rbt_bound_struct ib_rbt_bound_t;
typedef void (*ib_rbt_print_node)(const ib_rbt_node_t* node);
typedef int (*ib_rbt_compare)(const void* p1, const void* p2);
/* Red black tree color types */
enum ib_rbt_color_enum {
IB_RBT_RED,
IB_RBT_BLACK
};
typedef enum ib_rbt_color_enum ib_rbt_color_t;
/* Red black tree node */
struct ib_rbt_node_struct {
ib_rbt_color_t color; /* color of this node */
ib_rbt_node_t* left; /* points left child */
ib_rbt_node_t* right; /* points right child */
ib_rbt_node_t* parent; /* points parent node */
char value[1]; /* Data value */
};
/* Red black tree instance.*/
struct ib_rbt_struct {
ib_rbt_node_t* nil; /* Black colored node that is
used as a sentinel. This is
pre-allocated too.*/
ib_rbt_node_t* root; /* Root of the tree, this is
pre-allocated and the first
data node is the left child.*/
ulint n_nodes; /* Total number of data nodes */
ib_rbt_compare compare; /* Fn. to use for comparison */
ulint sizeof_value; /* Sizeof the item in bytes */
};
/* The result of searching for a key in the tree, this is useful for
a speedy lookup and insert if key doesn't exist.*/
struct ib_rbt_bound_struct {
const ib_rbt_node_t*
last; /* Last node visited */
int result; /* Result of comparing with
the last non-nil node that
was visited */
};
/* Size in elements (t is an rb tree instance) */
#define rbt_size(t) (t->n_nodes)
/* Check whether the rb tree is empty (t is an rb tree instance) */
#define rbt_empty(t) (rbt_size(t) == 0)
/* Get data value (t is the data type, n is an rb tree node instance) */
#define rbt_value(t, n) ((t*) &n->value[0])
/* Compare a key with the node value (t is tree, k is key, n is node)*/
#define rbt_compare(t, k, n) (t->compare(k, n->value))
/************************************************************************
Free an instance of a red black tree */
extern
void
rbt_free(
/*=====*/
ib_rbt_t* tree); /* in: rb tree to free */
/************************************************************************
Create an instance of a red black tree */
extern
ib_rbt_t*
rbt_create(
/*=======*/
/* out: rb tree instance */
size_t sizeof_value, /* in: size in bytes */
ib_rbt_compare compare); /* in: comparator */
/************************************************************************
Delete a node from the red black tree, identified by key */
extern
ibool
rbt_delete(
/*=======*/
/* in: TRUE on success */
ib_rbt_t* tree, /* in: rb tree */
const void* key); /* in: key to delete */
/************************************************************************
Remove a node from the red black tree, NOTE: This function will not delete
the node instance, THAT IS THE CALLERS RESPONSIBILITY.*/
extern
ib_rbt_node_t*
rbt_remove_node(
/*============*/
/* out: the deleted node
with the const.*/
ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t*
node); /* in: node to delete, this
is a fudge and declared const
because the caller has access
only to const nodes.*/
/************************************************************************
Return a node from the red black tree, identified by
key, NULL if not found */
extern
const ib_rbt_node_t*
rbt_lookup(
/*=======*/
/* out: node if found else
return NULL*/
const ib_rbt_t* tree, /* in: rb tree to search */
const void* key); /* in: key to lookup */
/************************************************************************
Add data to the red black tree, identified by key (no dups yet!)*/
extern
const ib_rbt_node_t*
rbt_insert(
/*=======*/
/* out: inserted node */
ib_rbt_t* tree, /* in: rb tree */
const void* key, /* in: key for ordering */
const void* value); /* in: data that will be
copied to the node.*/
/************************************************************************
Add a new node to the tree, useful for data that is pre-sorted.*/
extern
const ib_rbt_node_t*
rbt_add_node(
/*=========*/
/* out: appended node */
ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: parent */
const void* value); /* in: this value is copied
to the node */
/************************************************************************
Return the left most data node in the tree*/
extern
const ib_rbt_node_t*
rbt_first(
/*======*/
/* out: left most node */
const ib_rbt_t* tree); /* in: rb tree */
/************************************************************************
Return the right most data node in the tree*/
extern
const ib_rbt_node_t*
rbt_last(
/*=====*/
/* out: right most node */
const ib_rbt_t* tree); /* in: rb tree */
/************************************************************************
Return the next node from current.*/
extern
const ib_rbt_node_t*
rbt_next(
/*=====*/
/* out: successor node to
current that is passed in.*/
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* /* in: current node */
current);
/************************************************************************
Return the prev node from current.*/
extern
const ib_rbt_node_t*
rbt_prev(
/*=====*/
/* out: precedessor node to
current that is passed in */
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* /* in: current node */
current);
/************************************************************************
Find the node that has the lowest key that is >= key.*/
extern
const ib_rbt_node_t*
rbt_lower_bound(
/*============*/
/* out: node that satisfies
the lower bound constraint or
NULL */
const ib_rbt_t* tree, /* in: rb tree */
const void* key); /* in: key to search */
/************************************************************************
Find the node that has the greatest key that is <= key.*/
extern
const ib_rbt_node_t*
rbt_upper_bound(
/*============*/
/* out: node that satisifies
the upper bound constraint or
NULL */
const ib_rbt_t* tree, /* in: rb tree */
const void* key); /* in: key to search */
/************************************************************************
Search for the key, a node will be retuned in parent.last, whether it
was found or not. If not found then parent.last will contain the
parent node for the possibly new key otherwise the matching node.*/
extern
int
rbt_search(
/*=======*/
/* out: result of last
comparison */
const ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: search bounds */
const void* key); /* in: key to search */
/************************************************************************
Search for the key, a node will be retuned in parent.last, whether it
was found or not. If not found then parent.last will contain the
parent node for the possibly new key otherwise the matching node.*/
extern
int
rbt_search_cmp(
/*===========*/
/* out: result of last
comparison */
const ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: search bounds */
const void* key, /* in: key to search */
ib_rbt_compare compare); /* in: comparator */
/************************************************************************
Clear the tree, deletes (and free's) all the nodes.*/
extern
void
rbt_clear(
/*======*/
ib_rbt_t* tree); /* in: rb tree */
/************************************************************************
Merge the node from dst into src. Return the number of nodes merged.*/
extern
ulint
rbt_merge_uniq(
/*===========*/
/* out: no. of recs merged */
ib_rbt_t* dst, /* in: dst rb tree */
const ib_rbt_t* src); /* in: src rb tree */
/************************************************************************
Merge the node from dst into src. Return the number of nodes merged.
Delete the nodes from src after copying node to dst. As a side effect
the duplicates will be left untouched in the src, since we don't support
duplicates (yet). NOTE: src and dst must be similar, the function doesn't
check for this condition (yet).*/
extern
ulint
rbt_merge_uniq_destructive(
/*=======================*/
/* out: no. of recs merged */
ib_rbt_t* dst, /* in: dst rb tree */
ib_rbt_t* src); /* in: src rb tree */
/************************************************************************
Verify the integrity of the RB tree. For debugging. 0 failure else height
of tree (in count of black nodes).*/
extern
ibool
rbt_validate(
/*=========*/
/* out: TRUE if OK
FALSE if tree invalid.*/
const ib_rbt_t* tree); /* in: tree to validate */
/************************************************************************
Iterate over the tree in depth first order.*/
extern
void
rbt_print(
/*======*/
const ib_rbt_t* tree, /* in: tree to traverse */
ib_rbt_print_node print); /* in: print function */
#endif /* INNOBASE_UT0RBT_H */
/**********************************************************************
Red-Black tree implementation
(c) 2007 Oracle/Innobase Oy
Created 2007-03-20 Sunny Bains
***********************************************************************/
#include "ut0rbt.h"
/************************************************************************
Definition of a red-black tree
==============================
A red-black tree is a binary search tree which has the following
red-black properties:
1. Every node is either red or black.
2. Every leaf (NULL - in our case tree->nil) is black.
3. If a node is red, then both its children are black.
4. Every simple path from a node to a descendant leaf contains the
same number of black nodes.
from (3) above, the implication is that on any path from the root
to a leaf, red nodes must not be adjacent.
However, any number of black nodes may appear in a sequence.
*/
#if defined(IB_RBT_TESTING)
#warning "Testing enabled!"
#endif
#define ROOT(t) (t->root->left)
#define SIZEOF_NODE(t) ((sizeof(ib_rbt_node_t) + t->sizeof_value) - 1)
/************************************************************************
Print out the sub-tree recursively. */
static
void
rbt_print_subtree(
/*==============*/
const ib_rbt_t* tree, /* in: tree to traverse */
const ib_rbt_node_t* node, /* in: node to print */
ib_rbt_print_node print) /* in: print key function */
{
/* FIXME: Doesn't do anything yet */
if (node != tree->nil) {
print(node);
rbt_print_subtree(tree, node->left, print);
rbt_print_subtree(tree, node->right, print);
}
}
/************************************************************************
Verify that the keys are in order. */
static
ibool
rbt_check_ordering(
/*===============*/
/* out: TRUE of OK.
FALSE if not ordered */
const ib_rbt_t* tree) /* in: tree to verfify */
{
const ib_rbt_node_t* node;
const ib_rbt_node_t* prev = NULL;
/* Iterate over all the nodes, comparing each node with the prev */
for (node = rbt_first(tree); node; node = rbt_next(tree, prev)) {
if (prev && tree->compare(prev->value, node->value) >= 0) {
return(FALSE);
}
prev = node;
}
return(TRUE);
}
/************************************************************************
Check that every path from the root to the leaves has the same count.
Count is expressed in the number of black nodes. */
static
ibool
rbt_count_black_nodes(
/*==================*/
/* out: 0 on failure else
black height of the subtree */
const ib_rbt_t* tree, /* in: tree to verify */
const ib_rbt_node_t* node) /* in: start of sub-tree */
{
ulint result;
if (node != tree->nil) {
ulint left_height = rbt_count_black_nodes(tree, node->left);
ulint right_height = rbt_count_black_nodes(tree, node->right);
if (left_height == 0
|| right_height == 0
|| left_height != right_height) {
result = 0;
} else if (node->color == IB_RBT_RED) {
/* Case 3 */
if (node->left->color != IB_RBT_BLACK
|| node->right->color != IB_RBT_BLACK) {
result = 0;
} else {
result = left_height;
}
/* Check if it's anything other than RED or BLACK. */
} else if (node->color != IB_RBT_BLACK) {
result = 0;
} else {
result = right_height + 1;
}
} else {
result = 1;
}
return(result);
}
/************************************************************************
Turn the node's right child's left sub-tree into node's right sub-tree.
This will also make node's right child it's parent. */
static
void
rbt_rotate_left(
/*============*/
const ib_rbt_node_t* nil, /* in: nil node of the tree */
ib_rbt_node_t* node) /* in: node to rotate */
{
ib_rbt_node_t* right = node->right;
node->right = right->left;
if (right->left != nil) {
right->left->parent = node;
}
/* Right's new parent was node's parent. */
right->parent = node->parent;
/* Since root's parent is tree->nil and root->parent->left points
back to root, we can avoid the check. */
if (node == node->parent->left) {
/* Node was on the left of its parent. */
node->parent->left = right;
} else {
/* Node must have been on the right. */
node->parent->right = right;
}
/* Finally, put node on right's left. */
right->left = node;
node->parent = right;
}
/************************************************************************
Turn the node's left child's right sub-tree into node's left sub-tree.
This also make node's left child it's parent. */
static
void
rbt_rotate_right(
/*=============*/
const ib_rbt_node_t* nil, /* in: nil node of tree */
ib_rbt_node_t* node) /* in: node to rotate */
{
ib_rbt_node_t* left = node->left;
node->left = left->right;
if (left->right != nil) {
left->right->parent = node;
}
/* Left's new parent was node's parent. */
left->parent = node->parent;
/* Since root's parent is tree->nil and root->parent->left points
back to root, we can avoid the check. */
if (node == node->parent->right) {
/* Node was on the left of its parent. */
node->parent->right = left;
} else {
/* Node must have been on the left. */
node->parent->left = left;
}
/* Finally, put node on left's right. */
left->right = node;
node->parent = left;
}
/************************************************************************
Append a node to the tree. */
static
ib_rbt_node_t*
rbt_tree_add_child(
/*===============*/
const ib_rbt_t* tree,
ib_rbt_bound_t* parent,
ib_rbt_node_t* node)
{
/* Cast away the const. */
ib_rbt_node_t* last = (ib_rbt_node_t*) parent->last;
if (last == tree->root || parent->result < 0) {
last->left = node;
} else {
/* FIXME: We don't handle duplicates (yet)! */
ut_a(parent->result != 0);
last->right = node;
}
node->parent = last;
return(node);
}
/************************************************************************
Generic binary tree insert */
static
ib_rbt_node_t*
rbt_tree_insert(
/*============*/
ib_rbt_t* tree,
const void* key,
ib_rbt_node_t* node)
{
ib_rbt_bound_t parent;
ib_rbt_node_t* current = ROOT(tree);
parent.result = 0;
parent.last = tree->root;
/* Regular binary search. */
while (current != tree->nil) {
parent.last = current;
parent.result = tree->compare(key, current->value);
if (parent.result < 0) {
current = current->left;
} else {
current = current->right;
}
}
ut_a(current == tree->nil);
rbt_tree_add_child(tree, &parent, node);
return(node);
}
/************************************************************************
Balance a tree after inserting a node. */
static
void
rbt_balance_tree(
/*=============*/
const ib_rbt_t* tree, /* in: tree to balance */
ib_rbt_node_t* node) /* in: node that was inserted */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* parent = node->parent;
/* Restore the red-black property. */
node->color = IB_RBT_RED;
while (node != ROOT(tree) && parent->color == IB_RBT_RED) {
ib_rbt_node_t* grand_parent = parent->parent;
if (parent == grand_parent->left) {
ib_rbt_node_t* uncle = grand_parent->right;
if (uncle->color == IB_RBT_RED) {
/* Case 1 - change the colors. */
uncle->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
/* Move node up the tree. */
node = grand_parent;
} else {
if (node == parent->right) {
/* Right is a black node and node is
to the right, case 2 - move node
up and rotate. */
node = parent;
rbt_rotate_left(nil, node);
}
grand_parent = node->parent->parent;
/* Case 3. */
node->parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
rbt_rotate_right(nil, grand_parent);
}
} else {
ib_rbt_node_t* uncle = grand_parent->left;
if (uncle->color == IB_RBT_RED) {
/* Case 1 - change the colors. */
uncle->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
/* Move node up the tree. */
node = grand_parent;
} else {
if (node == parent->left) {
/* Left is a black node and node is to
the right, case 2 - move node up and
rotate. */
node = parent;
rbt_rotate_right(nil, node);
}
grand_parent = node->parent->parent;
/* Case 3. */
node->parent->color = IB_RBT_BLACK;
grand_parent->color = IB_RBT_RED;
rbt_rotate_left(nil, grand_parent);
}
}
parent = node->parent;
}
/* Color the root black. */
ROOT(tree)->color = IB_RBT_BLACK;
}
/************************************************************************
Find the given node's successor. */
static
ib_rbt_node_t*
rbt_find_successor(
/*===============*/
/* out: successor node
or NULL if no successor */
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* current) /* in: this is declared const
because it can be called via
rbt_next() */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* next = current->right;
/* Is there a sub-tree to the right that we can follow. */
if (next != nil) {
/* Follow the left most links of the current right child. */
while (next->left != nil) {
next = next->left;
}
} else { /* We will have to go up the tree to find the successor. */
ib_rbt_node_t* parent = current->parent;
/* Cast away the const. */
next = (ib_rbt_node_t*) current;
while (parent != tree->root && next == parent->right) {
next = parent;
parent = next->parent;
}
next = (parent == tree->root) ? NULL : parent;
}
return(next);
}
/************************************************************************
Find the given node's precedecessor. */
static
ib_rbt_node_t*
rbt_find_predecessor(
/*=================*/
/* out: predecessor node or
NULL if no predecesor */
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* current) /* in: this is declared const
because it can be called via
rbt_prev() */
{
const ib_rbt_node_t* nil = tree->nil;
ib_rbt_node_t* prev = current->left;
/* Is there a sub-tree to the left that we can follow. */
if (prev != nil) {
/* Follow the right most links of the current left child. */
while (prev->right != nil) {
prev = prev->right;
}
} else { /* We will have to go up the tree to find the precedecessor. */
ib_rbt_node_t* parent = current->parent;
/* Cast away the const. */
prev = (ib_rbt_node_t*)current;
while (parent != tree->root && prev == parent->left) {
prev = parent;
parent = prev->parent;
}
prev = (parent == tree->root) ? NULL : parent;
}
return(prev);
}
/************************************************************************
Replace node with child. After applying transformations eject becomes
an orphan. */
static
void
rbt_eject_node(
/*===========*/
ib_rbt_node_t* eject, /* in: node to eject */
ib_rbt_node_t* node) /* in: node to replace with */
{
/* Update the to be ejected node's parent's child pointers. */
if (eject->parent->left == eject) {
eject->parent->left = node;
} else if (eject->parent->right == eject) {
eject->parent->right = node;
} else {
ut_a(0);
}
/* eject is now an orphan but otherwise its pointers
and color are left intact. */
node->parent = eject->parent;
}
/************************************************************************
Replace a node with another node. */
static
void
rbt_replace_node(
/*=============*/
ib_rbt_node_t* replace, /* in: node to replace */
ib_rbt_node_t* node) /* in: node to replace with */
{
ib_rbt_color_t color = node->color;
/* Update the node pointers. */
node->left = replace->left;
node->right = replace->right;
/* Update the child node pointers. */
node->left->parent = node;
node->right->parent = node;
/* Make the parent of replace point to node. */
rbt_eject_node(replace, node);
/* Swap the colors. */
node->color = replace->color;
replace->color = color;
}
/************************************************************************
Detach node from the tree replacing it with one of it's children. */
static
ib_rbt_node_t*
rbt_detach_node(
/*============*/
/* out: the child node that
now occupies the position of
the detached node */
const ib_rbt_t* tree, /* in: rb tree */
ib_rbt_node_t* node) /* in: node to detach */
{
ib_rbt_node_t* child;
const ib_rbt_node_t* nil = tree->nil;
if (node->left != nil && node->right != nil) {
/* Case where the node to be deleted has two children. */
ib_rbt_node_t* successor = rbt_find_successor(tree, node);
ut_a(successor != nil);
ut_a(successor->parent != nil);
ut_a(successor->left == nil);
child = successor->right;
/* Remove the successor node and replace with its child. */
rbt_eject_node(successor, child);
/* Replace the node to delete with its successor node. */
rbt_replace_node(node, successor);
} else {
ut_a(node->left == nil || node->right == nil);
child = (node->left != nil) ? node->left : node->right;
/* Replace the node to delete with one of it's children. */
rbt_eject_node(node, child);
}
/* Reset the node links. */
node->parent = node->right = node->left = tree->nil;
return(child);
}
/************************************************************************
Rebalance the right sub-tree after deletion. */
static
ib_rbt_node_t*
rbt_balance_right(
/*==============*/
/* out: node to rebalance if
more rebalancing required
else NULL */
const ib_rbt_node_t* nil, /* in: rb tree nil node */
ib_rbt_node_t* parent, /* in: parent node */
ib_rbt_node_t* sibling) /* in: sibling node */
{
ib_rbt_node_t* node = NULL;
ut_a(sibling != nil);
/* Case 3. */
if (sibling->color == IB_RBT_RED) {
parent->color = IB_RBT_RED;
sibling->color = IB_RBT_BLACK;
rbt_rotate_left(nil, parent);
sibling = parent->right;
ut_a(sibling != nil);
}
/* Since this will violate case 3 because of the change above. */
if (sibling->left->color == IB_RBT_BLACK
&& sibling->right->color == IB_RBT_BLACK) {
node = parent; /* Parent needs to be rebalanced too. */
sibling->color = IB_RBT_RED;
} else {
if (sibling->right->color == IB_RBT_BLACK) {
ut_a(sibling->left->color == IB_RBT_RED);
sibling->color = IB_RBT_RED;
sibling->left->color = IB_RBT_BLACK;
rbt_rotate_right(nil, sibling);
sibling = parent->right;
ut_a(sibling != nil);
}
sibling->color = parent->color;
sibling->right->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
rbt_rotate_left(nil, parent);
}
return(node);
}
/************************************************************************
Rebalance the left sub-tree after deletion. */
static
ib_rbt_node_t*
rbt_balance_left(
/*=============*/
/* out: node to rebalance if
more rebalancing required
else NULL */
const ib_rbt_node_t* nil, /* in: rb tree nil node */
ib_rbt_node_t* parent, /* in: parent node */
ib_rbt_node_t* sibling) /* in: sibling node */
{
ib_rbt_node_t* node = NULL;
ut_a(sibling != nil);
/* Case 3. */
if (sibling->color == IB_RBT_RED) {
parent->color = IB_RBT_RED;
sibling->color = IB_RBT_BLACK;
rbt_rotate_right(nil, parent);
sibling = parent->left;
ut_a(sibling != nil);
}
/* Since this will violate case 3 because of the change above. */
if (sibling->right->color == IB_RBT_BLACK
&& sibling->left->color == IB_RBT_BLACK) {
node = parent; /* Parent needs to be rebalanced too. */
sibling->color = IB_RBT_RED;
} else {
if (sibling->left->color == IB_RBT_BLACK) {
ut_a(sibling->right->color == IB_RBT_RED);
sibling->color = IB_RBT_RED;
sibling->right->color = IB_RBT_BLACK;
rbt_rotate_left(nil, sibling);
sibling = parent->left;
ut_a(sibling != nil);
}
sibling->color = parent->color;
sibling->left->color = IB_RBT_BLACK;
parent->color = IB_RBT_BLACK;
rbt_rotate_right(nil, parent);
}
return(node);
}
/************************************************************************
Delete the node and rebalance the tree if necessary */
static
void
rbt_remove_node_and_rebalance(
/*==========================*/
/* out: NONE */
ib_rbt_t* tree, /* in: rb tree */
ib_rbt_node_t* node) /* in: node to remove */
{
/* Detach node and get the node that will be used
as rebalance start. */
ib_rbt_node_t* child = rbt_detach_node(tree, node);
if (node->color == IB_RBT_BLACK) {
ib_rbt_node_t* last = child;
ROOT(tree)->color = IB_RBT_RED;
while (child && child->color == IB_RBT_BLACK) {
ib_rbt_node_t* parent = child->parent;
/* Did the deletion cause an imbalance in the
parents left sub-tree. */
if (parent->left == child) {
child = rbt_balance_right(
tree->nil, parent, parent->right);
} else if (parent->right == child) {
child = rbt_balance_left(
tree->nil, parent, parent->left);
} else {
ut_error;
}
if (child) {
last = child;
}
}
ut_a(last);
last->color = IB_RBT_BLACK;
ROOT(tree)->color = IB_RBT_BLACK;
}
/* Note that we have removed a node from the tree. */
--tree->n_nodes;
}
/************************************************************************
Recursively free the nodes. */
static
void
rbt_free_node(
/*==========*/
ib_rbt_node_t* node, /* in: node to free */
ib_rbt_node_t* nil) /* in: rb tree nil node */
{
if (node != nil) {
rbt_free_node(node->left, nil);
rbt_free_node(node->right, nil);
ut_free(node);
}
}
/************************************************************************
Free all the nodes and free the tree. */
void
rbt_free(
/*=====*/
ib_rbt_t* tree) /* in: rb tree to free */
{
rbt_free_node(tree->root, tree->nil);
ut_free(tree->nil);
ut_free(tree);
}
/************************************************************************
Create an instance of a red black tree. */
ib_rbt_t*
rbt_create(
/*=======*/
/* out: an empty rb tree */
size_t sizeof_value, /* in: sizeof data item */
ib_rbt_compare compare) /* in: fn to compare items */
{
ib_rbt_t* tree;
ib_rbt_node_t* node;
tree = (ib_rbt_t*) ut_malloc(sizeof(*tree));
memset(tree, 0, sizeof(*tree));
tree->sizeof_value = sizeof_value;
/* Create the sentinel (NIL) node. */
node = tree->nil = (ib_rbt_node_t*) ut_malloc(sizeof(*node));
memset(node, 0, sizeof(*node));
node->color = IB_RBT_BLACK;
node->parent = node->left = node->right = node;
/* Create the "fake" root, the real root node will be the
left child of this node. */
node = tree->root = (ib_rbt_node_t*) ut_malloc(sizeof(*node));
memset(node, 0, sizeof(*node));
node->color = IB_RBT_BLACK;
node->parent = node->left = node->right = tree->nil;
tree->compare = compare;
return(tree);
}
/************************************************************************
Generic insert of a value in the rb tree. */
const ib_rbt_node_t*
rbt_insert(
/*=======*/
/* out: inserted node */
ib_rbt_t* tree, /* in: rb tree */
const void* key, /* in: key for ordering */
const void* value) /* in: value of key, this value
is copied to the node */
{
ib_rbt_node_t* node;
/* Create the node that will hold the value data. */
node = (ib_rbt_node_t*) ut_malloc(SIZEOF_NODE(tree));
memcpy(node->value, value, tree->sizeof_value);
node->parent = node->left = node->right = tree->nil;
/* Insert in the tree in the usual way. */
rbt_tree_insert(tree, key, node);
rbt_balance_tree(tree, node);
++tree->n_nodes;
return(node);
}
/************************************************************************
Add a new node to the tree, useful for data that is pre-sorted. */
const ib_rbt_node_t*
rbt_add_node(
/*=========*/
/* out: appended node */
ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: bounds */
const void* value) /* in: this value is copied
to the node */
{
ib_rbt_node_t* node;
/* Create the node that will hold the value data */
node = (ib_rbt_node_t*) ut_malloc(SIZEOF_NODE(tree));
memcpy(node->value, value, tree->sizeof_value);
node->parent = node->left = node->right = tree->nil;
/* If tree is empty */
if (parent->last == NULL) {
parent->last = tree->root;
}
/* Append the node, the hope here is that the caller knows
what s/he is doing. */
rbt_tree_add_child(tree, parent, node);
rbt_balance_tree(tree, node);
++tree->n_nodes;
#if defined(IB_RBT_TESTING)
ut_a(rbt_validate(tree));
#endif
return(node);
}
/************************************************************************
Find a matching node in the rb tree. */
const ib_rbt_node_t*
rbt_lookup(
/*=======*/
/* out: NULL if not found else
the node where key was found */
const ib_rbt_t* tree, /* in: rb tree */
const void* key) /* in: key to use for search */
{
const ib_rbt_node_t* current = ROOT(tree);
/* Regular binary search. */
while (current != tree->nil) {
int result = tree->compare(key, current->value);
if (result < 0) {
current = current->left;
} else if (result > 0) {
current = current->right;
} else {
break;
}
}
return(current != tree->nil ? current : NULL);
}
/************************************************************************
Delete a node indentified by key. */
ibool
rbt_delete(
/*=======*/
/* out: TRUE if success
FALSE if not found */
ib_rbt_t* tree, /* in: rb tree */
const void* key) /* in: key to delete */
{
ibool deleted = FALSE;
ib_rbt_node_t* node = (ib_rbt_node_t*) rbt_lookup(tree, key);
if (node) {
rbt_remove_node_and_rebalance(tree, node);
ut_free(node);
deleted = TRUE;
}
return(deleted);
}
/************************************************************************
Remove a node from the rb tree, the node is not free'd, that is the
callers responsibility. */
ib_rbt_node_t*
rbt_remove_node(
/*============*/
/* out: deleted node but
without the const */
ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* const_node) /* in: node to delete, this
is a fudge and declared const
because the caller can access
only const nodes */
{
/* Cast away the const. */
rbt_remove_node_and_rebalance(tree, (ib_rbt_node_t*) const_node);
/* This is to make it easier to do something like this:
ut_free(rbt_remove_node(node));
*/
return((ib_rbt_node_t*) const_node);
}
/************************************************************************
Find the node that has the lowest key that is >= key. */
const ib_rbt_node_t*
rbt_lower_bound(
/*============*/
/* out: node satisfying the
lower bound constraint or
NULL */
const ib_rbt_t* tree, /* in: rb tree */
const void* key) /* in: key to search */
{
ib_rbt_node_t* lb_node = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
int result = tree->compare(key, current->value);
if (result > 0) {
current = current->right;
} else if (result < 0) {
lb_node = current;
current = current->left;
} else {
lb_node = current;
break;
}
}
return(lb_node);
}
/************************************************************************
Find the node that has the greatest key that is <= key. */
const ib_rbt_node_t*
rbt_upper_bound(
/*============*/
/* out: node satisfying the
upper bound constraint or
NULL */
const ib_rbt_t* tree, /* in: rb tree */
const void* key) /* in: key to search */
{
ib_rbt_node_t* ub_node = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
int result = tree->compare(key, current->value);
if (result > 0) {
ub_node = current;
current = current->right;
} else if (result < 0) {
current = current->left;
} else {
ub_node = current;
break;
}
}
return(ub_node);
}
/************************************************************************
Find the node that has the greatest key that is <= key. */
int
rbt_search(
/*=======*/
/* out: value of result */
const ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: search bounds */
const void* key) /* in: key to search */
{
ib_rbt_node_t* current = ROOT(tree);
/* Every thing is greater than the NULL root. */
parent->result = 1;
parent->last = NULL;
while (current != tree->nil) {
parent->last = current;
parent->result = tree->compare(key, current->value);
if (parent->result > 0) {
current = current->right;
} else if (parent->result < 0) {
current = current->left;
} else {
break;
}
}
return(parent->result);
}
/************************************************************************
Find the node that has the greatest key that is <= key. But use the
supplied comparison function. */
int
rbt_search_cmp(
/*===========*/
/* out: value of result */
const ib_rbt_t* tree, /* in: rb tree */
ib_rbt_bound_t* parent, /* in: search bounds */
const void* key, /* in: key to search */
ib_rbt_compare compare) /* in: fn to compare items */
{
ib_rbt_node_t* current = ROOT(tree);
/* Every thing is greater than the NULL root. */
parent->result = 1;
parent->last = NULL;
while (current != tree->nil) {
parent->last = current;
parent->result = compare(key, current->value);
if (parent->result > 0) {
current = current->right;
} else if (parent->result < 0) {
current = current->left;
} else {
break;
}
}
return(parent->result);
}
/************************************************************************
Return the left most node in the tree. */
const ib_rbt_node_t*
rbt_first(
/*======*/
/* out leftmost node or NULL */
const ib_rbt_t* tree) /* in: rb tree */
{
ib_rbt_node_t* first = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
first = current;
current = current->left;
}
return(first);
}
/************************************************************************
Return the right most node in the tree. */
const ib_rbt_node_t*
rbt_last(
/*=====*/
/* out: the rightmost node
or NULL */
const ib_rbt_t* tree) /* in: rb tree */
{
ib_rbt_node_t* last = NULL;
ib_rbt_node_t* current = ROOT(tree);
while (current != tree->nil) {
last = current;
current = current->right;
}
return(last);
}
/************************************************************************
Return the next node. */
const ib_rbt_node_t*
rbt_next(
/*=====*/
/* out: node next from
current */
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* current) /* in: current node */
{
return(current ? rbt_find_successor(tree, current) : NULL);
}
/************************************************************************
Return the previous node. */
const ib_rbt_node_t*
rbt_prev(
/*=====*/
/* out: node prev from
current */
const ib_rbt_t* tree, /* in: rb tree */
const ib_rbt_node_t* current) /* in: current node */
{
return(current ? rbt_find_predecessor(tree, current) : NULL);
}
/************************************************************************
Reset the tree. Delete all the nodes. */
void
rbt_clear(
/*======*/
ib_rbt_t* tree) /* in: rb tree */
{
rbt_free_node(ROOT(tree), tree->nil);
tree->n_nodes = 0;
tree->root->left = tree->root->right = tree->nil;
}
/************************************************************************
Merge the node from dst into src. Return the number of nodes merged. */
ulint
rbt_merge_uniq(
/*===========*/
/* out: no. of recs merged */
ib_rbt_t* dst, /* in: dst rb tree */
const ib_rbt_t* src) /* in: src rb tree */
{
ib_rbt_bound_t parent;
ulint n_merged = 0;
const ib_rbt_node_t* src_node = rbt_first(src);
if (rbt_empty(src) || dst == src) {
return(0);
}
for (/* No op */; src_node; src_node = rbt_next(src, src_node)) {
if (rbt_search(dst, &parent, src_node->value) != 0) {
rbt_add_node(dst, &parent, src_node->value);
++n_merged;
}
}
return(n_merged);
}
/************************************************************************
Merge the node from dst into src. Return the number of nodes merged.
Delete the nodes from src after copying node to dst. As a side effect
the duplicates will be left untouched in the src. */
ulint
rbt_merge_uniq_destructive(
/*=======================*/
/* out: no. of recs merged */
ib_rbt_t* dst, /* in: dst rb tree */
ib_rbt_t* src) /* in: src rb tree */
{
ib_rbt_bound_t parent;
ib_rbt_node_t* src_node;
ulint old_size = rbt_size(dst);
if (rbt_empty(src) || dst == src) {
return(0);
}
for (src_node = (ib_rbt_node_t*) rbt_first(src); src_node; /* */) {
ib_rbt_node_t* prev = src_node;
src_node = (ib_rbt_node_t*)rbt_next(src, prev);
/* Skip duplicates. */
if (rbt_search(dst, &parent, prev->value) != 0) {
/* Remove and reset the node but preserve
the node (data) value. */
rbt_remove_node_and_rebalance(src, prev);
/* The nil should be taken from the dst tree. */
prev->parent = prev->left = prev->right = dst->nil;
rbt_tree_add_child(dst, &parent, prev);
rbt_balance_tree(dst, prev);
++dst->n_nodes;
}
}
#if defined(IB_RBT_TESTING)
ut_a(rbt_validate(dst));
ut_a(rbt_validate(src));
#endif
return(rbt_size(dst) - old_size);
}
/************************************************************************
Check that every path from the root to the leaves has the same count and
the tree nodes are in order. */
ibool
rbt_validate(
/*=========*/
/* out: TRUE if OK FALSE otherwise */
const ib_rbt_t* tree) /* in: RB tree to validate */
{
if (rbt_count_black_nodes(tree, ROOT(tree)) > 0) {
return(rbt_check_ordering(tree));
}
return(FALSE);
}
/************************************************************************
Iterate over the tree in depth first order. */
void
rbt_print(
/*======*/
const ib_rbt_t* tree, /* in: tree to traverse */
ib_rbt_print_node print) /* in: print function */
{
rbt_print_subtree(tree, ROOT(tree), print);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment