/***************************************************************************** Copyright (c) 1996, 2010, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file row/row0upd.c Update of a row Created 12/27/1996 Heikki Tuuri *******************************************************/ #include "row0upd.h" #ifdef UNIV_NONINL #include "row0upd.ic" #endif #include "dict0dict.h" #include "trx0undo.h" #include "rem0rec.h" #ifndef UNIV_HOTBACKUP #include "dict0boot.h" #include "dict0crea.h" #include "mach0data.h" #include "btr0btr.h" #include "btr0cur.h" #include "que0que.h" #include "row0ext.h" #include "row0ins.h" #include "row0sel.h" #include "row0row.h" #include "rem0cmp.h" #include "lock0lock.h" #include "log0log.h" #include "pars0sym.h" #include "eval0eval.h" #include "buf0lru.h" /* What kind of latch and lock can we assume when the control comes to ------------------------------------------------------------------- an update node? -------------- Efficiency of massive updates would require keeping an x-latch on a clustered index page through many updates, and not setting an explicit x-lock on clustered index records, as they anyway will get an implicit x-lock when they are updated. A problem is that the read nodes in the graph should know that they must keep the latch when passing the control up to the update node, and not set any record lock on the record which will be updated. Another problem occurs if the execution is stopped, as the kernel switches to another query thread, or the transaction must wait for a lock. Then we should be able to release the latch and, maybe, acquire an explicit x-lock on the record. Because this seems too complicated, we conclude that the less efficient solution of releasing all the latches when the control is transferred to another node, and acquiring explicit x-locks, is better. */ /* How is a delete performed? If there is a delete without an explicit cursor, i.e., a searched delete, there are at least two different situations: the implicit select cursor may run on (1) the clustered index or on (2) a secondary index. The delete is performed by setting the delete bit in the record and substituting the id of the deleting transaction for the original trx id, and substituting a new roll ptr for previous roll ptr. The old trx id and roll ptr are saved in the undo log record. Thus, no physical changes occur in the index tree structure at the time of the delete. Only when the undo log is purged, the index records will be physically deleted from the index trees. The query graph executing a searched delete would consist of a delete node which has as a subtree a select subgraph. The select subgraph should return a (persistent) cursor in the clustered index, placed on page which is x-latched. The delete node should look for all secondary index records for this clustered index entry and mark them as deleted. When is the x-latch freed? The most efficient way for performing a searched delete is obviously to keep the x-latch for several steps of query graph execution. */ /***********************************************************//** Checks if an update vector changes some of the first ordering fields of an index record. This is only used in foreign key checks and we can assume that index does not contain column prefixes. @return TRUE if changes */ static ibool row_upd_changes_first_fields_binary( /*================================*/ dtuple_t* entry, /*!< in: old value of index entry */ dict_index_t* index, /*!< in: index of entry */ const upd_t* update, /*!< in: update vector for the row */ ulint n); /*!< in: how many first fields to check */ /*********************************************************************//** Checks if index currently is mentioned as a referenced index in a foreign key constraint. NOTE that since we do not hold dict_operation_lock when leaving the function, it may be that the referencing table has been dropped when we leave this function: this function is only for heuristic use! @return TRUE if referenced */ static ibool row_upd_index_is_referenced( /*========================*/ dict_index_t* index, /*!< in: index */ trx_t* trx) /*!< in: transaction */ { dict_table_t* table = index->table; dict_foreign_t* foreign; ibool froze_data_dict = FALSE; ibool is_referenced = FALSE; if (!UT_LIST_GET_FIRST(table->referenced_list)) { return(FALSE); } if (trx->dict_operation_lock_mode == 0) { row_mysql_freeze_data_dictionary(trx); froze_data_dict = TRUE; } foreign = UT_LIST_GET_FIRST(table->referenced_list); while (foreign) { if (foreign->referenced_index == index) { is_referenced = TRUE; goto func_exit; } foreign = UT_LIST_GET_NEXT(referenced_list, foreign); } func_exit: if (froze_data_dict) { row_mysql_unfreeze_data_dictionary(trx); } return(is_referenced); } /*********************************************************************//** Checks if possible foreign key constraints hold after a delete of the record under pcur. NOTE that this function will temporarily commit mtr and lose the pcur position! @return DB_SUCCESS or an error code */ static ulint row_upd_check_references_constraints( /*=================================*/ upd_node_t* node, /*!< in: row update node */ btr_pcur_t* pcur, /*!< in: cursor positioned on a record; NOTE: the cursor position is lost in this function! */ dict_table_t* table, /*!< in: table in question */ dict_index_t* index, /*!< in: index of the cursor */ ulint* offsets,/*!< in/out: rec_get_offsets(pcur.rec, index) */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in: mtr */ { dict_foreign_t* foreign; mem_heap_t* heap; dtuple_t* entry; trx_t* trx; const rec_t* rec; ulint n_ext; ulint err; ibool got_s_lock = FALSE; if (UT_LIST_GET_FIRST(table->referenced_list) == NULL) { return(DB_SUCCESS); } trx = thr_get_trx(thr); rec = btr_pcur_get_rec(pcur); ut_ad(rec_offs_validate(rec, index, offsets)); heap = mem_heap_create(500); entry = row_rec_to_index_entry(ROW_COPY_DATA, rec, index, offsets, &n_ext, heap); mtr_commit(mtr); mtr_start(mtr); if (trx->dict_operation_lock_mode == 0) { got_s_lock = TRUE; row_mysql_freeze_data_dictionary(trx); } foreign = UT_LIST_GET_FIRST(table->referenced_list); while (foreign) { /* Note that we may have an update which updates the index record, but does NOT update the first fields which are referenced in a foreign key constraint. Then the update does NOT break the constraint. */ if (foreign->referenced_index == index && (node->is_delete || row_upd_changes_first_fields_binary( entry, index, node->update, foreign->n_fields))) { if (foreign->foreign_table == NULL) { dict_table_get(foreign->foreign_table_name, FALSE); } if (foreign->foreign_table) { mutex_enter(&(dict_sys->mutex)); (foreign->foreign_table ->n_foreign_key_checks_running)++; mutex_exit(&(dict_sys->mutex)); } /* NOTE that if the thread ends up waiting for a lock we will release dict_operation_lock temporarily! But the counter on the table protects 'foreign' from being dropped while the check is running. */ err = row_ins_check_foreign_constraint( FALSE, foreign, table, entry, thr); if (foreign->foreign_table) { mutex_enter(&(dict_sys->mutex)); ut_a(foreign->foreign_table ->n_foreign_key_checks_running > 0); (foreign->foreign_table ->n_foreign_key_checks_running)--; mutex_exit(&(dict_sys->mutex)); } if (err != DB_SUCCESS) { goto func_exit; } } foreign = UT_LIST_GET_NEXT(referenced_list, foreign); } err = DB_SUCCESS; func_exit: if (got_s_lock) { row_mysql_unfreeze_data_dictionary(trx); } mem_heap_free(heap); return(err); } /*********************************************************************//** Creates an update node for a query graph. @return own: update node */ UNIV_INTERN upd_node_t* upd_node_create( /*============*/ mem_heap_t* heap) /*!< in: mem heap where created */ { upd_node_t* node; node = mem_heap_alloc(heap, sizeof(upd_node_t)); node->common.type = QUE_NODE_UPDATE; node->state = UPD_NODE_UPDATE_CLUSTERED; node->in_mysql_interface = FALSE; node->row = NULL; node->ext = NULL; node->upd_row = NULL; node->upd_ext = NULL; node->index = NULL; node->update = NULL; node->foreign = NULL; node->cascade_heap = NULL; node->cascade_node = NULL; node->select = NULL; node->heap = mem_heap_create(128); node->magic_n = UPD_NODE_MAGIC_N; node->cmpl_info = 0; return(node); } #endif /* !UNIV_HOTBACKUP */ /*********************************************************************//** Updates the trx id and roll ptr field in a clustered index record in database recovery. */ UNIV_INTERN void row_upd_rec_sys_fields_in_recovery( /*===============================*/ rec_t* rec, /*!< in/out: record */ page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint pos, /*!< in: TRX_ID position in rec */ trx_id_t trx_id, /*!< in: transaction id */ roll_ptr_t roll_ptr)/*!< in: roll ptr of the undo log record */ { ut_ad(rec_offs_validate(rec, NULL, offsets)); if (UNIV_LIKELY_NULL(page_zip)) { page_zip_write_trx_id_and_roll_ptr( page_zip, rec, offsets, pos, trx_id, roll_ptr); } else { byte* field; ulint len; field = rec_get_nth_field(rec, offsets, pos, &len); ut_ad(len == DATA_TRX_ID_LEN); #if DATA_TRX_ID + 1 != DATA_ROLL_PTR # error "DATA_TRX_ID + 1 != DATA_ROLL_PTR" #endif trx_write_trx_id(field, trx_id); trx_write_roll_ptr(field + DATA_TRX_ID_LEN, roll_ptr); } } #ifndef UNIV_HOTBACKUP /*********************************************************************//** Sets the trx id or roll ptr field of a clustered index entry. */ UNIV_INTERN void row_upd_index_entry_sys_field( /*==========================*/ const dtuple_t* entry, /*!< in: index entry, where the memory buffers for sys fields are already allocated: the function just copies the new values to them */ dict_index_t* index, /*!< in: clustered index */ ulint type, /*!< in: DATA_TRX_ID or DATA_ROLL_PTR */ dulint val) /*!< in: value to write */ { dfield_t* dfield; byte* field; ulint pos; ut_ad(dict_index_is_clust(index)); pos = dict_index_get_sys_col_pos(index, type); dfield = dtuple_get_nth_field(entry, pos); field = dfield_get_data(dfield); if (type == DATA_TRX_ID) { trx_write_trx_id(field, val); } else { ut_ad(type == DATA_ROLL_PTR); trx_write_roll_ptr(field, val); } } /***********************************************************//** Returns TRUE if row update changes size of some field in index or if some field to be updated is stored externally in rec or update. @return TRUE if the update changes the size of some field in index or the field is external in rec or update */ UNIV_INTERN ibool row_upd_changes_field_size_or_external( /*===================================*/ dict_index_t* index, /*!< in: index */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update) /*!< in: update vector */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint old_len; ulint new_len; ulint n_fields; ulint i; ut_ad(rec_offs_validate(NULL, index, offsets)); n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); new_len = dfield_get_len(new_val); if (dfield_is_null(new_val) && !rec_offs_comp(offsets)) { /* A bug fixed on Dec 31st, 2004: we looked at the SQL NULL size from the wrong field! We may backport this fix also to 4.0. The merge to 5.0 will be made manually immediately after we commit this to 4.1. */ new_len = dict_col_get_sql_null_size( dict_index_get_nth_col(index, upd_field->field_no), 0); } old_len = rec_offs_nth_size(offsets, upd_field->field_no); if (rec_offs_comp(offsets) && rec_offs_nth_sql_null(offsets, upd_field->field_no)) { /* Note that in the compact table format, for a variable length field, an SQL NULL will use zero bytes in the offset array at the start of the physical record, but a zero-length value (empty string) will use one byte! Thus, we cannot use update-in-place if we update an SQL NULL varchar to an empty string! */ old_len = UNIV_SQL_NULL; } if (dfield_is_ext(new_val) || old_len != new_len || rec_offs_nth_extern(offsets, upd_field->field_no)) { return(TRUE); } } return(FALSE); } #endif /* !UNIV_HOTBACKUP */ /***********************************************************//** Replaces the new column values stored in the update vector to the record given. No field size changes are allowed. */ UNIV_INTERN void row_upd_rec_in_place( /*=================*/ rec_t* rec, /*!< in/out: record where replaced */ dict_index_t* index, /*!< in: the index the record belongs to */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ const upd_t* update, /*!< in: update vector */ page_zip_des_t* page_zip)/*!< in: compressed page with enough space available, or NULL */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); if (rec_offs_comp(offsets)) { rec_set_info_bits_new(rec, update->info_bits); } else { rec_set_info_bits_old(rec, update->info_bits); } n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); ut_ad(!dfield_is_ext(new_val) == !rec_offs_nth_extern(offsets, upd_field->field_no)); rec_set_nth_field(rec, offsets, upd_field->field_no, dfield_get_data(new_val), dfield_get_len(new_val)); } if (UNIV_LIKELY_NULL(page_zip)) { page_zip_write_rec(page_zip, rec, index, offsets, 0); } } #ifndef UNIV_HOTBACKUP /*********************************************************************//** Writes into the redo log the values of trx id and roll ptr and enough info to determine their positions within a clustered index record. @return new pointer to mlog */ UNIV_INTERN byte* row_upd_write_sys_vals_to_log( /*==========================*/ dict_index_t* index, /*!< in: clustered index */ trx_t* trx, /*!< in: transaction */ roll_ptr_t roll_ptr,/*!< in: roll ptr of the undo log record */ byte* log_ptr,/*!< pointer to a buffer of size > 20 opened in mlog */ mtr_t* mtr __attribute__((unused))) /*!< in: mtr */ { ut_ad(dict_index_is_clust(index)); ut_ad(mtr); log_ptr += mach_write_compressed(log_ptr, dict_index_get_sys_col_pos( index, DATA_TRX_ID)); trx_write_roll_ptr(log_ptr, roll_ptr); log_ptr += DATA_ROLL_PTR_LEN; log_ptr += mach_dulint_write_compressed(log_ptr, trx->id); return(log_ptr); } #endif /* !UNIV_HOTBACKUP */ /*********************************************************************//** Parses the log data of system field values. @return log data end or NULL */ UNIV_INTERN byte* row_upd_parse_sys_vals( /*===================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ ulint* pos, /*!< out: TRX_ID position in record */ trx_id_t* trx_id, /*!< out: trx id */ roll_ptr_t* roll_ptr)/*!< out: roll ptr */ { ptr = mach_parse_compressed(ptr, end_ptr, pos); if (ptr == NULL) { return(NULL); } if (end_ptr < ptr + DATA_ROLL_PTR_LEN) { return(NULL); } *roll_ptr = trx_read_roll_ptr(ptr); ptr += DATA_ROLL_PTR_LEN; ptr = mach_dulint_parse_compressed(ptr, end_ptr, trx_id); return(ptr); } #ifndef UNIV_HOTBACKUP /***********************************************************//** Writes to the redo log the new values of the fields occurring in the index. */ UNIV_INTERN void row_upd_index_write_log( /*====================*/ const upd_t* update, /*!< in: update vector */ byte* log_ptr,/*!< in: pointer to mlog buffer: must contain at least MLOG_BUF_MARGIN bytes of free space; the buffer is closed within this function */ mtr_t* mtr) /*!< in: mtr into whose log to write */ { const upd_field_t* upd_field; const dfield_t* new_val; ulint len; ulint n_fields; byte* buf_end; ulint i; n_fields = upd_get_n_fields(update); buf_end = log_ptr + MLOG_BUF_MARGIN; mach_write_to_1(log_ptr, update->info_bits); log_ptr++; log_ptr += mach_write_compressed(log_ptr, n_fields); for (i = 0; i < n_fields; i++) { #if MLOG_BUF_MARGIN <= 30 # error "MLOG_BUF_MARGIN <= 30" #endif if (log_ptr + 30 > buf_end) { mlog_close(mtr, log_ptr); log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN); buf_end = log_ptr + MLOG_BUF_MARGIN; } upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); len = dfield_get_len(new_val); log_ptr += mach_write_compressed(log_ptr, upd_field->field_no); log_ptr += mach_write_compressed(log_ptr, len); if (len != UNIV_SQL_NULL) { if (log_ptr + len < buf_end) { memcpy(log_ptr, dfield_get_data(new_val), len); log_ptr += len; } else { mlog_close(mtr, log_ptr); mlog_catenate_string(mtr, dfield_get_data(new_val), len); log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN); buf_end = log_ptr + MLOG_BUF_MARGIN; } } } mlog_close(mtr, log_ptr); } #endif /* !UNIV_HOTBACKUP */ /*********************************************************************//** Parses the log data written by row_upd_index_write_log. @return log data end or NULL */ UNIV_INTERN byte* row_upd_index_parse( /*================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ mem_heap_t* heap, /*!< in: memory heap where update vector is built */ upd_t** update_out)/*!< out: update vector */ { upd_t* update; upd_field_t* upd_field; dfield_t* new_val; ulint len; ulint n_fields; ulint info_bits; ulint i; if (end_ptr < ptr + 1) { return(NULL); } info_bits = mach_read_from_1(ptr); ptr++; ptr = mach_parse_compressed(ptr, end_ptr, &n_fields); if (ptr == NULL) { return(NULL); } update = upd_create(n_fields, heap); update->info_bits = info_bits; for (i = 0; i < n_fields; i++) { ulint field_no; upd_field = upd_get_nth_field(update, i); new_val = &(upd_field->new_val); ptr = mach_parse_compressed(ptr, end_ptr, &field_no); if (ptr == NULL) { return(NULL); } upd_field->field_no = field_no; ptr = mach_parse_compressed(ptr, end_ptr, &len); if (ptr == NULL) { return(NULL); } if (len != UNIV_SQL_NULL) { if (end_ptr < ptr + len) { return(NULL); } dfield_set_data(new_val, mem_heap_dup(heap, ptr, len), len); ptr += len; } else { dfield_set_null(new_val); } } *update_out = update; return(ptr); } #ifndef UNIV_HOTBACKUP /***************************************************************//** Builds an update vector from those fields which in a secondary index entry differ from a record that has the equal ordering fields. NOTE: we compare the fields as binary strings! @return own: update vector of differing fields */ UNIV_INTERN upd_t* row_upd_build_sec_rec_difference_binary( /*====================================*/ dict_index_t* index, /*!< in: index */ const dtuple_t* entry, /*!< in: entry to insert */ const rec_t* rec, /*!< in: secondary index record */ trx_t* trx, /*!< in: transaction */ mem_heap_t* heap) /*!< in: memory heap from which allocated */ { upd_field_t* upd_field; const dfield_t* dfield; const byte* data; ulint len; upd_t* update; ulint n_diff; ulint i; ulint offsets_[REC_OFFS_SMALL_SIZE]; const ulint* offsets; rec_offs_init(offsets_); /* This function is used only for a secondary index */ ut_a(!dict_index_is_clust(index)); update = upd_create(dtuple_get_n_fields(entry), heap); n_diff = 0; offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); for (i = 0; i < dtuple_get_n_fields(entry); i++) { data = rec_get_nth_field(rec, offsets, i, &len); dfield = dtuple_get_nth_field(entry, i); /* NOTE that it may be that len != dfield_get_len(dfield) if we are updating in a character set and collation where strings of different length can be equal in an alphabetical comparison, and also in the case where we have a column prefix index and the last characters in the index field are spaces; the latter case probably caused the assertion failures reported at row0upd.c line 713 in versions 4.0.14 - 4.0.16. */ /* NOTE: we compare the fields as binary strings! (No collation) */ if (!dfield_data_is_binary_equal(dfield, len, data)) { upd_field = upd_get_nth_field(update, n_diff); dfield_copy(&(upd_field->new_val), dfield); upd_field_set_field_no(upd_field, i, index, trx); n_diff++; } } update->n_fields = n_diff; return(update); } /***************************************************************//** Builds an update vector from those fields, excluding the roll ptr and trx id fields, which in an index entry differ from a record that has the equal ordering fields. NOTE: we compare the fields as binary strings! @return own: update vector of differing fields, excluding roll ptr and trx id */ UNIV_INTERN upd_t* row_upd_build_difference_binary( /*============================*/ dict_index_t* index, /*!< in: clustered index */ const dtuple_t* entry, /*!< in: entry to insert */ const rec_t* rec, /*!< in: clustered index record */ trx_t* trx, /*!< in: transaction */ mem_heap_t* heap) /*!< in: memory heap from which allocated */ { upd_field_t* upd_field; const dfield_t* dfield; const byte* data; ulint len; upd_t* update; ulint n_diff; ulint roll_ptr_pos; ulint trx_id_pos; ulint i; ulint offsets_[REC_OFFS_NORMAL_SIZE]; const ulint* offsets; rec_offs_init(offsets_); /* This function is used only for a clustered index */ ut_a(dict_index_is_clust(index)); update = upd_create(dtuple_get_n_fields(entry), heap); n_diff = 0; roll_ptr_pos = dict_index_get_sys_col_pos(index, DATA_ROLL_PTR); trx_id_pos = dict_index_get_sys_col_pos(index, DATA_TRX_ID); offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); for (i = 0; i < dtuple_get_n_fields(entry); i++) { data = rec_get_nth_field(rec, offsets, i, &len); dfield = dtuple_get_nth_field(entry, i); /* NOTE: we compare the fields as binary strings! (No collation) */ if (i == trx_id_pos || i == roll_ptr_pos) { goto skip_compare; } if (UNIV_UNLIKELY(!dfield_is_ext(dfield) != !rec_offs_nth_extern(offsets, i)) || !dfield_data_is_binary_equal(dfield, len, data)) { upd_field = upd_get_nth_field(update, n_diff); dfield_copy(&(upd_field->new_val), dfield); upd_field_set_field_no(upd_field, i, index, trx); n_diff++; } skip_compare: ; } update->n_fields = n_diff; return(update); } /***********************************************************//** Fetch a prefix of an externally stored column. This is similar to row_ext_lookup(), but the row_ext_t holds the old values of the column and must not be poisoned with the new values. @return BLOB prefix */ static byte* row_upd_ext_fetch( /*==============*/ const byte* data, /*!< in: 'internally' stored part of the field containing also the reference to the external part */ ulint local_len, /*!< in: length of data, in bytes */ ulint zip_size, /*!< in: nonzero=compressed BLOB page size, zero for uncompressed BLOBs */ ulint* len, /*!< in: length of prefix to fetch; out: fetched length of the prefix */ mem_heap_t* heap) /*!< in: heap where to allocate */ { byte* buf = mem_heap_alloc(heap, *len); *len = btr_copy_externally_stored_field_prefix(buf, *len, zip_size, data, local_len); /* We should never update records containing a half-deleted BLOB. */ ut_a(*len); return(buf); } /***********************************************************//** Replaces the new column value stored in the update vector in the given index entry field. */ static void row_upd_index_replace_new_col_val( /*==============================*/ dfield_t* dfield, /*!< in/out: data field of the index entry */ const dict_field_t* field, /*!< in: index field */ const dict_col_t* col, /*!< in: field->col */ const upd_field_t* uf, /*!< in: update field */ mem_heap_t* heap, /*!< in: memory heap for allocating and copying the new value */ ulint zip_size)/*!< in: compressed page size of the table, or 0 */ { ulint len; const byte* data; dfield_copy_data(dfield, &uf->new_val); if (dfield_is_null(dfield)) { return; } len = dfield_get_len(dfield); data = dfield_get_data(dfield); if (field->prefix_len > 0) { ibool fetch_ext = dfield_is_ext(dfield) && len < (ulint) field->prefix_len + BTR_EXTERN_FIELD_REF_SIZE; if (fetch_ext) { ulint l = len; len = field->prefix_len; data = row_upd_ext_fetch(data, l, zip_size, &len, heap); } len = dtype_get_at_most_n_mbchars(col->prtype, col->mbminlen, col->mbmaxlen, field->prefix_len, len, (const char*) data); dfield_set_data(dfield, data, len); if (!fetch_ext) { dfield_dup(dfield, heap); } return; } switch (uf->orig_len) { byte* buf; case BTR_EXTERN_FIELD_REF_SIZE: /* Restore the original locally stored part of the column. In the undo log, InnoDB writes a longer prefix of externally stored columns, so that column prefixes in secondary indexes can be reconstructed. */ dfield_set_data(dfield, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_ext(dfield); /* fall through */ case 0: dfield_dup(dfield, heap); break; default: /* Reconstruct the original locally stored part of the column. The data will have to be copied. */ ut_a(uf->orig_len > BTR_EXTERN_FIELD_REF_SIZE); buf = mem_heap_alloc(heap, uf->orig_len); /* Copy the locally stored prefix. */ memcpy(buf, data, uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE); /* Copy the BLOB pointer. */ memcpy(buf + uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_data(dfield, buf, uf->orig_len); dfield_set_ext(dfield); break; } } /***********************************************************//** Replaces the new column values stored in the update vector to the index entry given. */ UNIV_INTERN void row_upd_index_replace_new_col_vals_index_pos( /*=========================================*/ dtuple_t* entry, /*!< in/out: index entry where replaced; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ dict_index_t* index, /*!< in: index; NOTE that this may also be a non-clustered index */ const upd_t* update, /*!< in: an update vector built for the index so that the field number in an upd_field is the index position */ ibool order_only, /*!< in: if TRUE, limit the replacement to ordering fields of index; note that this does not work for non-clustered indexes. */ mem_heap_t* heap) /*!< in: memory heap for allocating and copying the new values */ { ulint i; ulint n_fields; const ulint zip_size = dict_table_zip_size(index->table); ut_ad(index); dtuple_set_info_bits(entry, update->info_bits); if (order_only) { n_fields = dict_index_get_n_unique(index); } else { n_fields = dict_index_get_n_fields(index); } for (i = 0; i < n_fields; i++) { const dict_field_t* field; const dict_col_t* col; const upd_field_t* uf; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); uf = upd_get_field_by_field_no(update, i); if (uf) { row_upd_index_replace_new_col_val( dtuple_get_nth_field(entry, i), field, col, uf, heap, zip_size); } } } /***********************************************************//** Replaces the new column values stored in the update vector to the index entry given. */ UNIV_INTERN void row_upd_index_replace_new_col_vals( /*===============================*/ dtuple_t* entry, /*!< in/out: index entry where replaced; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ dict_index_t* index, /*!< in: index; NOTE that this may also be a non-clustered index */ const upd_t* update, /*!< in: an update vector built for the CLUSTERED index so that the field number in an upd_field is the clustered index position */ mem_heap_t* heap) /*!< in: memory heap for allocating and copying the new values */ { ulint i; const dict_index_t* clust_index = dict_table_get_first_index(index->table); const ulint zip_size = dict_table_zip_size(index->table); dtuple_set_info_bits(entry, update->info_bits); for (i = 0; i < dict_index_get_n_fields(index); i++) { const dict_field_t* field; const dict_col_t* col; const upd_field_t* uf; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); uf = upd_get_field_by_field_no( update, dict_col_get_clust_pos(col, clust_index)); if (uf) { row_upd_index_replace_new_col_val( dtuple_get_nth_field(entry, i), field, col, uf, heap, zip_size); } } } /***********************************************************//** Replaces the new column values stored in the update vector. */ UNIV_INTERN void row_upd_replace( /*============*/ dtuple_t* row, /*!< in/out: row where replaced, indexed by col_no; the clustered index record must be covered by a lock or a page latch to prevent deletion (rollback or purge) */ row_ext_t** ext, /*!< out, own: NULL, or externally stored column prefixes */ const dict_index_t* index, /*!< in: clustered index */ const upd_t* update, /*!< in: an update vector built for the clustered index */ mem_heap_t* heap) /*!< in: memory heap */ { ulint col_no; ulint i; ulint n_cols; ulint n_ext_cols; ulint* ext_cols; const dict_table_t* table; ut_ad(row); ut_ad(ext); ut_ad(index); ut_ad(dict_index_is_clust(index)); ut_ad(update); ut_ad(heap); n_cols = dtuple_get_n_fields(row); table = index->table; ut_ad(n_cols == dict_table_get_n_cols(table)); ext_cols = mem_heap_alloc(heap, n_cols * sizeof *ext_cols); n_ext_cols = 0; dtuple_set_info_bits(row, update->info_bits); for (col_no = 0; col_no < n_cols; col_no++) { const dict_col_t* col = dict_table_get_nth_col(table, col_no); const ulint clust_pos = dict_col_get_clust_pos(col, index); dfield_t* dfield; if (UNIV_UNLIKELY(clust_pos == ULINT_UNDEFINED)) { continue; } dfield = dtuple_get_nth_field(row, col_no); for (i = 0; i < upd_get_n_fields(update); i++) { const upd_field_t* upd_field = upd_get_nth_field(update, i); if (upd_field->field_no != clust_pos) { continue; } dfield_copy_data(dfield, &upd_field->new_val); break; } if (dfield_is_ext(dfield) && col->ord_part) { ext_cols[n_ext_cols++] = col_no; } } if (n_ext_cols) { *ext = row_ext_create(n_ext_cols, ext_cols, row, dict_table_zip_size(table), heap); } else { *ext = NULL; } } /***********************************************************//** Checks if an update vector changes an ordering field of an index record. This function is fast if the update vector is short or the number of ordering fields in the index is small. Otherwise, this can be quadratic. NOTE: we compare the fields as binary strings! @return TRUE if update vector changes an ordering field in the index record */ UNIV_INTERN ibool row_upd_changes_ord_field_binary( /*=============================*/ const dtuple_t* row, /*!< in: old value of row, or NULL if the row and the data values in update are not known when this function is called, e.g., at compile time */ dict_index_t* index, /*!< in: index of the record */ const upd_t* update) /*!< in: update vector for the row; NOTE: the field numbers in this MUST be clustered index positions! */ { ulint n_unique; ulint n_upd_fields; ulint i, j; dict_index_t* clust_index; ut_ad(update && index); n_unique = dict_index_get_n_unique(index); n_upd_fields = upd_get_n_fields(update); clust_index = dict_table_get_first_index(index->table); for (i = 0; i < n_unique; i++) { const dict_field_t* ind_field; const dict_col_t* col; ulint col_pos; ulint col_no; ind_field = dict_index_get_nth_field(index, i); col = dict_field_get_col(ind_field); col_pos = dict_col_get_clust_pos(col, clust_index); col_no = dict_col_get_no(col); for (j = 0; j < n_upd_fields; j++) { const upd_field_t* upd_field = upd_get_nth_field(update, j); /* Note that if the index field is a column prefix then it may be that row does not contain an externally stored part of the column value, and we cannot compare the datas */ if (col_pos == upd_field->field_no && (row == NULL || ind_field->prefix_len > 0 || !dfield_datas_are_binary_equal( dtuple_get_nth_field(row, col_no), &(upd_field->new_val)))) { return(TRUE); } } } return(FALSE); } /***********************************************************//** Checks if an update vector changes an ordering field of an index record. NOTE: we compare the fields as binary strings! @return TRUE if update vector may change an ordering field in an index record */ UNIV_INTERN ibool row_upd_changes_some_index_ord_field_binary( /*========================================*/ const dict_table_t* table, /*!< in: table */ const upd_t* update) /*!< in: update vector for the row */ { upd_field_t* upd_field; dict_index_t* index; ulint i; index = dict_table_get_first_index(table); for (i = 0; i < upd_get_n_fields(update); i++) { upd_field = upd_get_nth_field(update, i); if (dict_field_get_col(dict_index_get_nth_field( index, upd_field->field_no)) ->ord_part) { return(TRUE); } } return(FALSE); } /***********************************************************//** Checks if an update vector changes some of the first ordering fields of an index record. This is only used in foreign key checks and we can assume that index does not contain column prefixes. @return TRUE if changes */ static ibool row_upd_changes_first_fields_binary( /*================================*/ dtuple_t* entry, /*!< in: index entry */ dict_index_t* index, /*!< in: index of entry */ const upd_t* update, /*!< in: update vector for the row */ ulint n) /*!< in: how many first fields to check */ { ulint n_upd_fields; ulint i, j; dict_index_t* clust_index; ut_ad(update && index); ut_ad(n <= dict_index_get_n_fields(index)); n_upd_fields = upd_get_n_fields(update); clust_index = dict_table_get_first_index(index->table); for (i = 0; i < n; i++) { const dict_field_t* ind_field; const dict_col_t* col; ulint col_pos; ind_field = dict_index_get_nth_field(index, i); col = dict_field_get_col(ind_field); col_pos = dict_col_get_clust_pos(col, clust_index); ut_a(ind_field->prefix_len == 0); for (j = 0; j < n_upd_fields; j++) { upd_field_t* upd_field = upd_get_nth_field(update, j); if (col_pos == upd_field->field_no && !dfield_datas_are_binary_equal( dtuple_get_nth_field(entry, i), &(upd_field->new_val))) { return(TRUE); } } } return(FALSE); } /*********************************************************************//** Copies the column values from a record. */ UNIV_INLINE void row_upd_copy_columns( /*=================*/ rec_t* rec, /*!< in: record in a clustered index */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ sym_node_t* column) /*!< in: first column in a column list, or NULL */ { byte* data; ulint len; while (column) { data = rec_get_nth_field(rec, offsets, column->field_nos[SYM_CLUST_FIELD_NO], &len); eval_node_copy_and_alloc_val(column, data, len); column = UT_LIST_GET_NEXT(col_var_list, column); } } /*********************************************************************//** Calculates the new values for fields to update. Note that row_upd_copy_columns must have been called first. */ UNIV_INLINE void row_upd_eval_new_vals( /*==================*/ upd_t* update) /*!< in/out: update vector */ { que_node_t* exp; upd_field_t* upd_field; ulint n_fields; ulint i; n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { upd_field = upd_get_nth_field(update, i); exp = upd_field->exp; eval_exp(exp); dfield_copy_data(&(upd_field->new_val), que_node_get_val(exp)); } } /***********************************************************//** Stores to the heap the row on which the node->pcur is positioned. */ static void row_upd_store_row( /*==============*/ upd_node_t* node) /*!< in: row update node */ { dict_index_t* clust_index; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; const ulint* offsets; rec_offs_init(offsets_); ut_ad(node->pcur->latch_mode != BTR_NO_LATCHES); if (node->row != NULL) { mem_heap_empty(node->heap); } clust_index = dict_table_get_first_index(node->table); rec = btr_pcur_get_rec(node->pcur); offsets = rec_get_offsets(rec, clust_index, offsets_, ULINT_UNDEFINED, &heap); node->row = row_build(ROW_COPY_DATA, clust_index, rec, offsets, NULL, &node->ext, node->heap); if (node->is_delete) { node->upd_row = NULL; node->upd_ext = NULL; } else { node->upd_row = dtuple_copy(node->row, node->heap); row_upd_replace(node->upd_row, &node->upd_ext, clust_index, node->update, node->heap); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***********************************************************//** Updates a secondary index entry of a row. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static ulint row_upd_sec_index_entry( /*====================*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { mtr_t mtr; const rec_t* rec; btr_pcur_t pcur; mem_heap_t* heap; dtuple_t* entry; dict_index_t* index; btr_cur_t* btr_cur; ibool referenced; ulint err = DB_SUCCESS; trx_t* trx = thr_get_trx(thr); ulint mode = BTR_MODIFY_LEAF; enum row_search_result search_result; index = node->index; referenced = row_upd_index_is_referenced(index, trx); heap = mem_heap_create(1024); /* Build old index entry */ entry = row_build_index_entry(node->row, node->ext, index, heap); ut_a(entry); log_free_check(); mtr_start(&mtr); /* Set the query thread, so that ibuf_insert_low() will be able to invoke thd_get_trx(). */ btr_pcur_get_btr_cur(&pcur)->thr = thr; /* We can only try to use the insert/delete buffer to buffer delete-mark operations if the index we're modifying has no foreign key constraints referring to it. */ if (!referenced) { mode |= BTR_DELETE_MARK; } search_result = row_search_index_entry(index, entry, mode, &pcur, &mtr); btr_cur = btr_pcur_get_btr_cur(&pcur); rec = btr_cur_get_rec(btr_cur); switch (search_result) { case ROW_NOT_DELETED_REF: /* should only occur for BTR_DELETE */ ut_error; break; case ROW_BUFFERED: /* Entry was delete marked already. */ break; case ROW_NOT_FOUND: fputs("InnoDB: error in sec index entry update in\n" "InnoDB: ", stderr); dict_index_name_print(stderr, trx, index); fputs("\n" "InnoDB: tuple ", stderr); dtuple_print(stderr, entry); fputs("\n" "InnoDB: record ", stderr); rec_print(stderr, rec, index); putc('\n', stderr); trx_print(stderr, trx, 0); fputs("\n" "InnoDB: Submit a detailed bug report" " to http://bugs.mysql.com\n", stderr); break; case ROW_FOUND: /* Delete mark the old index record; it can already be delete marked if we return after a lock wait in row_ins_index_entry below */ if (!rec_get_deleted_flag( rec, dict_table_is_comp(index->table))) { err = btr_cur_del_mark_set_sec_rec( 0, btr_cur, TRUE, thr, &mtr); if (err == DB_SUCCESS && referenced) { ulint* offsets; offsets = rec_get_offsets( rec, index, NULL, ULINT_UNDEFINED, &heap); /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, &pcur, index->table, index, offsets, thr, &mtr); } } break; } btr_pcur_close(&pcur); mtr_commit(&mtr); if (node->is_delete || err != DB_SUCCESS) { goto func_exit; } /* Build a new index entry */ entry = row_build_index_entry(node->upd_row, node->upd_ext, index, heap); ut_a(entry); /* Insert new index entry */ err = row_ins_index_entry(index, entry, 0, TRUE, thr); func_exit: mem_heap_free(heap); return(err); } /***********************************************************//** Updates the secondary index record if it is changed in the row update or deletes it if this is a delete. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ UNIV_INLINE ulint row_upd_sec_step( /*=============*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { ut_ad((node->state == UPD_NODE_UPDATE_ALL_SEC) || (node->state == UPD_NODE_UPDATE_SOME_SEC)); ut_ad(!dict_index_is_clust(node->index)); if (node->state == UPD_NODE_UPDATE_ALL_SEC || row_upd_changes_ord_field_binary(node->row, node->index, node->update)) { return(row_upd_sec_index_entry(node, thr)); } return(DB_SUCCESS); } /***********************************************************//** Marks the clustered index record deleted and inserts the updated version of the record to the index. This function should be used when the ordering fields of the clustered index record change. This should be quite rare in database applications. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static ulint row_upd_clust_rec_by_insert( /*========================*/ upd_node_t* node, /*!< in: row update node */ dict_index_t* index, /*!< in: clustered index of the record */ que_thr_t* thr, /*!< in: query thread */ ibool referenced,/*!< in: TRUE if index may be referenced in a foreign key constraint */ mtr_t* mtr) /*!< in: mtr; gets committed here */ { mem_heap_t* heap = NULL; btr_pcur_t* pcur; btr_cur_t* btr_cur; trx_t* trx; dict_table_t* table; dtuple_t* entry; ulint err; ut_ad(node); ut_ad(dict_index_is_clust(index)); trx = thr_get_trx(thr); table = node->table; pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); if (node->state != UPD_NODE_INSERT_CLUSTERED) { rec_t* rec; dict_index_t* index; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets; rec_offs_init(offsets_); err = btr_cur_del_mark_set_clust_rec(BTR_NO_LOCKING_FLAG, btr_cur, TRUE, thr, mtr); if (err != DB_SUCCESS) { mtr_commit(mtr); return(err); } /* Mark as not-owned the externally stored fields which the new row inherits from the delete marked record: purge should not free those externally stored fields even if the delete marked record is removed from the index tree, or updated. */ rec = btr_cur_get_rec(btr_cur); index = dict_table_get_first_index(table); offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); btr_cur_mark_extern_inherited_fields( btr_cur_get_page_zip(btr_cur), rec, index, offsets, node->update, mtr); if (referenced) { /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, pcur, table, index, offsets, thr, mtr); if (err != DB_SUCCESS) { mtr_commit(mtr); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(err); } } } mtr_commit(mtr); if (!heap) { heap = mem_heap_create(500); } node->state = UPD_NODE_INSERT_CLUSTERED; entry = row_build_index_entry(node->upd_row, node->upd_ext, index, heap); ut_a(entry); row_upd_index_entry_sys_field(entry, index, DATA_TRX_ID, trx->id); if (node->upd_ext) { /* If we return from a lock wait, for example, we may have extern fields marked as not-owned in entry (marked in the if-branch above). We must unmark them. */ btr_cur_unmark_dtuple_extern_fields(entry); /* We must mark non-updated extern fields in entry as inherited, so that a possible rollback will not free them. */ btr_cur_mark_dtuple_inherited_extern(entry, node->update); } err = row_ins_index_entry(index, entry, node->upd_ext ? node->upd_ext->n_ext : 0, TRUE, thr); mem_heap_free(heap); return(err); } /***********************************************************//** Updates a clustered index record of a row when the ordering fields do not change. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static ulint row_upd_clust_rec( /*==============*/ upd_node_t* node, /*!< in: row update node */ dict_index_t* index, /*!< in: clustered index */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in: mtr; gets committed here */ { mem_heap_t* heap = NULL; big_rec_t* big_rec = NULL; btr_pcur_t* pcur; btr_cur_t* btr_cur; ulint err; ut_ad(node); ut_ad(dict_index_is_clust(index)); pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); ut_ad(!rec_get_deleted_flag(btr_pcur_get_rec(pcur), dict_table_is_comp(index->table))); /* Try optimistic updating of the record, keeping changes within the page; we do not check locks because we assume the x-lock on the record to update */ if (node->cmpl_info & UPD_NODE_NO_SIZE_CHANGE) { err = btr_cur_update_in_place(BTR_NO_LOCKING_FLAG, btr_cur, node->update, node->cmpl_info, thr, mtr); } else { err = btr_cur_optimistic_update(BTR_NO_LOCKING_FLAG, btr_cur, node->update, node->cmpl_info, thr, mtr); } mtr_commit(mtr); if (UNIV_LIKELY(err == DB_SUCCESS)) { return(DB_SUCCESS); } if (buf_LRU_buf_pool_running_out()) { return(DB_LOCK_TABLE_FULL); } /* We may have to modify the tree structure: do a pessimistic descent down the index tree */ mtr_start(mtr); /* NOTE: this transaction has an s-lock or x-lock on the record and therefore other transactions cannot modify the record when we have no latch on the page. In addition, we assume that other query threads of the same transaction do not modify the record in the meantime. Therefore we can assert that the restoration of the cursor succeeds. */ ut_a(btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr)); ut_ad(!rec_get_deleted_flag(btr_pcur_get_rec(pcur), dict_table_is_comp(index->table))); err = btr_cur_pessimistic_update(BTR_NO_LOCKING_FLAG, btr_cur, &heap, &big_rec, node->update, node->cmpl_info, thr, mtr); mtr_commit(mtr); if (err == DB_SUCCESS && big_rec) { ulint offsets_[REC_OFFS_NORMAL_SIZE]; rec_t* rec; rec_offs_init(offsets_); mtr_start(mtr); ut_a(btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr)); rec = btr_cur_get_rec(btr_cur); err = btr_store_big_rec_extern_fields( index, btr_cur_get_block(btr_cur), rec, rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap), big_rec, mtr); mtr_commit(mtr); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } if (big_rec) { dtuple_big_rec_free(big_rec); } return(err); } /***********************************************************//** Delete marks a clustered index record. @return DB_SUCCESS if operation successfully completed, else error code */ static ulint row_upd_del_mark_clust_rec( /*=======================*/ upd_node_t* node, /*!< in: row update node */ dict_index_t* index, /*!< in: clustered index */ ulint* offsets,/*!< in/out: rec_get_offsets() for the record under the cursor */ que_thr_t* thr, /*!< in: query thread */ ibool referenced, /*!< in: TRUE if index may be referenced in a foreign key constraint */ mtr_t* mtr) /*!< in: mtr; gets committed here */ { btr_pcur_t* pcur; btr_cur_t* btr_cur; ulint err; ut_ad(node); ut_ad(dict_index_is_clust(index)); ut_ad(node->is_delete); pcur = node->pcur; btr_cur = btr_pcur_get_btr_cur(pcur); /* Store row because we have to build also the secondary index entries */ row_upd_store_row(node); /* Mark the clustered index record deleted; we do not have to check locks, because we assume that we have an x-lock on the record */ err = btr_cur_del_mark_set_clust_rec(BTR_NO_LOCKING_FLAG, btr_cur, TRUE, thr, mtr); if (err == DB_SUCCESS && referenced) { /* NOTE that the following call loses the position of pcur ! */ err = row_upd_check_references_constraints( node, pcur, index->table, index, offsets, thr, mtr); } mtr_commit(mtr); return(err); } /***********************************************************//** Updates the clustered index record. @return DB_SUCCESS if operation successfully completed, DB_LOCK_WAIT in case of a lock wait, else error code */ static ulint row_upd_clust_step( /*===============*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { dict_index_t* index; btr_pcur_t* pcur; ibool success; ulint err; mtr_t* mtr; mtr_t mtr_buf; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets; ibool referenced; rec_offs_init(offsets_); index = dict_table_get_first_index(node->table); referenced = row_upd_index_is_referenced(index, thr_get_trx(thr)); pcur = node->pcur; /* We have to restore the cursor to its position */ mtr = &mtr_buf; mtr_start(mtr); /* If the restoration does not succeed, then the same transaction has deleted the record on which the cursor was, and that is an SQL error. If the restoration succeeds, it may still be that the same transaction has successively deleted and inserted a record with the same ordering fields, but in that case we know that the transaction has at least an implicit x-lock on the record. */ ut_a(pcur->rel_pos == BTR_PCUR_ON); success = btr_pcur_restore_position(BTR_MODIFY_LEAF, pcur, mtr); if (!success) { err = DB_RECORD_NOT_FOUND; mtr_commit(mtr); return(err); } /* If this is a row in SYS_INDEXES table of the data dictionary, then we have to free the file segments of the index tree associated with the index */ if (node->is_delete && ut_dulint_cmp(node->table->id, DICT_INDEXES_ID) == 0) { dict_drop_index_tree(btr_pcur_get_rec(pcur), mtr); mtr_commit(mtr); mtr_start(mtr); success = btr_pcur_restore_position(BTR_MODIFY_LEAF, pcur, mtr); if (!success) { err = DB_ERROR; mtr_commit(mtr); return(err); } } rec = btr_pcur_get_rec(pcur); offsets = rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap); if (!node->has_clust_rec_x_lock) { err = lock_clust_rec_modify_check_and_lock( 0, btr_pcur_get_block(pcur), rec, index, offsets, thr); if (err != DB_SUCCESS) { mtr_commit(mtr); goto exit_func; } } /* NOTE: the following function calls will also commit mtr */ if (node->is_delete) { err = row_upd_del_mark_clust_rec( node, index, offsets, thr, referenced, mtr); if (err == DB_SUCCESS) { node->state = UPD_NODE_UPDATE_ALL_SEC; node->index = dict_table_get_next_index(index); } exit_func: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(err); } /* If the update is made for MySQL, we already have the update vector ready, else we have to do some evaluation: */ if (UNIV_UNLIKELY(!node->in_mysql_interface)) { /* Copy the necessary columns from clust_rec and calculate the new values to set */ row_upd_copy_columns(rec, offsets, UT_LIST_GET_FIRST(node->columns)); row_upd_eval_new_vals(node->update); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } if (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE) { err = row_upd_clust_rec(node, index, thr, mtr); return(err); } row_upd_store_row(node); if (row_upd_changes_ord_field_binary(node->row, index, node->update)) { /* Update causes an ordering field (ordering fields within the B-tree) of the clustered index record to change: perform the update by delete marking and inserting. TODO! What to do to the 'Halloween problem', where an update moves the record forward in index so that it is again updated when the cursor arrives there? Solution: the read operation must check the undo record undo number when choosing records to update. MySQL solves now the problem externally! */ err = row_upd_clust_rec_by_insert( node, index, thr, referenced, mtr); if (err != DB_SUCCESS) { return(err); } node->state = UPD_NODE_UPDATE_ALL_SEC; } else { err = row_upd_clust_rec(node, index, thr, mtr); if (err != DB_SUCCESS) { return(err); } node->state = UPD_NODE_UPDATE_SOME_SEC; } node->index = dict_table_get_next_index(index); return(err); } /***********************************************************//** Updates the affected index records of a row. When the control is transferred to this node, we assume that we have a persistent cursor which was on a record, and the position of the cursor is stored in the cursor. @return DB_SUCCESS if operation successfully completed, else error code or DB_LOCK_WAIT */ static ulint row_upd( /*====*/ upd_node_t* node, /*!< in: row update node */ que_thr_t* thr) /*!< in: query thread */ { ulint err = DB_SUCCESS; ut_ad(node && thr); if (UNIV_LIKELY(node->in_mysql_interface)) { /* We do not get the cmpl_info value from the MySQL interpreter: we must calculate it on the fly: */ if (node->is_delete || row_upd_changes_some_index_ord_field_binary( node->table, node->update)) { node->cmpl_info = 0; } else { node->cmpl_info = UPD_NODE_NO_ORD_CHANGE; } } if (node->state == UPD_NODE_UPDATE_CLUSTERED || node->state == UPD_NODE_INSERT_CLUSTERED) { err = row_upd_clust_step(node, thr); if (err != DB_SUCCESS) { goto function_exit; } } if (!node->is_delete && (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { goto function_exit; } while (node->index != NULL) { err = row_upd_sec_step(node, thr); if (err != DB_SUCCESS) { goto function_exit; } node->index = dict_table_get_next_index(node->index); } function_exit: if (err == DB_SUCCESS) { /* Do some cleanup */ if (node->row != NULL) { node->row = NULL; node->ext = NULL; node->upd_row = NULL; node->upd_ext = NULL; mem_heap_empty(node->heap); } node->state = UPD_NODE_UPDATE_CLUSTERED; } return(err); } /***********************************************************//** Updates a row in a table. This is a high-level function used in SQL execution graphs. @return query thread to run next or NULL */ UNIV_INTERN que_thr_t* row_upd_step( /*=========*/ que_thr_t* thr) /*!< in: query thread */ { upd_node_t* node; sel_node_t* sel_node; que_node_t* parent; ulint err = DB_SUCCESS; trx_t* trx; ut_ad(thr); trx = thr_get_trx(thr); trx_start_if_not_started(trx); node = thr->run_node; sel_node = node->select; parent = que_node_get_parent(node); ut_ad(que_node_get_type(node) == QUE_NODE_UPDATE); if (thr->prev_node == parent) { node->state = UPD_NODE_SET_IX_LOCK; } if (node->state == UPD_NODE_SET_IX_LOCK) { if (!node->has_clust_rec_x_lock) { /* It may be that the current session has not yet started its transaction, or it has been committed: */ err = lock_table(0, node->table, LOCK_IX, thr); if (err != DB_SUCCESS) { goto error_handling; } } node->state = UPD_NODE_UPDATE_CLUSTERED; if (node->searched_update) { /* Reset the cursor */ sel_node->state = SEL_NODE_OPEN; /* Fetch a row to update */ thr->run_node = sel_node; return(thr); } } /* sel_node is NULL if we are in the MySQL interface */ if (sel_node && (sel_node->state != SEL_NODE_FETCH)) { if (!node->searched_update) { /* An explicit cursor should be positioned on a row to update */ ut_error; err = DB_ERROR; goto error_handling; } ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); /* No more rows to update, or the select node performed the updates directly in-place */ thr->run_node = parent; return(thr); } /* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */ err = row_upd(node, thr); error_handling: trx->error_state = err; if (err != DB_SUCCESS) { return(NULL); } /* DO THE TRIGGER ACTIONS HERE */ if (node->searched_update) { /* Fetch next row to update */ thr->run_node = sel_node; } else { /* It was an explicit cursor update */ thr->run_node = parent; } node->state = UPD_NODE_UPDATE_CLUSTERED; return(thr); } #endif /* !UNIV_HOTBACKUP */