/***************************************************************************** Copyright (c) 1997, 2009, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file ibuf/ibuf0ibuf.c Insert buffer Created 7/19/1997 Heikki Tuuri *******************************************************/ #include "ibuf0ibuf.h" /** Number of bits describing a single page */ #define IBUF_BITS_PER_PAGE 4 #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE must be an even number!" #endif /** The start address for an insert buffer bitmap page bitmap */ #define IBUF_BITMAP PAGE_DATA #ifdef UNIV_NONINL #include "ibuf0ibuf.ic" #endif #ifndef UNIV_HOTBACKUP #include "buf0buf.h" #include "buf0rea.h" #include "fsp0fsp.h" #include "trx0sys.h" #include "fil0fil.h" #include "thr0loc.h" #include "rem0rec.h" #include "btr0cur.h" #include "btr0pcur.h" #include "btr0btr.h" #include "sync0sync.h" #include "dict0boot.h" #include "fut0lst.h" #include "lock0lock.h" #include "log0recv.h" #include "que0que.h" /* STRUCTURE OF AN INSERT BUFFER RECORD In versions < 4.1.x: 1. The first field is the page number. 2. The second field is an array which stores type info for each subsequent field. We store the information which affects the ordering of records, and also the physical storage size of an SQL NULL value. E.g., for CHAR(10) it is 10 bytes. 3. Next we have the fields of the actual index record. In versions >= 4.1.x: Note that contary to what we planned in the 1990's, there will only be one insert buffer tree, and that is in the system tablespace of InnoDB. 1. The first field is the space id. 2. The second field is a one-byte marker (0) which differentiates records from the < 4.1.x storage format. 3. The third field is the page number. 4. The fourth field contains the type info, where we have also added 2 bytes to store the charset. In the compressed table format of 5.0.x we must add more information here so that we can build a dummy 'index' struct which 5.0.x can use in the binary search on the index page in the ibuf merge phase. 5. The rest of the fields contain the fields of the actual index record. In versions >= 5.0.3: The first byte of the fourth field is an additional marker (0) if the record is in the compact format. The presence of this marker can be detected by looking at the length of the field modulo DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE. The high-order bit of the character set field in the type info is the "nullable" flag for the field. */ /* PREVENTING DEADLOCKS IN THE INSERT BUFFER SYSTEM If an OS thread performs any operation that brings in disk pages from non-system tablespaces into the buffer pool, or creates such a page there, then the operation may have as a side effect an insert buffer index tree compression. Thus, the tree latch of the insert buffer tree may be acquired in the x-mode, and also the file space latch of the system tablespace may be acquired in the x-mode. Also, an insert to an index in a non-system tablespace can have the same effect. How do we know this cannot lead to a deadlock of OS threads? There is a problem with the i\o-handler threads: they break the latching order because they own x-latches to pages which are on a lower level than the insert buffer tree latch, its page latches, and the tablespace latch an insert buffer operation can reserve. The solution is the following: Let all the tree and page latches connected with the insert buffer be later in the latching order than the fsp latch and fsp page latches. Insert buffer pages must be such that the insert buffer is never invoked when these pages are accessed as this would result in a recursion violating the latching order. We let a special i/o-handler thread take care of i/o to the insert buffer pages and the ibuf bitmap pages, as well as the fsp bitmap pages and the first inode page, which contains the inode of the ibuf tree: let us call all these ibuf pages. To prevent deadlocks, we do not let a read-ahead access both non-ibuf and ibuf pages. Then an i/o-handler for the insert buffer never needs to access recursively the insert buffer tree and thus obeys the latching order. On the other hand, other i/o-handlers for other tablespaces may require access to the insert buffer, but because all kinds of latches they need to access there are later in the latching order, no violation of the latching order occurs in this case, either. A problem is how to grow and contract an insert buffer tree. As it is later in the latching order than the fsp management, we have to reserve the fsp latch first, before adding or removing pages from the insert buffer tree. We let the insert buffer tree have its own file space management: a free list of pages linked to the tree root. To prevent recursive using of the insert buffer when adding pages to the tree, we must first load these pages to memory, obtaining a latch on them, and only after that add them to the free list of the insert buffer tree. More difficult is removing of pages from the free list. If there is an excess of pages in the free list of the ibuf tree, they might be needed if some thread reserves the fsp latch, intending to allocate more file space. So we do the following: if a thread reserves the fsp latch, we check the writer count field of the latch. If this field has value 1, it means that the thread did not own the latch before entering the fsp system, and the mtr of the thread contains no modifications to the fsp pages. Now we are free to reserve the ibuf latch, and check if there is an excess of pages in the free list. We can then, in a separate mini-transaction, take them out of the free list and free them to the fsp system. To avoid deadlocks in the ibuf system, we divide file pages into three levels: (1) non-ibuf pages, (2) ibuf tree pages and the pages in the ibuf tree free list, and (3) ibuf bitmap pages. No OS thread is allowed to access higher level pages if it has latches to lower level pages; even if the thread owns a B-tree latch it must not access the B-tree non-leaf pages if it has latches on lower level pages. Read-ahead is only allowed for level 1 and 2 pages. Dedicated i/o-handler threads handle exclusively level 1 i/o. A dedicated i/o handler thread handles exclusively level 2 i/o. However, if an OS thread does the i/o handling for itself, i.e., it uses synchronous aio, it can access any pages, as long as it obeys the access order rules. */ /** Buffer pool size per the maximum insert buffer size */ #define IBUF_POOL_SIZE_PER_MAX_SIZE 2 /** Table name for the insert buffer. */ #define IBUF_TABLE_NAME "SYS_IBUF_TABLE" /** Operations that can currently be buffered. */ UNIV_INTERN ibuf_use_t ibuf_use = IBUF_USE_INSERT; /** The insert buffer control structure */ UNIV_INTERN ibuf_t* ibuf = NULL; /** Counter for ibuf_should_try() */ UNIV_INTERN ulint ibuf_flush_count = 0; #ifdef UNIV_IBUF_COUNT_DEBUG /** Number of tablespaces in the ibuf_counts array */ #define IBUF_COUNT_N_SPACES 4 /** Number of pages within each tablespace in the ibuf_counts array */ #define IBUF_COUNT_N_PAGES 130000 /** Buffered entry counts for file pages, used in debugging */ static ulint ibuf_counts[IBUF_COUNT_N_SPACES][IBUF_COUNT_N_PAGES]; /******************************************************************//** Checks that the indexes to ibuf_counts[][] are within limits. */ UNIV_INLINE void ibuf_count_check( /*=============*/ ulint space_id, /*!< in: space identifier */ ulint page_no) /*!< in: page number */ { if (space_id < IBUF_COUNT_N_SPACES && page_no < IBUF_COUNT_N_PAGES) { return; } fprintf(stderr, "InnoDB: UNIV_IBUF_COUNT_DEBUG limits space_id and page_no\n" "InnoDB: and breaks crash recovery.\n" "InnoDB: space_id=%lu, should be 0<=space_id<%lu\n" "InnoDB: page_no=%lu, should be 0<=page_no<%lu\n", (ulint) space_id, (ulint) IBUF_COUNT_N_SPACES, (ulint) page_no, (ulint) IBUF_COUNT_N_PAGES); ut_error; } #endif /** @name Offsets to the per-page bits in the insert buffer bitmap */ /* @{ */ #define IBUF_BITMAP_FREE 0 /*!< Bits indicating the amount of free space */ #define IBUF_BITMAP_BUFFERED 2 /*!< TRUE if there are buffered changes for the page */ #define IBUF_BITMAP_IBUF 3 /*!< TRUE if page is a part of the ibuf tree, excluding the root page, or is in the free list of the ibuf */ /* @} */ /** The mutex used to block pessimistic inserts to ibuf trees */ static mutex_t ibuf_pessimistic_insert_mutex; /** The mutex protecting the insert buffer structs */ static mutex_t ibuf_mutex; /** The mutex protecting the insert buffer bitmaps */ static mutex_t ibuf_bitmap_mutex; /** The area in pages from which contract looks for page numbers for merge */ #define IBUF_MERGE_AREA 8 /** Inside the merge area, pages which have at most 1 per this number less buffered entries compared to maximum volume that can buffered for a single page are merged along with the page whose buffer became full */ #define IBUF_MERGE_THRESHOLD 4 /** In ibuf_contract at most this number of pages is read to memory in one batch, in order to merge the entries for them in the insert buffer */ #define IBUF_MAX_N_PAGES_MERGED IBUF_MERGE_AREA /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it in connection to inserts there, using non-synchronous contract */ #define IBUF_CONTRACT_ON_INSERT_NON_SYNC 0 /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it in connection to inserts there, using synchronous contract */ #define IBUF_CONTRACT_ON_INSERT_SYNC 5 /** If the combined size of the ibuf trees exceeds ibuf->max_size by this many pages, we start to contract it synchronous contract, but do not insert */ #define IBUF_CONTRACT_DO_NOT_INSERT 10 /* TODO: how to cope with drop table if there are records in the insert buffer for the indexes of the table? Is there actually any problem, because ibuf merge is done to a page when it is read in, and it is still physically like the index page even if the index would have been dropped! So, there seems to be no problem. */ /******************************************************************//** Sets the flag in the current OS thread local storage denoting that it is inside an insert buffer routine. */ UNIV_INLINE void ibuf_enter(void) /*============*/ { ibool* ptr; ptr = thr_local_get_in_ibuf_field(); ut_ad(*ptr == FALSE); *ptr = TRUE; } /******************************************************************//** Sets the flag in the current OS thread local storage denoting that it is exiting an insert buffer routine. */ UNIV_INLINE void ibuf_exit(void) /*===========*/ { ibool* ptr; ptr = thr_local_get_in_ibuf_field(); ut_ad(*ptr == TRUE); *ptr = FALSE; } /******************************************************************//** Returns TRUE if the current OS thread is performing an insert buffer routine. For instance, a read-ahead of non-ibuf pages is forbidden by threads that are executing an insert buffer routine. @return TRUE if inside an insert buffer routine */ UNIV_INTERN ibool ibuf_inside(void) /*=============*/ { return(*thr_local_get_in_ibuf_field()); } /******************************************************************//** Gets the ibuf header page and x-latches it. @return insert buffer header page */ static page_t* ibuf_header_page_get( /*=================*/ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; ut_ad(!ibuf_inside()); block = buf_page_get( IBUF_SPACE_ID, 0, FSP_IBUF_HEADER_PAGE_NO, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_IBUF_HEADER); return(buf_block_get_frame(block)); } /******************************************************************//** Gets the root page and x-latches it. @return insert buffer tree root page */ static page_t* ibuf_tree_root_get( /*===============*/ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; ut_ad(ibuf_inside()); mtr_x_lock(dict_index_get_lock(ibuf->index), mtr); block = buf_page_get( IBUF_SPACE_ID, 0, FSP_IBUF_TREE_ROOT_PAGE_NO, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE); return(buf_block_get_frame(block)); } #ifdef UNIV_IBUF_COUNT_DEBUG /******************************************************************//** Gets the ibuf count for a given page. @return number of entries in the insert buffer currently buffered for this page */ UNIV_INTERN ulint ibuf_count_get( /*===========*/ ulint space, /*!< in: space id */ ulint page_no)/*!< in: page number */ { ibuf_count_check(space, page_no); return(ibuf_counts[space][page_no]); } /******************************************************************//** Sets the ibuf count for a given page. */ static void ibuf_count_set( /*===========*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: page number */ ulint val) /*!< in: value to set */ { ibuf_count_check(space, page_no); ut_a(val < UNIV_PAGE_SIZE); ibuf_counts[space][page_no] = val; } #endif /******************************************************************//** Closes insert buffer and frees the data structures. */ UNIV_INTERN void ibuf_close(void) /*============*/ { mutex_free(&ibuf_pessimistic_insert_mutex); memset(&ibuf_pessimistic_insert_mutex, 0x0, sizeof(ibuf_pessimistic_insert_mutex)); mutex_free(&ibuf_mutex); memset(&ibuf_mutex, 0x0, sizeof(ibuf_mutex)); mutex_free(&ibuf_bitmap_mutex); memset(&ibuf_bitmap_mutex, 0x0, sizeof(ibuf_mutex)); mem_free(ibuf); ibuf = NULL; } /******************************************************************//** Updates the size information of the ibuf, assuming the segment size has not changed. */ static void ibuf_size_update( /*=============*/ const page_t* root, /*!< in: ibuf tree root */ mtr_t* mtr) /*!< in: mtr */ { ut_ad(mutex_own(&ibuf_mutex)); ibuf->free_list_len = flst_get_len(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, mtr); ibuf->height = 1 + btr_page_get_level(root, mtr); /* the '1 +' is the ibuf header page */ ibuf->size = ibuf->seg_size - (1 + ibuf->free_list_len); ibuf->empty = page_get_n_recs(root) == 0; } /******************************************************************//** Creates the insert buffer data structure at a database startup and initializes the data structures for the insert buffer. */ UNIV_INTERN void ibuf_init_at_db_start(void) /*=======================*/ { page_t* root; mtr_t mtr; dict_table_t* table; mem_heap_t* heap; dict_index_t* index; ulint n_used; page_t* header_page; ulint error; ibuf = mem_alloc(sizeof(ibuf_t)); memset(ibuf, 0, sizeof(*ibuf)); /* Note that also a pessimistic delete can sometimes make a B-tree grow in size, as the references on the upper levels of the tree can change */ ibuf->max_size = buf_pool_get_curr_size() / UNIV_PAGE_SIZE / IBUF_POOL_SIZE_PER_MAX_SIZE; mutex_create(&ibuf_pessimistic_insert_mutex, SYNC_IBUF_PESS_INSERT_MUTEX); mutex_create(&ibuf_mutex, SYNC_IBUF_MUTEX); mutex_create(&ibuf_bitmap_mutex, SYNC_IBUF_BITMAP_MUTEX); mtr_start(&mtr); mutex_enter(&ibuf_mutex); mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, NULL), &mtr); header_page = ibuf_header_page_get(&mtr); fseg_n_reserved_pages(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, &n_used, &mtr); ibuf_enter(); ut_ad(n_used >= 2); ibuf->seg_size = n_used; { buf_block_t* block; block = buf_page_get( IBUF_SPACE_ID, 0, FSP_IBUF_TREE_ROOT_PAGE_NO, RW_X_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE); root = buf_block_get_frame(block); } ibuf_size_update(root, &mtr); mutex_exit(&ibuf_mutex); mtr_commit(&mtr); ibuf_exit(); heap = mem_heap_create(450); /* Use old-style record format for the insert buffer. */ table = dict_mem_table_create(IBUF_TABLE_NAME, IBUF_SPACE_ID, 1, 0); dict_mem_table_add_col(table, heap, "DUMMY_COLUMN", DATA_BINARY, 0, 0); table->id = ut_dulint_add(DICT_IBUF_ID_MIN, IBUF_SPACE_ID); dict_table_add_to_cache(table, heap); mem_heap_free(heap); index = dict_mem_index_create( IBUF_TABLE_NAME, "CLUST_IND", IBUF_SPACE_ID, DICT_CLUSTERED | DICT_UNIVERSAL | DICT_IBUF, 1); dict_mem_index_add_field(index, "DUMMY_COLUMN", 0); index->id = ut_dulint_add(DICT_IBUF_ID_MIN, IBUF_SPACE_ID); error = dict_index_add_to_cache(table, index, FSP_IBUF_TREE_ROOT_PAGE_NO, FALSE); ut_a(error == DB_SUCCESS); ibuf->index = dict_table_get_first_index(table); } #endif /* !UNIV_HOTBACKUP */ /*********************************************************************//** Initializes an ibuf bitmap page. */ UNIV_INTERN void ibuf_bitmap_page_init( /*==================*/ buf_block_t* block, /*!< in: bitmap page */ mtr_t* mtr) /*!< in: mtr */ { page_t* page; ulint byte_offset; ulint zip_size = buf_block_get_zip_size(block); ut_a(ut_is_2pow(zip_size)); page = buf_block_get_frame(block); fil_page_set_type(page, FIL_PAGE_IBUF_BITMAP); /* Write all zeros to the bitmap */ if (!zip_size) { byte_offset = UT_BITS_IN_BYTES(UNIV_PAGE_SIZE * IBUF_BITS_PER_PAGE); } else { byte_offset = UT_BITS_IN_BYTES(zip_size * IBUF_BITS_PER_PAGE); } memset(page + IBUF_BITMAP, 0, byte_offset); /* The remaining area (up to the page trailer) is uninitialized. */ #ifndef UNIV_HOTBACKUP mlog_write_initial_log_record(page, MLOG_IBUF_BITMAP_INIT, mtr); #endif /* !UNIV_HOTBACKUP */ } /*********************************************************************//** Parses a redo log record of an ibuf bitmap page init. @return end of log record or NULL */ UNIV_INTERN byte* ibuf_parse_bitmap_init( /*===================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr __attribute__((unused)), /*!< in: buffer end */ buf_block_t* block, /*!< in: block or NULL */ mtr_t* mtr) /*!< in: mtr or NULL */ { ut_ad(ptr && end_ptr); if (block) { ibuf_bitmap_page_init(block, mtr); } return(ptr); } #ifndef UNIV_HOTBACKUP /********************************************************************//** Gets the desired bits for a given page from a bitmap page. @return value of bits */ UNIV_INLINE ulint ibuf_bitmap_page_get_bits( /*======================*/ const page_t* page, /*!< in: bitmap page */ ulint page_no,/*!< in: page whose bits to get */ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ ulint bit, /*!< in: IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... */ mtr_t* mtr __attribute__((unused))) /*!< in: mtr containing an x-latch to the bitmap page */ { ulint byte_offset; ulint bit_offset; ulint map_byte; ulint value; ut_ad(bit < IBUF_BITS_PER_PAGE); #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE % 2 != 0" #endif ut_ad(ut_is_2pow(zip_size)); ut_ad(mtr_memo_contains_page(mtr, page, MTR_MEMO_PAGE_X_FIX)); if (!zip_size) { bit_offset = (page_no % UNIV_PAGE_SIZE) * IBUF_BITS_PER_PAGE + bit; } else { bit_offset = (page_no & (zip_size - 1)) * IBUF_BITS_PER_PAGE + bit; } byte_offset = bit_offset / 8; bit_offset = bit_offset % 8; ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE); map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset); value = ut_bit_get_nth(map_byte, bit_offset); if (bit == IBUF_BITMAP_FREE) { ut_ad(bit_offset + 1 < 8); value = value * 2 + ut_bit_get_nth(map_byte, bit_offset + 1); } return(value); } /********************************************************************//** Sets the desired bit for a given page in a bitmap page. */ static void ibuf_bitmap_page_set_bits( /*======================*/ page_t* page, /*!< in: bitmap page */ ulint page_no,/*!< in: page whose bits to set */ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ ulint bit, /*!< in: IBUF_BITMAP_FREE, IBUF_BITMAP_BUFFERED, ... */ ulint val, /*!< in: value to set */ mtr_t* mtr) /*!< in: mtr containing an x-latch to the bitmap page */ { ulint byte_offset; ulint bit_offset; ulint map_byte; ut_ad(bit < IBUF_BITS_PER_PAGE); #if IBUF_BITS_PER_PAGE % 2 # error "IBUF_BITS_PER_PAGE % 2 != 0" #endif ut_ad(ut_is_2pow(zip_size)); ut_ad(mtr_memo_contains_page(mtr, page, MTR_MEMO_PAGE_X_FIX)); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((bit != IBUF_BITMAP_BUFFERED) || (val != FALSE) || (0 == ibuf_count_get(page_get_space_id(page), page_no))); #endif if (!zip_size) { bit_offset = (page_no % UNIV_PAGE_SIZE) * IBUF_BITS_PER_PAGE + bit; } else { bit_offset = (page_no & (zip_size - 1)) * IBUF_BITS_PER_PAGE + bit; } byte_offset = bit_offset / 8; bit_offset = bit_offset % 8; ut_ad(byte_offset + IBUF_BITMAP < UNIV_PAGE_SIZE); map_byte = mach_read_from_1(page + IBUF_BITMAP + byte_offset); if (bit == IBUF_BITMAP_FREE) { ut_ad(bit_offset + 1 < 8); ut_ad(val <= 3); map_byte = ut_bit_set_nth(map_byte, bit_offset, val / 2); map_byte = ut_bit_set_nth(map_byte, bit_offset + 1, val % 2); } else { ut_ad(val <= 1); map_byte = ut_bit_set_nth(map_byte, bit_offset, val); } mlog_write_ulint(page + IBUF_BITMAP + byte_offset, map_byte, MLOG_1BYTE, mtr); } /********************************************************************//** Calculates the bitmap page number for a given page number. @return the bitmap page number where the file page is mapped */ UNIV_INLINE ulint ibuf_bitmap_page_no_calc( /*=====================*/ ulint zip_size, /*!< in: compressed page size in bytes; 0 for uncompressed pages */ ulint page_no) /*!< in: tablespace page number */ { ut_ad(ut_is_2pow(zip_size)); if (!zip_size) { return(FSP_IBUF_BITMAP_OFFSET + (page_no & ~(UNIV_PAGE_SIZE - 1))); } else { return(FSP_IBUF_BITMAP_OFFSET + (page_no & ~(zip_size - 1))); } } /********************************************************************//** Gets the ibuf bitmap page where the bits describing a given file page are stored. @return bitmap page where the file page is mapped, that is, the bitmap page containing the descriptor bits for the file page; the bitmap page is x-latched */ static page_t* ibuf_bitmap_get_map_page_func( /*==========================*/ ulint space, /*!< in: space id of the file page */ ulint page_no,/*!< in: page number of the file page */ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; block = buf_page_get_gen(space, zip_size, ibuf_bitmap_page_no_calc(zip_size, page_no), RW_X_LATCH, NULL, BUF_GET, file, line, mtr); buf_block_dbg_add_level(block, SYNC_IBUF_BITMAP); return(buf_block_get_frame(block)); } /********************************************************************//** Gets the ibuf bitmap page where the bits describing a given file page are stored. @return bitmap page where the file page is mapped, that is, the bitmap page containing the descriptor bits for the file page; the bitmap page is x-latched @param space in: space id of the file page @param page_no in: page number of the file page @param zip_size in: compressed page size in bytes; 0 for uncompressed pages @param mtr in: mini-transaction */ #define ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr) \ ibuf_bitmap_get_map_page_func(space, page_no, zip_size, \ __FILE__, __LINE__, mtr) /************************************************************************//** Sets the free bits of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. */ UNIV_INLINE void ibuf_set_free_bits_low( /*===================*/ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ const buf_block_t* block, /*!< in: index page; free bits are set if the index is non-clustered and page level is 0 */ ulint val, /*!< in: value to set: < 4 */ mtr_t* mtr) /*!< in/out: mtr */ { page_t* bitmap_page; ulint space; ulint page_no; if (!page_is_leaf(buf_block_get_frame(block))) { return; } space = buf_block_get_space(block); page_no = buf_block_get_page_no(block); bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr); #ifdef UNIV_IBUF_DEBUG # if 0 fprintf(stderr, "Setting space %lu page %lu free bits to %lu should be %lu\n", space, page_no, val, ibuf_index_page_calc_free(zip_size, block)); # endif ut_a(val <= ibuf_index_page_calc_free(zip_size, block)); #endif /* UNIV_IBUF_DEBUG */ ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, val, mtr); } /************************************************************************//** Sets the free bit of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. */ UNIV_INTERN void ibuf_set_free_bits_func( /*====================*/ buf_block_t* block, /*!< in: index page of a non-clustered index; free bit is reset if page level is 0 */ #ifdef UNIV_IBUF_DEBUG ulint max_val,/*!< in: ULINT_UNDEFINED or a maximum value which the bits must have before setting; this is for debugging */ #endif /* UNIV_IBUF_DEBUG */ ulint val) /*!< in: value to set: < 4 */ { mtr_t mtr; page_t* page; page_t* bitmap_page; ulint space; ulint page_no; ulint zip_size; page = buf_block_get_frame(block); if (!page_is_leaf(page)) { return; } mtr_start(&mtr); space = buf_block_get_space(block); page_no = buf_block_get_page_no(block); zip_size = buf_block_get_zip_size(block); bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, &mtr); #ifdef UNIV_IBUF_DEBUG if (max_val != ULINT_UNDEFINED) { ulint old_val; old_val = ibuf_bitmap_page_get_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, &mtr); # if 0 if (old_val != max_val) { fprintf(stderr, "Ibuf: page %lu old val %lu max val %lu\n", page_get_page_no(page), old_val, max_val); } # endif ut_a(old_val <= max_val); } # if 0 fprintf(stderr, "Setting page no %lu free bits to %lu should be %lu\n", page_get_page_no(page), val, ibuf_index_page_calc_free(zip_size, block)); # endif ut_a(val <= ibuf_index_page_calc_free(zip_size, block)); #endif /* UNIV_IBUF_DEBUG */ ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, val, &mtr); mtr_commit(&mtr); } /************************************************************************//** Resets the free bits of the page in the ibuf bitmap. This is done in a separate mini-transaction, hence this operation does not restrict further work to only ibuf bitmap operations, which would result if the latch to the bitmap page were kept. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to decrement or reset the bits in the bitmap in a mini-transaction that is committed before the mini-transaction that affects the free space. */ UNIV_INTERN void ibuf_reset_free_bits( /*=================*/ buf_block_t* block) /*!< in: index page; free bits are set to 0 if the index is a non-clustered non-unique, and page level is 0 */ { ibuf_set_free_bits(block, 0, ULINT_UNDEFINED); } /**********************************************************************//** Updates the free bits for an uncompressed page to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations for this OS thread until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the page. */ UNIV_INTERN void ibuf_update_free_bits_low( /*======================*/ const buf_block_t* block, /*!< in: index page */ ulint max_ins_size, /*!< in: value of maximum insert size with reorganize before the latest operation performed to the page */ mtr_t* mtr) /*!< in/out: mtr */ { ulint before; ulint after; ut_a(!buf_block_get_page_zip(block)); before = ibuf_index_page_calc_free_bits(0, max_ins_size); after = ibuf_index_page_calc_free(0, block); /* This approach cannot be used on compressed pages, since the computed value of "before" often does not match the current state of the bitmap. This is because the free space may increase or decrease when a compressed page is reorganized. */ if (before != after) { ibuf_set_free_bits_low(0, block, after, mtr); } } /**********************************************************************//** Updates the free bits for a compressed page to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations for this OS thread until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the page. */ UNIV_INTERN void ibuf_update_free_bits_zip( /*======================*/ buf_block_t* block, /*!< in/out: index page */ mtr_t* mtr) /*!< in/out: mtr */ { page_t* bitmap_page; ulint space; ulint page_no; ulint zip_size; ulint after; space = buf_block_get_space(block); page_no = buf_block_get_page_no(block); zip_size = buf_block_get_zip_size(block); ut_a(page_is_leaf(buf_block_get_frame(block))); ut_a(zip_size); bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr); after = ibuf_index_page_calc_free_zip(zip_size, block); if (after == 0) { /* We move the page to the front of the buffer pool LRU list: the purpose of this is to prevent those pages to which we cannot make inserts using the insert buffer from slipping out of the buffer pool */ buf_page_make_young(&block->page); } ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, after, mtr); } /**********************************************************************//** Updates the free bits for the two pages to reflect the present state. Does this in the mtr given, which means that the latching order rules virtually prevent any further operations until mtr is committed. NOTE: The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to set the free bits in the same mini-transaction that updated the pages. */ UNIV_INTERN void ibuf_update_free_bits_for_two_pages_low( /*====================================*/ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ buf_block_t* block1, /*!< in: index page */ buf_block_t* block2, /*!< in: index page */ mtr_t* mtr) /*!< in: mtr */ { ulint state; /* As we have to x-latch two random bitmap pages, we have to acquire the bitmap mutex to prevent a deadlock with a similar operation performed by another OS thread. */ mutex_enter(&ibuf_bitmap_mutex); state = ibuf_index_page_calc_free(zip_size, block1); ibuf_set_free_bits_low(zip_size, block1, state, mtr); state = ibuf_index_page_calc_free(zip_size, block2); ibuf_set_free_bits_low(zip_size, block2, state, mtr); mutex_exit(&ibuf_bitmap_mutex); } /**********************************************************************//** Returns TRUE if the page is one of the fixed address ibuf pages. @return TRUE if a fixed address ibuf i/o page */ UNIV_INLINE ibool ibuf_fixed_addr_page( /*=================*/ ulint space, /*!< in: space id */ ulint zip_size,/*!< in: compressed page size in bytes; 0 for uncompressed pages */ ulint page_no)/*!< in: page number */ { return((space == IBUF_SPACE_ID && page_no == IBUF_TREE_ROOT_PAGE_NO) || ibuf_bitmap_page(zip_size, page_no)); } /***********************************************************************//** Checks if a page is a level 2 or 3 page in the ibuf hierarchy of pages. Must not be called when recv_no_ibuf_operations==TRUE. @return TRUE if level 2 or level 3 page */ UNIV_INTERN ibool ibuf_page( /*======*/ ulint space, /*!< in: space id */ ulint zip_size,/*!< in: compressed page size in bytes, or 0 */ ulint page_no,/*!< in: page number */ mtr_t* mtr) /*!< in: mtr which will contain an x-latch to the bitmap page if the page is not one of the fixed address ibuf pages, or NULL, in which case a new transaction is created. */ { ibool ret; mtr_t local_mtr; page_t* bitmap_page; ut_ad(!recv_no_ibuf_operations); if (ibuf_fixed_addr_page(space, zip_size, page_no)) { return(TRUE); } else if (space != IBUF_SPACE_ID) { return(FALSE); } ut_ad(fil_space_get_type(IBUF_SPACE_ID) == FIL_TABLESPACE); if (mtr == NULL) { mtr = &local_mtr; mtr_start(mtr); } bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, mtr); ret = ibuf_bitmap_page_get_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_IBUF, mtr); if (mtr == &local_mtr) { mtr_commit(mtr); } return(ret); } /********************************************************************//** Returns the page number field of an ibuf record. @return page number */ static ulint ibuf_rec_get_page_no( /*=================*/ const rec_t* rec) /*!< in: ibuf record */ { const byte* field; ulint len; ut_ad(ibuf_inside()); ut_ad(rec_get_n_fields_old(rec) > 2); field = rec_get_nth_field_old(rec, 1, &len); if (len == 1) { /* This is of the >= 4.1.x record format */ ut_a(trx_sys_multiple_tablespace_format); field = rec_get_nth_field_old(rec, 2, &len); } else { ut_a(trx_doublewrite_must_reset_space_ids); ut_a(!trx_sys_multiple_tablespace_format); field = rec_get_nth_field_old(rec, 0, &len); } ut_a(len == 4); return(mach_read_from_4(field)); } /********************************************************************//** Returns the space id field of an ibuf record. For < 4.1.x format records returns 0. @return space id */ static ulint ibuf_rec_get_space( /*===============*/ const rec_t* rec) /*!< in: ibuf record */ { const byte* field; ulint len; ut_ad(ibuf_inside()); ut_ad(rec_get_n_fields_old(rec) > 2); field = rec_get_nth_field_old(rec, 1, &len); if (len == 1) { /* This is of the >= 4.1.x record format */ ut_a(trx_sys_multiple_tablespace_format); field = rec_get_nth_field_old(rec, 0, &len); ut_a(len == 4); return(mach_read_from_4(field)); } ut_a(trx_doublewrite_must_reset_space_ids); ut_a(!trx_sys_multiple_tablespace_format); return(0); } /********************************************************************//** Creates a dummy index for inserting a record to a non-clustered index. @return dummy index */ static dict_index_t* ibuf_dummy_index_create( /*====================*/ ulint n, /*!< in: number of fields */ ibool comp) /*!< in: TRUE=use compact record format */ { dict_table_t* table; dict_index_t* index; table = dict_mem_table_create("IBUF_DUMMY", DICT_HDR_SPACE, n, comp ? DICT_TF_COMPACT : 0); index = dict_mem_index_create("IBUF_DUMMY", "IBUF_DUMMY", DICT_HDR_SPACE, 0, n); index->table = table; /* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */ index->cached = TRUE; return(index); } /********************************************************************//** Add a column to the dummy index */ static void ibuf_dummy_index_add_col( /*=====================*/ dict_index_t* index, /*!< in: dummy index */ const dtype_t* type, /*!< in: the data type of the column */ ulint len) /*!< in: length of the column */ { ulint i = index->table->n_def; dict_mem_table_add_col(index->table, NULL, NULL, dtype_get_mtype(type), dtype_get_prtype(type), dtype_get_len(type)); dict_index_add_col(index, index->table, dict_table_get_nth_col(index->table, i), len); } /********************************************************************//** Deallocates a dummy index for inserting a record to a non-clustered index. */ static void ibuf_dummy_index_free( /*==================*/ dict_index_t* index) /*!< in, own: dummy index */ { dict_table_t* table = index->table; dict_mem_index_free(index); dict_mem_table_free(table); } /*********************************************************************//** Builds the entry to insert into a non-clustered index when we have the corresponding record in an ibuf index. NOTE that as we copy pointers to fields in ibuf_rec, the caller must hold a latch to the ibuf_rec page as long as the entry is used! @return own: entry to insert to a non-clustered index */ UNIV_INLINE dtuple_t* ibuf_build_entry_pre_4_1_x( /*=======================*/ const rec_t* ibuf_rec, /*!< in: record in an insert buffer */ mem_heap_t* heap, /*!< in: heap where built */ dict_index_t** pindex) /*!< out, own: dummy index that describes the entry */ { ulint i; ulint len; const byte* types; dtuple_t* tuple; ulint n_fields; ut_a(trx_doublewrite_must_reset_space_ids); ut_a(!trx_sys_multiple_tablespace_format); n_fields = rec_get_n_fields_old(ibuf_rec) - 2; tuple = dtuple_create(heap, n_fields); types = rec_get_nth_field_old(ibuf_rec, 1, &len); ut_a(len == n_fields * DATA_ORDER_NULL_TYPE_BUF_SIZE); for (i = 0; i < n_fields; i++) { const byte* data; dfield_t* field; field = dtuple_get_nth_field(tuple, i); data = rec_get_nth_field_old(ibuf_rec, i + 2, &len); dfield_set_data(field, data, len); dtype_read_for_order_and_null_size( dfield_get_type(field), types + i * DATA_ORDER_NULL_TYPE_BUF_SIZE); } *pindex = ibuf_dummy_index_create(n_fields, FALSE); return(tuple); } /*********************************************************************//** Builds the entry to insert into a non-clustered index when we have the corresponding record in an ibuf index. NOTE that as we copy pointers to fields in ibuf_rec, the caller must hold a latch to the ibuf_rec page as long as the entry is used! @return own: entry to insert to a non-clustered index */ static dtuple_t* ibuf_build_entry_from_ibuf_rec( /*===========================*/ const rec_t* ibuf_rec, /*!< in: record in an insert buffer */ mem_heap_t* heap, /*!< in: heap where built */ dict_index_t** pindex) /*!< out, own: dummy index that describes the entry */ { dtuple_t* tuple; dfield_t* field; ulint n_fields; const byte* types; const byte* data; ulint len; ulint i; dict_index_t* index; data = rec_get_nth_field_old(ibuf_rec, 1, &len); if (len > 1) { /* This a < 4.1.x format record */ return(ibuf_build_entry_pre_4_1_x(ibuf_rec, heap, pindex)); } /* This a >= 4.1.x format record */ ut_a(trx_sys_multiple_tablespace_format); ut_a(*data == 0); ut_a(rec_get_n_fields_old(ibuf_rec) > 4); n_fields = rec_get_n_fields_old(ibuf_rec) - 4; tuple = dtuple_create(heap, n_fields); types = rec_get_nth_field_old(ibuf_rec, 3, &len); ut_a(len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE <= 1); index = ibuf_dummy_index_create( n_fields, len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); if (len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE) { /* compact record format */ len--; ut_a(*types == 0); types++; } ut_a(len == n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(tuple, i); data = rec_get_nth_field_old(ibuf_rec, i + 4, &len); dfield_set_data(field, data, len); dtype_new_read_for_order_and_null_size( dfield_get_type(field), types + i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); ibuf_dummy_index_add_col(index, dfield_get_type(field), len); } /* Prevent an ut_ad() failure in page_zip_write_rec() by adding system columns to the dummy table pointed to by the dummy secondary index. The insert buffer is only used for secondary indexes, whose records never contain any system columns, such as DB_TRX_ID. */ ut_d(dict_table_add_system_columns(index->table, index->table->heap)); *pindex = index; return(tuple); } /********************************************************************//** Returns the space taken by a stored non-clustered index entry if converted to an index record. @return size of index record in bytes + an upper limit of the space taken in the page directory */ static ulint ibuf_rec_get_volume( /*================*/ const rec_t* ibuf_rec)/*!< in: ibuf record */ { dtype_t dtype; ibool new_format = FALSE; ulint data_size = 0; ulint n_fields; const byte* types; const byte* data; ulint len; ulint i; ulint comp; ut_ad(ibuf_inside()); ut_ad(rec_get_n_fields_old(ibuf_rec) > 2); data = rec_get_nth_field_old(ibuf_rec, 1, &len); if (len > 1) { /* < 4.1.x format record */ ut_a(trx_doublewrite_must_reset_space_ids); ut_a(!trx_sys_multiple_tablespace_format); n_fields = rec_get_n_fields_old(ibuf_rec) - 2; types = rec_get_nth_field_old(ibuf_rec, 1, &len); ut_ad(len == n_fields * DATA_ORDER_NULL_TYPE_BUF_SIZE); comp = 0; } else { /* >= 4.1.x format record */ ut_a(trx_sys_multiple_tablespace_format); ut_a(*data == 0); types = rec_get_nth_field_old(ibuf_rec, 3, &len); comp = len % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE; ut_a(comp <= 1); if (comp) { /* compact record format */ ulint volume; dict_index_t* dummy_index; mem_heap_t* heap = mem_heap_create(500); dtuple_t* entry = ibuf_build_entry_from_ibuf_rec( ibuf_rec, heap, &dummy_index); volume = rec_get_converted_size(dummy_index, entry, 0); ibuf_dummy_index_free(dummy_index); mem_heap_free(heap); return(volume + page_dir_calc_reserved_space(1)); } n_fields = rec_get_n_fields_old(ibuf_rec) - 4; new_format = TRUE; } for (i = 0; i < n_fields; i++) { if (new_format) { data = rec_get_nth_field_old(ibuf_rec, i + 4, &len); dtype_new_read_for_order_and_null_size( &dtype, types + i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE); } else { data = rec_get_nth_field_old(ibuf_rec, i + 2, &len); dtype_read_for_order_and_null_size( &dtype, types + i * DATA_ORDER_NULL_TYPE_BUF_SIZE); } if (len == UNIV_SQL_NULL) { data_size += dtype_get_sql_null_size(&dtype, comp); } else { data_size += len; } } return(data_size + rec_get_converted_extra_size(data_size, n_fields, 0) + page_dir_calc_reserved_space(1)); } /*********************************************************************//** Builds the tuple to insert to an ibuf tree when we have an entry for a non-clustered index. NOTE that the original entry must be kept because we copy pointers to its fields. @return own: entry to insert into an ibuf index tree */ static dtuple_t* ibuf_entry_build( /*=============*/ dict_index_t* index, /*!< in: non-clustered index */ const dtuple_t* entry, /*!< in: entry for a non-clustered index */ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number where entry should be inserted */ mem_heap_t* heap) /*!< in: heap into which to build */ { dtuple_t* tuple; dfield_t* field; const dfield_t* entry_field; ulint n_fields; byte* buf; byte* buf2; ulint i; /* Starting from 4.1.x, we have to build a tuple whose (1) first field is the space id, (2) the second field a single marker byte (0) to tell that this is a new format record, (3) the third contains the page number, and (4) the fourth contains the relevent type information of each data field; the length of this field % DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE is (a) 0 for b-trees in the old format, and (b) 1 for b-trees in the compact format, the first byte of the field being the marker (0); (5) and the rest of the fields are copied from entry. All fields in the tuple are ordered like the type binary in our insert buffer tree. */ n_fields = dtuple_get_n_fields(entry); tuple = dtuple_create(heap, n_fields + 4); /* Store the space id in tuple */ field = dtuple_get_nth_field(tuple, 0); buf = mem_heap_alloc(heap, 4); mach_write_to_4(buf, space); dfield_set_data(field, buf, 4); /* Store the marker byte field in tuple */ field = dtuple_get_nth_field(tuple, 1); buf = mem_heap_alloc(heap, 1); /* We set the marker byte zero */ mach_write_to_1(buf, 0); dfield_set_data(field, buf, 1); /* Store the page number in tuple */ field = dtuple_get_nth_field(tuple, 2); buf = mem_heap_alloc(heap, 4); mach_write_to_4(buf, page_no); dfield_set_data(field, buf, 4); /* Store the type info in buf2, and add the fields from entry to tuple */ buf2 = mem_heap_alloc(heap, n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE + dict_table_is_comp(index->table)); if (dict_table_is_comp(index->table)) { *buf2++ = 0; /* write the compact format indicator */ } for (i = 0; i < n_fields; i++) { ulint fixed_len; const dict_field_t* ifield; /* We add 4 below because we have the 4 extra fields at the start of an ibuf record */ field = dtuple_get_nth_field(tuple, i + 4); entry_field = dtuple_get_nth_field(entry, i); dfield_copy(field, entry_field); ifield = dict_index_get_nth_field(index, i); /* Prefix index columns of fixed-length columns are of fixed length. However, in the function call below, dfield_get_type(entry_field) contains the fixed length of the column in the clustered index. Replace it with the fixed length of the secondary index column. */ fixed_len = ifield->fixed_len; #ifdef UNIV_DEBUG if (fixed_len) { /* dict_index_add_col() should guarantee these */ ut_ad(fixed_len <= (ulint) dfield_get_type(entry_field)->len); if (ifield->prefix_len) { ut_ad(ifield->prefix_len == fixed_len); } else { ut_ad(fixed_len == (ulint) dfield_get_type(entry_field)->len); } } #endif /* UNIV_DEBUG */ dtype_new_store_for_order_and_null_size( buf2 + i * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE, dfield_get_type(entry_field), fixed_len); } /* Store the type info in buf2 to field 3 of tuple */ field = dtuple_get_nth_field(tuple, 3); if (dict_table_is_comp(index->table)) { buf2--; } dfield_set_data(field, buf2, n_fields * DATA_NEW_ORDER_NULL_TYPE_BUF_SIZE + dict_table_is_comp(index->table)); /* Set all the types in the new tuple binary */ dtuple_set_types_binary(tuple, n_fields + 4); return(tuple); } /*********************************************************************//** Builds a search tuple used to search buffered inserts for an index page. This is for < 4.1.x format records @return own: search tuple */ static dtuple_t* ibuf_search_tuple_build( /*====================*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number */ mem_heap_t* heap) /*!< in: heap into which to build */ { dtuple_t* tuple; dfield_t* field; byte* buf; ut_a(space == 0); ut_a(trx_doublewrite_must_reset_space_ids); ut_a(!trx_sys_multiple_tablespace_format); tuple = dtuple_create(heap, 1); /* Store the page number in tuple */ field = dtuple_get_nth_field(tuple, 0); buf = mem_heap_alloc(heap, 4); mach_write_to_4(buf, page_no); dfield_set_data(field, buf, 4); dtuple_set_types_binary(tuple, 1); return(tuple); } /*********************************************************************//** Builds a search tuple used to search buffered inserts for an index page. This is for >= 4.1.x format records. @return own: search tuple */ static dtuple_t* ibuf_new_search_tuple_build( /*========================*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number */ mem_heap_t* heap) /*!< in: heap into which to build */ { dtuple_t* tuple; dfield_t* field; byte* buf; ut_a(trx_sys_multiple_tablespace_format); tuple = dtuple_create(heap, 3); /* Store the space id in tuple */ field = dtuple_get_nth_field(tuple, 0); buf = mem_heap_alloc(heap, 4); mach_write_to_4(buf, space); dfield_set_data(field, buf, 4); /* Store the new format record marker byte */ field = dtuple_get_nth_field(tuple, 1); buf = mem_heap_alloc(heap, 1); mach_write_to_1(buf, 0); dfield_set_data(field, buf, 1); /* Store the page number in tuple */ field = dtuple_get_nth_field(tuple, 2); buf = mem_heap_alloc(heap, 4); mach_write_to_4(buf, page_no); dfield_set_data(field, buf, 4); dtuple_set_types_binary(tuple, 3); return(tuple); } /*********************************************************************//** Checks if there are enough pages in the free list of the ibuf tree that we dare to start a pessimistic insert to the insert buffer. @return TRUE if enough free pages in list */ UNIV_INLINE ibool ibuf_data_enough_free_for_insert(void) /*==================================*/ { ut_ad(mutex_own(&ibuf_mutex)); /* We want a big margin of free pages, because a B-tree can sometimes grow in size also if records are deleted from it, as the node pointers can change, and we must make sure that we are able to delete the inserts buffered for pages that we read to the buffer pool, without any risk of running out of free space in the insert buffer. */ return(ibuf->free_list_len >= (ibuf->size / 2) + 3 * ibuf->height); } /*********************************************************************//** Checks if there are enough pages in the free list of the ibuf tree that we should remove them and free to the file space management. @return TRUE if enough free pages in list */ UNIV_INLINE ibool ibuf_data_too_much_free(void) /*=========================*/ { ut_ad(mutex_own(&ibuf_mutex)); return(ibuf->free_list_len >= 3 + (ibuf->size / 2) + 3 * ibuf->height); } /*********************************************************************//** Allocates a new page from the ibuf file segment and adds it to the free list. @return DB_SUCCESS, or DB_STRONG_FAIL if no space left */ static ulint ibuf_add_free_page(void) /*====================*/ { mtr_t mtr; page_t* header_page; ulint flags; ulint zip_size; ulint page_no; page_t* page; page_t* root; page_t* bitmap_page; mtr_start(&mtr); /* Acquire the fsp latch before the ibuf header, obeying the latching order */ mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, &flags), &mtr); zip_size = dict_table_flags_to_zip_size(flags); header_page = ibuf_header_page_get(&mtr); /* Allocate a new page: NOTE that if the page has been a part of a non-clustered index which has subsequently been dropped, then the page may have buffered inserts in the insert buffer, and these should be deleted from there. These get deleted when the page allocation creates the page in buffer. Thus the call below may end up calling the insert buffer routines and, as we yet have no latches to insert buffer tree pages, these routines can run without a risk of a deadlock. This is the reason why we created a special ibuf header page apart from the ibuf tree. */ page_no = fseg_alloc_free_page( header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, 0, FSP_UP, &mtr); if (page_no == FIL_NULL) { mtr_commit(&mtr); return(DB_STRONG_FAIL); } { buf_block_t* block; block = buf_page_get( IBUF_SPACE_ID, 0, page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE_NEW); page = buf_block_get_frame(block); } ibuf_enter(); mutex_enter(&ibuf_mutex); root = ibuf_tree_root_get(&mtr); /* Add the page to the free list and update the ibuf size data */ flst_add_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr); mlog_write_ulint(page + FIL_PAGE_TYPE, FIL_PAGE_IBUF_FREE_LIST, MLOG_2BYTES, &mtr); ibuf->seg_size++; ibuf->free_list_len++; /* Set the bit indicating that this page is now an ibuf tree page (level 2 page) */ bitmap_page = ibuf_bitmap_get_map_page( IBUF_SPACE_ID, page_no, zip_size, &mtr); ibuf_bitmap_page_set_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_IBUF, TRUE, &mtr); mtr_commit(&mtr); mutex_exit(&ibuf_mutex); ibuf_exit(); return(DB_SUCCESS); } /*********************************************************************//** Removes a page from the free list and frees it to the fsp system. */ static void ibuf_remove_free_page(void) /*=======================*/ { mtr_t mtr; mtr_t mtr2; page_t* header_page; ulint flags; ulint zip_size; ulint page_no; page_t* page; page_t* root; page_t* bitmap_page; mtr_start(&mtr); /* Acquire the fsp latch before the ibuf header, obeying the latching order */ mtr_x_lock(fil_space_get_latch(IBUF_SPACE_ID, &flags), &mtr); zip_size = dict_table_flags_to_zip_size(flags); header_page = ibuf_header_page_get(&mtr); /* Prevent pessimistic inserts to insert buffer trees for a while */ mutex_enter(&ibuf_pessimistic_insert_mutex); ibuf_enter(); mutex_enter(&ibuf_mutex); if (!ibuf_data_too_much_free()) { mutex_exit(&ibuf_mutex); ibuf_exit(); mutex_exit(&ibuf_pessimistic_insert_mutex); mtr_commit(&mtr); return; } mtr_start(&mtr2); root = ibuf_tree_root_get(&mtr2); page_no = flst_get_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, &mtr2).page; /* NOTE that we must release the latch on the ibuf tree root because in fseg_free_page we access level 1 pages, and the root is a level 2 page. */ mtr_commit(&mtr2); mutex_exit(&ibuf_mutex); ibuf_exit(); /* Since pessimistic inserts were prevented, we know that the page is still in the free list. NOTE that also deletes may take pages from the free list, but they take them from the start, and the free list was so long that they cannot have taken the last page from it. */ fseg_free_page(header_page + IBUF_HEADER + IBUF_TREE_SEG_HEADER, IBUF_SPACE_ID, page_no, &mtr); #ifdef UNIV_DEBUG_FILE_ACCESSES buf_page_reset_file_page_was_freed(IBUF_SPACE_ID, page_no); #endif ibuf_enter(); mutex_enter(&ibuf_mutex); root = ibuf_tree_root_get(&mtr); ut_ad(page_no == flst_get_last(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, &mtr).page); { buf_block_t* block; block = buf_page_get( IBUF_SPACE_ID, 0, page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE); page = buf_block_get_frame(block); } /* Remove the page from the free list and update the ibuf size data */ flst_remove(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, &mtr); ibuf->seg_size--; ibuf->free_list_len--; mutex_exit(&ibuf_pessimistic_insert_mutex); /* Set the bit indicating that this page is no more an ibuf tree page (level 2 page) */ bitmap_page = ibuf_bitmap_get_map_page( IBUF_SPACE_ID, page_no, zip_size, &mtr); ibuf_bitmap_page_set_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_IBUF, FALSE, &mtr); #ifdef UNIV_DEBUG_FILE_ACCESSES buf_page_set_file_page_was_freed(IBUF_SPACE_ID, page_no); #endif mtr_commit(&mtr); mutex_exit(&ibuf_mutex); ibuf_exit(); } /***********************************************************************//** Frees excess pages from the ibuf free list. This function is called when an OS thread calls fsp services to allocate a new file segment, or a new page to a file segment, and the thread did not own the fsp latch before this call. */ UNIV_INTERN void ibuf_free_excess_pages(void) /*========================*/ { ulint i; #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(fil_space_get_latch(IBUF_SPACE_ID, NULL), RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(rw_lock_get_x_lock_count( fil_space_get_latch(IBUF_SPACE_ID, NULL)) == 1); ut_ad(!ibuf_inside()); /* NOTE: We require that the thread did not own the latch before, because then we know that we can obey the correct latching order for ibuf latches */ if (!ibuf) { /* Not yet initialized; not sure if this is possible, but does no harm to check for it. */ return; } /* Free at most a few pages at a time, so that we do not delay the requested service too much */ for (i = 0; i < 4; i++) { mutex_enter(&ibuf_mutex); if (!ibuf_data_too_much_free()) { mutex_exit(&ibuf_mutex); return; } mutex_exit(&ibuf_mutex); ibuf_remove_free_page(); } } /*********************************************************************//** Reads page numbers from a leaf in an ibuf tree. @return a lower limit for the combined volume of records which will be merged */ static ulint ibuf_get_merge_page_nos( /*====================*/ ibool contract,/*!< in: TRUE if this function is called to contract the tree, FALSE if this is called when a single page becomes full and we look if it pays to read also nearby pages */ rec_t* rec, /*!< in: record from which we read up and down in the chain of records */ ulint* space_ids,/*!< in/out: space id's of the pages */ ib_int64_t* space_versions,/*!< in/out: tablespace version timestamps; used to prevent reading in old pages after DISCARD + IMPORT tablespace */ ulint* page_nos,/*!< in/out: buffer for at least IBUF_MAX_N_PAGES_MERGED many page numbers; the page numbers are in an ascending order */ ulint* n_stored)/*!< out: number of page numbers stored to page_nos in this function */ { ulint prev_page_no; ulint prev_space_id; ulint first_page_no; ulint first_space_id; ulint rec_page_no; ulint rec_space_id; ulint sum_volumes; ulint volume_for_page; ulint rec_volume; ulint limit; ulint n_pages; *n_stored = 0; limit = ut_min(IBUF_MAX_N_PAGES_MERGED, buf_pool->curr_size / 4); if (page_rec_is_supremum(rec)) { rec = page_rec_get_prev(rec); } if (page_rec_is_infimum(rec)) { rec = page_rec_get_next(rec); } if (page_rec_is_supremum(rec)) { return(0); } first_page_no = ibuf_rec_get_page_no(rec); first_space_id = ibuf_rec_get_space(rec); n_pages = 0; prev_page_no = 0; prev_space_id = 0; /* Go backwards from the first rec until we reach the border of the 'merge area', or the page start or the limit of storeable pages is reached */ while (!page_rec_is_infimum(rec) && UNIV_LIKELY(n_pages < limit)) { rec_page_no = ibuf_rec_get_page_no(rec); rec_space_id = ibuf_rec_get_space(rec); if (rec_space_id != first_space_id || (rec_page_no / IBUF_MERGE_AREA) != (first_page_no / IBUF_MERGE_AREA)) { break; } if (rec_page_no != prev_page_no || rec_space_id != prev_space_id) { n_pages++; } prev_page_no = rec_page_no; prev_space_id = rec_space_id; rec = page_rec_get_prev(rec); } rec = page_rec_get_next(rec); /* At the loop start there is no prev page; we mark this with a pair of space id, page no (0, 0) for which there can never be entries in the insert buffer */ prev_page_no = 0; prev_space_id = 0; sum_volumes = 0; volume_for_page = 0; while (*n_stored < limit) { if (page_rec_is_supremum(rec)) { /* When no more records available, mark this with another 'impossible' pair of space id, page no */ rec_page_no = 1; rec_space_id = 0; } else { rec_page_no = ibuf_rec_get_page_no(rec); rec_space_id = ibuf_rec_get_space(rec); ut_ad(rec_page_no > IBUF_TREE_ROOT_PAGE_NO); } #ifdef UNIV_IBUF_DEBUG ut_a(*n_stored < IBUF_MAX_N_PAGES_MERGED); #endif if ((rec_space_id != prev_space_id || rec_page_no != prev_page_no) && (prev_space_id != 0 || prev_page_no != 0)) { if ((prev_page_no == first_page_no && prev_space_id == first_space_id) || contract || (volume_for_page > ((IBUF_MERGE_THRESHOLD - 1) * 4 * UNIV_PAGE_SIZE / IBUF_PAGE_SIZE_PER_FREE_SPACE) / IBUF_MERGE_THRESHOLD)) { space_ids[*n_stored] = prev_space_id; space_versions[*n_stored] = fil_space_get_version(prev_space_id); page_nos[*n_stored] = prev_page_no; (*n_stored)++; sum_volumes += volume_for_page; } if (rec_space_id != first_space_id || rec_page_no / IBUF_MERGE_AREA != first_page_no / IBUF_MERGE_AREA) { break; } volume_for_page = 0; } if (rec_page_no == 1 && rec_space_id == 0) { /* Supremum record */ break; } rec_volume = ibuf_rec_get_volume(rec); volume_for_page += rec_volume; prev_page_no = rec_page_no; prev_space_id = rec_space_id; rec = page_rec_get_next(rec); } #ifdef UNIV_IBUF_DEBUG ut_a(*n_stored <= IBUF_MAX_N_PAGES_MERGED); #endif #if 0 fprintf(stderr, "Ibuf merge batch %lu pages %lu volume\n", *n_stored, sum_volumes); #endif return(sum_volumes); } /*********************************************************************//** Contracts insert buffer trees by reading pages to the buffer pool. @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ static ulint ibuf_contract_ext( /*==============*/ ulint* n_pages,/*!< out: number of pages to which merged */ ibool sync) /*!< in: TRUE if the caller wants to wait for the issued read with the highest tablespace address to complete */ { btr_pcur_t pcur; ulint page_nos[IBUF_MAX_N_PAGES_MERGED]; ulint space_ids[IBUF_MAX_N_PAGES_MERGED]; ib_int64_t space_versions[IBUF_MAX_N_PAGES_MERGED]; ulint n_stored; ulint sum_sizes; mtr_t mtr; *n_pages = 0; ut_ad(!ibuf_inside()); mutex_enter(&ibuf_mutex); if (ibuf->empty) { ibuf_is_empty: mutex_exit(&ibuf_mutex); return(0); } mtr_start(&mtr); ibuf_enter(); /* Open a cursor to a randomly chosen leaf of the tree, at a random position within the leaf */ btr_pcur_open_at_rnd_pos(ibuf->index, BTR_SEARCH_LEAF, &pcur, &mtr); if (page_get_n_recs(btr_pcur_get_page(&pcur)) == 0) { /* When the ibuf tree is emptied completely, the last record is removed using an optimistic delete and ibuf_size_update is not called, causing ibuf->empty to remain FALSE. If we do not reset it to TRUE here then database shutdown will hang in the loop in ibuf_contract_for_n_pages. */ ibuf->empty = TRUE; ibuf_exit(); mtr_commit(&mtr); btr_pcur_close(&pcur); goto ibuf_is_empty; } mutex_exit(&ibuf_mutex); sum_sizes = ibuf_get_merge_page_nos(TRUE, btr_pcur_get_rec(&pcur), space_ids, space_versions, page_nos, &n_stored); #if 0 /* defined UNIV_IBUF_DEBUG */ fprintf(stderr, "Ibuf contract sync %lu pages %lu volume %lu\n", sync, n_stored, sum_sizes); #endif ibuf_exit(); mtr_commit(&mtr); btr_pcur_close(&pcur); buf_read_ibuf_merge_pages(sync, space_ids, space_versions, page_nos, n_stored); *n_pages = n_stored; return(sum_sizes + 1); } /*********************************************************************//** Contracts insert buffer trees by reading pages to the buffer pool. @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ UNIV_INTERN ulint ibuf_contract( /*==========*/ ibool sync) /*!< in: TRUE if the caller wants to wait for the issued read with the highest tablespace address to complete */ { ulint n_pages; return(ibuf_contract_ext(&n_pages, sync)); } /*********************************************************************//** Contracts insert buffer trees by reading pages to the buffer pool. @return a lower limit for the combined size in bytes of entries which will be merged from ibuf trees to the pages read, 0 if ibuf is empty */ UNIV_INTERN ulint ibuf_contract_for_n_pages( /*======================*/ ibool sync, /*!< in: TRUE if the caller wants to wait for the issued read with the highest tablespace address to complete */ ulint n_pages)/*!< in: try to read at least this many pages to the buffer pool and merge the ibuf contents to them */ { ulint sum_bytes = 0; ulint sum_pages = 0; ulint n_bytes; ulint n_pag2; while (sum_pages < n_pages) { n_bytes = ibuf_contract_ext(&n_pag2, sync); if (n_bytes == 0) { return(sum_bytes); } sum_bytes += n_bytes; sum_pages += n_pag2; } return(sum_bytes); } /*********************************************************************//** Contract insert buffer trees after insert if they are too big. */ UNIV_INLINE void ibuf_contract_after_insert( /*=======================*/ ulint entry_size) /*!< in: size of a record which was inserted into an ibuf tree */ { ibool sync; ulint sum_sizes; ulint size; mutex_enter(&ibuf_mutex); if (ibuf->size < ibuf->max_size + IBUF_CONTRACT_ON_INSERT_NON_SYNC) { mutex_exit(&ibuf_mutex); return; } sync = FALSE; if (ibuf->size >= ibuf->max_size + IBUF_CONTRACT_ON_INSERT_SYNC) { sync = TRUE; } mutex_exit(&ibuf_mutex); /* Contract at least entry_size many bytes */ sum_sizes = 0; size = 1; while ((size > 0) && (sum_sizes < entry_size)) { size = ibuf_contract(sync); sum_sizes += size; } } /*********************************************************************//** Gets an upper limit for the combined size of entries buffered in the insert buffer for a given page. @return upper limit for the volume of buffered inserts for the index page, in bytes; UNIV_PAGE_SIZE, if the entries for the index page span several pages in the insert buffer */ static ulint ibuf_get_volume_buffered( /*=====================*/ btr_pcur_t* pcur, /*!< in: pcur positioned at a place in an insert buffer tree where we would insert an entry for the index page whose number is page_no, latch mode has to be BTR_MODIFY_PREV or BTR_MODIFY_TREE */ ulint space, /*!< in: space id */ ulint page_no,/*!< in: page number of an index page */ mtr_t* mtr) /*!< in: mtr */ { ulint volume; rec_t* rec; page_t* page; ulint prev_page_no; page_t* prev_page; ulint next_page_no; page_t* next_page; ut_a(trx_sys_multiple_tablespace_format); ut_ad((pcur->latch_mode == BTR_MODIFY_PREV) || (pcur->latch_mode == BTR_MODIFY_TREE)); /* Count the volume of records earlier in the alphabetical order than pcur */ volume = 0; rec = btr_pcur_get_rec(pcur); page = page_align(rec); if (page_rec_is_supremum(rec)) { rec = page_rec_get_prev(rec); } for (;;) { if (page_rec_is_infimum(rec)) { break; } if (page_no != ibuf_rec_get_page_no(rec) || space != ibuf_rec_get_space(rec)) { goto count_later; } volume += ibuf_rec_get_volume(rec); rec = page_rec_get_prev(rec); } /* Look at the previous page */ prev_page_no = btr_page_get_prev(page, mtr); if (prev_page_no == FIL_NULL) { goto count_later; } { buf_block_t* block; block = buf_page_get( IBUF_SPACE_ID, 0, prev_page_no, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE); prev_page = buf_block_get_frame(block); } #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_next(prev_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ rec = page_get_supremum_rec(prev_page); rec = page_rec_get_prev(rec); for (;;) { if (page_rec_is_infimum(rec)) { /* We cannot go to yet a previous page, because we do not have the x-latch on it, and cannot acquire one because of the latching order: we have to give up */ return(UNIV_PAGE_SIZE); } if (page_no != ibuf_rec_get_page_no(rec) || space != ibuf_rec_get_space(rec)) { goto count_later; } volume += ibuf_rec_get_volume(rec); rec = page_rec_get_prev(rec); } count_later: rec = btr_pcur_get_rec(pcur); if (!page_rec_is_supremum(rec)) { rec = page_rec_get_next(rec); } for (;;) { if (page_rec_is_supremum(rec)) { break; } if (page_no != ibuf_rec_get_page_no(rec) || space != ibuf_rec_get_space(rec)) { return(volume); } volume += ibuf_rec_get_volume(rec); rec = page_rec_get_next(rec); } /* Look at the next page */ next_page_no = btr_page_get_next(page, mtr); if (next_page_no == FIL_NULL) { return(volume); } { buf_block_t* block; block = buf_page_get( IBUF_SPACE_ID, 0, next_page_no, RW_X_LATCH, mtr); buf_block_dbg_add_level(block, SYNC_TREE_NODE); next_page = buf_block_get_frame(block); } #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_prev(next_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ rec = page_get_infimum_rec(next_page); rec = page_rec_get_next(rec); for (;;) { if (page_rec_is_supremum(rec)) { /* We give up */ return(UNIV_PAGE_SIZE); } if (page_no != ibuf_rec_get_page_no(rec) || space != ibuf_rec_get_space(rec)) { return(volume); } volume += ibuf_rec_get_volume(rec); rec = page_rec_get_next(rec); } } /*********************************************************************//** Reads the biggest tablespace id from the high end of the insert buffer tree and updates the counter in fil_system. */ UNIV_INTERN void ibuf_update_max_tablespace_id(void) /*===============================*/ { ulint max_space_id; const rec_t* rec; const byte* field; ulint len; btr_pcur_t pcur; mtr_t mtr; ut_a(!dict_table_is_comp(ibuf->index->table)); ibuf_enter(); mtr_start(&mtr); btr_pcur_open_at_index_side( FALSE, ibuf->index, BTR_SEARCH_LEAF, &pcur, TRUE, &mtr); btr_pcur_move_to_prev(&pcur, &mtr); if (btr_pcur_is_before_first_on_page(&pcur)) { /* The tree is empty */ max_space_id = 0; } else { rec = btr_pcur_get_rec(&pcur); field = rec_get_nth_field_old(rec, 0, &len); ut_a(len == 4); max_space_id = mach_read_from_4(field); } mtr_commit(&mtr); ibuf_exit(); /* printf("Maximum space id in insert buffer %lu\n", max_space_id); */ fil_set_max_space_id_if_bigger(max_space_id); } /*********************************************************************//** Makes an index insert to the insert buffer, instead of directly to the disk page, if this is possible. @return DB_SUCCESS, DB_FAIL, DB_STRONG_FAIL */ static ulint ibuf_insert_low( /*============*/ ulint mode, /*!< in: BTR_MODIFY_PREV or BTR_MODIFY_TREE */ const dtuple_t* entry, /*!< in: index entry to insert */ ulint entry_size, /*!< in: rec_get_converted_size(index, entry) */ dict_index_t* index, /*!< in: index where to insert; must not be unique or clustered */ ulint space, /*!< in: space id where to insert */ ulint zip_size,/*!< in: compressed page size in bytes, or 0 */ ulint page_no,/*!< in: page number where to insert */ que_thr_t* thr) /*!< in: query thread */ { big_rec_t* dummy_big_rec; btr_pcur_t pcur; btr_cur_t* cursor; dtuple_t* ibuf_entry; mem_heap_t* heap; ulint buffered; rec_t* ins_rec; ibool old_bit_value; page_t* bitmap_page; page_t* root; ulint err; ibool do_merge; ulint space_ids[IBUF_MAX_N_PAGES_MERGED]; ib_int64_t space_versions[IBUF_MAX_N_PAGES_MERGED]; ulint page_nos[IBUF_MAX_N_PAGES_MERGED]; ulint n_stored; ulint bits; mtr_t mtr; mtr_t bitmap_mtr; ut_a(!dict_index_is_clust(index)); ut_ad(dtuple_check_typed(entry)); ut_ad(ut_is_2pow(zip_size)); ut_a(trx_sys_multiple_tablespace_format); do_merge = FALSE; mutex_enter(&ibuf_mutex); if (ibuf->size >= ibuf->max_size + IBUF_CONTRACT_DO_NOT_INSERT) { /* Insert buffer is now too big, contract it but do not try to insert */ mutex_exit(&ibuf_mutex); #ifdef UNIV_IBUF_DEBUG fputs("Ibuf too big\n", stderr); #endif /* Use synchronous contract (== TRUE) */ ibuf_contract(TRUE); return(DB_STRONG_FAIL); } mutex_exit(&ibuf_mutex); if (mode == BTR_MODIFY_TREE) { mutex_enter(&ibuf_pessimistic_insert_mutex); ibuf_enter(); mutex_enter(&ibuf_mutex); while (!ibuf_data_enough_free_for_insert()) { mutex_exit(&ibuf_mutex); ibuf_exit(); mutex_exit(&ibuf_pessimistic_insert_mutex); err = ibuf_add_free_page(); if (err == DB_STRONG_FAIL) { return(err); } mutex_enter(&ibuf_pessimistic_insert_mutex); ibuf_enter(); mutex_enter(&ibuf_mutex); } } else { ibuf_enter(); } heap = mem_heap_create(512); /* Build the entry which contains the space id and the page number as the first fields and the type information for other fields, and which will be inserted to the insert buffer. */ ibuf_entry = ibuf_entry_build(index, entry, space, page_no, heap); /* Open a cursor to the insert buffer tree to calculate if we can add the new entry to it without exceeding the free space limit for the page. */ mtr_start(&mtr); btr_pcur_open(ibuf->index, ibuf_entry, PAGE_CUR_LE, mode, &pcur, &mtr); /* Find out the volume of already buffered inserts for the same index page */ buffered = ibuf_get_volume_buffered(&pcur, space, page_no, &mtr); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a((buffered == 0) || ibuf_count_get(space, page_no)); #endif mtr_start(&bitmap_mtr); bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, &bitmap_mtr); /* We check if the index page is suitable for buffered entries */ if (buf_page_peek(space, page_no) || lock_rec_expl_exist_on_page(space, page_no)) { err = DB_STRONG_FAIL; mtr_commit(&bitmap_mtr); goto function_exit; } bits = ibuf_bitmap_page_get_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, &bitmap_mtr); if (buffered + entry_size + page_dir_calc_reserved_space(1) > ibuf_index_page_calc_free_from_bits(zip_size, bits)) { mtr_commit(&bitmap_mtr); /* It may not fit */ err = DB_STRONG_FAIL; do_merge = TRUE; ibuf_get_merge_page_nos(FALSE, btr_pcur_get_rec(&pcur), space_ids, space_versions, page_nos, &n_stored); goto function_exit; } /* Set the bitmap bit denoting that the insert buffer contains buffered entries for this index page, if the bit is not set yet */ old_bit_value = ibuf_bitmap_page_get_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_BUFFERED, &bitmap_mtr); if (!old_bit_value) { ibuf_bitmap_page_set_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_BUFFERED, TRUE, &bitmap_mtr); } mtr_commit(&bitmap_mtr); cursor = btr_pcur_get_btr_cur(&pcur); if (mode == BTR_MODIFY_PREV) { err = btr_cur_optimistic_insert(BTR_NO_LOCKING_FLAG, cursor, ibuf_entry, &ins_rec, &dummy_big_rec, 0, thr, &mtr); if (err == DB_SUCCESS) { /* Update the page max trx id field */ page_update_max_trx_id(btr_cur_get_block(cursor), NULL, thr_get_trx(thr)->id, &mtr); } } else { ut_ad(mode == BTR_MODIFY_TREE); /* We acquire an x-latch to the root page before the insert, because a pessimistic insert releases the tree x-latch, which would cause the x-latching of the root after that to break the latching order. */ root = ibuf_tree_root_get(&mtr); err = btr_cur_pessimistic_insert(BTR_NO_LOCKING_FLAG | BTR_NO_UNDO_LOG_FLAG, cursor, ibuf_entry, &ins_rec, &dummy_big_rec, 0, thr, &mtr); if (err == DB_SUCCESS) { /* Update the page max trx id field */ page_update_max_trx_id(btr_cur_get_block(cursor), NULL, thr_get_trx(thr)->id, &mtr); } ibuf_size_update(root, &mtr); } function_exit: #ifdef UNIV_IBUF_COUNT_DEBUG if (err == DB_SUCCESS) { fprintf(stderr, "Incrementing ibuf count of space %lu page %lu\n" "from %lu by 1\n", space, page_no, ibuf_count_get(space, page_no)); ibuf_count_set(space, page_no, ibuf_count_get(space, page_no) + 1); } #endif if (mode == BTR_MODIFY_TREE) { mutex_exit(&ibuf_mutex); mutex_exit(&ibuf_pessimistic_insert_mutex); } mtr_commit(&mtr); btr_pcur_close(&pcur); ibuf_exit(); mem_heap_free(heap); if (err == DB_SUCCESS) { mutex_enter(&ibuf_mutex); ibuf->empty = FALSE; ibuf->n_inserts++; mutex_exit(&ibuf_mutex); if (mode == BTR_MODIFY_TREE) { ibuf_contract_after_insert(entry_size); } } if (do_merge) { #ifdef UNIV_IBUF_DEBUG ut_a(n_stored <= IBUF_MAX_N_PAGES_MERGED); #endif buf_read_ibuf_merge_pages(FALSE, space_ids, space_versions, page_nos, n_stored); } return(err); } /*********************************************************************//** Makes an index insert to the insert buffer, instead of directly to the disk page, if this is possible. Does not do insert if the index is clustered or unique. @return TRUE if success */ UNIV_INTERN ibool ibuf_insert( /*========*/ const dtuple_t* entry, /*!< in: index entry to insert */ dict_index_t* index, /*!< in: index where to insert */ ulint space, /*!< in: space id where to insert */ ulint zip_size,/*!< in: compressed page size in bytes, or 0 */ ulint page_no,/*!< in: page number where to insert */ que_thr_t* thr) /*!< in: query thread */ { ulint err; ulint entry_size; ut_a(trx_sys_multiple_tablespace_format); ut_ad(dtuple_check_typed(entry)); ut_ad(ut_is_2pow(zip_size)); ut_a(!dict_index_is_clust(index)); switch (UNIV_EXPECT(ibuf_use, IBUF_USE_INSERT)) { case IBUF_USE_NONE: return(FALSE); case IBUF_USE_INSERT: goto do_insert; case IBUF_USE_COUNT: break; } ut_error; /* unknown value of ibuf_use */ do_insert: entry_size = rec_get_converted_size(index, entry, 0); if (entry_size >= (page_get_free_space_of_empty(dict_table_is_comp(index->table)) / 2)) { return(FALSE); } err = ibuf_insert_low(BTR_MODIFY_PREV, entry, entry_size, index, space, zip_size, page_no, thr); if (err == DB_FAIL) { err = ibuf_insert_low(BTR_MODIFY_TREE, entry, entry_size, index, space, zip_size, page_no, thr); } if (err == DB_SUCCESS) { #ifdef UNIV_IBUF_DEBUG /* fprintf(stderr, "Ibuf insert for page no %lu of index %s\n", page_no, index->name); */ #endif return(TRUE); } else { ut_a(err == DB_STRONG_FAIL); return(FALSE); } } /********************************************************************//** During merge, inserts to an index page a secondary index entry extracted from the insert buffer. */ static void ibuf_insert_to_index_page( /*======================*/ dtuple_t* entry, /*!< in: buffered entry to insert */ buf_block_t* block, /*!< in/out: index page where the buffered entry should be placed */ dict_index_t* index, /*!< in: record descriptor */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t page_cur; ulint low_match; page_t* page = buf_block_get_frame(block); rec_t* rec; page_t* bitmap_page; ulint old_bits; ut_ad(ibuf_inside()); ut_ad(dtuple_check_typed(entry)); if (UNIV_UNLIKELY(dict_table_is_comp(index->table) != (ibool)!!page_is_comp(page))) { fputs("InnoDB: Trying to insert a record from" " the insert buffer to an index page\n" "InnoDB: but the 'compact' flag does not match!\n", stderr); goto dump; } rec = page_rec_get_next(page_get_infimum_rec(page)); if (UNIV_UNLIKELY(rec_get_n_fields(rec, index) != dtuple_get_n_fields(entry))) { fputs("InnoDB: Trying to insert a record from" " the insert buffer to an index page\n" "InnoDB: but the number of fields does not match!\n", stderr); dump: buf_page_print(page, 0); dtuple_print(stderr, entry); fputs("InnoDB: The table where where" " this index record belongs\n" "InnoDB: is now probably corrupt." " Please run CHECK TABLE on\n" "InnoDB: your tables.\n" "InnoDB: Submit a detailed bug report to" " http://bugs.mysql.com!\n", stderr); return; } low_match = page_cur_search(block, index, entry, PAGE_CUR_LE, &page_cur); if (low_match == dtuple_get_n_fields(entry)) { page_zip_des_t* page_zip; rec = page_cur_get_rec(&page_cur); page_zip = buf_block_get_page_zip(block); btr_cur_del_unmark_for_ibuf(rec, page_zip, mtr); } else { rec = page_cur_tuple_insert(&page_cur, entry, index, 0, mtr); if (UNIV_LIKELY(rec != NULL)) { return; } /* If the record did not fit, reorganize */ btr_page_reorganize(block, index, mtr); page_cur_search(block, index, entry, PAGE_CUR_LE, &page_cur); /* This time the record must fit */ if (UNIV_UNLIKELY (!page_cur_tuple_insert(&page_cur, entry, index, 0, mtr))) { ulint space; ulint page_no; ulint zip_size; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: Insert buffer insert" " fails; page free %lu," " dtuple size %lu\n", (ulong) page_get_max_insert_size( page, 1), (ulong) rec_get_converted_size( index, entry, 0)); fputs("InnoDB: Cannot insert index record ", stderr); dtuple_print(stderr, entry); fputs("\nInnoDB: The table where" " this index record belongs\n" "InnoDB: is now probably corrupt." " Please run CHECK TABLE on\n" "InnoDB: that table.\n", stderr); space = page_get_space_id(page); zip_size = buf_block_get_zip_size(block); page_no = page_get_page_no(page); bitmap_page = ibuf_bitmap_get_map_page( space, page_no, zip_size, mtr); old_bits = ibuf_bitmap_page_get_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, mtr); fprintf(stderr, "InnoDB: space %lu, page %lu," " zip_size %lu, bitmap bits %lu\n", (ulong) space, (ulong) page_no, (ulong) zip_size, (ulong) old_bits); fputs("InnoDB: Submit a detailed bug report" " to http://bugs.mysql.com\n", stderr); } } } /*********************************************************************//** Deletes from ibuf the record on which pcur is positioned. If we have to resort to a pessimistic delete, this function commits mtr and closes the cursor. @return TRUE if mtr was committed and pcur closed in this operation */ static ibool ibuf_delete_rec( /*============*/ ulint space, /*!< in: space id */ ulint page_no,/*!< in: index page number where the record should belong */ btr_pcur_t* pcur, /*!< in: pcur positioned on the record to delete, having latch mode BTR_MODIFY_LEAF */ const dtuple_t* search_tuple, /*!< in: search tuple for entries of page_no */ mtr_t* mtr) /*!< in: mtr */ { ibool success; page_t* root; ulint err; ut_ad(ibuf_inside()); ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur))); ut_ad(ibuf_rec_get_page_no(btr_pcur_get_rec(pcur)) == page_no); ut_ad(ibuf_rec_get_space(btr_pcur_get_rec(pcur)) == space); success = btr_cur_optimistic_delete(btr_pcur_get_btr_cur(pcur), mtr); if (success) { #ifdef UNIV_IBUF_COUNT_DEBUG fprintf(stderr, "Decrementing ibuf count of space %lu page %lu\n" "from %lu by 1\n", space, page_no, ibuf_count_get(space, page_no)); ibuf_count_set(space, page_no, ibuf_count_get(space, page_no) - 1); #endif return(FALSE); } ut_ad(page_rec_is_user_rec(btr_pcur_get_rec(pcur))); ut_ad(ibuf_rec_get_page_no(btr_pcur_get_rec(pcur)) == page_no); ut_ad(ibuf_rec_get_space(btr_pcur_get_rec(pcur)) == space); /* We have to resort to a pessimistic delete from ibuf */ btr_pcur_store_position(pcur, mtr); btr_pcur_commit_specify_mtr(pcur, mtr); mutex_enter(&ibuf_mutex); mtr_start(mtr); success = btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr); if (!success) { if (fil_space_get_flags(space) == ULINT_UNDEFINED) { /* The tablespace has been dropped. It is possible that another thread has deleted the insert buffer entry. Do not complain. */ goto commit_and_exit; } fprintf(stderr, "InnoDB: ERROR: Submit the output to" " http://bugs.mysql.com\n" "InnoDB: ibuf cursor restoration fails!\n" "InnoDB: ibuf record inserted to page %lu\n", (ulong) page_no); fflush(stderr); rec_print_old(stderr, btr_pcur_get_rec(pcur)); rec_print_old(stderr, pcur->old_rec); dtuple_print(stderr, search_tuple); rec_print_old(stderr, page_rec_get_next(btr_pcur_get_rec(pcur))); fflush(stderr); btr_pcur_commit_specify_mtr(pcur, mtr); fputs("InnoDB: Validating insert buffer tree:\n", stderr); if (!btr_validate_index(ibuf->index, NULL)) { ut_error; } fprintf(stderr, "InnoDB: ibuf tree ok\n"); fflush(stderr); goto func_exit; } root = ibuf_tree_root_get(mtr); btr_cur_pessimistic_delete(&err, TRUE, btr_pcur_get_btr_cur(pcur), RB_NONE, mtr); ut_a(err == DB_SUCCESS); #ifdef UNIV_IBUF_COUNT_DEBUG ibuf_count_set(space, page_no, ibuf_count_get(space, page_no) - 1); #endif ibuf_size_update(root, mtr); commit_and_exit: btr_pcur_commit_specify_mtr(pcur, mtr); func_exit: btr_pcur_close(pcur); mutex_exit(&ibuf_mutex); return(TRUE); } /*********************************************************************//** When an index page is read from a disk to the buffer pool, this function inserts to the page the possible index entries buffered in the insert buffer. The entries are deleted from the insert buffer. If the page is not read, but created in the buffer pool, this function deletes its buffered entries from the insert buffer; there can exist entries for such a page if the page belonged to an index which subsequently was dropped. */ UNIV_INTERN void ibuf_merge_or_delete_for_page( /*==========================*/ buf_block_t* block, /*!< in: if page has been read from disk, pointer to the page x-latched, else NULL */ ulint space, /*!< in: space id of the index page */ ulint page_no,/*!< in: page number of the index page */ ulint zip_size,/*!< in: compressed page size in bytes, or 0 */ ibool update_ibuf_bitmap)/*!< in: normally this is set to TRUE, but if we have deleted or are deleting the tablespace, then we naturally do not want to update a non-existent bitmap page */ { mem_heap_t* heap; btr_pcur_t pcur; dtuple_t* search_tuple; ulint n_inserts; #ifdef UNIV_IBUF_DEBUG ulint volume; #endif page_zip_des_t* page_zip = NULL; ibool tablespace_being_deleted = FALSE; ibool corruption_noticed = FALSE; mtr_t mtr; ut_ad(!block || buf_block_get_space(block) == space); ut_ad(!block || buf_block_get_page_no(block) == page_no); ut_ad(!block || buf_block_get_zip_size(block) == zip_size); if (srv_force_recovery >= SRV_FORCE_NO_IBUF_MERGE || trx_sys_hdr_page(space, page_no)) { return; } /* We cannot refer to zip_size in the following, because zip_size is passed as ULINT_UNDEFINED (it is unknown) when buf_read_ibuf_merge_pages() is merging (discarding) changes for a dropped tablespace. When block != NULL or update_ibuf_bitmap is specified, the zip_size must be known. That is why we will repeat the check below, with zip_size in place of 0. Passing zip_size as 0 assumes that the uncompressed page size always is a power-of-2 multiple of the compressed page size. */ if (ibuf_fixed_addr_page(space, 0, page_no) || fsp_descr_page(0, page_no)) { return; } if (UNIV_LIKELY(update_ibuf_bitmap)) { ut_a(ut_is_2pow(zip_size)); if (ibuf_fixed_addr_page(space, zip_size, page_no) || fsp_descr_page(zip_size, page_no)) { return; } /* If the following returns FALSE, we get the counter incremented, and must decrement it when we leave this function. When the counter is > 0, that prevents tablespace from being dropped. */ tablespace_being_deleted = fil_inc_pending_ibuf_merges(space); if (UNIV_UNLIKELY(tablespace_being_deleted)) { /* Do not try to read the bitmap page from space; just delete the ibuf records for the page */ block = NULL; update_ibuf_bitmap = FALSE; } else { page_t* bitmap_page; mtr_start(&mtr); bitmap_page = ibuf_bitmap_get_map_page( space, page_no, zip_size, &mtr); if (!ibuf_bitmap_page_get_bits(bitmap_page, page_no, zip_size, IBUF_BITMAP_BUFFERED, &mtr)) { /* No inserts buffered for this page */ mtr_commit(&mtr); if (!tablespace_being_deleted) { fil_decr_pending_ibuf_merges(space); } return; } mtr_commit(&mtr); } } else if (block && (ibuf_fixed_addr_page(space, zip_size, page_no) || fsp_descr_page(zip_size, page_no))) { return; } ibuf_enter(); heap = mem_heap_create(512); if (!trx_sys_multiple_tablespace_format) { ut_a(trx_doublewrite_must_reset_space_ids); search_tuple = ibuf_search_tuple_build(space, page_no, heap); } else { search_tuple = ibuf_new_search_tuple_build(space, page_no, heap); } if (block) { /* Move the ownership of the x-latch on the page to this OS thread, so that we can acquire a second x-latch on it. This is needed for the insert operations to the index page to pass the debug checks. */ rw_lock_x_lock_move_ownership(&(block->lock)); page_zip = buf_block_get_page_zip(block); if (UNIV_UNLIKELY(fil_page_get_type(block->frame) != FIL_PAGE_INDEX) || UNIV_UNLIKELY(!page_is_leaf(block->frame))) { page_t* bitmap_page; corruption_noticed = TRUE; ut_print_timestamp(stderr); mtr_start(&mtr); fputs(" InnoDB: Dump of the ibuf bitmap page:\n", stderr); bitmap_page = ibuf_bitmap_get_map_page(space, page_no, zip_size, &mtr); buf_page_print(bitmap_page, 0); mtr_commit(&mtr); fputs("\nInnoDB: Dump of the page:\n", stderr); buf_page_print(block->frame, 0); fprintf(stderr, "InnoDB: Error: corruption in the tablespace." " Bitmap shows insert\n" "InnoDB: buffer records to page n:o %lu" " though the page\n" "InnoDB: type is %lu, which is" " not an index leaf page!\n" "InnoDB: We try to resolve the problem" " by skipping the insert buffer\n" "InnoDB: merge for this page." " Please run CHECK TABLE on your tables\n" "InnoDB: to determine if they are corrupt" " after this.\n\n" "InnoDB: Please submit a detailed bug report" " to http://bugs.mysql.com\n\n", (ulong) page_no, (ulong) fil_page_get_type(block->frame)); } } n_inserts = 0; #ifdef UNIV_IBUF_DEBUG volume = 0; #endif loop: mtr_start(&mtr); if (block) { ibool success; success = buf_page_get_known_nowait( RW_X_LATCH, block, BUF_KEEP_OLD, __FILE__, __LINE__, &mtr); ut_a(success); buf_block_dbg_add_level(block, SYNC_TREE_NODE); } /* Position pcur in the insert buffer at the first entry for this index page */ btr_pcur_open_on_user_rec( ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF, &pcur, &mtr); if (!btr_pcur_is_on_user_rec(&pcur)) { ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr)); goto reset_bit; } for (;;) { rec_t* rec; ut_ad(btr_pcur_is_on_user_rec(&pcur)); rec = btr_pcur_get_rec(&pcur); /* Check if the entry is for this index page */ if (ibuf_rec_get_page_no(rec) != page_no || ibuf_rec_get_space(rec) != space) { if (block) { page_header_reset_last_insert( block->frame, page_zip, &mtr); } goto reset_bit; } if (UNIV_UNLIKELY(corruption_noticed)) { fputs("InnoDB: Discarding record\n ", stderr); rec_print_old(stderr, rec); fputs("\nInnoDB: from the insert buffer!\n\n", stderr); } else if (block) { /* Now we have at pcur a record which should be inserted to the index page; NOTE that the call below copies pointers to fields in rec, and we must keep the latch to the rec page until the insertion is finished! */ dtuple_t* entry; trx_id_t max_trx_id; dict_index_t* dummy_index; max_trx_id = page_get_max_trx_id(page_align(rec)); page_update_max_trx_id(block, page_zip, max_trx_id, &mtr); entry = ibuf_build_entry_from_ibuf_rec( rec, heap, &dummy_index); #ifdef UNIV_IBUF_DEBUG volume += rec_get_converted_size(dummy_index, entry, 0) + page_dir_calc_reserved_space(1); ut_a(volume <= 4 * UNIV_PAGE_SIZE / IBUF_PAGE_SIZE_PER_FREE_SPACE); #endif ibuf_insert_to_index_page(entry, block, dummy_index, &mtr); ibuf_dummy_index_free(dummy_index); } n_inserts++; /* Delete the record from ibuf */ if (ibuf_delete_rec(space, page_no, &pcur, search_tuple, &mtr)) { /* Deletion was pessimistic and mtr was committed: we start from the beginning again */ goto loop; } else if (btr_pcur_is_after_last_on_page(&pcur)) { mtr_commit(&mtr); btr_pcur_close(&pcur); goto loop; } } reset_bit: #ifdef UNIV_IBUF_COUNT_DEBUG if (ibuf_count_get(space, page_no) > 0) { /* btr_print_tree(ibuf_data->index->tree, 100); ibuf_print(); */ } #endif if (UNIV_LIKELY(update_ibuf_bitmap)) { page_t* bitmap_page; bitmap_page = ibuf_bitmap_get_map_page( space, page_no, zip_size, &mtr); ibuf_bitmap_page_set_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_BUFFERED, FALSE, &mtr); if (block) { ulint old_bits = ibuf_bitmap_page_get_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, &mtr); ulint new_bits = ibuf_index_page_calc_free( zip_size, block); if (old_bits != new_bits) { ibuf_bitmap_page_set_bits( bitmap_page, page_no, zip_size, IBUF_BITMAP_FREE, new_bits, &mtr); } } } mtr_commit(&mtr); btr_pcur_close(&pcur); mem_heap_free(heap); /* Protect our statistics keeping from race conditions */ mutex_enter(&ibuf_mutex); ibuf->n_merges++; ibuf->n_merged_recs += n_inserts; mutex_exit(&ibuf_mutex); if (update_ibuf_bitmap && !tablespace_being_deleted) { fil_decr_pending_ibuf_merges(space); } ibuf_exit(); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(space, page_no) == 0); #endif } /*********************************************************************//** Deletes all entries in the insert buffer for a given space id. This is used in DISCARD TABLESPACE and IMPORT TABLESPACE. NOTE: this does not update the page free bitmaps in the space. The space will become CORRUPT when you call this function! */ UNIV_INTERN void ibuf_delete_for_discarded_space( /*============================*/ ulint space) /*!< in: space id */ { mem_heap_t* heap; btr_pcur_t pcur; dtuple_t* search_tuple; rec_t* ibuf_rec; ulint page_no; ibool closed; ulint n_inserts; mtr_t mtr; heap = mem_heap_create(512); /* Use page number 0 to build the search tuple so that we get the cursor positioned at the first entry for this space id */ search_tuple = ibuf_new_search_tuple_build(space, 0, heap); n_inserts = 0; loop: ibuf_enter(); mtr_start(&mtr); /* Position pcur in the insert buffer at the first entry for the space */ btr_pcur_open_on_user_rec( ibuf->index, search_tuple, PAGE_CUR_GE, BTR_MODIFY_LEAF, &pcur, &mtr); if (!btr_pcur_is_on_user_rec(&pcur)) { ut_ad(btr_pcur_is_after_last_in_tree(&pcur, &mtr)); goto leave_loop; } for (;;) { ut_ad(btr_pcur_is_on_user_rec(&pcur)); ibuf_rec = btr_pcur_get_rec(&pcur); /* Check if the entry is for this space */ if (ibuf_rec_get_space(ibuf_rec) != space) { goto leave_loop; } page_no = ibuf_rec_get_page_no(ibuf_rec); n_inserts++; /* Delete the record from ibuf */ closed = ibuf_delete_rec(space, page_no, &pcur, search_tuple, &mtr); if (closed) { /* Deletion was pessimistic and mtr was committed: we start from the beginning again */ ibuf_exit(); goto loop; } if (btr_pcur_is_after_last_on_page(&pcur)) { mtr_commit(&mtr); btr_pcur_close(&pcur); ibuf_exit(); goto loop; } } leave_loop: mtr_commit(&mtr); btr_pcur_close(&pcur); /* Protect our statistics keeping from race conditions */ mutex_enter(&ibuf_mutex); ibuf->n_merges++; ibuf->n_merged_recs += n_inserts; mutex_exit(&ibuf_mutex); ibuf_exit(); mem_heap_free(heap); } /******************************************************************//** Looks if the insert buffer is empty. @return TRUE if empty */ UNIV_INTERN ibool ibuf_is_empty(void) /*===============*/ { ibool is_empty; const page_t* root; mtr_t mtr; ibuf_enter(); mutex_enter(&ibuf_mutex); mtr_start(&mtr); root = ibuf_tree_root_get(&mtr); if (page_get_n_recs(root) == 0) { is_empty = TRUE; if (ibuf->empty == FALSE) { fprintf(stderr, "InnoDB: Warning: insert buffer tree is empty" " but the data struct does not\n" "InnoDB: know it. This condition is legal" " if the master thread has not yet\n" "InnoDB: run to completion.\n"); } } else { ut_a(ibuf->empty == FALSE); is_empty = FALSE; } mtr_commit(&mtr); mutex_exit(&ibuf_mutex); ibuf_exit(); return(is_empty); } /******************************************************************//** Prints info of ibuf. */ UNIV_INTERN void ibuf_print( /*=======*/ FILE* file) /*!< in: file where to print */ { #ifdef UNIV_IBUF_COUNT_DEBUG ulint i; ulint j; #endif mutex_enter(&ibuf_mutex); fprintf(file, "Ibuf: size %lu, free list len %lu, seg size %lu,\n" "%lu inserts, %lu merged recs, %lu merges\n", (ulong) ibuf->size, (ulong) ibuf->free_list_len, (ulong) ibuf->seg_size, (ulong) ibuf->n_inserts, (ulong) ibuf->n_merged_recs, (ulong) ibuf->n_merges); #ifdef UNIV_IBUF_COUNT_DEBUG for (i = 0; i < IBUF_COUNT_N_SPACES; i++) { for (j = 0; j < IBUF_COUNT_N_PAGES; j++) { ulint count = ibuf_count_get(i, j); if (count > 0) { fprintf(stderr, "Ibuf count for space/page %lu/%lu" " is %lu\n", (ulong) i, (ulong) j, (ulong) count); } } } #endif /* UNIV_IBUF_COUNT_DEBUG */ mutex_exit(&ibuf_mutex); } #endif /* !UNIV_HOTBACKUP */