Commit 1745287d authored by Lisa Casino's avatar Lisa Casino Committed by Xavier Thompson

promise/plugin/check_free_disk_space: add options

Thanks to the new options in the software release,
it is now possible to have a customizable threshold.
Moreover, we can display the 3 biggest partitions if the
remaining space is smaller than the threshold. Finally,
we can have a prediction of the remaining disk space in 10 days (by default).
parent 925dcaad
......@@ -11,8 +11,20 @@ import sqlite3
import argparse
import datetime
import psutil
import itertools
import warnings
import pkgutil
from slapos.collect.db import Database
from contextlib import closing
# install pandas, numpy and statsmodels for ARIMA prediction
try:
import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARIMA
except ImportError:
pass
@implementer(interface.IPromise)
class RunPromise(GenericPromise):
......@@ -22,10 +34,10 @@ class RunPromise(GenericPromise):
# check disk space at least every 3 minutes
self.setPeriodicity(minute=3)
def getDiskSize(self, disk_partition, database):
database = Database(database, create=False, timeout=10)
# by using contextlib.closing, we don't need to close the database explicitly
with closing(database):
try:
# fetch disk size
database.connect()
......@@ -44,15 +56,11 @@ class RunPromise(GenericPromise):
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
finally:
try:
database.close()
except Exception:
pass
return disk_size
def getFreeSpace(self, disk_partition, database, date, time):
database = Database(database, create=False, timeout=10)
with closing(database):
try:
# fetch free disk space
database.connect()
......@@ -71,12 +79,143 @@ class RunPromise(GenericPromise):
not self.raiseOnDatabaseLocked(locked_message):
return 0
raise
finally:
return int(disk_free)
def getBiggestPartitions(self, database, date, time):
# displays the 3 biggest partitions thanks to disk usage
limit = 3
database = Database(database, create=False, timeout=10)
with closing(database):
try:
database.close()
database.connect()
date_time = date + ' ' + time
# gets the data recorded between the current date (date_time) and 24 hours earlier
where_query = "datetime(date || ' ' || time) >= datetime('%s', '-1 days') AND datetime(date || ' ' || time) <= datetime('%s')"
# gets only the most recent data for each partition
result = database.select(
"folder",
columns = "partition, disk_used*1024, max(datetime(date || ' ' || time))",
where = where_query % (date_time, date_time),
group = "partition",
order = "disk_used DESC",
limit = limit).fetchall()
if not result or not result[0]:
self.logger.info("No result from collector database in table folder: skipped")
return None
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
return result
def evaluateArimaModel(self, X, arima_order):
"""
Evaluate an ARIMA model for a given order (p,d,q) with the MSE which
measures the average of the squares of the errors.
"""
# take 66% of the data for training and 33% for testing
train_size = int(len(X) * 0.66)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=-1)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
rmse = (np.square(np.subtract(test.values, np.hstack(predictions))).mean())**0.5
return rmse
def evaluateModels(self, dataset, p_values, d_values, q_values):
"""
Evaluate combinations of p, d and q values for an ARIMA model
"""
dataset = dataset.astype('float32')
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
rmse = self.evaluateArimaModel(dataset, order)
if rmse < best_score:
best_score, best_cfg = rmse, order
except Exception:
pass
return int(disk_free)
return best_cfg
def diskSpacePrediction(self, disk_partition, database, date, time, day_range):
"""
Returns an estimation of free disk space left depending on
the day_range parameter.
It uses Arima in order to predict data thanks to the 15 days before.
"""
database = Database(database, create=False, timeout=10)
with closing(database):
try:
database.connect()
# get one data per day, where each data is at the same time
where_query = "time between '%s:00' and '%s:30' and partition='%s'" % (
time, time, disk_partition)
result = database.select(
"disk",
columns = "free, datetime(date || ' ' || time)",
where = where_query,
order = "datetime(date || ' ' || time) ASC").fetchall()
# checks that there are at least 14 days of data
if (not result) or (len(result) < 14):
self.logger.info("No or not enough results from collector database in table disk: no prediction")
return None
# put the list in pandas dataframe format and set the right types
df = pd.DataFrame(data=result, columns=['free', 'date'])
df.loc[:,'date'] = pd.to_datetime(df.date)
df = df.astype({'free': np.float})
df = df.set_index('date')
# find the best configuration by trying different combinations
p_values = d_values = q_values = range(0, 3)
best_cfg = self.evaluateModels(df.free, p_values, d_values, q_values)
# set the days to be predicted
max_date_predicted = day_range+1
future_index_date = pd.date_range(df.index[-1], freq='24H', periods=max_date_predicted)
try:
# disabling warnings during the ARIMA calculation
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model_arima = ARIMA(df, order=best_cfg)
# disp < 0 means no output about convergence information
model_arima_fit = model_arima.fit(disp=-1)
# save ARIMA predictions
fcast, _, conf = model_arima_fit.forecast(max_date_predicted, alpha=0.05)
# pass the same index as the others
fcast = pd.Series(fcast, index=future_index_date)
if fcast.empty:
self.logger.info("Arima prediction: none. Skipped prediction")
return None
except Exception:
self.logger.info("Arima prediction error: skipped prediction")
return None
# get results with 95% confidence
lower_series = pd.Series(conf[:, 0], index=future_index_date)
upper_series = pd.Series(conf[:, 1], index=future_index_date)
return fcast, lower_series, upper_series
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
def raiseOnDatabaseLocked(self, locked_message):
max_warn = 10
......@@ -149,7 +288,7 @@ class RunPromise(GenericPromise):
disk_partition = self.getConfig('test-disk-partition', '/dev/sda1')
else:
# get last minute
now = datetime.datetime.now()
now = datetime.datetime.utcnow()
currentdate = now.strftime('%Y-%m-%d')
currenttime = now - datetime.timedelta(minutes=1)
currenttime = currenttime.time().strftime('%H:%M')
......@@ -158,8 +297,7 @@ class RunPromise(GenericPromise):
default_threshold = None
if disk_size is not None:
default_threshold = round(disk_size/(1024*1024*1024) * 0.05, 2)
threshold = float(self.getConfig('threshold', default_threshold) or 2.0)
threshold_days = float(self.getConfig('threshold-days', '30'))
threshold = float(self.getConfig('threshold', default_threshold) or default_threshold)
free_space = self.getFreeSpace(disk_partition, db_path, currentdate,
currenttime)
......@@ -170,12 +308,57 @@ class RunPromise(GenericPromise):
if inode_usage:
self.logger.error(inode_usage)
else:
self.logger.info("Disk usage: OK")
self.logger.info("Current disk usage: OK")
# if the option is enabled and the current disk size is large enough,
# we check the predicted remaining disk space
display_prediction = bool(int(self.getConfig('display-prediction', 0) or 0))
self.logger.info("Enable to display disk space predictions: %s" % display_prediction)
if display_prediction:
# check that the libraries are installed from the slapos.toolbox extra requires
pandas_found = pkgutil.find_loader("pandas")
numpy_found = pkgutil.find_loader("numpy")
statsmodels_found = pkgutil.find_loader("statsmodels")
# if one module isn't installed
if pandas_found is None or numpy_found is None or statsmodels_found is None:
self.logger.warning("Trying to use statsmodels and pandas " \
"but at least one module is not installed. Prediction skipped.")
return
nb_days_predicted = int(self.getConfig('nb-days-predicted', 10) or 10)
disk_space_prediction_tuple = self.diskSpacePrediction(
disk_partition, db_path, currentdate, currenttime, nb_days_predicted)
if disk_space_prediction_tuple is not None:
fcast, lower_series, upper_series = disk_space_prediction_tuple
space_left_predicted = fcast.iloc[-1]
last_date_predicted = datetime.datetime.strptime(str(fcast.index[-1]),
"%Y-%m-%d %H:%M:%S")
delta_days = (last_date_predicted.date() - \
datetime.datetime.strptime(currentdate, "%Y-%m-%d").date()).days
self.logger.info("Prediction: there will be %.2f G left on %s (%s days)." % (
space_left_predicted/(1024*1024*1024), last_date_predicted, delta_days))
if space_left_predicted <= threshold*1024*1024*1024:
self.logger.warning("The free disk space will be too low. " \
"(disk size: %.2f G, threshold: %s G)" % (
disk_size/(1024*1024*1024), threshold))
return
message = "Free disk space low: remaining %.2f G (disk size: %.0f G, threshold: %.0f G)." % (
free_space/(1024*1024*1024), disk_size/(1024*1024*1024), threshold)
free_space = round(free_space/(1024*1024*1024), 2)
self.logger.error('Free disk space low: remaining %s G (threshold: %s G)' % (
free_space, threshold))
display_partition = bool(int(self.getConfig('display-partition', 0) or 0))
self.logger.info("Enable to display the 3 biggest partitions: %s" % display_partition)
if display_partition:
# display the 3 partitions that have the most storage capacity on the disk
big_partitions = self.getBiggestPartitions(db_path, currentdate, currenttime)
if big_partitions is not None:
for partition in big_partitions:
user_name, size_partition, date_checked = partition
partition_id = self.getConfig('partition-id', 'slappart')
# get the name of each partition by adding the user's number to the general name of the partition
partition_name = ''.join(x for x in partition_id if not x.isdigit()) + ''.join(filter(str.isdigit, user_name))
message += " The partition %s uses %.2f G (date checked: %s)." % (
partition_name, size_partition/(1024*1024*1024), date_checked)
# display the final error message
self.logger.error(message)
def test(self):
return self._test(result_count=1, failure_amount=1)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment