Commit d2d14ee0 authored by Lisa Casino's avatar Lisa Casino

promise/plugin/check_free_disk_space: add options

Thanks to the new options in the software release,
it is now possible to have a customizable threshold.
Moreover, we can display the 3 biggest partitions if the
remaining space is smaller than the threshold. Finally,
we can have a prediction of the remaining disk space in 10 days (by default).
parent f79f1e28
...@@ -11,8 +11,20 @@ import sqlite3 ...@@ -11,8 +11,20 @@ import sqlite3
import argparse import argparse
import datetime import datetime
import psutil import psutil
import itertools
import warnings
import pkgutil
from slapos.collect.db import Database from slapos.collect.db import Database
from contextlib import closing
# install pandas, numpy and statsmodels for ARIMA prediction
try:
import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARIMA
except ImportError:
pass
@implementer(interface.IPromise) @implementer(interface.IPromise)
class RunPromise(GenericPromise): class RunPromise(GenericPromise):
...@@ -22,10 +34,10 @@ class RunPromise(GenericPromise): ...@@ -22,10 +34,10 @@ class RunPromise(GenericPromise):
# check disk space at least every 3 minutes # check disk space at least every 3 minutes
self.setPeriodicity(minute=3) self.setPeriodicity(minute=3)
def getDiskSize(self, disk_partition, database): def getDiskSize(self, disk_partition, database):
database = Database(database, create=False, timeout=10) database = Database(database, create=False, timeout=10)
# by using contextlib.closing, we don't need to close the database explicitly
with closing(database):
try: try:
# fetch disk size # fetch disk size
database.connect() database.connect()
...@@ -44,15 +56,11 @@ class RunPromise(GenericPromise): ...@@ -44,15 +56,11 @@ class RunPromise(GenericPromise):
not self.raiseOnDatabaseLocked(locked_message): not self.raiseOnDatabaseLocked(locked_message):
return None return None
raise raise
finally:
try:
database.close()
except Exception:
pass
return disk_size return disk_size
def getFreeSpace(self, disk_partition, database, date, time): def getFreeSpace(self, disk_partition, database, date, time):
database = Database(database, create=False, timeout=10) database = Database(database, create=False, timeout=10)
with closing(database):
try: try:
# fetch free disk space # fetch free disk space
database.connect() database.connect()
...@@ -71,12 +79,143 @@ class RunPromise(GenericPromise): ...@@ -71,12 +79,143 @@ class RunPromise(GenericPromise):
not self.raiseOnDatabaseLocked(locked_message): not self.raiseOnDatabaseLocked(locked_message):
return 0 return 0
raise raise
finally: return int(disk_free)
def getBiggestPartitions(self, database, date, time):
# displays the 3 biggest partitions thanks to disk usage
limit = 3
database = Database(database, create=False, timeout=10)
with closing(database):
try: try:
database.close() database.connect()
date_time = date + ' ' + time
# gets the data recorded between the current date (date_time) and 24 hours earlier
where_query = "datetime(date || ' ' || time) >= datetime('%s', '-1 days') AND datetime(date || ' ' || time) <= datetime('%s')"
# gets only the most recent data for each partition
result = database.select(
"folder",
columns = "partition, disk_used*1024, max(datetime(date || ' ' || time))",
where = where_query % (date_time, date_time),
group = "partition",
order = "disk_used DESC",
limit = limit).fetchall()
if not result or not result[0]:
self.logger.info("No result from collector database in table folder: skipped")
return None
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
return result
def evaluateArimaModel(self, X, arima_order):
"""
Evaluate an ARIMA model for a given order (p,d,q) with the MSE which
measures the average of the squares of the errors.
"""
# take 66% of the data for training and 33% for testing
train_size = int(len(X) * 0.66)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=-1)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
rmse = (np.square(np.subtract(test.values, np.hstack(predictions))).mean())**0.5
return rmse
def evaluateModels(self, dataset, p_values, d_values, q_values):
"""
Evaluate combinations of p, d and q values for an ARIMA model
"""
dataset = dataset.astype('float32')
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
rmse = self.evaluateArimaModel(dataset, order)
if rmse < best_score:
best_score, best_cfg = rmse, order
except Exception: except Exception:
pass pass
return int(disk_free) return best_cfg
def diskSpacePrediction(self, disk_partition, database, date, time, day_range):
"""
Returns an estimation of free disk space left depending on
the day_range parameter.
It uses Arima in order to predict data thanks to the 15 days before.
"""
database = Database(database, create=False, timeout=10)
with closing(database):
try:
database.connect()
# get one data per day, where each data is at the same time
where_query = "time between '%s:00' and '%s:30' and partition='%s'" % (
time, time, disk_partition)
result = database.select(
"disk",
columns = "free, datetime(date || ' ' || time)",
where = where_query,
order = "datetime(date || ' ' || time) ASC").fetchall()
# checks that there are at least 14 days of data
if (not result) or (len(result) < 14):
self.logger.info("No or not enough results from collector database in table disk: no prediction")
return None
# put the list in pandas dataframe format and set the right types
df = pd.DataFrame(data=result, columns=['free', 'date'])
df.loc[:,'date'] = pd.to_datetime(df.date)
df = df.astype({'free': np.float})
df = df.set_index('date')
# find the best configuration by trying different combinations
p_values = d_values = q_values = range(0, 3)
best_cfg = self.evaluateModels(df.free, p_values, d_values, q_values)
# set the days to be predicted
max_date_predicted = day_range+1
future_index_date = pd.date_range(df.index[-1], freq='24H', periods=max_date_predicted)
try:
# disabling warnings during the ARIMA calculation
with warnings.catch_warnings():
warnings.simplefilter("ignore")
model_arima = ARIMA(df, order=best_cfg)
# disp < 0 means no output about convergence information
model_arima_fit = model_arima.fit(disp=-1)
# save ARIMA predictions
fcast, _, conf = model_arima_fit.forecast(max_date_predicted, alpha=0.05)
# pass the same index as the others
fcast = pd.Series(fcast, index=future_index_date)
if fcast.empty:
self.logger.info("Arima prediction: none. Skipped prediction")
return None
except Exception:
self.logger.info("Arima prediction error: skipped prediction")
return None
# get results with 95% confidence
lower_series = pd.Series(conf[:, 0], index=future_index_date)
upper_series = pd.Series(conf[:, 1], index=future_index_date)
return fcast, lower_series, upper_series
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
def raiseOnDatabaseLocked(self, locked_message): def raiseOnDatabaseLocked(self, locked_message):
max_warn = 10 max_warn = 10
...@@ -149,7 +288,7 @@ class RunPromise(GenericPromise): ...@@ -149,7 +288,7 @@ class RunPromise(GenericPromise):
disk_partition = self.getConfig('test-disk-partition', '/dev/sda1') disk_partition = self.getConfig('test-disk-partition', '/dev/sda1')
else: else:
# get last minute # get last minute
now = datetime.datetime.now() now = datetime.datetime.utcnow()
currentdate = now.strftime('%Y-%m-%d') currentdate = now.strftime('%Y-%m-%d')
currenttime = now - datetime.timedelta(minutes=1) currenttime = now - datetime.timedelta(minutes=1)
currenttime = currenttime.time().strftime('%H:%M') currenttime = currenttime.time().strftime('%H:%M')
...@@ -158,8 +297,8 @@ class RunPromise(GenericPromise): ...@@ -158,8 +297,8 @@ class RunPromise(GenericPromise):
default_threshold = None default_threshold = None
if disk_size is not None: if disk_size is not None:
default_threshold = round(disk_size/(1024*1024*1024) * 0.05, 2) default_threshold = round(disk_size/(1024*1024*1024) * 0.05, 2)
threshold = float(self.getConfig('threshold', default_threshold) or 2.0) threshold = float(self.getConfig('threshold', default_threshold) or default_threshold)
threshold_days = float(self.getConfig('threshold-days', '30')) threshold_days = float(self.getConfig('threshold-days', '30') or '30')
free_space = self.getFreeSpace(disk_partition, db_path, currentdate, free_space = self.getFreeSpace(disk_partition, db_path, currentdate,
currenttime) currenttime)
...@@ -170,12 +309,57 @@ class RunPromise(GenericPromise): ...@@ -170,12 +309,57 @@ class RunPromise(GenericPromise):
if inode_usage: if inode_usage:
self.logger.error(inode_usage) self.logger.error(inode_usage)
else: else:
self.logger.info("Disk usage: OK") self.logger.info("Current disk usage: OK")
# if the option is enabled and the current disk size is large enough,
# we check the predicted remaining disk space
display_prediction = bool(int(self.getConfig('display-prediction', 0)))
self.logger.info("Enable to display disk space predictions: %s" % display_prediction)
if display_prediction:
# check that the libraries are installed from the slapos.toolbox extra requires
pandas_found = pkgutil.find_loader("pandas")
numpy_found = pkgutil.find_loader("numpy")
statsmodels_found = pkgutil.find_loader("statsmodels")
# if one module isn't installed
if pandas_found is None or numpy_found is None or statsmodels_found is None:
self.logger.warning("Trying to use statsmodels and pandas " \
"but at least one module is not installed. Prediction skipped.")
return return
nb_days_predicted = int(self.getConfig('nb-days-predicted', 10) or 10)
disk_space_prediction_tuple = self.diskSpacePrediction(
disk_partition, db_path, currentdate, currenttime, nb_days_predicted)
if disk_space_prediction_tuple is not None:
fcast, lower_series, upper_series = disk_space_prediction_tuple
space_left_predicted = fcast.iloc[-1]
last_date_predicted = datetime.datetime.strptime(str(fcast.index[-1]),
"%Y-%m-%d %H:%M:%S")
delta_days = (last_date_predicted.date() - \
datetime.datetime.strptime(currentdate, "%Y-%m-%d").date()).days
self.logger.info("Prediction: there will be %.2f G left on %s (%s days)." % (
space_left_predicted/(1024*1024*1024), last_date_predicted, delta_days))
if space_left_predicted <= threshold*1024*1024*1024:
self.logger.warning("The free disk space will be too low. " \
"(disk size: %.2f G, threshold: %s G)" % (
disk_size/(1024*1024*1024), threshold))
return
message = "Free disk space low: remaining %.2f G (disk size: %.0f G, threshold: %.0f G)." % (
free_space/(1024*1024*1024), disk_size/(1024*1024*1024), threshold)
free_space = round(free_space/(1024*1024*1024), 2) display_partition = bool(int(self.getConfig('display-partition', 0)))
self.logger.error('Free disk space low: remaining %s G (threshold: %s G)' % ( self.logger.info("Enable to display the 3 biggest partitions: %s" % display_partition)
free_space, threshold)) if display_partition:
# display the 3 partitions that have the most storage capacity on the disk
big_partitions = self.getBiggestPartitions(db_path, currentdate, currenttime)
if big_partitions is not None:
for partition in big_partitions:
user_name, size_partition, date_checked = partition
partition_id = self.getConfig('partition-id', 'slappart')
# get the name of each partition by adding the user's number to the general name of the partition
partition_name = ''.join(x for x in partition_id if not x.isdigit()) + ''.join(filter(str.isdigit, user_name))
message += " The partition %s uses %.2f G (date checked: %s)." % (
partition_name, size_partition/(1024*1024*1024), date_checked)
# display the final error message
self.logger.error(message)
def test(self): def test(self):
return self._test(result_count=1, failure_amount=1) return self._test(result_count=1, failure_amount=1)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment