=s_('ClusterIntegration|Please enter access information for your Kubernetes cluster. If you need help, you can read our %{link_to_help_page} on Kubernetes').html_safe%{link_to_help_page: link_to_help_page}
Every new Google Cloud Platform (GCP) account receives [$300 in credit upon sign up](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new GCP accounts to get started with GitLab's
Google Kubernetes Engine Integration. All you have to do is [follow this link](https://cloud.google.com/partners/partnercredit/?PCN=a0n60000006Vpz4AAC) and apply for credit.
NOTE: **Note:**
The [Google authentication integration](../../../integration/google.md) must
be enabled in GitLab at the instance level. If that's not the case, ask your
GitLab administrator to enable it. On GitLab.com, this is enabled.
### Requirements
Before creating your first cluster on Google Kubernetes Engine with GitLab's
integration, make sure the following requirements are met:
- A [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account)
is set up and you have permissions to access it.
- The Kubernetes Engine API and related service are enabled. It should work immediately but may take up to 10 minutes after you create a project. For more information see the
["Before you begin" section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin).
### Creating the cluster
If all of the above requirements are met, you can proceed to create and add a
new Kubernetes cluster to your project:
1. Navigate to your project's **Operations > Kubernetes** page.
NOTE: **Note:**
You need Maintainer [permissions](../../permissions.md) and above to access the Kubernetes page.
1. Click **Add Kubernetes cluster**.
1. Click **Create with Google Kubernetes Engine**.
1. Connect your Google account if you haven't done already by clicking the
**Sign in with Google** button.
1. Choose your cluster's settings:
-**Kubernetes cluster name** - The name you wish to give the cluster.
-**Environment scope** - The [associated environment](index.md#setting-the-environment-scope-premium) to this cluster.
-**Google Cloud Platform project** - Choose the project you created in your GCP
console that will host the Kubernetes cluster. Learn more about
-**CA certificate** (required) - A valid Kubernetes certificate is needed to authenticate to the cluster. We will use the certificate created by default.
- List the secrets with `kubectl get secrets`, and one should named similar to
`default-token-xxxxx`. Copy that token name for use below.
- Get the certificate by running this command:
```sh
kubectl get secret <secret name> -o jsonpath="{['data']['ca\.crt']}" | base64 --decode
```
NOTE: **Note:**
If the command returns the entire certificate chain, you need copy the *root ca*
certificate at the bottom of the chain.
-**Token** -
GitLab authenticates against Kubernetes using service tokens, which are
scoped to a particular `namespace`.
**The token used should belong to a service account with
-**GitLab-managed cluster** - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster.
See the [Managed clusters section](index.md#gitlab-managed-clusters) for more information.
-**Project namespace** (optional) - You don't have to fill it in; by leaving
it blank, GitLab will create one for you. Also:
- Each project should have a unique namespace.
- The project namespace is not necessarily the namespace of the secret, if
you're using a secret with broader permissions, like the secret from `default`.
- You should **not** use `default` as the project namespace.
- If you or someone created a secret specifically for the project, usually
with limited permissions, the secret's namespace and project namespace may
be the same.
1. Finally, click the **Create Kubernetes cluster** button.
After a couple of minutes, your cluster will be ready to go. You can now proceed
to install some [pre-defined applications](index.md#installing-applications).
### Add existing EKS cluster
In this section, we will show how to integrate an [Amazon EKS](https://aws.amazon.com/eks/) cluster with GitLab and begin
deploying applications.
#### Requirements
To integrate with with EKS, you will need:
- An account on GitLab, like [GitLab.com](https://gitlab.com).
- An Amazon EKS cluster (with worker nodes properly configured).
-`kubectl`[installed and configured for access to the EKS cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html#get-started-kubectl).
If you don't have an Amazon EKS cluster, one can be created by following the
[EKS getting started guide](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html).
#### Configuring and connecting the EKS cluster
From the left side bar, hover over **Operations > Kubernetes > Add Kubernetes cluster**,
then click **Add an existing Kubernetes cluster**.
A few details from the EKS cluster will be required to connect it to GitLab:
1.**Retrieve the certificate**: A valid Kubernetes certificate is needed to
authenticate to the EKS cluster. We will use the certificate created by default.
Open a shell and use `kubectl` to retrieve it:
- List the secrets with `kubectl get secrets`, and one should named similar to
`default-token-xxxxx`. Copy that token name for use below.
- Get the certificate with:
```sh
kubectl get secret <secret name> -o jsonpath="{['data']['ca\.crt']}" | base64 --decode
```
1.**Create admin token**: A `cluster-admin` token is required to install and
In this tutorial, we will show how to integrate an
[Amazon EKS](https://aws.amazon.com/eks/) cluster with GitLab and begin
deploying applications.
## Introduction
For an end-to-end walkthrough we will:
1. Start with a new project based on the sample Ruby on Rails template.
1. Integrate an EKS cluster.
1. Utilize [Auto DevOps](../../../../topics/autodevops/) to build, test, and deploy our application.
You will need:
1. An account on GitLab, like [GitLab.com](https://gitlab.com).
1. An Amazon EKS cluster (with worker nodes properly configured).
1.`kubectl`[installed and configured for access to the EKS cluster](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html#get-started-kubectl).
If you don't have an Amazon EKS cluster, one can be created by following the
[EKS getting started guide](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html).
## Creating a new project
On GitLab, create a new project by clicking on the `+` icon in the top navigation
bar and selecting **New project**.
On the new project screen, click on the **Create from template** tab, and select
"Use template" for the Ruby on Rails sample project.
Give the project a name, and then select **Create project**.
![Create Project](img/create_project.png)
## Configuring and connecting the EKS cluster
From the left side bar, hover over **Operations > Kubernetes > Add Kubernetes cluster**,
then click **Add an existing Kubernetes cluster**.
A few details from the EKS cluster will be required to connect it to GitLab:
1.**Retrieve the certificate**: A valid Kubernetes certificate is needed to
authenticate to the EKS cluster. We will use the certificate created by default.
Open a shell and use `kubectl` to retrieve it:
- List the secrets with `kubectl get secrets`, and one should named similar to
`default-token-xxxxx`. Copy that token name for use below.
- Get the certificate with:
```sh
kubectl get secret <secret name> -o jsonpath="{['data']['ca\.crt']}" | base64 --decode
```
1.**Create admin token**: A `cluster-admin` token is required to install and
Every new Google Cloud Platform (GCP) account receives [$300 in credit upon sign up](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new GCP accounts to get started with GitLab's
Google Kubernetes Engine Integration. All you have to do is [follow this link](https://cloud.google.com/partners/partnercredit/?PCN=a0n60000006Vpz4AAC) and apply for credit.
NOTE: **Note:**
The [Google authentication integration](../../../integration/google.md) must
be enabled in GitLab at the instance level. If that's not the case, ask your
GitLab administrator to enable it. On GitLab.com, this is enabled.
#### Requirements
Before creating your first cluster on Google Kubernetes Engine with GitLab's
integration, make sure the following requirements are met:
- A [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account)
is set up and you have permissions to access it.
- The Kubernetes Engine API and related service are enabled. It should work immediately but may take up to 10 minutes after you create a project. For more information see the
["Before you begin" section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin).
#### Creating the cluster
If all of the above requirements are met, you can proceed to create and add a
new Kubernetes cluster to your project:
1. Navigate to your project's **Operations > Kubernetes** page.
NOTE: **Note:**
You need Maintainer [permissions](../../permissions.md) and above to access the Kubernetes page.
1. Click **Add Kubernetes cluster**.
1. Click **Create with Google Kubernetes Engine**.
1. Connect your Google account if you haven't done already by clicking the
**Sign in with Google** button.
1. From there on, choose your cluster's settings:
-**Kubernetes cluster name** - The name you wish to give the cluster.
-**Environment scope** - The [associated environment](#setting-the-environment-scope-premium) to this cluster.
-**Google Cloud Platform project** - Choose the project you created in your GCP
console that will host the Kubernetes cluster. Learn more about
-**Zone** - Choose the [region zone](https://cloud.google.com/compute/docs/regions-zones/)
under which the cluster will be created.
-**Number of nodes** - Enter the number of nodes you wish the cluster to have.
-**Machine type** - The [machine type](https://cloud.google.com/compute/docs/machine-types)
of the Virtual Machine instance that the cluster will be based on.
-**Enable Cloud Run on GKE (beta)** - Check this if you want to use Cloud Run on GKE for this cluster. See the [Cloud Run on GKE section](#cloud-run-on-gke) for more information.
-**GitLab-managed cluster** - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster. See the [Managed clusters section](#gitlab-managed-clusters) for more information.
1. Finally, click the **Create Kubernetes cluster** button.
After a couple of minutes, your cluster will be ready to go. You can now proceed
to install some [pre-defined applications](#installing-applications).
NOTE: **Note:**
GitLab requires basic authentication enabled and a client certificate issued for
the cluster in order to setup an [initial service
account](#access-controls). Starting from [GitLab
11.10](https://gitlab.com/gitlab-org/gitlab-foss/issues/58208), the cluster
creation process will explicitly request that basic authentication and
client certificate is enabled.
NOTE: **Note:**
Starting from [GitLab 12.1](https://gitlab.com/gitlab-org/gitlab-foss/issues/55902), all GKE clusters created by GitLab are RBAC enabled. Take a look at the [RBAC section](#rbac-cluster-resources) for more information.
### Add existing Kubernetes cluster
NOTE: **Note:**
Kubernetes integration is not supported for arm64 clusters. See the issue [Helm Tiller fails to install on arm64 cluster](https://gitlab.com/gitlab-org/gitlab-foss/issues/64044) for details.
To add an existing Kubernetes cluster to your project:
1. Navigate to your project's **Operations > Kubernetes** page.
NOTE: **Note:**
You need Maintainer [permissions](../../permissions.md) and above to access the Kubernetes page.
1. Click **Add Kubernetes cluster**.
1. Click **Add an existing Kubernetes cluster** and fill in the details:
-**Kubernetes cluster name** (required) - The name you wish to give the cluster.
-**Environment scope** (required) - The
[associated environment](#setting-the-environment-scope-premium) to this cluster.
-**API URL** (required) -
It's the URL that GitLab uses to access the Kubernetes API. Kubernetes
exposes several APIs, we want the "base" URL that is common to all of them,
e.g., `https://kubernetes.example.com` rather than `https://kubernetes.example.com/api/v1`.
-**CA certificate** (required) - A valid Kubernetes certificate is needed to authenticate to the cluster. We will use the certificate created by default.
- List the secrets with `kubectl get secrets`, and one should named similar to
`default-token-xxxxx`. Copy that token name for use below.
- Get the certificate by running this command:
```sh
kubectl get secret <secret name> -o jsonpath="{['data']['ca\.crt']}" | base64 --decode
```
NOTE: **Note:**
If the command returns the entire certificate chain, you need copy the *root ca*
certificate at the bottom of the chain.
-**Token** -
GitLab authenticates against Kubernetes using service tokens, which are
scoped to a particular `namespace`.
**The token used should belong to a service account with
-**GitLab-managed cluster** - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster. See the [Managed clusters section](#gitlab-managed-clusters) for more information.
-**Project namespace** (optional) - You don't have to fill it in; by leaving
it blank, GitLab will create one for you. Also:
- Each project should have a unique namespace.
- The project namespace is not necessarily the namespace of the secret, if
you're using a secret with broader permissions, like the secret from `default`.
- You should **not** use `default` as the project namespace.
- If you or someone created a secret specifically for the project, usually
with limited permissions, the secret's namespace and project namespace may
be the same.
1. Finally, click the **Create Kubernetes cluster** button.
After a couple of minutes, your cluster will be ready to go. You can now proceed
to install some [pre-defined applications](#installing-applications).
### Enabling or disabling integration
After you have successfully added your cluster information, you can enable the
Kubernetes cluster integration:
1. Click the **Enabled/Disabled** switch
1. Hit **Save** for the changes to take effect
To disable the Kubernetes cluster integration, follow the same procedure.
### Removing integration
NOTE: **Note:**
You need Maintainer [permissions](../../permissions.md) and above to remove a Kubernetes cluster integration.
NOTE: **Note:**
When you remove a cluster, you only remove its relation to GitLab, not the
cluster itself. To remove the cluster, you can do so by visiting the GKE
dashboard or using `kubectl`.
To remove the Kubernetes cluster integration from your project, simply click the
**Remove integration** button. You will then be able to follow the procedure
and add a Kubernetes cluster again.
## Cluster configuration
This section covers important considerations for configuring Kubernetes
clusters with GitLab.
After [adding a Kubernetes cluster](add_remove_clusters.md) to GitLab, read this section that covers
important considerations for configuring Kubernetes clusters with GitLab.
### Security implications
...
...
@@ -344,15 +113,6 @@ functionalities needed to successfully build and deploy a containerized
application. Bear in mind that the same credentials are used for all the
applications running on the cluster.
### Cloud Run on GKE
> [Introduced](https://gitlab.com/gitlab-org/gitlab/merge_requests/16566) in GitLab 12.4.
You can choose to use Cloud Run on GKE in place of installing Knative and Istio
separately after the cluster has been created. This means that Cloud Run
(Knative), Istio, and HTTP Load Balancing will be enabled on the cluster at
create time and cannot be [installed or uninstalled](../../clusters/applications.md) separately.
### GitLab-managed clusters
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/merge_requests/22011) in GitLab 11.5.
...
...
@@ -360,7 +120,7 @@ create time and cannot be [installed or uninstalled](../../clusters/applications
You can choose to allow GitLab to manage your cluster for you. If your cluster is
managed by GitLab, resources for your projects will be automatically created. See the
[Access controls](#access-controls) section for details on which resources will
[Access controls](add_remove_clusters.md#access-controls) section for details on which resources will
be created.
If you choose to manage your own cluster, project-specific resources will not be created
...
...
@@ -390,97 +150,6 @@ you can either:
- Create an `A` record that points to the Ingress IP address with your domain provider.
- Enter a wildcard DNS address using a service such as nip.io or xip.io. For example, `192.168.1.1.xip.io`.
### Access controls
When creating a cluster in GitLab, you will be asked if you would like to create either:
- An [Attribute-based access control (ABAC)](https://kubernetes.io/docs/reference/access-authn-authz/abac/) cluster.
- A [Role-based access control (RBAC)](https://kubernetes.io/docs/reference/access-authn-authz/rbac/) cluster.
NOTE: **Note:**
[RBAC](#rbac-cluster-resources) is recommended and the GitLab default.
GitLab creates the necessary service accounts and privileges to install and run
[GitLab managed applications](#installing-applications). When GitLab creates the cluster,
a `gitlab` service account with `cluster-admin` privileges is created in the `default` namespace
to manage the newly created cluster.
NOTE: **Note:**
Restricted service account for deployment was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/issues/51716) in GitLab 11.5.
When you install Helm into your cluster, the `tiller` service account
is created with `cluster-admin` privileges in the `gitlab-managed-apps`
namespace. This service account will be added to the installed Helm Tiller and will
be used by Helm to install and run [GitLab managed applications](#installing-applications).
Helm will also create additional service accounts and other resources for each
installed application. Consult the documentation of the Helm charts for each application
for details.
If you are [adding an existing Kubernetes cluster](#add-existing-kubernetes-cluster),
ensure the token of the account has administrator privileges for the cluster.
The resources created by GitLab differ depending on the type of cluster.
#### ABAC cluster resources
GitLab creates the following resources for ABAC clusters.
| `KUBE_TOKEN` | The Kubernetes token of the [environment service account](#access-controls). |
| `KUBE_TOKEN` | The Kubernetes token of the [environment service account](add_remove_clusters.md#access-controls). |
| `KUBE_NAMESPACE` | The Kubernetes namespace is auto-generated if not specified. The default value is `<project_name>-<project_id>-<environment>`. You can overwrite it to use different one if needed, otherwise the `KUBE_NAMESPACE` variable will receive the default value. |
| `KUBE_CA_PEM_FILE` | Path to a file containing PEM data. Only present if a custom CA bundle was specified. |
| `KUBE_CA_PEM` | (**deprecated**) Raw PEM data. Only if a custom CA bundle was specified. |
@@ -13,14 +13,16 @@ GitLab supports several ways deploy Serverless applications in both Kubernetes E
Currently we support:
-[Knative](#knative): Build Knative applications with Knative and gitlabktl on GKE
-[AWS Lambda](aws.md): Create serverless applications via the Serverless Framework and GitLab CI
-[Knative](#knative): Build Knative applications with Knative and gitlabktl on GKE.
-[AWS Lambda](aws.md): Create serverless applications via the Serverless Framework and GitLab CI.
## Knative
Run serverless workloads on Kubernetes using [Knative](https://cloud.google.com/knative/).
Knative extends Kubernetes to provide a set of middleware components that are useful to build modern, source-centric, container-based applications. Knative brings some significant benefits out of the box through its main components:
Knative extends Kubernetes to provide a set of middleware components that are useful to build
modern, source-centric, container-based applications. Knative brings some significant benefits out
of the box through its main components:
-[Serving](https://github.com/knative/serving): Request-driven compute that can scale to zero.
-[Eventing](https://github.com/knative/eventing): Management and delivery of events.
...
...
@@ -39,7 +41,7 @@ To run Knative on GitLab, you will need:
- If you are planning on deploying a serverless application, clone the sample [Knative Ruby App](https://gitlab.com/knative-examples/knative-ruby-app) to get started.
1.**Kubernetes Cluster:** An RBAC-enabled Kubernetes cluster is required to deploy Knative.
The simplest way to get started is to add a cluster using [GitLab's GKE integration](../index.md#add-new-gke-cluster).
The simplest way to get started is to add a cluster using [GitLab's GKE integration](../add_remove_clusters.md#add-new-gke-cluster).
The set of minimum recommended cluster specifications to run Knative is 3 nodes, 6 vCPUs, and 22.50 GB memory.
1.**Helm Tiller:** Helm is a package manager for Kubernetes and is required to install
Knative.
...
...
@@ -68,7 +70,7 @@ To run Knative on GitLab, you will need:
NOTE: **Note:**
The minimum recommended cluster size to run Knative is 3-nodes, 6 vCPUs, and 22.50 GB memory. **RBAC must be enabled.**
1.[Add a Kubernetes cluster](../index.md) and [install Helm](../index.md#installing-applications).
1.[Add a Kubernetes cluster](../add_remove_clusters.md) and [install Helm](../index.md#installing-applications).
1. Once Helm has been successfully installed, scroll down to the Knative app section. Enter the domain to be used with
your application/functions (e.g. `example.com`) and click **Install**.
@@ -117,7 +117,7 @@ You can view the performance dashboard for an environment by [clicking on the mo
Custom metrics can be monitored by adding them on the monitoring dashboard page. Once saved, they will be displayed on the environment performance dashboard provided that either:
- A [connected Kubernetes cluster](../clusters/index.md#adding-and-removing-clusters) with the environment scope of `*` is used and [Prometheus installed on the cluster](#enabling-prometheus-integration), or
- A [connected Kubernetes cluster](../clusters/add_remove_clusters.md) with the environment scope of `*` is used and [Prometheus installed on the cluster](#enabling-prometheus-integration)
- Prometheus is [manually configured](#manual-configuration-of-prometheus).