Commit 2c148ec2 authored by Rusty Russell's avatar Rusty Russell

ccan/crc32c: new module for accelerated CRC32 (on x86-64).

Note: the previous code in ccan/crc is wrong, so I started fresh with
actual test vectors.
Signed-off-by: default avatarRusty Russell <rusty@rustcorp.com.au>
parent 2c77e8bd
#include "config.h"
#include <string.h>
#include <stdio.h>
/**
* crc32c - routine for Castagnoli CRC (crc32c) of bytes
*
* Cyclic Redundancy Check routine, optimized for x86-64. Reasonably fast
* checksum routines, but not suitable for cryptographic use.
*
* They are useful for simple error detection, eg. a 32-bit CRC will
* detect a single error burst of up to 32 bits.
*
* Example:
* #include <ccan/crc32c/crc32c.h>
* #include <stdio.h>
* #include <stdlib.h>
*
* // Given "123456789" outputs 0xe3069283
* int main(int argc, char *argv[])
* {
* if (argc != 2) {
* fprintf(stderr, "Usage: %s <string>\n"
* "Prints 32 bit CRC of the string\n", argv[0]);
* exit(1);
* }
* printf("0x%08x\n", crc32c(0, argv[1], strlen(argv[1])));
* exit(0);
* }
*
* License: MIT
* Author: Mark Adler
* Maintainer: Rusty Russell <rusty@rustcorp.com.au>
*/
int main(int argc, char *argv[])
{
if (argc != 2)
return 1;
if (strcmp(argv[1], "depends") == 0) {
printf("ccan/compiler\n");
return 0;
}
return 1;
}
CCANDIR=../../..
CFLAGS=-Wall -Werror -O3 -I$(CCANDIR) -flto
#CFLAGS=-Wall -Werror -g3 -I$(CCANDIR)
LDFLAGS := -flto -O3
all: bench
CCAN_OBJS:=ccan-tal.o ccan-tal-grab_file.o ccan-noerr.o ccan-take.o ccan-time.o
bench: bench.o $(CCAN_OBJS)
clean:
rm -f bench *.o
ccan-time.o: $(CCANDIR)/ccan/time/time.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-tal.o: $(CCANDIR)/ccan/tal/tal.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-take.o: $(CCANDIR)/ccan/take/take.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-noerr.o: $(CCANDIR)/ccan/noerr/noerr.c
$(CC) $(CFLAGS) -c -o $@ $<
ccan-tal-grab_file.o: $(CCANDIR)/ccan/tal/grab_file/grab_file.c
$(CC) $(CFLAGS) -c -o $@ $<
#include <ccan/tal/grab_file/grab_file.h>
#include <ccan/tal/tal.h>
#include <ccan/time/time.h>
#include <ccan/crc32c/crc32c.c>
#include <assert.h>
#include <ccan/err/err.h>
#define RUNS 65536
int main(int argc, char *argv[])
{
void *p;
struct timeabs start, end;
size_t len, runs;
uint64_t sums = 0;
bool sw = false, hw = false;
if (argv[1]) {
if (streq(argv[1], "--software")) {
sw = true;
argv++;
argc--;
} else if (streq(argv[1], "--hardware")) {
hw = true;
argv++;
argc--;
}
}
if (argc < 2 || (runs = atol(argv[1])) == 0)
errx(1, "Usage: bench <num-runs> [<file>]");
p = grab_file(NULL, argv[2]);
if (!p)
err(1, "Reading %s", argv[2] ? argv[2] : "<stdin>");
len = tal_count(p) - 1;
start = time_now();
if (sw) {
for (size_t i = 0; i < runs; i++)
sums += crc32c_sw(0, p, len);
} else if (hw) {
for (size_t i = 0; i < runs; i++)
sums += crc32c_hw(0, p, len);
} else {
for (size_t i = 0; i < runs; i++)
sums += crc32c(0, p, len);
}
end = time_now();
assert(sums % runs == 0);
printf("%u usec for %zu bytes, sum=%08x\n",
(int)time_to_usec(time_divide(time_between(end, start), runs)),
len,
(unsigned int)(sums / runs));
return 0;
}
/* MIT (BSD) license - see LICENSE file for details */
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
* Copyright (C) 2013, 2015 Mark Adler
* Version 1.3 31 Dec 2015 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
madler@alumni.caltech.edu
*/
/* Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
version is provided as a fall-back, as well as for speed comparisons. */
/* Version history:
1.0 10 Feb 2013 First version
1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
1.2 1 Nov 2015 Add const qualifier to avoid compiler warning
Load entire input into memory (test code)
Argument gives number of times to repeat (test code)
Argument < 0 forces software implementation (test code)
1.3 31 Dec 2015 Check for Intel architecture using compiler macro
Support big-endian processors in software calculation
Add header for external use
*/
#include "crc32c.h"
#include <ccan/compiler/compiler.h>
#include <stdbool.h>
static uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len);
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
#ifdef __x86_64__
/* Hardware CRC-32C for Intel and compatible processors. */
/* Multiply a matrix times a vector over the Galois field of two elements,
GF(2). Each element is a bit in an unsigned integer. mat must have at
least as many entries as the power of two for most significant one bit in
vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
uint32_t sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
for (unsigned n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* Construct an operator to apply len zeros to a crc. len must be a power of
two. If len is not a power of two, then the result is the same as for the
largest power of two less than len. The result for len == 0 is the same as
for len == 1. A version of this routine could be easily written for any
len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len) {
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
uint32_t row = 1;
for (unsigned n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* first square will put the operator for one zero byte (eight zero bits),
in even -- next square puts operator for two zero bytes in odd, and so
on, until len has been rotated down to zero */
do {
gf2_matrix_square(even, odd);
len >>= 1;
if (len == 0)
return;
gf2_matrix_square(odd, even);
len >>= 1;
} while (len);
/* answer ended up in odd -- copy to even */
for (unsigned n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len) {
uint32_t op[32];
crc32c_zeros_op(op, len);
for (unsigned n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
zeros[3][n] = gf2_matrix_times(op, n << 24);
}
}
/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
/* Block sizes for three-way parallel crc computation. LONG and SHORT must
both be powers of two. The associated string constants must be set
accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"
/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static bool crc32c_once_hw;
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void) {
crc32c_once_hw = true;
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
}
/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
/* populate shift tables the first time through */
if (!crc32c_once_hw)
crc32c_init_hw();
/* pre-process the crc */
crc = ~crc;
uint64_t crc0 = crc; /* 64-bits for crc32q instruction */
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next++;
len--;
}
/* compute the crc on sets of LONG*3 bytes, executing three independent crc
instructions, each on LONG bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
"crc32q\t" LONGx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
next += LONG*2;
len -= LONG*3;
}
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
than a LONG*3 block */
while (len >= SHORT*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
"crc32q\t" SHORTx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
next += SHORT*2;
len -= SHORT*3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
block */
{
unsigned char const * const end = next + (len - (len & 7));
while (next < end) {
__asm__("crc32q\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next += 8;
}
len &= 7;
}
/* compute the crc for up to seven trailing bytes */
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next++;
len--;
}
/* return a post-processed crc */
return ~crc0;
}
/* Compute a CRC-32C. If the crc32 instruction is available, use the hardware
version. Otherwise, use the software version. */
uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
return cpu_supports("sse4.2") ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
}
#else /* !__x86_64__ */
uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
return crc32c_sw(crc, buf, len);
}
#endif
/* Construct table for software CRC-32C little-endian calculation. */
static bool crc32c_once_little;
static uint32_t crc32c_table_little[8][256];
static void crc32c_init_sw_little(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_little[0][n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_little[0][n];
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_little[0][crc & 0xff] ^ (crc >> 8);
crc32c_table_little[k][n] = crc;
}
}
crc32c_once_little = true;
}
/* Compute a CRC-32C in software assuming a little-endian architecture,
constructing the required table if that hasn't already been done. */
static uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
if (!crc32c_once_little)
crc32c_init_sw_little();
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = crc;
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_little[7][crcw & 0xff] ^
crc32c_table_little[6][(crcw >> 8) & 0xff] ^
crc32c_table_little[5][(crcw >> 16) & 0xff] ^
crc32c_table_little[4][(crcw >> 24) & 0xff] ^
crc32c_table_little[3][(crcw >> 32) & 0xff] ^
crc32c_table_little[2][(crcw >> 40) & 0xff] ^
crc32c_table_little[1][(crcw >> 48) & 0xff] ^
crc32c_table_little[0][crcw >> 56];
next += 8;
len -= 8;
} while (len >= 8);
crc = crcw;
}
while (len) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Swap the bytes in a uint64_t. (Only for big-endian.) */
#if defined(__has_builtin) || (defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)))
# define swap __builtin_bswap64
#else
static inline uint64_t swap(uint64_t x) {
x = ((x << 8) & 0xff00ff00ff00ff00) | ((x >> 8) & 0xff00ff00ff00ff);
x = ((x << 16) & 0xffff0000ffff0000) | ((x >> 16) & 0xffff0000ffff);
return (x << 32) | (x >> 32);
}
#endif
/* Construct tables for software CRC-32C big-endian calculation. */
static bool crc32c_once_big;
static uint32_t crc32c_table_big_byte[256];
static uint64_t crc32c_table_big[8][256];
static void crc32c_init_sw_big(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_big_byte[n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_big_byte[n];
crc32c_table_big[0][n] = swap(crc);
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_big_byte[crc & 0xff] ^ (crc >> 8);
crc32c_table_big[k][n] = swap(crc);
}
}
crc32c_once_big = true;
}
/* Compute a CRC-32C in software assuming a big-endian architecture,
constructing the required tables if that hasn't already been done. */
static uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
if (!crc32c_once_big)
crc32c_init_sw_big();
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = swap(crc);
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_big[0][crcw & 0xff] ^
crc32c_table_big[1][(crcw >> 8) & 0xff] ^
crc32c_table_big[2][(crcw >> 16) & 0xff] ^
crc32c_table_big[3][(crcw >> 24) & 0xff] ^
crc32c_table_big[4][(crcw >> 32) & 0xff] ^
crc32c_table_big[5][(crcw >> 40) & 0xff] ^
crc32c_table_big[6][(crcw >> 48) & 0xff] ^
crc32c_table_big[7][(crcw >> 56)];
next += 8;
len -= 8;
} while (len >= 8);
crc = swap(crcw);
}
while (len) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Table-driven software CRC-32C. This is about 15 times slower than using the
hardware instructions. Determine the endianess of the processor and proceed
accordingly. Ideally the endianess will be determined at compile time, in
which case the unused functions and tables for the other endianess will be
removed by the optimizer. If not, then the proper routines and tables will
be used, even if the endianess is changed mid-stream. (Yes, there are
processors that permit that -- go figure.) */
static uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
static int const little = 1;
if (*(char const *)&little)
return crc32c_sw_little(crc, buf, len);
else
return crc32c_sw_big(crc, buf, len);
}
/* Licensed under MIT - see LICENSE file for details */
#ifndef CCAN_CRC32C_H
#define CCAN_CRC32C_H
#include <stdint.h>
#include <stdlib.h>
/**
* crc32c - Castagnoli 32 bit crc of string of bytes
* @start_crc: the initial crc (usually 0)
* @buf: pointer to bytes
* @size: length of buffer
*
* If you don't know what crc32 to use, use this one: it's the best.
*
* @Article{castagnoli-crc,
* author = { Guy Castagnoli and Stefan Braeuer and Martin Herrman},
* title = {{Optimization of Cyclic Redundancy-Check Codes with 24
* and 32 Parity Bits}},
* journal = IEEE Transactions on Communication,
* year = {1993},
* volume = {41},
* number = {6},
* pages = {},
* month = {June},
*}
* 32 bit CRC checksum using polynomial
* X^32+X^28+X^27+X^26+X^25+X^23+X^22+X^20+X^19+X^18+X^14+X^13+X^11+X^10+X^9+X^8+X^6+X^0.
*
* You can calculate the CRC of non-contiguous arrays by passing @start_crc
* as 0 the first time, and the current crc result from then on.
*
* Example:
* #include <sys/uio.h>
* ...
* // Check that iovec has the crc we expect (Castagnoli version)
* static bool check_crc(uint32_t expected, const struct iovec *iov, int l)
* {
* uint32_t crc = 0;
* while (l >= 0) {
* crc = crc32c(crc, iov->iov_base, iov->iov_len);
* iov++;
* }
* return crc == expected;
* }
*/
uint32_t crc32c(uint32_t start_crc, const void *buf, size_t size);
#endif /* CCAN_CRC32C_H */
/* Test vectors from https://tools.ietf.org/html/rfc3720#appendix-B.4 */
#include <ccan/crc32c/crc32c.h>
#include <ccan/tap/tap.h>
#include <string.h>
#define BSWAP_32(val) \
((((uint32_t)(val) & 0x000000ff) << 24) \
| (((uint32_t)(val) & 0x0000ff00) << 8) \
| (((uint32_t)(val) & 0x00ff0000) >> 8) \
| (((uint32_t)(val) & 0xff000000) >> 24))
#if HAVE_LITTLE_ENDIAN
#define BE32_TO_CPU(le_val) BSWAP_32((uint32_t)le_val)
#else
#define BE32_TO_CPU(le_val) ((uint32_t)(le_val))
#endif
int main(void)
{
unsigned char m[48];
plan_tests(5);
/* 32 bytes of zeroes:
Byte: 0 1 2 3
0: 00 00 00 00
...
28: 00 00 00 00
CRC: aa 36 91 8a
*/
memset(m, 0, 32);
ok1(crc32c(0, m, 32) == BE32_TO_CPU(0xaa36918a));
/* 32 bytes of ones:
Byte: 0 1 2 3
0: ff ff ff ff
...
28: ff ff ff ff
CRC: 43 ab a8 62
*/
memset(m, 0xff, 32);
ok1(crc32c(0, m, 32) == BE32_TO_CPU(0x43aba862));
/* 32 bytes of incrementing 00..1f:
Byte: 0 1 2 3
0: 00 01 02 03
...
28: 1c 1d 1e 1f
CRC: 4e 79 dd 46
*/
for (size_t i = 0; i < 32; i++)
m[i] = i;
ok1(crc32c(0, m, 32) == BE32_TO_CPU(0x4e79dd46));
/* 32 bytes of decrementing 1f..00:
Byte: 0 1 2 3
0: 1f 1e 1d 1c
...
28: 03 02 01 00
CRC: 5c db 3f 11
*/
for (size_t i = 0; i < 32; i++)
m[i] = 31 - i;
ok1(crc32c(0, m, 32) == BE32_TO_CPU(0x5cdb3f11));
/* An iSCSI - SCSI Read (10) Command PDU
Byte: 0 1 2 3
0: 01 c0 00 00
4: 00 00 00 00
8: 00 00 00 00
12: 00 00 00 00
16: 14 00 00 00
20: 00 00 04 00
24: 00 00 00 14
28: 00 00 00 18
32: 28 00 00 00
36: 00 00 00 00
40: 02 00 00 00
44: 00 00 00 00
CRC: 56 3a 96 d9
*/
memset(m, 0, sizeof(m));
m[0] = 0x01;
m[1] = 0xc0;
m[16] = 0x14;
m[22] = 0x04;
m[27] = 0x14;
m[31] = 0x18;
m[32] = 0x28;
m[40] = 0x02;
ok1(crc32c(0, m, sizeof(m)) == BE32_TO_CPU(0x563a96d9));
return exit_status();
}
/* Test vectors from https://tools.ietf.org/html/rfc3720#appendix-B.4 */
/* Get access to sw version explicitly */
#include <ccan/crc32c/crc32c.c>
#include <ccan/tap/tap.h>
#include <string.h>
#define BSWAP_32(val) \
((((uint32_t)(val) & 0x000000ff) << 24) \
| (((uint32_t)(val) & 0x0000ff00) << 8) \
| (((uint32_t)(val) & 0x00ff0000) >> 8) \
| (((uint32_t)(val) & 0xff000000) >> 24))
#if HAVE_LITTLE_ENDIAN
#define BE32_TO_CPU(le_val) BSWAP_32((uint32_t)le_val)
#else
#define BE32_TO_CPU(le_val) ((uint32_t)(le_val))
#endif
int main(void)
{
unsigned char m[48];
plan_tests(5);
/* 32 bytes of zeroes:
Byte: 0 1 2 3
0: 00 00 00 00
...
28: 00 00 00 00
CRC: aa 36 91 8a
*/
memset(m, 0, 32);
ok1(crc32c_sw(0, m, 32) == BE32_TO_CPU(0xaa36918a));
/* 32 bytes of ones:
Byte: 0 1 2 3
0: ff ff ff ff
...
28: ff ff ff ff
CRC: 43 ab a8 62
*/
memset(m, 0xff, 32);
ok1(crc32c_sw(0, m, 32) == BE32_TO_CPU(0x43aba862));
/* 32 bytes of incrementing 00..1f:
Byte: 0 1 2 3
0: 00 01 02 03
...
28: 1c 1d 1e 1f
CRC: 4e 79 dd 46
*/
for (size_t i = 0; i < 32; i++)
m[i] = i;
ok1(crc32c_sw(0, m, 32) == BE32_TO_CPU(0x4e79dd46));
/* 32 bytes of decrementing 1f..00:
Byte: 0 1 2 3
0: 1f 1e 1d 1c
...
28: 03 02 01 00
CRC: 5c db 3f 11
*/
for (size_t i = 0; i < 32; i++)
m[i] = 31 - i;
ok1(crc32c_sw(0, m, 32) == BE32_TO_CPU(0x5cdb3f11));
/* An iSCSI - SCSI Read (10) Command PDU
Byte: 0 1 2 3
0: 01 c0 00 00
4: 00 00 00 00
8: 00 00 00 00
12: 00 00 00 00
16: 14 00 00 00
20: 00 00 04 00
24: 00 00 00 14
28: 00 00 00 18
32: 28 00 00 00
36: 00 00 00 00
40: 02 00 00 00
44: 00 00 00 00
CRC: 56 3a 96 d9
*/
memset(m, 0, sizeof(m));
m[0] = 0x01;
m[1] = 0xc0;
m[16] = 0x14;
m[22] = 0x04;
m[27] = 0x14;
m[31] = 0x18;
m[32] = 0x28;
m[40] = 0x02;
ok1(crc32c_sw(0, m, sizeof(m)) == BE32_TO_CPU(0x563a96d9));
return exit_status();
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment