Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
ccan
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
mirror
ccan
Commits
2d6759d4
Commit
2d6759d4
authored
May 19, 2008
by
Rusty Russell
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
First cut of hashing routines.
parent
b27117c6
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1300 additions
and
0 deletions
+1300
-0
hash/_info.c
hash/_info.c
+23
-0
hash/hash.c
hash/hash.c
+1003
-0
hash/hash.h
hash/hash.h
+159
-0
hash/test/run.c
hash/test/run.c
+115
-0
No files found.
hash/_info.c
0 → 100644
View file @
2d6759d4
/**
* hash - routines for hashing bytes
*
* When creating a hash table it's important to have a hash function
* which mixes well and is fast. This package supplies such functions.
*
* The hash functions come in two flavors: the normal ones and the
* stable ones. The normal ones can vary from machine-to-machine and
* may change if we find better or faster hash algorithms in future.
* The stable ones will always give the same results on any computer,
* and on any version of this package.
*/
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
2
)
return
1
;
if
(
strcmp
(
argv
[
1
],
"depends"
)
==
0
)
{
return
0
;
}
return
1
;
}
hash/hash.c
0 → 100644
View file @
2d6759d4
/*
-------------------------------------------------------------------------------
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
These are functions for producing 32-bit hashes for hash table lookup.
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
are externally useful functions. Routines to test the hash are included
if SELF_TEST is defined. You can use this free for any purpose. It's in
the public domain. It has no warranty.
You probably want to use hashlittle(). hashlittle() and hashbig()
hash byte arrays. hashlittle() is is faster than hashbig() on
little-endian machines. Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.
You could implement hashbig2() if you wanted but I haven't bothered here.
If you want to find a hash of, say, exactly 7 integers, do
a = i1; b = i2; c = i3;
mix(a,b,c);
a += i4; b += i5; c += i6;
mix(a,b,c);
a += i7;
final(a,b,c);
then use c as the hash value. If you have a variable length array of
4-byte integers to hash, use hash_word(). If you have a byte array (like
a character string), use hashlittle(). If you have several byte arrays, or
a mix of things, see the comments above hashlittle().
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
then mix those integers. This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
-------------------------------------------------------------------------------
*/
//#define SELF_TEST 1
#if 0
#include <stdio.h> /* defines printf for tests */
#include <time.h> /* defines time_t for timings in the test */
#include <stdint.h> /* defines uint32_t etc */
#include <sys/param.h> /* attempt to define endianness */
#endif
#include "hash/hash.h"
#ifdef linux
# include <endian.h>
/* attempt to define endianness */
#endif
/*
* My best guess at if you are big-endian or little-endian. This may
* need adjustment.
*/
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
__BYTE_ORDER == __LITTLE_ENDIAN) || \
(defined(i386) || defined(__i386__) || defined(__i486__) || \
defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
# define HASH_LITTLE_ENDIAN 1
# define HASH_BIG_ENDIAN 0
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
__BYTE_ORDER == __BIG_ENDIAN) || \
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 1
#else
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 0
#endif
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c
Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different. This was tested for
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
These constants passed:
14 11 25 16 4 14 24
12 14 25 16 4 14 24
and these came close:
4 8 15 26 3 22 24
10 8 15 26 3 22 24
11 8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
--------------------------------------------------------------------
This works on all machines. To be useful, it requires
-- that the key be an array of uint32_t's, and
-- that the length be the number of uint32_t's in the key
The function hash_word() is identical to hashlittle() on little-endian
machines, and identical to hashbig() on big-endian machines,
except that the length has to be measured in uint32_ts rather than in
bytes. hashlittle() is more complicated than hash_word() only because
hashlittle() has to dance around fitting the key bytes into registers.
--------------------------------------------------------------------
*/
uint32_t
hash_u32
(
const
uint32_t
*
k
,
/* the key, an array of uint32_t values */
size_t
length
,
/* the length of the key, in uint32_ts */
uint32_t
initval
)
/* the previous hash, or an arbitrary value */
{
uint32_t
a
,
b
,
c
;
/* Set up the internal state */
a
=
b
=
c
=
0xdeadbeef
+
(((
uint32_t
)
length
)
<<
2
)
+
initval
;
/*------------------------------------------------- handle most of the key */
while
(
length
>
3
)
{
a
+=
k
[
0
];
b
+=
k
[
1
];
c
+=
k
[
2
];
mix
(
a
,
b
,
c
);
length
-=
3
;
k
+=
3
;
}
/*------------------------------------------- handle the last 3 uint32_t's */
switch
(
length
)
/* all the case statements fall through */
{
case
3
:
c
+=
k
[
2
];
case
2
:
b
+=
k
[
1
];
case
1
:
a
+=
k
[
0
];
final
(
a
,
b
,
c
);
case
0
:
/* case 0: nothing left to add */
break
;
}
/*------------------------------------------------------ report the result */
return
c
;
}
#if 0
/*
--------------------------------------------------------------------
hash_word2() -- same as hash_word(), but take two seeds and return two
32-bit values. pc and pb must both be nonnull, and *pc and *pb must
both be initialized with seeds. If you pass in (*pb)==0, the output
(*pc) will be the same as the return value from hash_word().
--------------------------------------------------------------------
*/
void hash_word2 (
const uint32_t *k, /* the key, an array of uint32_t values */
size_t length, /* the length of the key, in uint32_ts */
uint32_t *pc, /* IN: seed OUT: primary hash value */
uint32_t *pb) /* IN: more seed OUT: secondary hash value */
{
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
c += *pb;
/*------------------------------------------------- handle most of the key */
while (length > 3)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 3;
k += 3;
}
/*------------------------------------------- handle the last 3 uint32_t's */
switch(length) /* all the case statements fall through */
{
case 3 : c+=k[2];
case 2 : b+=k[1];
case 1 : a+=k[0];
final(a,b,c);
case 0: /* case 0: nothing left to add */
break;
}
/*------------------------------------------------------ report the result */
*pc=c; *pb=b;
}
#endif
/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
length : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Two keys differing by one or two bits will have
totally different hash values.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/
static
uint32_t
hashlittle
(
const
void
*
key
,
size_t
length
,
uint32_t
initval
)
{
uint32_t
a
,
b
,
c
;
/* internal state */
union
{
const
void
*
ptr
;
size_t
i
;
}
u
;
/* needed for Mac Powerbook G4 */
/* Set up the internal state */
a
=
b
=
c
=
0xdeadbeef
+
((
uint32_t
)
length
)
+
initval
;
u
.
ptr
=
key
;
if
(
HASH_LITTLE_ENDIAN
&&
((
u
.
i
&
0x3
)
==
0
))
{
const
uint32_t
*
k
=
(
const
uint32_t
*
)
key
;
/* read 32-bit chunks */
#ifdef VALGRIND
const
uint8_t
*
k8
;
#endif
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
b
+=
k
[
1
];
c
+=
k
[
2
];
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
3
;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]&0xffffff" actually reads beyond the end of the string, but
* then masks off the part it's not allowed to read. Because the
* string is aligned, the masked-off tail is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*/
#ifndef VALGRIND
switch
(
length
)
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
k
[
2
]
&
0xffffff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
10
:
c
+=
k
[
2
]
&
0xffff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
9
:
c
+=
k
[
2
]
&
0xff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
k
[
1
]
&
0xffffff
;
a
+=
k
[
0
];
break
;
case
6
:
b
+=
k
[
1
]
&
0xffff
;
a
+=
k
[
0
];
break
;
case
5
:
b
+=
k
[
1
]
&
0xff
;
a
+=
k
[
0
];
break
;
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
k
[
0
]
&
0xffffff
;
break
;
case
2
:
a
+=
k
[
0
]
&
0xffff
;
break
;
case
1
:
a
+=
k
[
0
]
&
0xff
;
break
;
case
0
:
return
c
;
/* zero length strings require no mixing */
}
#else
/* make valgrind happy */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
16
;
/* fall through */
case
10
:
c
+=
((
uint32_t
)
k8
[
9
])
<<
8
;
/* fall through */
case
9
:
c
+=
k8
[
8
];
/* fall through */
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
16
;
/* fall through */
case
6
:
b
+=
((
uint32_t
)
k8
[
5
])
<<
8
;
/* fall through */
case
5
:
b
+=
k8
[
4
];
/* fall through */
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
16
;
/* fall through */
case
2
:
a
+=
((
uint32_t
)
k8
[
1
])
<<
8
;
/* fall through */
case
1
:
a
+=
k8
[
0
];
break
;
case
0
:
return
c
;
}
#endif
/* !valgrind */
}
else
if
(
HASH_LITTLE_ENDIAN
&&
((
u
.
i
&
0x1
)
==
0
))
{
const
uint16_t
*
k
=
(
const
uint16_t
*
)
key
;
/* read 16-bit chunks */
const
uint8_t
*
k8
;
/*--------------- all but last block: aligned reads and different mixing */
while
(
length
>
12
)
{
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
6
;
}
/*----------------------------- handle the last (probably partial) block */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
{
case
12
:
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
16
;
/* fall through */
case
10
:
c
+=
k
[
4
];
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
9
:
c
+=
k8
[
8
];
/* fall through */
case
8
:
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
16
;
/* fall through */
case
6
:
b
+=
k
[
2
];
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
5
:
b
+=
k8
[
4
];
/* fall through */
case
4
:
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
16
;
/* fall through */
case
2
:
a
+=
k
[
0
];
break
;
case
1
:
a
+=
k8
[
0
];
break
;
case
0
:
return
c
;
/* zero length requires no mixing */
}
}
else
{
/* need to read the key one byte at a time */
const
uint8_t
*
k
=
(
const
uint8_t
*
)
key
;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
b
+=
k
[
4
];
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
c
+=
k
[
8
];
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
12
;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch
(
length
)
/* all the case statements fall through */
{
case
12
:
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
case
11
:
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
case
10
:
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
case
9
:
c
+=
k
[
8
];
case
8
:
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
case
7
:
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
case
6
:
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
case
5
:
b
+=
k
[
4
];
case
4
:
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
case
3
:
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
case
2
:
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
case
1
:
a
+=
k
[
0
];
break
;
case
0
:
return
c
;
}
}
final
(
a
,
b
,
c
);
return
c
;
}
#if 0
/*
* hashlittle2: return 2 32-bit hash values
*
* This is identical to hashlittle(), except it returns two 32-bit hash
* values instead of just one. This is good enough for hash table
* lookup with 2^^64 buckets, or if you want a second hash if you're not
* happy with the first, or if you want a probably-unique 64-bit ID for
* the key. *pc is better mixed than *pb, so use *pc first. If you want
* a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
*/
void hashlittle2(
const void *key, /* the key to hash */
size_t length, /* length of the key */
uint32_t *pc, /* IN: primary initval, OUT: primary hash */
uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
{
uint32_t a,b,c; /* internal state */
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
c += *pb;
u.ptr = key;
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
const uint8_t *k8;
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]&0xffffff" actually reads beyond the end of the string, but
* then masks off the part it's not allowed to read. Because the
* string is aligned, the masked-off tail is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*/
#ifndef VALGRIND
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
case 5 : b+=k[1]&0xff; a+=k[0]; break;
case 4 : a+=k[0]; break;
case 3 : a+=k[0]&0xffffff; break;
case 2 : a+=k[0]&0xffff; break;
case 1 : a+=k[0]&0xff; break;
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
}
#else /* make valgrind happy */
k8 = (const uint8_t *)k;
switch(length)
{
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
case 9 : c+=k8[8]; /* fall through */
case 8 : b+=k[1]; a+=k[0]; break;
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
case 5 : b+=k8[4]; /* fall through */
case 4 : a+=k[0]; break;
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
case 1 : a+=k8[0]; break;
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
}
#endif /* !valgrind */
}
else
if
(
HASH_LITTLE_ENDIAN
&&
((
u
.
i
&
0x1
)
==
0
))
{
const
uint16_t
*
k
=
(
const
uint16_t
*
)
key
;
/* read 16-bit chunks */
const
uint8_t
*
k8
;
/*--------------- all but last block: aligned reads and different mixing */
while
(
length
>
12
)
{
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
6
;
}
/*----------------------------- handle the last (probably partial) block */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
{
case
12
:
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
16
;
/* fall through */
case
10
:
c
+=
k
[
4
];
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
9
:
c
+=
k8
[
8
];
/* fall through */
case
8
:
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
16
;
/* fall through */
case
6
:
b
+=
k
[
2
];
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
5
:
b
+=
k8
[
4
];
/* fall through */
case
4
:
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
16
;
/* fall through */
case
2
:
a
+=
k
[
0
];
break
;
case
1
:
a
+=
k8
[
0
];
break
;
case
0
:
*
pc
=
c
;
*
pb
=
b
;
return
;
/* zero length strings require no mixing */
}
}
else
{
/* need to read the key one byte at a time */
const
uint8_t
*
k
=
(
const
uint8_t
*
)
key
;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
b
+=
k
[
4
];
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
c
+=
k
[
8
];
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
12
;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch
(
length
)
/* all the case statements fall through */
{
case
12
:
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
case
11
:
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
case
10
:
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
case
9
:
c
+=
k
[
8
];
case
8
:
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
case
7
:
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
case
6
:
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
case
5
:
b
+=
k
[
4
];
case
4
:
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
case
3
:
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
case
2
:
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
case
1
:
a
+=
k
[
0
];
break
;
case
0
:
*
pc
=
c
;
*
pb
=
b
;
return
;
/* zero length strings require no mixing */
}
}
final
(
a
,
b
,
c
);
*
pc
=
c
;
*
pb
=
b
;
}
#endif
/*
* hashbig():
* This is the same as hash_word() on big-endian machines. It is different
* from hashlittle() on all machines. hashbig() takes advantage of
* big-endian byte ordering.
*/
static
uint32_t
hashbig
(
const
void
*
key
,
size_t
length
,
uint32_t
initval
)
{
uint32_t
a
,
b
,
c
;
union
{
const
void
*
ptr
;
size_t
i
;
}
u
;
/* to cast key to (size_t) happily */
/* Set up the internal state */
a
=
b
=
c
=
0xdeadbeef
+
((
uint32_t
)
length
)
+
initval
;
u
.
ptr
=
key
;
if
(
HASH_BIG_ENDIAN
&&
((
u
.
i
&
0x3
)
==
0
))
{
const
uint32_t
*
k
=
(
const
uint32_t
*
)
key
;
/* read 32-bit chunks */
#ifdef VALGRIND
const
uint8_t
*
k8
;
#endif
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
b
+=
k
[
1
];
c
+=
k
[
2
];
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
3
;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]<<8" actually reads beyond the end of the string, but
* then shifts out the part it's not allowed to read. Because the
* string is aligned, the illegal read is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*/
#ifndef VALGRIND
switch
(
length
)
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
k
[
2
]
&
0xffffff00
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
10
:
c
+=
k
[
2
]
&
0xffff0000
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
9
:
c
+=
k
[
2
]
&
0xff000000
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
k
[
1
]
&
0xffffff00
;
a
+=
k
[
0
];
break
;
case
6
:
b
+=
k
[
1
]
&
0xffff0000
;
a
+=
k
[
0
];
break
;
case
5
:
b
+=
k
[
1
]
&
0xff000000
;
a
+=
k
[
0
];
break
;
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
k
[
0
]
&
0xffffff00
;
break
;
case
2
:
a
+=
k
[
0
]
&
0xffff0000
;
break
;
case
1
:
a
+=
k
[
0
]
&
0xff000000
;
break
;
case
0
:
return
c
;
/* zero length strings require no mixing */
}
#else
/* make valgrind happy */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
/* all the case statements fall through */
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
8
;
/* fall through */
case
10
:
c
+=
((
uint32_t
)
k8
[
9
])
<<
16
;
/* fall through */
case
9
:
c
+=
((
uint32_t
)
k8
[
8
])
<<
24
;
/* fall through */
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
8
;
/* fall through */
case
6
:
b
+=
((
uint32_t
)
k8
[
5
])
<<
16
;
/* fall through */
case
5
:
b
+=
((
uint32_t
)
k8
[
4
])
<<
24
;
/* fall through */
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
8
;
/* fall through */
case
2
:
a
+=
((
uint32_t
)
k8
[
1
])
<<
16
;
/* fall through */
case
1
:
a
+=
((
uint32_t
)
k8
[
0
])
<<
24
;
break
;
case
0
:
return
c
;
}
#endif
/* !VALGRIND */
}
else
{
/* need to read the key one byte at a time */
const
uint8_t
*
k
=
(
const
uint8_t
*
)
key
;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
((
uint32_t
)
k
[
0
])
<<
24
;
a
+=
((
uint32_t
)
k
[
1
])
<<
16
;
a
+=
((
uint32_t
)
k
[
2
])
<<
8
;
a
+=
((
uint32_t
)
k
[
3
]);
b
+=
((
uint32_t
)
k
[
4
])
<<
24
;
b
+=
((
uint32_t
)
k
[
5
])
<<
16
;
b
+=
((
uint32_t
)
k
[
6
])
<<
8
;
b
+=
((
uint32_t
)
k
[
7
]);
c
+=
((
uint32_t
)
k
[
8
])
<<
24
;
c
+=
((
uint32_t
)
k
[
9
])
<<
16
;
c
+=
((
uint32_t
)
k
[
10
])
<<
8
;
c
+=
((
uint32_t
)
k
[
11
]);
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
12
;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch
(
length
)
/* all the case statements fall through */
{
case
12
:
c
+=
k
[
11
];
case
11
:
c
+=
((
uint32_t
)
k
[
10
])
<<
8
;
case
10
:
c
+=
((
uint32_t
)
k
[
9
])
<<
16
;
case
9
:
c
+=
((
uint32_t
)
k
[
8
])
<<
24
;
case
8
:
b
+=
k
[
7
];
case
7
:
b
+=
((
uint32_t
)
k
[
6
])
<<
8
;
case
6
:
b
+=
((
uint32_t
)
k
[
5
])
<<
16
;
case
5
:
b
+=
((
uint32_t
)
k
[
4
])
<<
24
;
case
4
:
a
+=
k
[
3
];
case
3
:
a
+=
((
uint32_t
)
k
[
2
])
<<
8
;
case
2
:
a
+=
((
uint32_t
)
k
[
1
])
<<
16
;
case
1
:
a
+=
((
uint32_t
)
k
[
0
])
<<
24
;
break
;
case
0
:
return
c
;
}
}
final
(
a
,
b
,
c
);
return
c
;
}
uint32_t
hash_any_stable
(
const
void
*
key
,
size_t
length
,
uint32_t
base
)
{
/* We use hashlittle as our stable hash. */
return
hashlittle
(
key
,
length
,
base
);
}
uint32_t
hash_any
(
const
void
*
key
,
size_t
length
,
uint32_t
base
)
{
if
(
HASH_BIG_ENDIAN
)
return
hashbig
(
key
,
length
,
base
);
else
/* We call hash_any_stable not hashlittle. This way we know
* that hashlittle will be inlined in hash_any_stable. */
return
hash_any_stable
(
key
,
length
,
base
);
}
#ifdef SELF_TEST
/* used for timings */
void
driver1
()
{
uint8_t
buf
[
256
];
uint32_t
i
;
uint32_t
h
=
0
;
time_t
a
,
z
;
time
(
&
a
);
for
(
i
=
0
;
i
<
256
;
++
i
)
buf
[
i
]
=
'x'
;
for
(
i
=
0
;
i
<
1
;
++
i
)
{
h
=
hashlittle
(
&
buf
[
0
],
1
,
h
);
}
time
(
&
z
);
if
(
z
-
a
>
0
)
printf
(
"time %d %.8x
\n
"
,
z
-
a
,
h
);
}
/* check that every input bit changes every output bit half the time */
#define HASHSTATE 1
#define HASHLEN 1
#define MAXPAIR 60
#define MAXLEN 70
void
driver2
()
{
uint8_t
qa
[
MAXLEN
+
1
],
qb
[
MAXLEN
+
2
],
*
a
=
&
qa
[
0
],
*
b
=
&
qb
[
1
];
uint32_t
c
[
HASHSTATE
],
d
[
HASHSTATE
],
i
=
0
,
j
=
0
,
k
,
l
,
m
=
0
,
z
;
uint32_t
e
[
HASHSTATE
],
f
[
HASHSTATE
],
g
[
HASHSTATE
],
h
[
HASHSTATE
];
uint32_t
x
[
HASHSTATE
],
y
[
HASHSTATE
];
uint32_t
hlen
;
printf
(
"No more than %d trials should ever be needed
\n
"
,
MAXPAIR
/
2
);
for
(
hlen
=
0
;
hlen
<
MAXLEN
;
++
hlen
)
{
z
=
0
;
for
(
i
=
0
;
i
<
hlen
;
++
i
)
/*----------------------- for each input byte, */
{
for
(
j
=
0
;
j
<
8
;
++
j
)
/*------------------------ for each input bit, */
{
for
(
m
=
1
;
m
<
8
;
++
m
)
/*------------ for serveral possible initvals, */
{
for
(
l
=
0
;
l
<
HASHSTATE
;
++
l
)
e
[
l
]
=
f
[
l
]
=
g
[
l
]
=
h
[
l
]
=
x
[
l
]
=
y
[
l
]
=~
((
uint32_t
)
0
);
/*---- check that every output bit is affected by that input bit */
for
(
k
=
0
;
k
<
MAXPAIR
;
k
+=
2
)
{
uint32_t
finished
=
1
;
/* keys have one bit different */
for
(
l
=
0
;
l
<
hlen
+
1
;
++
l
)
{
a
[
l
]
=
b
[
l
]
=
(
uint8_t
)
0
;}
/* have a and b be two keys differing in only one bit */
a
[
i
]
^=
(
k
<<
j
);
a
[
i
]
^=
(
k
>>
(
8
-
j
));
c
[
0
]
=
hashlittle
(
a
,
hlen
,
m
);
b
[
i
]
^=
((
k
+
1
)
<<
j
);
b
[
i
]
^=
((
k
+
1
)
>>
(
8
-
j
));
d
[
0
]
=
hashlittle
(
b
,
hlen
,
m
);
/* check every bit is 1, 0, set, and not set at least once */
for
(
l
=
0
;
l
<
HASHSTATE
;
++
l
)
{
e
[
l
]
&=
(
c
[
l
]
^
d
[
l
]);
f
[
l
]
&=
~
(
c
[
l
]
^
d
[
l
]);
g
[
l
]
&=
c
[
l
];
h
[
l
]
&=
~
c
[
l
];
x
[
l
]
&=
d
[
l
];
y
[
l
]
&=
~
d
[
l
];
if
(
e
[
l
]
|
f
[
l
]
|
g
[
l
]
|
h
[
l
]
|
x
[
l
]
|
y
[
l
])
finished
=
0
;
}
if
(
finished
)
break
;
}
if
(
k
>
z
)
z
=
k
;
if
(
k
==
MAXPAIR
)
{
printf
(
"Some bit didn't change: "
);
printf
(
"%.8x %.8x %.8x %.8x %.8x %.8x "
,
e
[
0
],
f
[
0
],
g
[
0
],
h
[
0
],
x
[
0
],
y
[
0
]);
printf
(
"i %d j %d m %d len %d
\n
"
,
i
,
j
,
m
,
hlen
);
}
if
(
z
==
MAXPAIR
)
goto
done
;
}
}
}
done:
if
(
z
<
MAXPAIR
)
{
printf
(
"Mix success %2d bytes %2d initvals "
,
i
,
m
);
printf
(
"required %d trials
\n
"
,
z
/
2
);
}
}
printf
(
"
\n
"
);
}
/* Check for reading beyond the end of the buffer and alignment problems */
void
driver3
()
{
uint8_t
buf
[
MAXLEN
+
20
],
*
b
;
uint32_t
len
;
uint8_t
q
[]
=
"This is the time for all good men to come to the aid of their country..."
;
uint32_t
h
;
uint8_t
qq
[]
=
"xThis is the time for all good men to come to the aid of their country..."
;
uint32_t
i
;
uint8_t
qqq
[]
=
"xxThis is the time for all good men to come to the aid of their country..."
;
uint32_t
j
;
uint8_t
qqqq
[]
=
"xxxThis is the time for all good men to come to the aid of their country..."
;
uint32_t
ref
,
x
,
y
;
uint8_t
*
p
;
printf
(
"Endianness. These lines should all be the same (for values filled in):
\n
"
);
printf
(
"%.8x %.8x %.8x
\n
"
,
hash_word
((
const
uint32_t
*
)
q
,
(
sizeof
(
q
)
-
1
)
/
4
,
13
),
hash_word
((
const
uint32_t
*
)
q
,
(
sizeof
(
q
)
-
5
)
/
4
,
13
),
hash_word
((
const
uint32_t
*
)
q
,
(
sizeof
(
q
)
-
9
)
/
4
,
13
));
p
=
q
;
printf
(
"%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x
\n
"
,
hashlittle
(
p
,
sizeof
(
q
)
-
1
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
2
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
3
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
4
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
5
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
6
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
7
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
8
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
9
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
10
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
11
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
12
,
13
));
p
=
&
qq
[
1
];
printf
(
"%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x
\n
"
,
hashlittle
(
p
,
sizeof
(
q
)
-
1
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
2
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
3
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
4
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
5
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
6
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
7
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
8
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
9
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
10
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
11
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
12
,
13
));
p
=
&
qqq
[
2
];
printf
(
"%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x
\n
"
,
hashlittle
(
p
,
sizeof
(
q
)
-
1
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
2
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
3
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
4
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
5
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
6
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
7
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
8
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
9
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
10
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
11
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
12
,
13
));
p
=
&
qqqq
[
3
];
printf
(
"%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x
\n
"
,
hashlittle
(
p
,
sizeof
(
q
)
-
1
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
2
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
3
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
4
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
5
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
6
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
7
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
8
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
9
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
10
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
11
,
13
),
hashlittle
(
p
,
sizeof
(
q
)
-
12
,
13
));
printf
(
"
\n
"
);
/* check that hashlittle2 and hashlittle produce the same results */
i
=
47
;
j
=
0
;
hashlittle2
(
q
,
sizeof
(
q
),
&
i
,
&
j
);
if
(
hashlittle
(
q
,
sizeof
(
q
),
47
)
!=
i
)
printf
(
"hashlittle2 and hashlittle mismatch
\n
"
);
/* check that hash_word2 and hash_word produce the same results */
len
=
0xdeadbeef
;
i
=
47
,
j
=
0
;
hash_word2
(
&
len
,
1
,
&
i
,
&
j
);
if
(
hash_word
(
&
len
,
1
,
47
)
!=
i
)
printf
(
"hash_word2 and hash_word mismatch %x %x
\n
"
,
i
,
hash_word
(
&
len
,
1
,
47
));
/* check hashlittle doesn't read before or after the ends of the string */
for
(
h
=
0
,
b
=
buf
+
1
;
h
<
8
;
++
h
,
++
b
)
{
for
(
i
=
0
;
i
<
MAXLEN
;
++
i
)
{
len
=
i
;
for
(
j
=
0
;
j
<
i
;
++
j
)
*
(
b
+
j
)
=
0
;
/* these should all be equal */
ref
=
hashlittle
(
b
,
len
,
(
uint32_t
)
1
);
*
(
b
+
i
)
=
(
uint8_t
)
~
0
;
*
(
b
-
1
)
=
(
uint8_t
)
~
0
;
x
=
hashlittle
(
b
,
len
,
(
uint32_t
)
1
);
y
=
hashlittle
(
b
,
len
,
(
uint32_t
)
1
);
if
((
ref
!=
x
)
||
(
ref
!=
y
))
{
printf
(
"alignment error: %.8x %.8x %.8x %d %d
\n
"
,
ref
,
x
,
y
,
h
,
i
);
}
}
}
}
/* check for problems with nulls */
void
driver4
()
{
uint8_t
buf
[
1
];
uint32_t
h
,
i
,
state
[
HASHSTATE
];
buf
[
0
]
=
~
0
;
for
(
i
=
0
;
i
<
HASHSTATE
;
++
i
)
state
[
i
]
=
1
;
printf
(
"These should all be different
\n
"
);
for
(
i
=
0
,
h
=
0
;
i
<
8
;
++
i
)
{
h
=
hashlittle
(
buf
,
0
,
h
);
printf
(
"%2ld 0-byte strings, hash is %.8x
\n
"
,
i
,
h
);
}
}
int
main
()
{
driver1
();
/* test that the key is hashed: used for timings */
driver2
();
/* test that whole key is hashed thoroughly */
driver3
();
/* test that nothing but the key is hashed */
driver4
();
/* test hashing multiple buffers (all buffers are null) */
return
1
;
}
#endif
/* SELF_TEST */
hash/hash.h
0 → 100644
View file @
2d6759d4
#ifndef CCAN_HASH_H
#define CCAN_HASH_H
#include <stdint.h>
#include <stdlib.h>
#include "config.h"
/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
*
* http://burtleburtle.net/bob/c/lookup3.c
*/
/**
* hash - fast hash of an array for internal use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The memory region pointed to by p is combined with the base to form
* a 32-bit hash.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*
* It may also change with future versions: it could even detect at runtime
* what the fastest hash to use is.
*
* See also: hash_stable.
*
* Example:
* #include "hash/hash.h"
* #include <err.h>
* #include <stdio.h>
*
* // Simple demonstration: idential strings will have the same hash, but
* // two different strings will probably not.
* int main(int argc, char *argv[])
* {
* uint32_t hash1, hash2;
*
* if (argc != 3)
* err(1, "Usage: %s <string1> <string2>", argv[0]);
*
* hash1 = hash(argv[1], strlen(argv[1]), 0);
* hash2 = hash(argv[2], strlen(argv[2]), 0);
* printf("Hash is %s\n", hash1 == hash2 ? "same" : "different");
* return 0;
* }
*/
#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base))
/**
* hash_stable - hash of an array for external use
* @p: the array or pointer to first element
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The memory region pointed to by p is combined with the base to form
* a 32-bit hash.
*
* This hash will have the same results on different machines, so can
* be used for external hashes (ie. not hashes sent across the network
* or saved to disk). The results will not change in future versions
* of this package.
*
* Example:
* #include "hash/hash.h"
* #include <err.h>
* #include <stdio.h>
*
* int main(int argc, char *argv[])
* {
* if (argc != 2)
* err(1, "Usage: %s <string-to-hash>", argv[0]);
*
* printf("Hash stable result is %u\n",
* hash_stable(argv[1], strlen(argv[1]), 0));
* return 0;
* }
*/
#define hash_stable(p, num, base) \
hash_any_stable((p), (num)*sizeof(*(p)), (base))
/**
* hash_u32 - fast hash an array of 32-bit values for internal use
* @key: the array of uint32_t
* @num: the number of elements to hash
* @base: the base number to roll into the hash (usually 0)
*
* The array of uint32_t pointed to by @key is combined with the base
* to form a 32-bit hash. This is 2-3 times faster than hash() on small
* arrays, but the advantage vanishes over large hashes.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*/
uint32_t
hash_u32
(
const
uint32_t
*
key
,
size_t
num
,
uint32_t
base
);
/* Our underlying operations. */
uint32_t
hash_any
(
const
void
*
key
,
size_t
length
,
uint32_t
base
);
uint32_t
hash_any_stable
(
const
void
*
key
,
size_t
length
,
uint32_t
base
);
/**
* hash_pointer - hash a pointer for internal use
* @p: the pointer value to hash
* @base: the base number to roll into the hash (usually 0)
*
* The pointer p (not what p points to!) is combined with the base to form
* a 32-bit hash.
*
* This hash will have different results on different machines, so is
* only useful for internal hashes (ie. not hashes sent across the
* network or saved to disk).
*
* Example:
* #include "hash/hash.h"
*
* // Code to keep track of memory regions.
* struct region {
* struct region *chain;
* void *start;
* unsigned int size;
* };
* // We keep a simple hash table.
* static struct region *region_hash[128];
*
* static void add_region(struct region *r)
* {
* unsigned int h = hash_pointer(r->start);
*
* r->chain = region_hash[h];
* region_hash[h] = r->chain;
* }
*
* static void find_region(const void *start)
* {
* struct region *r;
*
* for (r = region_hash[hash_pointer(start)]; r; r = r->chain)
* if (r->start == start)
* return r;
* return NULL;
* }
*/
static
inline
uint32_t
hash_pointer
(
const
void
*
p
,
uint32_t
base
)
{
if
(
sizeof
(
p
)
%
sizeof
(
uint32_t
)
==
0
)
{
/* This convoluted union is the right way of aliasing. */
union
{
uint32_t
u32
[
sizeof
(
p
)
/
sizeof
(
uint32_t
)];
const
void
*
p
;
}
u
;
u
.
p
=
p
;
return
hash_u32
(
u
.
u32
,
sizeof
(
p
)
/
sizeof
(
uint32_t
),
base
);
}
return
hash
(
&
p
,
1
,
base
);
}
#endif
/* HASH_H */
hash/test/run.c
0 → 100644
View file @
2d6759d4
#include "hash/hash.h"
#include "tap/tap.h"
#include "hash/hash.c"
#include <stdbool.h>
#include <string.h>
#define ARRAY_WORDS 5
int
main
(
int
argc
,
char
*
argv
[])
{
unsigned
int
i
,
j
,
k
;
uint32_t
array
[
ARRAY_WORDS
],
val
;
char
array2
[
sizeof
(
array
)
+
sizeof
(
uint32_t
)];
uint32_t
results
[
256
];
/* Initialize array. */
for
(
i
=
0
;
i
<
ARRAY_WORDS
;
i
++
)
array
[
i
]
=
i
;
plan_tests
(
53
);
/* hash_stable is guaranteed. */
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
0
)
==
0x13305f8c
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
1
)
==
0x171abf74
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
2
)
==
0x7646fcc7
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
4
)
==
0xa758ed5
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
8
)
==
0x2dedc2e4
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
16
)
==
0x28e2076b
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
32
)
==
0xb73091c5
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
64
)
==
0x87daf5db
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
128
)
==
0xa16dfe20
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
256
)
==
0x300c63c3
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
512
)
==
0x255c91fc
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
1024
)
==
0x6357b26
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
2048
)
==
0x4bc5f339
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
4096
)
==
0x1301617c
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
8192
)
==
0x506792c9
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
16384
)
==
0xcd596705
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
32768
)
==
0xa8713cac
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
65536
)
==
0x94d9794
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
131072
)
==
0xac753e8
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
262144
)
==
0xcd8bdd20
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
524288
)
==
0xd44faf80
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
1048576
)
==
0x2547ccbe
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
2097152
)
==
0xbab06dbc
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
4194304
)
==
0xaac0e882
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
8388608
)
==
0x443f48d0
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
16777216
)
==
0xdff49fcc
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
33554432
)
==
0x9ce0fd65
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
67108864
)
==
0x9ddb1def
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
134217728
)
==
0x86096f25
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
268435456
)
==
0xe713b7b5
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
536870912
)
==
0x5baeffc5
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
1073741824
)
==
0xde874f52
);
ok1
(
hash_stable
(
array
,
ARRAY_WORDS
,
2147483648U
)
==
0xeca13b4e
);
/* Hash should be the same, indep of memory alignment. */
val
=
hash
(
array
,
sizeof
(
array
),
0
);
for
(
i
=
0
;
i
<
sizeof
(
uint32_t
);
i
++
)
{
memcpy
(
array2
+
i
,
array
,
sizeof
(
array
));
ok
(
hash
(
array2
+
i
,
sizeof
(
array
),
0
)
!=
val
,
"hash matched at offset %i"
,
i
);
}
/* Hash of random values should have random distribution:
* check one byte at a time. */
for
(
i
=
0
;
i
<
sizeof
(
uint32_t
);
i
++
)
{
unsigned
int
lowest
=
-
1U
,
highest
=
0
;
memset
(
results
,
0
,
sizeof
(
results
));
for
(
j
=
0
;
j
<
256000
;
j
++
)
{
for
(
k
=
0
;
k
<
ARRAY_WORDS
;
k
++
)
array
[
k
]
=
random
();
results
[(
hash
(
array
,
sizeof
(
array
),
0
)
>>
i
*
8
)
&
0xFF
]
++
;
}
for
(
j
=
0
;
j
<
256
;
j
++
)
{
if
(
results
[
j
]
<
lowest
)
lowest
=
results
[
j
];
if
(
results
[
j
]
>
highest
)
highest
=
results
[
j
];
}
/* Expect within 20% */
ok
(
lowest
>
800
,
"Byte %i lowest %i"
,
i
,
lowest
);
ok
(
highest
<
1200
,
"Byte %i highest %i"
,
i
,
highest
);
diag
(
"Byte %i, range %u-%u"
,
i
,
lowest
,
highest
);
}
/* Hash of pointer values should also have random distribution. */
for
(
i
=
0
;
i
<
sizeof
(
uint32_t
);
i
++
)
{
unsigned
int
lowest
=
-
1U
,
highest
=
0
;
char
*
p
=
malloc
(
256000
);
memset
(
results
,
0
,
sizeof
(
results
));
for
(
j
=
0
;
j
<
256000
;
j
++
)
results
[(
hash_pointer
(
p
+
j
,
0
)
>>
i
*
8
)
&
0xFF
]
++
;
free
(
p
);
for
(
j
=
0
;
j
<
256
;
j
++
)
{
if
(
results
[
j
]
<
lowest
)
lowest
=
results
[
j
];
if
(
results
[
j
]
>
highest
)
highest
=
results
[
j
];
}
/* Expect within 20% */
ok
(
lowest
>
800
,
"hash_pointer byte %i lowest %i"
,
i
,
lowest
);
ok
(
highest
<
1200
,
"hash_pointer byte %i highest %i"
,
i
,
highest
);
diag
(
"hash_pointer byte %i, range %u-%u"
,
i
,
lowest
,
highest
);
}
return
exit_status
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment