Contents
1 Introduction
2 Configuration Syntax
2.1 Textual SubstitutioninValues.
3 Writing Configuration Schema
3.1 SchemaElements.
3.2 SchemaComponents.
4 StandardZConfig Datatypes
5 ZConfig — Basic configuration support
51 BasicUsage
6 ZConfig.datatypes — Default data type registry
7 ZConfig.loader — Resource loading support
7.1 LoaderObjects.
8 ZConfig.cmdline — Command-line override support
9 ZConfig.substitution — String substitution
9.1 Examples.
A Schema Document Type Definition

ZConfig Package Reference

Abstract

Release 1.0

Zope Corporation

March 25, 2003

Lafayette Technology Center

513 Prince Edward Street

Fredericksburg, VA 22401
http://www.zope.com/

This document describes the syntax and API used in configuration files for components of a Zope installation written
by Zope Corporation. This configuration mechanism is itself configured using a schema specification written in XML.

10

.................... 11

12

13

.................... 13

14

14

.................... 15

15

1 Introduction

Zope uses a common syntax and API for configuration files designed for software components written by Zope Corpo-
ration. Third-party software which is also part of a Zope installation may use a different syntax, though any software

is welcome to use the syntax used by Zope Corporation. Any software written in Python is free to Zi€etifig

software to load such configuration files in order to ensure compatibility. This software is covered by the Zope Public

License, version 2.0.

TheZConfig package has been tested with Python 2.1 and 2.2. Python 2.0 is not sup@@tedig only relies
on the Python standard library.

Configurations which uséConfig are described usingchemaA schema is a specification for the allowed structure

and content of the configuratiorzConfig schema are written using a small XML-based language. The schema
language allows the schema author to specify the names of the keys allowed at the top level and within sections, to
define the types of sections which may be used (and where), the types of each values, whether a key or section must
be specified or is optional, default values for keys, and whether a value can be given only once or repeatedly.

2 Configuration Syntax

Like the ConfigParser ~ format, this format supports key-value pairs arranged in sections. Unlik€dhég-
Parser format, sections are typed and can be organized hierarchically. Additional files may be included if needed.
Though both formats are substantially line-oriented, this format is more flexible.

The intent of supporting nested section is to allow setting up the configurations for loosely-associated components in
a container. For example, each process running on a host might get its configuration section from that host’s section
of a shared configuration file.

The top level of a configuration file consists of a series of inclusions, key-value pairs, and sections.

Comments can be added on lines by themselves. A comment Baasthe first non-space character and extends to
the end of the line:

This is a comment

An inclusion is expressed like this:

%include defaults.conf

The resource to be included can be specified by a relative or absolute URL, resolved relative to the URL of the resource
the%include directive is located in.

A key-value pair is expressed like this:

key value

The key may include any non-white characters except for parentheses. The value contains all the characters between
the key and the end of the line, with surrounding whitespace removed.

Since comments must be on lines by themselves #heharacter can be part of a value:

2 2 Configuration Syntax

key value # still part of the value

Sections may be either empty or non-empty. An empty section may be used to provide an alias for another section.
A non-empty section starts with a header, contains configuration data on subsequent lines, and ends with a terminator.
The header for a non-empty section has this form (square brackets denote optional parts):

<section-type [name] >

section-type@andnameall have the same syntactic constraints as key names.
The terminator looks like this:

</ section-type

The configuration data in a non-empty section consists of a sequence of one or more key-value pairs and sections. For
example:

<my-section>
key-1 value-1
key-2 value-2

<another-section>
key-3 value-3
</another-section>
</my-section>

(The indentation is used here for clarity, but is not required for syntactic correctness.)
The header for empty sections is similar to that of non-empty sections, but there is no terminator:

<section-type [name] >

2.1 Textual Substitution in Values

ZConfig provides a limited way to re-use portions of a value using simple string substitution. To use this facility,
define named bits of replacement text using%define directive, and reference these texts from values.

The syntax foBodefine is:

%define name [value]

The value ohamemust be a sequence of letters, digits, and underscores, and may not start with a digit; the namespace
for these names is separate from the other namespaces us@®witfig , and is case-insensitive.\alueis omitted,

it will be the empty string. If given, there must be whitespace betwesneandvalue valuewill not include any
whitespace on either side, just like values from key-value pairs.

Names must be defined before they are used, and may not be re-defined. All resources being parsed as part of a
configuration share a single namespace for defined names. This means that resources which may be included more
than once should not define any names.

2.1 Textual Substitution in Values 3

References to defined names from configuration values use the syntax described fwoitiig.substitution
module. Configuration values which include$ as part of the actual value will need to us$ to get a single$’ in
the result.

The values of defined names are processed in the same way as configuration values, and may contain references to
named definitions.

For example, the value fdeey will evaluate tovalue :

%define name value
key $name

3 Writing Configuration Schema

ZConfig schema are written as XML documents.

Data types are searched in a special namespace defined by the data type registry. The default registry has slightly
magical semantics: If the value can be matched to a standard data type when interprdiadiadey, the standard

data type will be used. If that fails, the value must beéoted-name containing at least one dot, and a conversion
function will be sought using theearch() method of the data type registry used to load the schema.

3.1 Schema Elements

For each element, the content model is shown, followed by a description of how the element is used, and then a list of
the available attributes. For each attribute, the type of the value is given as either the naf@oofig datatype or
an XML attribute value type. Familiarity with XML's Document Type Definition language is helpful.

The following elements are used to describe a schema:

<schema>
description?, metadefault?, example?, import*, (sectiontype | abstract-
type)*, (section | key | multisection | multikey)*

</ schema>
Document element for ZConfig schema.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valudated-name
that begins with a period, the valuefefix ~ will be pre-pended, if set.

handler (basic-key)

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is dotted-namethat begins with a period, the valuemfefix will be
pre-pended, if set. The default valuessic-key.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts with thechema element if it hasn’t been overridden by an inner element with a
prefix attribute.

<description >
PCDATA
</ description >
Descriptive text explaining the purpose the container oftecription element. Most other elements can

4 3 Writing Configuration Schema

contain adescription element as their first child.

format (NMTOKEN)
Optional attribute that can be added to indicate what conventions are used to mark up the contained text.
This is intended to serve as a hint for documentation extraction tools. Suggested values are:
Value | Content Format
plain text/plain; blank lines separate paragraphs
rest reStructuredText
stx Classic Structured Text

<example >
PCDATA
</ example >
An example value. This serves only as documentation.

<metadefault >
PCDATA

</ metadefault >
A description of the default value, for human readers. This may include information about how a computed
value is determined when the schema does not specify a default value.

<abstracttype >
description?
</ abstracttype >
Define an abstract section type.

name (basic-key)
The name of the abstract section type; required.

<sectiontype >

description?, (section | key)*
</ sectiontype >

Define a concrete section type.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valudaged-name
that begins with a period, the valuemfefix will be pre-pended, if set.

extends (basic-key)
The name of a concrete section type from which this section type acquires all key and section declarations.
This type doesot automatically implement any abstract section type implemented by the named section
type. If omitted, this section is defined with only the keys are sections contained withsedkien-
type element.

implements (basic-key)
The name of an abstract section type which this concrete section type implements. If omitted, this section
type does not implement any abstract type, and can only be used if it is specified directly in a schema or
other section type.

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is dotted-namethat begins with a period, the valuemfefix will be
pre-pended, if set. The default valuessic-key.

name (basic-key)
The name of the section type; required.

prefix (dotted-nameg
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts in theectiontype element. If omitted, the prefix specified by a containing
context is used if specified.

3.1 Schema Elements 5

<import >
EMPTY
</ import >
Import a schema component. Exactly one of the two possible attributes must be specified.

package (dotted-namé
Python-package style name that identifies a directory founslyerpath containing a schema compo-
nent in a file namedcomponent.xml’. Dots in the value are converted to directory separators.

src (url-reference)
URL to a separate schema which can provide useful types. The referenced resource must contain a schema,
not a schema component. Section types defined or imported by the referenced schema are added to the
schema containing theport ; top-level keys and sections are ignored.

<key >
description?, example?, metadefault?

</ key >
A key element is used to describe a key-value pair which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value ofSetonValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valuedstad-namethat
begins with a period, the value pfefix will be pre-pended, if set.

default (string)
If the key-value pair is optional and this attribute is specified, the value of this attribute will be converted
using the appropriate data type converter and returned to the application as the configured value. This
attribute may not be specified if thequired attribute isyes .

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instancé,.oif the value is *’, any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this caseathébute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the vak®,ithede-
fault attribute may not be specified and an error will be reported if the configuration instance does not
specify a value for the key. If the valuen® (the default) and the configuration instance does not specify
a value, the value reported to the application will be that specified bgiéfault attribute, if given, or
None.

<multikey >
description?, example?, metadefault?, default*

</ multikey >
A multikey elementis used to describe a key-value pair which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value ofS8etionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valueldidtad-namethat

6 3 Writing Configuration Schema

begins with a period, the value pfefix will be pre-pended, if set.
handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance,.df the value is ', any hame
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this case atirébute attribute must be specified, and
the data type for the key will be applied to each key which is found.
required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the vgk®,is0 de-
fault elements may be specified and an error will be reported if the configuration instance does not
specify at least one value for the key. If the valuads(the default) and the configuration instance does
not specify a value, the value reported to the application will be a list containing one element for each

default element specified as a child of timeultikey . Each value will be individually converted
according to thelatatype attribute.

<section >
description?

</ section >
A section elementis used to describe a section which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this section should be the value @ectmnValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the section name to underscores,
in which case th@ame attribute may not b& or +.

handler (basic-key)

name (basic-key)
The name of the section, as it must be given in a configuration instanoe,+. If the value is*, any
name not already specified as a key may be used. If the vatueris, theattribute attribute must be
specified. If the value i§, any name is allowed, or the name may be omitted. If the valse amy name
is allowed, but some name must be provided.

required (yes|no)
Specifies whether the configuration instance is required to provide the section. If the wadse & error

will be reported if the configuration instance does not include the section. If the vatoe(tbe default)

and the configuration instance does not include the section, the value reported to the application will be
None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,

matching sections in the configuration file must be of a type which specifies that it implements the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

<multisection >
description?

</ multisection >
A multisection element is used to describe a section which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which matching sections should be the value &emianValue

instance. This is required and must be unique within the immediate contents of a section type or schema.
TheSectionValue instance will contain a list of matching sections.

handler (basic-key)

3.1 Schema Elements 7

name (basic-key)
For amultisection , any name not already specified as a key may be used. If the vatueris-,
the attribute attribute must be specified. If the valuerisany name is allowed, or the name may be
omitted. If the value is, any name is allowed, but some name must be provided. No other value for the
name attribute is allowed for anultisection

required (yes|no)
Specifies whether the configuration instance is required to provide at least one matching section. If the
value isyes, an error will be reported if the configuration instance does not include the section. If the
value isno (the default) and the configuration instance does not include the section, the value reported to
the application will beNone.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of types which specify that they implement the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

3.2 Schema Components

XXX need more explanation

ZConfig supports schema components that can be provided by disparate components, and allows them to be knit
together into concrete schema for applications. Components cannot add additional keys or sections in the application
schema.

A schemacomponenis allowed to define new abstract and section types. It is not allowed to extend application types
or include additional types in application-provided abstract types. Components are identified using a dotted-name,
similar to a Python module name. For example, one component maydtestorage

Schema components are stored alongside application code since they directly reference datatype code. Schema com-
ponents are provided by Python packages; packages which contain a file mampdnent.xml’ can be “imported”.

The ‘component.xml’ file defines the types provided by that component; it must haseraponent element as the
document element.

The following element is used as the document element for schema components. Note that schema components do not
allow keys and sections to be added to the top-level of a schema; they serve only to provide type definitions.

<component >

description?, (abstracttype | sectiontype)*
</ component >

The top-level element for schema components.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts within theomponent element if it hasn’t been overridden by an inner element
with aprefix attribute.

4 Standard ZConfig Datatypes

There are a number of data types which can be identified usindatagéype attribute onkey , sectiontype
andschema elements. Applications may extend the set of datatypes by callimgtfigter() method of the data
type registry being used or by using Python dotted-names to refer to conversion routines defined in code.

The following data types are provided by the default type registry.

basic-key

8 4 Standard ZConfig Datatypes

The default data type for a key in a ZConfig configuration file. The result of conversion is always lower-case,
and matches the regular expressijanz][-. _a-z0-9]* .

boolean
Convert a human-friendly string to a boolean value. The najegson, andtrue convert toTrue , whileno,
off , andfalse converttoFalse . Comparisons are case-insensitive. All other input strings are disallowed.

byte-size
A specification of a size, with byte multiplier suffixes (for exampl£8MB). Suffixes are case insensitive and
may be KB, ‘ MB, or ‘GB

existing-dirpath
Validates that the directory portion of a pathname exists. For example, if the value providied/tisr”, * /foo’
must be an existing directory. No conversion is performed.

existing-directory
Validates that a directory by the given name exists on the local filesystem. No conversion is performed.

existing-file
Validates that a file by the given name exists. No conversion is performed.

existing-path
Validates that a path (file, directory, or symlink) by the given name exists on the local filesystem. No conversion
is performed.

float
A Python float.Inf , -Inf , andNaNare not allowed.

identifier
Any valid Python identifier.

inet-address
An Internet address expressed ghastname port) pair. If only the port is specified, an empty string will be
returned forthostnamelf the port is omittedNone will be returned forport.

integer
Convert a value to an integer. This will be a Python if the value is in the range allowed liyt , otherwise
a Pythorlong is returned.

ipaddr-or-hostname
Validates a valid IP address or hostname. If the first character is a digit, the value is assumed to be an IP address.
If the first character is not a digit, the value is assumed to be a hostname. Hostnames are converted to lower
case.

locale
Any valid locale specifier accepted by the availdbleale.setlocale() function. Be aware that only the
'C’ locale is supported on some platforms.

null
No conversion is performed; the value passed in is the value returned. This is the default data type for section
values.

port-number
Returns a valid port number as an integer. Validity does not imply that any particular use may be made of the
port, however. For example, port number lower than 1024 generally cannot be bound by non-root users.

socket-address
An address for a socket. The converted value is an object providing two attribiaesly specifies the
address familyAF_INET or AF_UNIX), with None instead ofAF_UNIX on platforms that don’t support it.

Theaddress attribute will be the address that should be passed to the sobked§ method. If the family
is AF_UNIX, the specific address will be a pathname; if the familAKS_INET, the second part will be the
result of theinet-addressconversion.

string
Returns the input value as a string. If the source is a Unicode string, this implies that it will be checked to be
simple 7-bitascii. This is the default data type for key values in configuration files.

time-interval
A specification of a time interval, with multiplier suffixes (for examdeh). Suffixes are case insensitive and
may be 5§’ (seconds), i (minutes), h’ (hours), or d’ (days).

5 ZConfig — Basic configuration support

The mainZConfig package exports these convenience functions:

loadConfig (schema, ur[l, overrideﬂ)
Load and return a configuration from a URL or pathname givearbyurl may be a URL, absolute pathname, or
relative pathname. Fragment identifiers are not suppostgtemas a reference to a schema loadeddsd-
Schema() orloadSchemakFile() . The return value is a tuple containing the configuration object and a
composite handler that, when called with a name-to-handler mapping, calls all the handlers for the configuration.

The optionabverridesargument represents information derived from command-line arguments. If given, it must
be either a sequence of value specifierdyomne. A value specifieis a string of the fornoptionpatt=value The
optionpathspecifies the “full path” to the configuration setting: it can contain a sequence of hames, separated
by ‘/ * characters. Each name before the last names a section from the configuration file, and the last name
corresponds to a key within the section identified by the leading section nanoggiolipathcontains only one

name, it identifies a key in the top-level schenvalueis a string that will be treated just like a value in the
configuration file.

loadConfigFile ('schema, fil[e, url[, overrideﬂ])
Load and return a configuration from an opened file objecturlifis omitted, one will be computed based
on thename attribute offile, if it exists. If no URL can be determined, &binclude statements in the
configuration must use absolute URLschemais a reference to a schema loadedlbgdSchema() or
loadSchemaFile() . The return value is a tuple containing the configuration object and a composite handler
that, when called with a name-to-handler mapping, calls all the handlers for the configuratiooveFtides
argument is the same as for tle@dConfig() function.

loadSchema (url)
Load a schema definition from the URlrl. url may be a URL, absolute pathname, or relative pathname.
Fragment identifiers are not supported. The resulting schema object can be palesstCtinfig() or
loadConfigFile() . The schema object may be used as many times as needed.

loadSchemaFile (file[, url])
Load a schema definition from the open file objélet If url is given and nolNone, it should be the URL of
resource represented fife. If url is omitted orNone, a URL may be computed from theame attribute of
file, if present. The resulting schema object can be pasdedd&onfig() or loadConfigFile() . The
schema object may be used as many times as needed.

The following exceptions are defined by this package:

exceptionConfigurationError
Base class for exceptions specific to #@onfig package. All instances providenaessage attribute that
describes the specific error.

exceptionConfigurationSyntaxError
Exception raised when a configuration source does not conform to the allowed syntax. In additiomésthe

10 5 ZConfig — Basic configuration support

sage attribute, exceptions of this type offer the andlineno attributes, which provide the URL and line
number at which the error was detected.

exceptionConfigurationTypeError

exceptionConfigurationMissingSectionError
Raised when a requested named section is not available.

exceptionConfigurationConflictingSectionError
Raised when a request for a section cannot be fulfilled without ambiguity.

exceptionDataConversionError
Raised when a data type conversion fails witlueError . This exception is a subclass of baflonfig-
urationError andValueError . Thestr() of the exception provides the explanation from the original
ValueError , and the line number and URL of the value which provoked the error. The following additional
attributes are provided:

Attribute Value

colno column number at which the value startsNwme
exception the originalValueError instance

lineno line number on which the value starts

message str() returned by the originaValueError

value original value passed to the conversion function
url URL of the resource providing the value text

exceptionSchemagrror
Raised when a schema contains an error. This exception type provides the attibuti#seno , andcolno
which provide the source URL, the line number, and the column number at which the error was detected. These
attributes may b&lone in some cases.

exceptionSubstitutionReplacementError
Raised when the source text contains references to names which are not defimggping The attributes
source andname provide the complete source text and the name (converted to lower case) for which no
replacement is defined.

exceptionSubstitutionSyntaxError
Raised when the source text contains syntactical errors.

5.1 Basic Usage

The simplest use afConfig is to load a configuration based on a schema stored in a file. This example loads a
configuration file specified on the command line using a schema in the same directory as the script:

import os
import sys
import ZConfig

try:
myfile = _ file_

except NameError:
really should follow symlinks here:
myfile = sys.argv[0]

mydir = os.path.dirname(os.path.abspath(myfile))

schema = ZConfig.loadSchema(os.path.join(mydir, 'schema.xml’))
conf = ZConfig.loadConfig(schema, sys.argv[1])

5.1 Basic Usage 11

If the schema file contained this schema:

<schema>

<key name='server’ required='yes'/>

<key name='attempts’ datatype='integer’ default="5'/>
</schema>

and the file specified on the command line contained this text:

sample configuration

server www.example.com

then the configuration objecbnf loaded above would have two attributes:

Attribute | Value

server ‘www.example.com’
attempts 5
6 ZConfig.datatypes — Default data type registry
TheZConfig.datatypes module provides the implementation of the default data type registry and all the standard

data types supported &Config . A number of convenience classes are also provided to assist in the creation of
additional data types.

A datatype registrys an object that provides conversion functions for data types. The interface for a registry is fairly
simple.

A conversion functiolis any callable object that accepts a single argument and returns a suitable value, or raises an
exception if the input value is not acceptablalueError is the preferred exception for disallowed inputs, but any
other exception will be properly propagated.

classRegistry ([stock])
Implementation of a simple type registry. If givestockshould be a mapping which defines the “built-in”
data types for the registry; if omitted dlone, the standard set of data types is used (see section 4, “Standard
ZConfig Datatypes”).

Registry objects have the following methods:

get (nameg
Return the type conversion routine foame If the conversion function cannot be found, an (unspecified)
exception is raised. If the name is not provided in the stock set of data types by this registry and has not
otherwise been registered, this method usesé¢iaech() method to load the conversion function. This is the
only method the rest dConfig requires.

register (. name, conversign
Register the data type namameto use the conversion functiaonversion If nameis already registered or
provided as a stock data typéalueError s raised (this includes the case whaamewas found using the
search() method).

search (nam@
This is a helper method for the default implementation ofgb) method. Ifnameis a Python dotted-name,
this method loads the value for the name by dynamically importing the containing module and extracting the
value of the name. The name must refer to a usable conversion function.

12 6 ZConfig.datatypes — Default data type registry

The following classes are provided to define conversion functions:

classMemoizedConversion (conversioi
Simple memoization for potentially expensive conversions. This conversion helper caches each successful con-
version for re-use at a later time; failed conversions are not cached in any way, since it is difficult to raise a
meaningful exception providing information about the specific failure.

classRangeCheckedConversion (conversiorﬁ, min[, max]])
Helper that performs range checks on the result of another conversion. Values passed to instances of this con-
version are converted usirggnversionand then range checkechin andmax if given and notNone, are the
inclusive endpoints of the allowed range. Values returneddmyersiorwhich lay outside the range described
by minandmaxcausevalueError to be raised.

classRegularExpressionConversion (regexy
Conversion that checks that the input matches the regular expresgien If it matches, returns the input,
otherwise raise¥alueError

7 ZConfig.loader — Resource loading support

This module provides some helper classes used by the primary APIs exported@otfiy package. These classes
may be useful for some applications, especially applications that want to use a non-default data type registry.

classResource (file, url[, fragmenﬂ)
Object that allows an open file object and a URL to be bound together to ease handling. Instances have the
attributesfile , url , andfragment which store the constructor arguments. These objects also have a
close() method which will callclose() onfile, then set thdile attribute toNone and theclosed
to True .

classBaseLoader ()
Base class for loader objects. This should not be instantiated directly, l@tiResource() method must
be overridden for the instance to be used via the public API.

classConfigLoader (schema
Loader for configuration files. Each configuration file must conform to the sclsetrema The load*()
methods return a tuple consisting of the configuration object and a composite handler.

classSchemaloader ([registry])
Loader that loads schema instances. All schema loaded Bghamaloader will use the same data
type registry. Ifregistry is provided and notNone, it will be used, otherwise an instance gfCon-
fig.datatypes.Registry will be used.

7.1 Loader Objects

Loader objects provide a general public interface, an interface which subclasses must implement, and some utility
methods.

The following methods provide the public interface:

loadURL (url)
Open and load a resource specified by the URL This method uses theadResource() method to
perform the actual load, and returns whatever that method returns.

loadFile (file[, url])
Load from an open file objedile. If given and noNone, url should be the URL of the resource represented by
file. If omitted orNone, thename attribute offile is used to compute file: URL, if present. This method
uses thdoadResource() method to perform the actual load, and returns whatever that method returns.

13

The following method must be overridden by subclasses:

loadResource (resourcé
Subclasses ddaselLoader must implement this method to actually load the resource and return the appropri-
ate application-level object.

The following methods can be used as utilities:

normalizeURL (url-or-path)

Return a URL forurl-or-path. If url-or-path refers to an existing file, the correspondifilg: URL is
returned. Otherwisearl-or-pathis checked for sanity: if it does not have a schewaueError s raised, and
if it does have a fragment identifieConfigurationError is raised.

openResource (url)
Returns a resource object that represents the UWRLThe URL is opened using thellib2.urlopen()
function, and the returned resource object is created wseajeResource()

createResource (file, url)
Returns a resource object for an open file and URL, giveiileaandurl, respectively. This may be overridden
by a subclass if an alternate resource implementation is desired.

8 ZConfig.cmdline — Command-line override support

This module exports an extended version of @@nfigLoader class from theZConfig.loader module. This
provides support for overriding specific settings from the configuration file from the command line, without requiring
the application to provide specific options for everything the configuration file can include.

classExtendedConfigLoader ('schema
Construct &onfigLoader subclass that adds support for command-line overrides.

The following additional method is provided, and is the only way to provide position information to associate with
command-line parameters:

addOption (spe([, pos])
Add a single value to the list of overridden values. H®pecargument is a value specified, as described for
the ZConfig .loadConfig() function. A source position for the specifier may be giverpas If posis
specified and nolNone, it must be a sequence of three values. The first is the URL of the source (or some
other identifying string). The second and third are the line number and column of the setting. These position
information is only used to constructCataConversionError when data conversion fails.

9 ZConfig.substitution — String substitution

This module provides a basic substitution facility similar to that found in the Bourne siedn(most Wix plat-
forms).

The replacements supported by this module include:

Source | Replacement | Notes
$$ $ (1)
$name The result of looking umame | (2)
${ nam@ | The result of looking umame

Notes:

(1) This is different from the Bourne shell, which use¢kto generate a$’ in the result text. This difference avoids
having as many special characters in the syntax.

14 9 ZConfig.substitution — String substitution

(2) Any character which immediately followsamemay not be a valid character in a name.

In each casenameis a non-empty sequence of alphanumeric and underscore characters not starting with a digit. If
there is not a replacement foame the exceptiorSubstitutionReplacementError is raised. Note that the

lookup is expected to be case-insensitive; this module will always use a lower-case version of the name to perform the
query.

This module provides these functions:

substitute ('s, mapping
Substitute values frormappinginto s. mappingcan be aict or any type that supports thiet() method
of the mapping protocol. Replacement values are copied into the result without further interpretation. Raises
SubstitutionSyntaxError if there are malformed constructssn

isname (')
ReturnsTrue if sis a valid name for a substitution text, otherwise retikakse .

9.1 Examples

>>> from ZConfig.substitution import substitute
>>> d = {'name’: 'value’,
‘top”: '$middle’,
‘middle’ : 'bottom’}
>>>
>>> substitute('$name’, d)
‘value’
>>> substitute('$top’, d)
‘$middle’

A Schema Document Type Definition

The following is the XML Document Type Definition f&#Config schema:

<l--

* * * * * * * *

Copyright (c) 2002, 2003 Zope Corporation and Contributors.
All Rights Reserved.

This software is subject to the provisions of the Zope Public License,

Version 2.0 (ZPL). A copy of the ZPL should accompany this distribution.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.

->
<l-- DTD for ZConfig schema documents. -->

<IELEMENT schema (description?, metadefault?, example?,
import*,
(sectiontype | abstracttype)*,
(section | key | multisection | multikey)*)>

9.1 Examples 15

<IATTLIST schema

prefix NMTOKEN #MPLIED
handler ~ NMTOKEN #IMPLIED
keytype NMTOKEN #MPLIED
datatype = NMTOKEN #MPLIED>

<IELEMENT component (description?, (sectiontype | abstracttype)*)>

<IATTLIST component

prefix NMTOKEN #IMPLIED>

<IELEMENT extension (description?, (sectiontype | abstracttype)*)>

<IATTLIST extension
prefix NMTOKEN #IMPLIED>

<IELEMENT import EMPTY>

<IATTLIST import
package NMTOKEN #IMPLIED
src CDATA #IMPLIED>

<I[ELEMENT description (#PCDATA)*>
<IATTLIST description
format NMTOKEN #IMPLIED>
<IELEMENT metadefault (#PCDATA)*>
<IELEMENT example (#PCDATA)*>

<IELEMENT sectiontype (description?, (section | key)*)>
<IATTLIST sectiontype

name NMTOKEN #REQUIRED
prefix NMTOKEN #MPLIED
keytype NMTOKEN #MPLIED
datatype ~ NMTOKEN #MPLIED

implements NMTOKEN #IMPLIED
extends NMTOKEN #IMPLIED>

<IELEMENT abstracttype (description?)>

<IATTLIST abstracttype
name
prefix

NMTOKEN #REQUIRED
NMTOKEN #IMPLIED>

<IELEMENT key (description?, metadefault?, example?)>
<IATTLIST key

name NMTOKEN #REQUIRED
attribute NMTOKEN #IMPLIED
datatype ~ NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no"

default CDATA #IMPLIED>

<IELEMENT multikey (description?, metadefault?, example?, default*)>

<IATTLIST multikey

name NMTOKEN #REQUIRED
attribute NMTOKEN #IMPLIED
datatype ~ NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

<IELEMENT section (description?)>
<IATTLIST section

16

A Schema Document Type Definition

name NMTOKEN #REQUIRED
attribute NMTOKEN #IMPLIED

type NMTOKEN #REQUIRED
handler NMTOKEN #IMPLIED
minOccurs NMTOKEN #IMPLIED
maxOccurs NMTOKEN #IMPLIED>

<I[ELEMENT multisection (description?)>
<IATTLIST multisection

name NMTOKEN #REQUIRED
attribute NMTOKEN #IMPLIED
type NMTOKEN #REQUIRED

handler NMTOKEN #IMPLIED
required (yes|no) "no">

	1 Introduction
	2 Configuration Syntax
	2.1 Textual Substitution in Values

	3 Writing Configuration Schema
	3.1 Schema Elements
	3.2 Schema Components

	4 Standard ZConfig Datatypes
	5 ZConfig --- Basic configuration support
	5.1 Basic Usage

	6 ZConfig.datatypes --- Default data type registry
	7 ZConfig.loader --- Resource loading support
	7.1 Loader Objects

	8 ZConfig.cmdline --- Command-line override support
	9 ZConfig.substitution --- String substitution
	9.1 Examples

	A Schema Document Type Definition

