Commit c651021c authored by PX4BuildBot's avatar PX4BuildBot

autogenerated headers for rev...

autogenerated headers for rev https://github.com/mavlink/mavlink/tree/feb6778a42e6f61351266a3dc11e874774c2e17a
parent e5e45a99
......@@ -39,23 +39,23 @@ extern "C" {
#define HAVE_ENUM_MAV_CMD
typedef enum MAV_CMD
{
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_GUIDED_ENABLE=92, /* hand control over to an external controller |On / Off (> 0.5f on)| Empty| Empty| Empty| Empty| Empty| Empty| */
......@@ -85,7 +85,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -54,23 +54,23 @@ typedef enum ACCELCAL_VEHICLE_POS
#define HAVE_ENUM_MAV_CMD
typedef enum MAV_CMD
{
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_ALTITUDE_WAIT=83, /* Mission command to wait for an altitude or downwards vertical speed. This is meant for high altitude balloon launches, allowing the aircraft to be idle until either an altitude is reached or a negative vertical speed is reached (indicating early balloon burst). The wiggle time is how often to wiggle the control surfaces to prevent them seizing up. |altitude (m)| descent speed (m/s)| Wiggle Time (s)| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
......@@ -101,7 +101,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -83,23 +83,23 @@ typedef enum MAV_CMD
MAV_CMD_AQ_NAV_LEG_ORBIT=1, /* Orbit a waypoint. |Orbit radius in meters| Loiter time in decimal seconds| Maximum horizontal speed in m/s| Desired yaw angle at waypoint| Latitude| Longitude| Altitude| */
MAV_CMD_AQ_TELEMETRY=2, /* Start/stop AutoQuad telemetry values stream. |Start or stop (1 or 0)| Stream frequency in us| Dataset ID (refer to aq_mavlink.h::mavlinkCustomDataSets enum in AQ flight controller code)| Empty| Empty| Empty| Empty| */
MAV_CMD_AQ_REQUEST_VERSION=4, /* Request AutoQuad firmware version number. |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_GUIDED_ENABLE=92, /* hand control over to an external controller |On / Off (> 0.5f on)| Empty| Empty| Empty| Empty| Empty| Empty| */
......@@ -129,7 +129,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -121,7 +121,7 @@ typedef enum MAV_MODE_FLAG
MAV_MODE_FLAG_CUSTOM_MODE_ENABLED=1, /* 0b00000001 Reserved for future use. | */
MAV_MODE_FLAG_TEST_ENABLED=2, /* 0b00000010 system has a test mode enabled. This flag is intended for temporary system tests and should not be used for stable implementations. | */
MAV_MODE_FLAG_AUTO_ENABLED=4, /* 0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation. | */
MAV_MODE_FLAG_GUIDED_ENABLED=8, /* 0b00001000 guided mode enabled, system flies MISSIONs / mission items. | */
MAV_MODE_FLAG_GUIDED_ENABLED=8, /* 0b00001000 guided mode enabled, system flies waypoints / mission items. | */
MAV_MODE_FLAG_STABILIZE_ENABLED=16, /* 0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around. | */
MAV_MODE_FLAG_HIL_ENABLED=32, /* 0b00100000 hardware in the loop simulation. All motors / actuators are blocked, but internal software is full operational. | */
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED=64, /* 0b01000000 remote control input is enabled. | */
......@@ -171,12 +171,12 @@ typedef enum MAV_MODE
MAV_MODE_TEST_DISARMED=66, /* UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only. | */
MAV_MODE_STABILIZE_DISARMED=80, /* System is allowed to be active, under assisted RC control. | */
MAV_MODE_GUIDED_DISARMED=88, /* System is allowed to be active, under autonomous control, manual setpoint | */
MAV_MODE_AUTO_DISARMED=92, /* System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs) | */
MAV_MODE_AUTO_DISARMED=92, /* System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints) | */
MAV_MODE_MANUAL_ARMED=192, /* System is allowed to be active, under manual (RC) control, no stabilization | */
MAV_MODE_TEST_ARMED=194, /* UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only. | */
MAV_MODE_STABILIZE_ARMED=208, /* System is allowed to be active, under assisted RC control. | */
MAV_MODE_GUIDED_ARMED=216, /* System is allowed to be active, under autonomous control, manual setpoint | */
MAV_MODE_AUTO_ARMED=220, /* System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs) | */
MAV_MODE_AUTO_ARMED=220, /* System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints) | */
MAV_MODE_ENUM_END=221, /* | */
} MAV_MODE;
#endif
......@@ -391,23 +391,23 @@ typedef enum UAVCAN_NODE_MODE
#define HAVE_ENUM_MAV_CMD
typedef enum MAV_CMD
{
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_GUIDED_ENABLE=92, /* hand control over to an external controller |On / Off (> 0.5f on)| Empty| Empty| Empty| Empty| Empty| Empty| */
......@@ -437,7 +437,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......@@ -559,8 +559,8 @@ typedef enum MAV_DATA_STREAM
typedef enum MAV_ROI
{
MAV_ROI_NONE=0, /* No region of interest. | */
MAV_ROI_WPNEXT=1, /* Point toward next MISSION. | */
MAV_ROI_WPINDEX=2, /* Point toward given MISSION. | */
MAV_ROI_WPNEXT=1, /* Point toward next waypoint. | */
MAV_ROI_WPINDEX=2, /* Point toward given waypoint. | */
MAV_ROI_LOCATION=3, /* Point toward fixed location. | */
MAV_ROI_TARGET=4, /* Point toward of given id. | */
MAV_ROI_ENUM_END=5, /* | */
......
......@@ -13,10 +13,10 @@ typedef struct __mavlink_mission_item_t {
float y; /*< PARAM6 / y position: global: longitude*/
float z; /*< PARAM7 / z position: global: altitude (relative or absolute, depending on frame.*/
uint16_t seq; /*< Sequence*/
uint16_t command; /*< The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs*/
uint16_t command; /*< The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs*/
uint8_t target_system; /*< System ID*/
uint8_t target_component; /*< Component ID*/
uint8_t frame; /*< The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h*/
uint8_t frame; /*< The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h*/
uint8_t current; /*< false:0, true:1*/
uint8_t autocontinue; /*< autocontinue to next wp*/
uint8_t mission_type; /*< Mission type, see MAV_MISSION_TYPE*/
......@@ -86,8 +86,8 @@ typedef struct __mavlink_mission_item_t {
* @param target_system System ID
* @param target_component Component ID
* @param seq Sequence
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -156,8 +156,8 @@ static inline uint16_t mavlink_msg_mission_item_pack(uint8_t system_id, uint8_t
* @param target_system System ID
* @param target_component Component ID
* @param seq Sequence
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -252,8 +252,8 @@ static inline uint16_t mavlink_msg_mission_item_encode_chan(uint8_t system_id, u
* @param target_system System ID
* @param target_component Component ID
* @param seq Sequence
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -414,7 +414,7 @@ static inline uint16_t mavlink_msg_mission_item_get_seq(const mavlink_message_t*
/**
* @brief Get field frame from mission_item message
*
* @return The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @return The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
*/
static inline uint8_t mavlink_msg_mission_item_get_frame(const mavlink_message_t* msg)
{
......@@ -424,7 +424,7 @@ static inline uint8_t mavlink_msg_mission_item_get_frame(const mavlink_message_t
/**
* @brief Get field command from mission_item message
*
* @return The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @return The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
*/
static inline uint16_t mavlink_msg_mission_item_get_command(const mavlink_message_t* msg)
{
......
......@@ -13,10 +13,10 @@ typedef struct __mavlink_mission_item_int_t {
int32_t y; /*< PARAM6 / y position: local: x position in meters * 1e4, global: longitude in degrees *10^7*/
float z; /*< PARAM7 / z position: global: altitude in meters (relative or absolute, depending on frame.*/
uint16_t seq; /*< Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4).*/
uint16_t command; /*< The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs*/
uint16_t command; /*< The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs*/
uint8_t target_system; /*< System ID*/
uint8_t target_component; /*< Component ID*/
uint8_t frame; /*< The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h*/
uint8_t frame; /*< The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h*/
uint8_t current; /*< false:0, true:1*/
uint8_t autocontinue; /*< autocontinue to next wp*/
uint8_t mission_type; /*< Mission type, see MAV_MISSION_TYPE*/
......@@ -86,8 +86,8 @@ typedef struct __mavlink_mission_item_int_t {
* @param target_system System ID
* @param target_component Component ID
* @param seq Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4).
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -156,8 +156,8 @@ static inline uint16_t mavlink_msg_mission_item_int_pack(uint8_t system_id, uint
* @param target_system System ID
* @param target_component Component ID
* @param seq Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4).
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -252,8 +252,8 @@ static inline uint16_t mavlink_msg_mission_item_int_encode_chan(uint8_t system_i
* @param target_system System ID
* @param target_component Component ID
* @param seq Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4).
* @param frame The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @param frame The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
* @param command The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
* @param current false:0, true:1
* @param autocontinue autocontinue to next wp
* @param param1 PARAM1, see MAV_CMD enum
......@@ -414,7 +414,7 @@ static inline uint16_t mavlink_msg_mission_item_int_get_seq(const mavlink_messag
/**
* @brief Get field frame from mission_item_int message
*
* @return The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
* @return The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h
*/
static inline uint8_t mavlink_msg_mission_item_int_get_frame(const mavlink_message_t* msg)
{
......@@ -424,7 +424,7 @@ static inline uint8_t mavlink_msg_mission_item_int_get_frame(const mavlink_messa
/**
* @brief Get field command from mission_item_int message
*
* @return The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
* @return The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs
*/
static inline uint16_t mavlink_msg_mission_item_int_get_command(const mavlink_message_t* msg)
{
......
......@@ -11,8 +11,8 @@ typedef struct __mavlink_nav_controller_output_t {
float aspd_error; /*< Current airspeed error in meters/second*/
float xtrack_error; /*< Current crosstrack error on x-y plane in meters*/
int16_t nav_bearing; /*< Current desired heading in degrees*/
int16_t target_bearing; /*< Bearing to current MISSION/target in degrees*/
uint16_t wp_dist; /*< Distance to active MISSION in meters*/
int16_t target_bearing; /*< Bearing to current waypoint/target in degrees*/
uint16_t wp_dist; /*< Distance to active waypoint in meters*/
}) mavlink_nav_controller_output_t;
#define MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT_LEN 26
......@@ -65,8 +65,8 @@ typedef struct __mavlink_nav_controller_output_t {
* @param nav_roll Current desired roll in degrees
* @param nav_pitch Current desired pitch in degrees
* @param nav_bearing Current desired heading in degrees
* @param target_bearing Bearing to current MISSION/target in degrees
* @param wp_dist Distance to active MISSION in meters
* @param target_bearing Bearing to current waypoint/target in degrees
* @param wp_dist Distance to active waypoint in meters
* @param alt_error Current altitude error in meters
* @param aspd_error Current airspeed error in meters/second
* @param xtrack_error Current crosstrack error on x-y plane in meters
......@@ -114,8 +114,8 @@ static inline uint16_t mavlink_msg_nav_controller_output_pack(uint8_t system_id,
* @param nav_roll Current desired roll in degrees
* @param nav_pitch Current desired pitch in degrees
* @param nav_bearing Current desired heading in degrees
* @param target_bearing Bearing to current MISSION/target in degrees
* @param wp_dist Distance to active MISSION in meters
* @param target_bearing Bearing to current waypoint/target in degrees
* @param wp_dist Distance to active waypoint in meters
* @param alt_error Current altitude error in meters
* @param aspd_error Current airspeed error in meters/second
* @param xtrack_error Current crosstrack error on x-y plane in meters
......@@ -189,8 +189,8 @@ static inline uint16_t mavlink_msg_nav_controller_output_encode_chan(uint8_t sys
* @param nav_roll Current desired roll in degrees
* @param nav_pitch Current desired pitch in degrees
* @param nav_bearing Current desired heading in degrees
* @param target_bearing Bearing to current MISSION/target in degrees
* @param wp_dist Distance to active MISSION in meters
* @param target_bearing Bearing to current waypoint/target in degrees
* @param wp_dist Distance to active waypoint in meters
* @param alt_error Current altitude error in meters
* @param aspd_error Current airspeed error in meters/second
* @param xtrack_error Current crosstrack error on x-y plane in meters
......@@ -316,7 +316,7 @@ static inline int16_t mavlink_msg_nav_controller_output_get_nav_bearing(const ma
/**
* @brief Get field target_bearing from nav_controller_output message
*
* @return Bearing to current MISSION/target in degrees
* @return Bearing to current waypoint/target in degrees
*/
static inline int16_t mavlink_msg_nav_controller_output_get_target_bearing(const mavlink_message_t* msg)
{
......@@ -326,7 +326,7 @@ static inline int16_t mavlink_msg_nav_controller_output_get_target_bearing(const
/**
* @brief Get field wp_dist from nav_controller_output message
*
* @return Distance to active MISSION in meters
* @return Distance to active waypoint in meters
*/
static inline uint16_t mavlink_msg_nav_controller_output_get_wp_dist(const mavlink_message_t* msg)
{
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -56,23 +56,23 @@ typedef enum MAV_PREFLIGHT_STORAGE_ACTION
typedef enum MAV_CMD
{
MAV_CMD_PREFLIGHT_STORAGE_ADVANCED=0, /* Request storage of different parameter values and logs. This command will be only accepted if in pre-flight mode. |Storage action: Action defined by MAV_PREFLIGHT_STORAGE_ACTION_ADVANCED| Storage area as defined by parameter database| Storage flags as defined by parameter database| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_GUIDED_ENABLE=92, /* hand control over to an external controller |On / Off (> 0.5f on)| Empty| Empty| Empty| Empty| Empty| Empty| */
......@@ -102,7 +102,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -184,7 +184,7 @@
<description>0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around.</description>
</entry>
<entry value="8" name="MAV_MODE_FLAG_GUIDED_ENABLED">
<description>0b00001000 guided mode enabled, system flies MISSIONs / mission items.</description>
<description>0b00001000 guided mode enabled, system flies waypoints / mission items.</description>
</entry>
<entry value="4" name="MAV_MODE_FLAG_AUTO_ENABLED">
<description>0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation.</description>
......@@ -263,10 +263,10 @@
<description>System is allowed to be active, under autonomous control, manual setpoint</description>
</entry>
<entry value="92" name="MAV_MODE_AUTO_DISARMED">
<description>System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs)</description>
<description>System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints)</description>
</entry>
<entry value="220" name="MAV_MODE_AUTO_ARMED">
<description>System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs)</description>
<description>System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by waypoints)</description>
</entry>
<entry value="66" name="MAV_MODE_TEST_DISARMED">
<description>UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only.</description>
......@@ -651,40 +651,40 @@
<enum name="MAV_CMD">
<description>Commands to be executed by the MAV. They can be executed on user request, or as part of a mission script. If the action is used in a mission, the parameter mapping to the waypoint/mission message is as follows: Param 1, Param 2, Param 3, Param 4, X: Param 5, Y:Param 6, Z:Param 7. This command list is similar what ARINC 424 is for commercial aircraft: A data format how to interpret waypoint/mission data.</description>
<entry value="16" name="MAV_CMD_NAV_WAYPOINT">
<description>Navigate to MISSION.</description>
<param index="1">Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)</param>
<param index="2">Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)</param>
<description>Navigate to waypoint.</description>
<param index="1">Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)</param>
<param index="2">Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)</param>
<param index="3">0 to pass through the WP, if &gt; 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.</param>
<param index="4">Desired yaw angle at MISSION (rotary wing). NaN for unchanged.</param>
<param index="4">Desired yaw angle at waypoint (rotary wing). NaN for unchanged.</param>
<param index="5">Latitude</param>
<param index="6">Longitude</param>
<param index="7">Altitude</param>
</entry>
<entry value="17" name="MAV_CMD_NAV_LOITER_UNLIM">
<description>Loiter around this MISSION an unlimited amount of time</description>
<description>Loiter around this waypoint an unlimited amount of time</description>
<param index="1">Empty</param>
<param index="2">Empty</param>
<param index="3">Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="3">Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="4">Desired yaw angle.</param>
<param index="5">Latitude</param>
<param index="6">Longitude</param>
<param index="7">Altitude</param>
</entry>
<entry value="18" name="MAV_CMD_NAV_LOITER_TURNS">
<description>Loiter around this MISSION for X turns</description>
<description>Loiter around this waypoint for X turns</description>
<param index="1">Turns</param>
<param index="2">Empty</param>
<param index="3">Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="3">Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="4">Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle</param>
<param index="5">Latitude</param>
<param index="6">Longitude</param>
<param index="7">Altitude</param>
</entry>
<entry value="19" name="MAV_CMD_NAV_LOITER_TIME">
<description>Loiter around this MISSION for X seconds</description>
<description>Loiter around this waypoint for X seconds</description>
<param index="1">Seconds (decimal)</param>
<param index="2">Empty</param>
<param index="3">Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="3">Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="4">Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle</param>
<param index="5">Latitude</param>
<param index="6">Longitude</param>
......@@ -744,7 +744,7 @@
<description>Vehicle following, i.e. this waypoint represents the position of a moving vehicle</description>
<param index="1">Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation</param>
<param index="2">Ground speed of vehicle to be followed</param>
<param index="3">Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="3">Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise</param>
<param index="4">Desired yaw angle.</param>
<param index="5">Latitude</param>
<param index="6">Longitude</param>
......@@ -793,7 +793,7 @@
<entry value="80" name="MAV_CMD_NAV_ROI">
<description>Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.</description>
<param index="1">Region of intereset mode. (see MAV_ROI enum)</param>
<param index="2">MISSION index/ target ID. (see MAV_ROI enum)</param>
<param index="2">Waypoint index/ target ID. (see MAV_ROI enum)</param>
<param index="3">ROI index (allows a vehicle to manage multiple ROI's)</param>
<param index="4">Empty</param>
<param index="5">x the location of the fixed ROI (see MAV_FRAME)</param>
......@@ -811,8 +811,8 @@
<param index="7">Altitude/Z of goal</param>
</entry>
<entry value="82" name="MAV_CMD_NAV_SPLINE_WAYPOINT">
<description>Navigate to MISSION using a spline path.</description>
<param index="1">Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)</param>
<description>Navigate to waypoint using a spline path.</description>
<param index="1">Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)</param>
<param index="2">Empty</param>
<param index="3">Empty</param>
<param index="4">Empty</param>
......@@ -1117,7 +1117,7 @@
<entry value="201" name="MAV_CMD_DO_SET_ROI">
<description>Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras.</description>
<param index="1">Region of intereset mode. (see MAV_ROI enum)</param>
<param index="2">MISSION index/ target ID. (see MAV_ROI enum)</param>
<param index="2">Waypoint index/ target ID. (see MAV_ROI enum)</param>
<param index="3">ROI index (allows a vehicle to manage multiple ROI's)</param>
<param index="4">Empty</param>
<param index="5">x the location of the fixed ROI (see MAV_FRAME)</param>
......@@ -1850,10 +1850,10 @@
<description>No region of interest.</description>
</entry>
<entry value="1" name="MAV_ROI_WPNEXT">
<description>Point toward next MISSION.</description>
<description>Point toward next waypoint.</description>
</entry>
<entry value="2" name="MAV_ROI_WPINDEX">
<description>Point toward given MISSION.</description>
<description>Point toward given waypoint.</description>
</entry>
<entry value="3" name="MAV_ROI_LOCATION">
<description>Point toward fixed location.</description>
......@@ -2955,8 +2955,8 @@
<field type="uint8_t" name="target_system">System ID</field>
<field type="uint8_t" name="target_component">Component ID</field>
<field type="uint16_t" name="seq">Sequence</field>
<field type="uint8_t" name="frame" enum="MAV_FRAME">The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h</field>
<field type="uint16_t" name="command" enum="MAV_CMD">The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs</field>
<field type="uint8_t" name="frame" enum="MAV_FRAME">The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h</field>
<field type="uint16_t" name="command" enum="MAV_CMD">The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs</field>
<field type="uint8_t" name="current">false:0, true:1</field>
<field type="uint8_t" name="autocontinue">autocontinue to next wp</field>
<field type="float" name="param1">PARAM1, see MAV_CMD enum</field>
......@@ -2995,7 +2995,7 @@
<field type="uint8_t" name="mission_type" enum="MAV_MISSION_TYPE">Mission type, see MAV_MISSION_TYPE</field>
</message>
<message id="44" name="MISSION_COUNT">
<description>This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs.</description>
<description>This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of waypoints.</description>
<field type="uint8_t" name="target_system">System ID</field>
<field type="uint8_t" name="target_component">Component ID</field>
<field type="uint16_t" name="count">Number of mission items in the sequence</field>
......@@ -3010,11 +3010,11 @@
<field type="uint8_t" name="mission_type" enum="MAV_MISSION_TYPE">Mission type, see MAV_MISSION_TYPE</field>
</message>
<message id="46" name="MISSION_ITEM_REACHED">
<description>A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION.</description>
<description>A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next waypoint.</description>
<field type="uint16_t" name="seq">Sequence</field>
</message>
<message id="47" name="MISSION_ACK">
<description>Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero).</description>
<description>Ack message during waypoint handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero).</description>
<field type="uint8_t" name="target_system">System ID</field>
<field type="uint8_t" name="target_component">Component ID</field>
<field type="uint8_t" name="type" enum="MAV_MISSION_RESULT">See MAV_MISSION_RESULT enum</field>
......@@ -3022,7 +3022,7 @@
<field type="uint8_t" name="mission_type" enum="MAV_MISSION_TYPE">Mission type, see MAV_MISSION_TYPE</field>
</message>
<message id="48" name="SET_GPS_GLOBAL_ORIGIN">
<description>As local waypoints exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor.</description>
<description>As local waypoints exist, the global waypoint reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor.</description>
<field type="uint8_t" name="target_system">System ID</field>
<field type="int32_t" name="latitude" units="degE7">Latitude (WGS84), in degrees * 1E7</field>
<field type="int32_t" name="longitude" units="degE7">Longitude (WGS84, in degrees * 1E7</field>
......@@ -3059,7 +3059,7 @@
<field type="uint8_t" name="mission_type" enum="MAV_MISSION_TYPE">Mission type, see MAV_MISSION_TYPE</field>
</message>
<message id="54" name="SAFETY_SET_ALLOWED_AREA">
<description>Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations.</description>
<description>Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/waypoints to accept and which to reject. Safety areas are often enforced by national or competition regulations.</description>
<field type="uint8_t" name="target_system">System ID</field>
<field type="uint8_t" name="target_component">Component ID</field>
<field type="uint8_t" name="frame" enum="MAV_FRAME">Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down.</field>
......@@ -3094,8 +3094,8 @@
<field type="float" name="nav_roll" units="deg">Current desired roll in degrees</field>
<field type="float" name="nav_pitch" units="deg">Current desired pitch in degrees</field>
<field type="int16_t" name="nav_bearing" units="deg">Current desired heading in degrees</field>
<field type="int16_t" name="target_bearing" units="deg">Bearing to current MISSION/target in degrees</field>
<field type="uint16_t" name="wp_dist" units="m">Distance to active MISSION in meters</field>
<field type="int16_t" name="target_bearing" units="deg">Bearing to current waypoint/target in degrees</field>
<field type="uint16_t" name="wp_dist" units="m">Distance to active waypoint in meters</field>
<field type="float" name="alt_error" units="m">Current altitude error in meters</field>
<field type="float" name="aspd_error" units="m/s">Current airspeed error in meters/second</field>
<field type="float" name="xtrack_error" units="m">Current crosstrack error on x-y plane in meters</field>
......@@ -3194,8 +3194,8 @@
<field type="uint8_t" name="target_system">System ID</field>
<field type="uint8_t" name="target_component">Component ID</field>
<field type="uint16_t" name="seq">Waypoint ID (sequence number). Starts at zero. Increases monotonically for each waypoint, no gaps in the sequence (0,1,2,3,4).</field>
<field type="uint8_t" name="frame" enum="MAV_FRAME">The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h</field>
<field type="uint16_t" name="command" enum="MAV_CMD">The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs</field>
<field type="uint8_t" name="frame" enum="MAV_FRAME">The coordinate system of the waypoint. see MAV_FRAME in mavlink_types.h</field>
<field type="uint16_t" name="command" enum="MAV_CMD">The scheduled action for the waypoint. see MAV_CMD in common.xml MAVLink specs</field>
<field type="uint8_t" name="current">false:0, true:1</field>
<field type="uint8_t" name="autocontinue">autocontinue to next wp</field>
<field type="float" name="param1">PARAM1, see MAV_CMD enum</field>
......
......@@ -109,7 +109,7 @@
<description>0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around.</description>
</entry>
<entry value="8" name="MAV_MODE_FLAG_GUIDED_ENABLED">
<description>0b00001000 guided mode enabled, system flies MISSIONs / mission items.</description>
<description>0b00001000 guided mode enabled, system flies waypoints / mission items.</description>
</entry>
<entry value="4" name="MAV_MODE_FLAG_AUTO_ENABLED">
<description>0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation.</description>
......
......@@ -89,7 +89,7 @@ typedef enum MAV_MODE_FLAG
MAV_MODE_FLAG_CUSTOM_MODE_ENABLED=1, /* 0b00000001 Reserved for future use. | */
MAV_MODE_FLAG_TEST_ENABLED=2, /* 0b00000010 system has a test mode enabled. This flag is intended for temporary system tests and should not be used for stable implementations. | */
MAV_MODE_FLAG_AUTO_ENABLED=4, /* 0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation. | */
MAV_MODE_FLAG_GUIDED_ENABLED=8, /* 0b00001000 guided mode enabled, system flies MISSIONs / mission items. | */
MAV_MODE_FLAG_GUIDED_ENABLED=8, /* 0b00001000 guided mode enabled, system flies waypoints / mission items. | */
MAV_MODE_FLAG_STABILIZE_ENABLED=16, /* 0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around. | */
MAV_MODE_FLAG_HIL_ENABLED=32, /* 0b00100000 hardware in the loop simulation. All motors / actuators are blocked, but internal software is full operational. | */
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED=64, /* 0b01000000 remote control input is enabled. | */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 9
......
......@@ -39,23 +39,23 @@ extern "C" {
#define HAVE_ENUM_MAV_CMD
typedef enum MAV_CMD
{
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_WAYPOINT=16, /* Navigate to waypoint. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the waypoint counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at waypoint (rotary wing). NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_UNLIM=17, /* Loiter around this waypoint an unlimited amount of time |Empty| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TURNS=18, /* Loiter around this waypoint for X turns |Turns| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LOITER_TIME=19, /* Loiter around this waypoint for X seconds |Seconds (decimal)| Empty| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_RETURN_TO_LAUNCH=20, /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_NAV_LAND=21, /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_TAKEOFF=22, /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_LAND_LOCAL=23, /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
MAV_CMD_NAV_TAKEOFF_LOCAL=24, /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_FOLLOW=25, /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around waypoint, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT=30, /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
MAV_CMD_NAV_LOITER_TO_ALT=31, /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
MAV_CMD_DO_FOLLOW=32, /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
MAV_CMD_DO_FOLLOW_REPOSITION=33, /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_ROI=80, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_NAV_PATHPLANNING=81, /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_SPLINE_WAYPOINT=82, /* Navigate to waypoint using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at waypoint for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
MAV_CMD_NAV_VTOL_TAKEOFF=84, /* Takeoff from ground using VTOL mode |Empty| Front transition heading, see VTOL_TRANSITION_HEADING enum.| Empty| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude| */
MAV_CMD_NAV_VTOL_LAND=85, /* Land using VTOL mode |Empty| Empty| Approach altitude (with the same reference as the Altitude field). NaN if unspecified.| Yaw angle in degrees. NaN for unchanged.| Latitude| Longitude| Altitude (ground level)| */
MAV_CMD_NAV_GUIDED_ENABLE=92, /* hand control over to an external controller |On / Off (> 0.5f on)| Empty| Empty| Empty| Empty| Empty| Empty| */
......@@ -85,7 +85,7 @@ typedef enum MAV_CMD
MAV_CMD_DO_PAUSE_CONTINUE=193, /* If in a GPS controlled position mode, hold the current position or continue. |0: Pause current mission or reposition command, hold current position. 1: Continue mission. A VTOL capable vehicle should enter hover mode (multicopter and VTOL planes). A plane should loiter with the default loiter radius.| Reserved| Reserved| Reserved| Reserved| Reserved| Reserved| */
MAV_CMD_DO_SET_REVERSE=194, /* Set moving direction to forward or reverse. |Direction (0=Forward, 1=Reverse)| Empty| Empty| Empty| Empty| Empty| Empty| */
MAV_CMD_DO_CONTROL_VIDEO=200, /* Control onboard camera system. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_SET_ROI=201, /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
MAV_CMD_DO_DIGICAM_CONFIGURE=202, /* Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| */
MAV_CMD_DO_DIGICAM_CONTROL=203, /* Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Test shot identifier. If set to 1, image will only be captured, but not counted towards internal frame count.| */
MAV_CMD_DO_MOUNT_CONFIGURE=204, /* Mission command to configure a camera or antenna mount |Mount operation mode (see MAV_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| roll input (0 = angle, 1 = angular rate)| pitch input (0 = angle, 1 = angular rate)| yaw input (0 = angle, 1 = angular rate)| */
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 179
......
......@@ -7,7 +7,7 @@
#ifndef MAVLINK_VERSION_H
#define MAVLINK_VERSION_H
#define MAVLINK_BUILD_DATE "Sun Sep 24 2017"
#define MAVLINK_BUILD_DATE "Sun Oct 01 2017"
#define MAVLINK_WIRE_PROTOCOL_VERSION "2.0"
#define MAVLINK_MAX_DIALECT_PAYLOAD_SIZE 255
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment