# tag: numpy # mode: run """ Test slicing for memoryviews and memoryviewslices """ import sys cimport numpy as np import numpy as np cimport cython from cython cimport view include "cythonarrayutil.pxi" include "../buffers/mockbuffers.pxi" ctypedef np.int32_t dtype_t def get_array(): # We need to type our array to get a __pyx_get_buffer() that typechecks # for np.ndarray and calls __getbuffer__ in numpy.pxd cdef np.ndarray[dtype_t, ndim=3] a a = np.arange(8 * 14 * 11, dtype=np.int32).reshape(8, 14, 11) return a a = get_array() def ae(*args): "assert equals" for x in args: if x != args[0]: raise AssertionError(args) __test__ = {} def testcase(f): __test__[f.__name__] = f.__doc__ return f def testcase_numpy_1_5(f): major, minor, *rest = np.__version__.split('.') if (int(major), int(minor)) >= (1, 5): __test__[f.__name__] = f.__doc__ return f def gc_collect_if_required(): major, minor, *rest = np.__version__.split('.') if (int(major), int(minor)) >= (1, 14): import gc gc.collect() # ### Test slicing memoryview slices # @testcase def test_partial_slicing(array): """ >>> test_partial_slicing(a) """ cdef dtype_t[:, :, :] a = array obj = array[4] cdef dtype_t[:, :] b = a[4, :] cdef dtype_t[:, :] c = a[4] ae(b.shape[0], c.shape[0], obj.shape[0]) ae(b.shape[1], c.shape[1], obj.shape[1]) ae(b.strides[0], c.strides[0], obj.strides[0]) ae(b.strides[1], c.strides[1], obj.strides[1]) @testcase def test_ellipsis(array): """ >>> test_ellipsis(a) """ cdef dtype_t[:, :, :] a = array cdef dtype_t[:, :] b = a[..., 4] b_obj = array[..., 4] cdef dtype_t[:, :] c = a[4, ...] c_obj = array[4, ...] cdef dtype_t[:, :] d = a[2:8, ..., 2] d_obj = array[2:8, ..., 2] ae(tuple([b.shape[i] for i in range(2)]), b_obj.shape) ae(tuple([b.strides[i] for i in range(2)]), b_obj.strides) for i in range(b.shape[0]): for j in range(b.shape[1]): ae(b[i, j], b_obj[i, j]) ae(tuple([c.shape[i] for i in range(2)]), c_obj.shape) ae(tuple([c.strides[i] for i in range(2)]), c_obj.strides) for i in range(c.shape[0]): for j in range(c.shape[1]): ae(c[i, j], c_obj[i, j]) ae(tuple([d.shape[i] for i in range(2)]), d_obj.shape) ae(tuple([d.strides[i] for i in range(2)]), d_obj.strides) for i in range(d.shape[0]): for j in range(d.shape[1]): ae(d[i, j], d_obj[i, j]) cdef dtype_t[:] e = a[..., 5, 6] e_obj = array[..., 5, 6] ae(e.shape[0], e_obj.shape[0]) ae(e.strides[0], e_obj.strides[0]) # ### Test slicing memoryview objects # @testcase def test_partial_slicing_memoryview(array): """ >>> test_partial_slicing_memoryview(a) """ cdef dtype_t[:, :, :] _a = array a = _a obj = array[4] b = a[4, :] c = a[4] ae(b.shape[0], c.shape[0], obj.shape[0]) ae(b.shape[1], c.shape[1], obj.shape[1]) ae(b.strides[0], c.strides[0], obj.strides[0]) ae(b.strides[1], c.strides[1], obj.strides[1]) @testcase def test_ellipsis_memoryview(array): """ >>> test_ellipsis_memoryview(a) """ cdef dtype_t[:, :, :] _a = array a = _a b = a[..., 4] b_obj = array[..., 4] c = a[4, ...] c_obj = array[4, ...] d = a[2:8, ..., 2] d_obj = array[2:8, ..., 2] ae(tuple([b.shape[i] for i in range(2)]), b_obj.shape) ae(tuple([b.strides[i] for i in range(2)]), b_obj.strides) for i in range(b.shape[0]): for j in range(b.shape[1]): ae(b[i, j], b_obj[i, j]) ae(tuple([c.shape[i] for i in range(2)]), c_obj.shape) ae(tuple([c.strides[i] for i in range(2)]), c_obj.strides) for i in range(c.shape[0]): for j in range(c.shape[1]): ae(c[i, j], c_obj[i, j]) ae(tuple([d.shape[i] for i in range(2)]), d_obj.shape) ae(tuple([d.strides[i] for i in range(2)]), d_obj.strides) for i in range(d.shape[0]): for j in range(d.shape[1]): ae(d[i, j], d_obj[i, j]) e = a[..., 5, 6] e_obj = array[..., 5, 6] ae(e.shape[0], e_obj.shape[0]) ae(e.strides[0], e_obj.strides[0]) @testcase def test_transpose(): """ >>> test_transpose() 3 4 (3, 4) (3, 4) 11 11 11 11 11 11 """ cdef dtype_t[:, :] a numpy_obj = np.arange(4 * 3, dtype=np.int32).reshape(4, 3) a = numpy_obj a_obj = a cdef dtype_t[:, :] b = a.T print a.T.shape[0], a.T.shape[1] print a_obj.T.shape print tuple(map(int, numpy_obj.T.shape)) # might use longs in Py2 cdef dtype_t[:, :] c with nogil: c = a.T.T assert (<object> a).shape == (<object> c).shape assert (<object> a).strides == (<object> c).strides print a[3, 2], a.T[2, 3], a_obj[3, 2], a_obj.T[2, 3], numpy_obj[3, 2], numpy_obj.T[2, 3] @testcase def test_transpose_type(a): """ >>> a = np.zeros((5, 10), dtype=np.float64) >>> a[4, 6] = 9 >>> test_transpose_type(a) 9.0 """ cdef double[:, ::1] m = a cdef double[::1, :] m_transpose = a.T print m_transpose[6, 4] @testcase_numpy_1_5 def test_numpy_like_attributes(cyarray): """ For some reason this fails in numpy 1.4, with shape () and strides (40, 8) instead of 20, 4 on my machine. Investigate this. >>> cyarray = create_array(shape=(8, 5), mode="c") >>> test_numpy_like_attributes(cyarray) >>> test_numpy_like_attributes(cyarray.memview) """ numarray = np.asarray(cyarray) assert cyarray.shape == numarray.shape, (cyarray.shape, numarray.shape) assert cyarray.strides == numarray.strides, (cyarray.strides, numarray.strides) assert cyarray.ndim == numarray.ndim, (cyarray.ndim, numarray.ndim) assert cyarray.size == numarray.size, (cyarray.size, numarray.size) assert cyarray.nbytes == numarray.nbytes, (cyarray.nbytes, numarray.nbytes) cdef int[:, :] mslice = numarray assert (<object> mslice).base is numarray @testcase_numpy_1_5 def test_copy_and_contig_attributes(a): """ >>> a = np.arange(20, dtype=np.int32).reshape(5, 4) >>> test_copy_and_contig_attributes(a) """ cdef np.int32_t[:, :] mslice = a m = mslice # Test object copy attributes assert np.all(a == np.array(m.copy())) assert a.strides == m.strides == m.copy().strides assert np.all(a == np.array(m.copy_fortran())) assert m.copy_fortran().strides == (4, 20) # Test object is_*_contig attributes assert m.is_c_contig() and m.copy().is_c_contig() assert m.copy_fortran().is_f_contig() and not m.is_f_contig() ctypedef int td_cy_int cdef extern from "bufaccess.h": ctypedef td_cy_int td_h_short # Defined as short, but Cython doesn't know this! ctypedef float td_h_double # Defined as double ctypedef unsigned int td_h_ushort # Defined as unsigned short ctypedef td_h_short td_h_cy_short cdef void dealloc_callback(void *data): print "deallocating..." def build_numarray(array array): array.callback_free_data = dealloc_callback return np.asarray(array) def index(array array): print build_numarray(array)[3, 2] @testcase_numpy_1_5 def test_coerce_to_numpy(): """ Test coercion to NumPy arrays, especially with automatically generated format strings. >>> test_coerce_to_numpy() [97, 98, 600, 700, 800] deallocating... (600, 700) deallocating... ((100, 200), (300, 400), 500) deallocating... (97, 900) deallocating... 99 deallocating... 111 deallocating... 222 deallocating... 333 deallocating... 11.1 deallocating... 12.2 deallocating... 13.25 deallocating... (14.4+15.5j) deallocating... (16.5+17.7j) deallocating... (18.8125+19.9375j) deallocating... 22 deallocating... 33.33 deallocating... 44 deallocating... """ # ### First set up some C arrays that will be used to hold data # cdef MyStruct[20] mystructs cdef SmallStruct[20] smallstructs cdef NestedStruct[20] nestedstructs cdef PackedStruct[20] packedstructs cdef signed char[20] chars cdef short[20] shorts cdef int[20] ints cdef long long[20] longlongs cdef td_h_short[20] externs cdef float[20] floats cdef double[20] doubles cdef long double[20] longdoubles cdef float complex[20] floatcomplex cdef double complex[20] doublecomplex cdef long double complex[20] longdoublecomplex cdef td_h_short[20] h_shorts cdef td_h_double[20] h_doubles cdef td_h_ushort[20] h_ushorts cdef Py_ssize_t idx = 17 # ### Initialize one element in each array # mystructs[idx] = { 'a': 'a', 'b': 'b', 'c': 600, 'd': 700, 'e': 800, } smallstructs[idx] = { 'a': 600, 'b': 700 } nestedstructs[idx] = { 'x': { 'a': 100, 'b': 200 }, 'y': { 'a': 300, 'b': 400 }, 'z': 500, } packedstructs[idx] = { 'a': 'a', 'b': 900 } chars[idx] = 99 shorts[idx] = 111 ints[idx] = 222 longlongs[idx] = 333 externs[idx] = 444 assert externs[idx] == 444 # avoid "set but not used" C compiler warning floats[idx] = 11.1 doubles[idx] = 12.2 longdoubles[idx] = 13.25 floatcomplex[idx] = 14.4 + 15.5j doublecomplex[idx] = 16.5 + 17.7j longdoublecomplex[idx] = 18.8125 + 19.9375j # x/64 to avoid float format rounding issues h_shorts[idx] = 22 h_doubles[idx] = 33.33 h_ushorts[idx] = 44 # ### Create a NumPy array and see if our element can be correctly retrieved # mystruct_array = build_numarray(<MyStruct[:4, :5]> <MyStruct *> mystructs) print [int(x) for x in mystruct_array[3, 2]] del mystruct_array index(<SmallStruct[:4, :5]> <SmallStruct *> smallstructs) index(<NestedStruct[:4, :5]> <NestedStruct *> nestedstructs) index(<PackedStruct[:4, :5]> <PackedStruct *> packedstructs) index(<signed char[:4, :5]> <signed char *> chars) index(<short[:4, :5]> <short *> shorts) index(<int[:4, :5]> <int *> ints) index(<long long[:4, :5]> <long long *> longlongs) index(<float[:4, :5]> <float *> floats) index(<double[:4, :5]> <double *> doubles) index(<long double[:4, :5]> <long double *> longdoubles) index(<float complex[:4, :5]> <float complex *> floatcomplex) index(<double complex[:4, :5]> <double complex *> doublecomplex) index(<long double complex[:4, :5]> <long double complex *> longdoublecomplex) index(<td_h_short[:4, :5]> <td_h_short *> h_shorts) index(<td_h_double[:4, :5]> <td_h_double *> h_doubles) index(<td_h_ushort[:4, :5]> <td_h_ushort *> h_ushorts) @testcase_numpy_1_5 def test_memslice_getbuffer(): """ >>> test_memslice_getbuffer(); gc_collect_if_required() [[ 0 2 4] [10 12 14]] callback called """ cdef int[:, :] array = create_array((4, 5), mode="c", use_callback=True) print(np.asarray(array)[::2, ::2]) cdef class DeallocateMe(object): def __dealloc__(self): print "deallocated!" # Disabled! References cycles don't seem to be supported by NumPy # @testcase def acquire_release_cycle(obj): DISABLED_DOCSTRING = """ >>> a = np.arange(20, dtype=np.object) >>> a[10] = DeallocateMe() >>> acquire_release_cycle(a) deallocated! """ import gc cdef object[:] buf = obj buf[1] = buf gc.collect() del buf gc.collect() cdef packed struct StructArray: int a[4] signed char b[5] @testcase_numpy_1_5 def test_memslice_structarray(data, dtype): """ >>> def b(s): return s.encode('ascii') >>> def to_byte_values(b): ... if sys.version_info[0] >= 3: return list(b) ... else: return map(ord, b) >>> data = [(range(4), b('spam\\0')), (range(4, 8), b('ham\\0\\0')), (range(8, 12), b('eggs\\0'))] >>> dtype = np.dtype([('a', '4i'), ('b', '5b')]) >>> test_memslice_structarray([(L, to_byte_values(s)) for L, s in data], dtype) 0 1 2 3 spam 4 5 6 7 ham 8 9 10 11 eggs Test the same thing with the string format specifier >>> dtype = np.dtype([('a', '4i'), ('b', 'S5')]) >>> test_memslice_structarray(data, dtype) 0 1 2 3 spam 4 5 6 7 ham 8 9 10 11 eggs """ a = np.empty((3,), dtype=dtype) a[:] = data cdef StructArray[:] myslice = a cdef int i, j for i in range(3): for j in range(4): print myslice[i].a[j] print myslice[i].b.decode('ASCII') @testcase_numpy_1_5 def test_structarray_errors(StructArray[:] a): """ >>> dtype = np.dtype([('a', '4i'), ('b', '5b')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) >>> dtype = np.dtype([('a', '6i'), ('b', '5b')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) Traceback (most recent call last): ... ValueError: Expected a dimension of size 4, got 6 >>> dtype = np.dtype([('a', '(4,4)i'), ('b', '5b')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) Traceback (most recent call last): ... ValueError: Expected 1 dimension(s), got 2 Test the same thing with the string format specifier >>> dtype = np.dtype([('a', '4i'), ('b', 'S5')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) >>> dtype = np.dtype([('a', '6i'), ('b', 'S5')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) Traceback (most recent call last): ... ValueError: Expected a dimension of size 4, got 6 >>> dtype = np.dtype([('a', '(4,4)i'), ('b', 'S5')]) >>> test_structarray_errors(np.empty((5,), dtype=dtype)) Traceback (most recent call last): ... ValueError: Expected 1 dimension(s), got 2 """ cdef struct StringStruct: signed char c[4][4] ctypedef signed char String[4][4] def stringstructtest(StringStruct[:] view): pass def stringtest(String[:] view): pass @testcase_numpy_1_5 def test_string_invalid_dims(): """ >>> def b(s): return s.encode('ascii') >>> dtype = np.dtype([('a', 'S4')]) >>> data = [b('spam'), b('eggs')] >>> stringstructtest(np.array(data, dtype=dtype)) Traceback (most recent call last): ... ValueError: Expected 2 dimensions, got 1 >>> stringtest(np.array(data, dtype='S4')) Traceback (most recent call last): ... ValueError: Expected 2 dimensions, got 1 """ ctypedef struct AttributesStruct: int attrib1 float attrib2 StringStruct attrib3 @testcase_numpy_1_5 def test_struct_attributes(): """ >>> test_struct_attributes() 1 2.0 c """ cdef AttributesStruct[10] a cdef AttributesStruct[:] myslice = a myslice[0].attrib1 = 1 myslice[0].attrib2 = 2.0 myslice[0].attrib3.c[0][0] = 'c' array = np.asarray(myslice) print array[0]['attrib1'] print array[0]['attrib2'] print chr(array[0]['attrib3']['c'][0][0]) # ### Test for NULL strides (C contiguous buffers) # cdef getbuffer(Buffer self, Py_buffer *info): info.buf = &self.m[0, 0] info.len = 10 * 20 info.ndim = 2 info.shape = self._shape info.strides = NULL info.suboffsets = NULL info.itemsize = 4 info.readonly = 0 self.format = b"f" info.format = self.format cdef class Buffer(object): cdef Py_ssize_t[2] _shape cdef bytes format cdef float[:, :] m cdef object shape, strides def __init__(self): a = np.arange(200, dtype=np.float32).reshape(10, 20) self.m = a self.shape = a.shape self.strides = a.strides self._shape[0] = 10 self._shape[1] = 20 def __getbuffer__(self, Py_buffer *info, int flags): getbuffer(self, info) cdef class SuboffsetsNoStridesBuffer(Buffer): def __getbuffer__(self, Py_buffer *info, int flags): getbuffer(self, info) info.suboffsets = self._shape @testcase def test_null_strides(Buffer buffer_obj): """ >>> test_null_strides(Buffer()) """ cdef float[:, :] m1 = buffer_obj cdef float[:, ::1] m2 = buffer_obj cdef float[:, ::view.contiguous] m3 = buffer_obj assert (<object> m1).strides == buffer_obj.strides assert (<object> m2).strides == buffer_obj.strides, ((<object> m2).strides, buffer_obj.strides) assert (<object> m3).strides == buffer_obj.strides cdef int i, j for i in range(m1.shape[0]): for j in range(m1.shape[1]): assert m1[i, j] == buffer_obj.m[i, j] assert m2[i, j] == buffer_obj.m[i, j], (i, j, m2[i, j], buffer_obj.m[i, j]) assert m3[i, j] == buffer_obj.m[i, j] @testcase def test_null_strides_error(buffer_obj): """ >>> test_null_strides_error(Buffer()) C-contiguous buffer is not indirect in dimension 1 C-contiguous buffer is not indirect in dimension 0 C-contiguous buffer is not contiguous in dimension 0 C-contiguous buffer is not contiguous in dimension 0 >>> test_null_strides_error(SuboffsetsNoStridesBuffer()) Traceback (most recent call last): ... ValueError: Buffer exposes suboffsets but no strides """ # valid cdef float[::view.generic, ::view.generic] full_buf = buffer_obj # invalid cdef float[:, ::view.indirect] indirect_buf1 cdef float[::view.indirect, :] indirect_buf2 cdef float[::1, :] fortran_buf1 cdef float[::view.contiguous, :] fortran_buf2 try: indirect_buf1 = buffer_obj except ValueError, e: print e try: indirect_buf2 = buffer_obj except ValueError, e: print e try: fortran_buf1 = buffer_obj except ValueError, e: print e try: fortran_buf2 = buffer_obj except ValueError, e: print e def test_refcount_GH507(): """ >>> test_refcount_GH507() """ a = np.arange(12).reshape([3, 4]) cdef np.int_t[:,:] a_view = a cdef np.int_t[:,:] b = a_view[1:2,:].T @cython.boundscheck(False) @cython.wraparound(False) def test_boundscheck_and_wraparound(double[:, :] x): """ >>> import numpy as np >>> array = np.ones((2,2)) * 3.5 >>> test_boundscheck_and_wraparound(array) """ # Make sure we don't generate C compiler warnings for unused code here. cdef Py_ssize_t numrow = x.shape[0] cdef Py_ssize_t i for i in range(numrow): x[i, 0] x[i] x[i, ...] x[i, :] ctypedef struct SameTypeAfterArraysStructSimple: double a[16] double b[16] double c @testcase def same_type_after_arrays_simple(): """ >>> same_type_after_arrays_simple() """ cdef SameTypeAfterArraysStructSimple element arr = np.ones(2, np.asarray(<SameTypeAfterArraysStructSimple[:1]>&element).dtype) cdef SameTypeAfterArraysStructSimple[:] memview = arr ctypedef struct SameTypeAfterArraysStructComposite: int a float b[8] float c unsigned long d int e[5] int f int g double h[4] int i @testcase def same_type_after_arrays_composite(): """ >>> same_type_after_arrays_composite() """ cdef SameTypeAfterArraysStructComposite element arr = np.ones(2, np.asarray(<SameTypeAfterArraysStructComposite[:1]>&element).dtype) cdef SameTypeAfterArraysStructComposite[:] memview = arr