.. highlight:: cython

.. _memory_allocation:

*****************
Memory Allocation
*****************

Dynamic memory allocation is mostly a non-issue in Python.
Everything is an object, and the reference counting system and garbage collector
automatically return memory to the system when it is no longer being used.

Objects can be used in Cython as well, but sometimes this incurs a certain
amount of overhead.  In C, simple values and structs
(such as a local variable ``cdef double x``) are allocated on the stack and
passed by value, but for larger more complicated objects
(e.g. a dynamically-sized list of doubles) memory must be
manually requested and released.
C provides the functions ``malloc``, ``realloc``, and ``free`` for this purpose,
which can be imported in cython from ``clibc.stdlib``. Their signatures are::

    void* malloc(size_t size)
    void* realloc(void* ptr, size_t size)
    void free(void* ptr)

A very simple example of malloc usage is the following::

    import random
    from libc.stdlib cimport malloc, free

    def random_noise(int number=1):
        cdef int i
        # allocate number * sizeof(double) bytes of memory
        cdef double *my_array = <double *>malloc(number * sizeof(double))
        if not my_array:
            raise MemoryError()

        try:
            ran = random.normalvariate
            for i in range(number):
                my_array[i] = ran(0,1)

            return [ my_array[i] for i in range(number) ]
        finally:
            # return the previously allocated memory to the system
            free(my_array)

Note that the C-API functions for allocating memory on the Python heap
are generally preferred over the low-level C functions above as the
memory they provide is actually accounted for in Python's internal
memory management system.  They also have special optimisations for
smaller memory blocks, which speeds up their allocation by avoiding
costly operating system calls.

The C-API functions can be found in the ``cpython.mem`` standard
declarations file::

    from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free

Their interface and usage is identical to that of the corresponding
low-level C functions.

One important thing to remember is that blocks of memory obtained with
:c:func:`malloc` or :c:func:`PyMem_Malloc` *must* be manually released
with a corresponding call to :c:func:`free` or :c:func:`PyMem_Free`
when they are no longer used (and *must* always use the matching
type of free function).  Otherwise, they won't be reclaimed until the
python process exits.  This is called a memory leak.

If a chunk of memory needs a larger lifetime than can be managed by a
``try..finally`` block, another helpful idiom is to tie its lifetime
to a Python object to leverage the Python runtime's memory management,
e.g.::

  cdef class SomeMemory:

      cdef double* data

      def __cinit__(self, number):
          # allocate some memory (filled with random data)
          self.data = <double*> PyMem_Malloc(number * sizeof(double))
          if not self.data:
              raise MemoryError()

      def resize(self, new_number):
          # Allocates new_number * sizeof(double) bytes,
          # preserving the contents and making a best-effort to
          # re-use the original data location.
          mem = <double*> PyMem_Realloc(self.data, new_number * sizeof(double))
          if not mem:
              raise MemoryError()
          # Only overwrite the pointer if the memory was really reallocated.
          # On error (mem is NULL), the originally memory has not been freed.
          self.data = mem

      def __dealloc__(self, number):
          PyMem_Free(self.data)     # no-op if self.data is NULL

It should be noted that Cython has special support for (multi-dimensional)
arrays of simple types via NumPy and memory views which are more full featured
and easier to work with than pointers while still retaining the speed/static
typing benefits.