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1 Introduction and Scope 

ManPy stands for "Manufacturing in Python" and it is a layer of Discrete Event Simulation (DES) 
objects built in SimPy (http://simpy.sourceforge.net/). The current version of ManPy is based on 
SimPy2 (http://simpy.sourceforge.net/old/). This happens because at the time ManPy 
implementation progressed, the newest version was not available. We plan to progress to SimPy3 
(http://simpy.readthedocs.org/en/latest/) soon. This is not supposed to affect in a great extend this 
documentation. 

The scope of the project is to provide simulation modellers with a collection of open-source DES 
objects that can be connected like "black boxes" in order to form a model. This collection is desired 
to be expandable by giving means to developers for:   

 customizing existing objects by overriding certain methods 

 adding brand new objects to the list 

ManPy is product of a research project funded from the European Union Seventh Framework 
Programme (FP7-2012-NMP-ICT-FoF) under grant agreement n° 314364. The project name is 
DREAM and stands for "Simulation based application Decision support in Real-time for Efficient 
Agile Manufacturing". More information about the scope of DREAM can be found at http://dream-
simulation.eu/. 

DREAM is a project which kicked off in October of 2012 and finishes in September of 2015. ManPy 
is an ongoing project and we do not claim that it is complete or bug-free. The platform will be 
expanded and validated through the industrial pilot cases of DREAM. Nevertheless, it is in a quite 
mature state to attract the interest of simulation modellers and software developers.  

The dream repository contains the following 3 folders: 

 platform: contains code for a GUI that is being build for ManPy. This is a parallel work 
and it is not always synchronized to ManPy’s latest version 

 simulation: contains all the simulation ManPy code along with some input files and some 
files from a commercial simulation package that are used for verification 

 test: contains unit-tests for the project.  

This document regards ONLY the ManPy part of the project. Note that ManPy is independent 
from the GUI and can be used separately as a library of simulation objects, which can be used to 
form a model. Users can implement alternative methods to be able to construct models, run them 
and get results.  

The reader of this documentation needs to have basic, yet not deep knowledge of programming 
in Python (http://www.python.org/) and SimPy2. Also the reader is expected to have a basic 
knowledge of the Discrete Event Simulation (DES) technique. 

http://simpy.sourceforge.net/
http://simpy.sourceforge.net/old/
http://simpy.readthedocs.org/en/latest/
http://dream-simulation.eu/
http://dream-simulation.eu/
http://www.python.org/
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2 How to get started 

 

To be able to run the documentation examples just copy the dream folder to your Python folder. 
Then you can import ManPy objects as it is written in the examples, e.g.: 

 from dream.simulation.Queue import Queue or 

 from dream.simulation.imports import Machine, Source, Exit 

 

ManPy uses the following Python libraries which need to be installed in order to run the examples: 

 SimPy2 

 NumPy 

 SciPy 

 xlrd 

 xlwt 
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3 Architecture 

ManPy objects are written exclusively in Python and they use methods of SimPy. Figure 1 shows 
the current state of the architecture. 

 

 

Figure 1: The ManPy class hierarchy. 

 

In Figure 1 four different layers are depicted: 

 On the top we have SimPy classes 

 The top layer of ManPy is a set of generic, abstract classes. There are not supposed to have 
instances, nevertheless they are important because: 

o they help in the grouping of objects 

o generic methods are defined for all those classes which the simulation objects inherit 
and override 

 Below the generic objects lies the basic core of ManPy objects. This is currently being 
populated and expanded.  

 On the bottom we have custom objects of ManPy. These inherit from one object of the basic 
core and customize it according to the needs of the modeller 

 

In the remaining of this chapter the generic classes of ManPy will be described.  

 

3.1 ManPy Generic (Abstract Classes) 

The layer of abstract classes is the “heart” of ManPy. These give the basic guidelines of how the 
platform is structured. Note that since this is an ongoing work, the names of the classes may 
change, since we currently think towards the best abstraction. Also new generic classes might be 
added in future versions, even though the number should be kept reasonably short. The abstract 
classes include: 
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 CoreObject: all the stations in a model that are permanent for the model. These can be 
servers or buffers of any type. 

 ObjectInterruption: all the objects that can affect the availability of another object. For 
example failures, scheduled breaks, shifts etc.  

 Entity: all objects that get processed by or wait in CoreObjects and they are not permanent in 
a model. For example parts in a production line, customers in a shop, calls in a call centre etc.  

 ObjectResource: all the resources that might be necessary for certain operation of a 
CoreObject. For example repairman, operator, electric power etc. An ObjectResource is 
necessary in modelling when two or more CoreObjects compete for the same resource (e.g. 
two machines competing for the same operator).  

 Auxiliary: These are auxiliary classes that are needed for different simulation functionalities. 
Unlike the other categories described here, auxiliary classes do not inherit from one parent 
class, even though it is depicted in such a way in Figure1 for reasons of coherence.  

In the following subsection each category of generic classes will be described in more depth. 

 

3.1.1 CoreObject 

As CoreObjects are categorized all the stations in a model that are permanent for the model. 
These can be servers or buffers of any type. It is in the philosophy of ManPy that the CoreObjects 
will handle most of the simulation logic, so that a more generic process oriented approach is 
achieved. CoreObjects inherit from SimPy.Process class.  

CoreObjects should be able to communicate no matter what their type is. For example, a Machine 
should be able to retrieve an Entity from another CoreObject, using the same code, no matter if 
this CoreObject is a Queue or also a Machine. For this reason all the CoreObjects implement a set 
of methods which have the same name, but different implementation for every object. This set of 
methods includes: 

i. Definition methods: are used for the instantiation of the object 

ii. Transaction methods: are used to define how the objects exchange entities 

iii. Control methods: are used to retrieve the state of an object 

iv. Supplementary methods: are used to define certain objects in Transactions or Control 
methods 

v. Output and calculation methods: are used either to output results or trace in different formats 
or to make certain calculations 

vi. Main simulation method: just one method that is used to control the progress of the object in 
the simulated time. In Python terms this is a generator method and it is the only one where the 
yield commands of SimPy can be invoked  

Also, CoreObjects share some conventions for certain variables listed below: 

 Res: this is an instance SimPy.resource type. It keeps the Entities that the CoreObject holds in 
its activeQ, in which we also refer to as the “internal queue” of the core object in this 
documentation (not to be confused with the Queue object).  

 next: a list that holds all the successors of the CoreObject, i.e. the CoreObjects to which the 
object can give an Entity.  

 previous: a list that holds all the predecessors of the CoreObject, i.e. the CoreObjects from 
which the object can receive an Entity.  

 successorIndex: an integer that points to the successor of next that the CoreObject can give an 
Entity at every moment off simulation time.  

 predecessorIndex: an integer that points to the predecessor of previous from which the 
CoreObject can receive an Entity at every moment off simulation time 

Note that next and previous lists may be empty. This can happen for several reasons: 
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 For certain objects it is not logical to have both lists. For example an Exit object should not 
have any successors 

 Sometimes the flow is completely dependent on Entities attributes (e.g. in a jobshop). In such 
cases objects do not need to have predecessors or successors. 

CoreObjects share also several other attributes that hold certain important values. For example 
timeLastEntityEntered holds the simulation time that an Entity entered in the CoreObject. Also they 
have counters that hold certain results. For example totalFailureTime holds the failure time for a 
CoreObject, which can be divided by the length of the simulation run in order to give the 
percentage of time that the CoreObject was in failure. The list of such variables is currently 
populated. 

Below we will discuss the methods of each of the 6 categories of generic methods. 

 

3.1.1.1 Definition methods 

These are used for the instantiation of the object. 3 such methods exist: 

 __init__: this is the python constructor method. This method is ran when the instance is 
created. 

 initialize: this method initializes the object for a simulation replication. It should not be confused 
with the constructor above. The constructor is ran only in the creation of the object, while 
initialize must be ran in the beginning of every replication.  

 defineRouting: it defines the next and previous lists, i.e. successor and predecessor objects.  

 

3.1.1.2 Transaction methods 

These handle the transactions of Entities between CoreObjects. In every transaction two 
CoreObjects take part. The giver object is the one that gives the entity and the receiver object is 
the one that obtains it.  

Two such methods exist: 

 removeEntity: it is ran on the giver object and it removes an Entity from it. The objects sort the 
Entities they hold in such a way, so that the object that will be removed is the first object of the 
internal queue.  

 getEntity: it is ran on the receiver object and it obtains an Entity from the giver. In essence it 
calls the removeEntity method of the giver object and adds the Entity to each internal queue  

 

3.1.1.3 Control methods 

For every object they provide information about its state. They return true or false. 3 such methods 
exist: 

 canAccept: returns true if the object is in a state to receive an Entity. The logic depends on the 
type of the object. For example in a Queue the capacity might need to be checked, while an 
Exit object might always be in the state of receiving an Entity. Note that sometimes it is needed 
that this method should return true only to the object that it can receive the Entity from. In this 
case, the object that calls the method must be passed as an argument. 

 haveToDispose: returns true if the object is in a state to give an Entity. The logic depends on 
the type of the object. For example a Queue may need to check only if it does hold one or more 
Entities, while a Machine might need to check also if the Entity that it holds has ended its 
processing. Note that sometimes it is needed that this method should return true only to the 
object that it can give the Entity to. In this case, the object that calls the method must be 
passed as an argument. 

 canAcceptAndIsRequested: returns true only when both conditions are satisfied: the object is in 
the state to accept an Entity and also another object is requesting to give one Entity to it. As we 
will see, only when this method returns true the main simulation logic of the object is started. 
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Note that contrary to the other methods described in this section, this one is expected to be 
called only internally from an object (there is no need for a CoreObject to call 
canAcceptAndIsRequested of another). So it is not obligatory that the name is the same for all 
CoreObjects. Nevertheless, for reasons of coherence this method is mentioned here and we 
believe that all the CoreObjects should keep the naming convention.  

 

3.1.1.4 Supplementary methods 

These methods are used to obtain specific objects that are needed for the transaction and control 
methods. Six such methods exist: 

 getActiveObject: returns the active object in the transaction. This always returns self, and they 
can be used interchangeably (though self should be faster since it does not call a method).  

 getActiveObjectQueue: returns the internal queue of the active object. This always returns 
self.Res.activeQ, but it is preferred to use the method since it makes the code cleaner and 
lesser need of knowledge of the internals of ManPy is achieved.  

 getGiverObject: returns the giver object in a transaction. 

 getGiverObjectQueue: returns the internal queue of the giver object in a transaction. 

 getReceiverObject: returns the receiver object in a transaction. 

 getReceiverObjectQueue: returns the internal queue of the receiver object in a transaction. 

   

3.1.1.5 Output and calculation methods 

Perform calculations or output data. Five such methods exist: 

 sortEntities: it sorts the Entities in the internal queue of the CoreObject. Many times this 
method might not be needed. However, there are times when it is essential. E.g. when a 
Queue needs to sort its Entities according to a predefined rule. 

 calculateProcessingTime: Calculates the processing time every time one Entity gets into the 
CoreObject for processing. 

 postProcessing: is called for every object in the end of a simulation replication, The purpose is 
to perform certain calculations. For example, if a Machine is still processing an Entity when the 
simulation ends, this processing time should be added so that the results are accurate. Note 
that when an object is complex, sometimes it is difficult to debug such a method. On the other 
hand, in a long simulation run a mistake in this method would most probably not introduce a 
large error.  

 outPutResultsJSON: outputs the results of the object in a JSON format. All the objects output 
to the same JSON file. If we have more than one replications, the results are given in 
confidence intervals. 

 outPutResultsXL: outputs the results of the object in an Excel file. All the objects output to the 
same Excel file. If we have more than one replications, the results are given in confidence 
intervals. To save the excel file the user should add G.outputFile.save("filename.xls") in the 
main script. 

 outPutTrace: outputs trace in an Excel sheet when an important event happens (e.g. an Entity 
gets into the CoreObject). All the objects output to the same Excel file and the events are 
sorted in increasing timestamp. The trace is essential for debugging. To run a model that is 
believed to be verified, it should be turned off since it slows the program significantly.  

Note that contrary to the other methods described in this section, the 3 output methods and 
postProcessing are expected to be called only internally from an object or from a main script (e.g. 
there is no need for a CoreObject to call outPutResultsJSON of another). So it is not obligatory that 
the name is the same for all CoreObjects. Nevertheless, for reasons of coherence these methods 
are mentioned here.  



 

9 

 

ManPy users are invited to write new methods for objects, in case they desire to output results in 
different format (e.g. XML). Also it is logical that ManPy users would like to override these methods 
to customize the results that they get.  

 

3.1.1.6 Main simulation method 

Here the logic that the CoreObject follows as it evolves through time. There is only one such 
method: 

 run: this is a generator method and it is the only one where the yield commands of SimPy can 
be used. For this reason run requires that the user knows the internals of SimPy in order to 
customize. It is common (but not obligatory) that in such a method there is a while loop that 
runs all through the simulated time. The logic followed in every CoreObject’s run method is: 

1. Wait until canAcceptAndIsRequested becomes true. 

2. Call object's getEntity method so that it obtains the Entity from a giver object. 

3. Carry on the logic of the object (unique for every different type). 

4. When the process is ended the haveToDispose method should return true to the object 
that can be a receiver. Of course this can change again (e.g. from a failure while the 
machine was blocked). 

5. Stay there. The loop cannot start again if it should not, since step 1 takes care of it. 
When at some point some receiver object calls the CoreObject's removeEntity method 
this may change and the loop will restart. 

 

3.1.2 ObjectInterruption 

As ObjectInterruptions are categorized all the objects that can affect the availability of another 
object. For example failures, scheduled breaks, shifts etc. These objects also inherit from 
SimPy.Process class.  

The most important attribute of an ObjectInterruption is victim which is the CoreObject whose the 
availability the ObjectInterruption handles. This CoreObject is also the one that creates and 
activates the instance of the ObjectInterruption object. 

Currently there are three generic methods for these objects: 

 outPutTrace: outputs trace in an Excel sheet when an important event happens (e.g. a 
Machine gets a failure). All the ObjectInterruptions output to the same Excel file as the 
CoreObjects and the events are sorted in increasing timestamp. The trace is essential for 
debugging. To run a model that is believed to be verified, it should be turned off since it slows 
the program significantly. 

 getVictimQueue: returns the internal queue of the victim CoreObject. 

 run: this is a generator method and it is the only one where the yield commands of SimPy can 
be used. For this reason run requires that the user knows the internals of SimPy in order to 
customize. Generally the victim CoreObject is the one that activates the ObjectInterruption, but 
this is not obligatory. It is common (but not obligatory) that in such a method there is a while 
loop that runs all through the simulated time. The logic followed in an ObjectInterruption’s run 
method is: 

1. Hold until an interruption should happen 

2. Passivate the victim 

3. Hold until the interruption should be stopped 

4. Reactivate the victim 

5. Restart the start of the loop 
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3.1.3 Entity 

As Entities are categorized all objects that get processed by or wait in CoreObjects and they are 
not permanent in a model. For example parts in a production line, customers in a shop, calls in a 
call centre etc. 

Entities can get into the model from a Source type CoreObject or be set as Work In Progress (WIP) 
at the start of the simulation run. They hold certain general attributes such as creationTime that 
holds the time that the Entity entered the model.  

ManPy Entities do NOT inherit from SimPy.Process class. This is in alignment with the philosophy 
of having the CoreObjects handling most of the simulation logic. So the CoreObjects handle how 
the Entities move and evolve through simulated time. Of course it is possible that certain properties 
(such as routing or processing time needed) may be kept in an Entity’s attributes, which the 
CoreObject will read. 

Currently there are two generic methods for these objects: 

 outPutResultsJSON: outputs the results of the object in a JSON format. All the Entities output 
to the same JSON file as the CoreObjects. 

 initialize: initializes the Entity at the start of each replication.  

 

3.1.4 ObjectResource 

As ObjectResource are categorized all the resources that might be necessary for certain operation 
of a CoreObject. For example repairman, operator, electric power etc. An ObjectResource is 
necessary in modelling when two or more CoreObjects compete for the same resource (e.g. two 
machines competing for the same operator). 

ManPy ObjectResources do NOT inherit from SimPy.Process class. This is in alignment with the 
philosophy of having the CoreObjects handling most of the simulation logic. So the CoreObjects 
handle how the ObjectResources move and evolve through simulated time. Of course it is possible 
that certain properties may be kept in an ObjectResource’s attributes, which the CoreObject will 
read. 

One important attribute if the ObjectResource is Res. Res is an instance SimPy.resource type and 
it allows other objects to request or release the resource (SimPy yield.request and yield.release 
respectively). 

 postProcessing: Same functionality with CoreObject method with the same name 

 outPutResultsJSON: Same functionality with CoreObject method with the same name 

 outPutResultsXL: Same functionality with CoreObject method with the same name 

 outPutTrace: Same functionality with CoreObject method with the same name 

 initialize: Same functionality with CoreObject method with the same name 

 checkIfResourceIsAvailable: returns true if there is one or more available units of the 
ObjectResource. 

 getResource: returns the resource (self.Res) 

 getResourceQueue: returns the activeQueue of the resource (self.Res.activeQueue)  

 

3.1.5 Auxiliary 

These are auxiliary classes that are needed for different simulation functionalities. Unlike the other 
categories described here, auxiliary classes do not inherit from one parent class, even though it is 
considered a good practice that they are grouped and presented here for reasons of coherence.  

Three categories of auxiliary classes exist currently in ManPy. 

 G: contains global variables for the simulation such as the length of the simulation run, the 
number of the simulation replications etc. G can be imported with the line from Globals import 
G. Some important conventions: 
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o G.ObjList is a list that should hold all the CoreObjects. 

o G.maxSimTime is a float that defines the length of the simulation run. 

o G.seed is an integer that holds the seed for random number generation. 

 RandomNumberGenerator: contains methods to create random variables that follow certain 
distributions. In the current version of ManPy only a few distributions listed below are 
supported, but this is to be expanded: 

o Fixed 

o Exponential 

o Normal 

o Erlang 

 MainScript: as main script we name every script (it is not necessary a class) that reads a 
ManPy simulation model, creates it, runs it and returns the results. The input and output can be 
of whatever form. There are currently two different main scripts LineGenerationJSON and 
LineGenerationCMSD that read the data using different formats. Also, all the examples 
demonstrated in the next section are main scripts. Nevertheless, it is desired that users can 
implement and use different main scripts according to their needs. A main script should 
perform the following operations: 

1. Read or define the objects 

2. Create the objects 

3. Define the structure and set the topology of the model (predecessors and successors) if 
needed 

4. In every replication: 

i. initialize the simulation (SimPy.initialize) 

ii. initialize CoreObjects, ObjectResources and Entities 

iii. set the WIP if needed 

iv. activate the objects 

v. run the simulation (SimPy.simulate) 

vi. call postProcessing method of the objects 

5. After the simulation is over output the results in a desirable way 

 

3.2 Expanding the Code 

In the last subsection the architecture, generic methods and the logic of ManPy were described. 
Understanding the above, it should be possible for someone to make a new object of any of the 5 
categories described and incorporate it into the platform. New objects may be: 

 Customized objects that inherit from an existing one and override certain methods 

 Completely new objects, that implement their versions of the methods 

In order to reduce the learning curve, it is desired that ManPy keeps the set of methods as short as 
possible. However, adding a new eneric method in a new object is also possible. Let’s suppose for 
example that a CoreObject named newCoreObject requires having newCoreObjectMethod that will 
also be called by other objects in the model. Then the developer can implement the version for 
newCoreObjectMethod that he wishes for the newCoreObject, but he should also add an empty 
version of the method to the parent object. So in CoreObject the following should be added: 

def newCoreObjectMethod(self): 

pass 

In case newCoreObjectMethod requires arguments, they should be defined as optional. In this way 
the method can be called for every CoreObject without causing the code to crash and the objects 
can still interact as black boxes.   
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In the next section examples of how to construct, customize and run a ManPy model will be given. 
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4 Examples 

4.1 A single server model 

The first example shown here is a simple model of a production line that consists only from a point 
of entry (Source) one server (Machine) and a point of exit (Exit). A graphical representation of the 
model is shown in Figure2 (Note, Figure2 and other figures in this section, are printscreens from 
the DREAM GUI. They are presented here for convenience, in order to make the text more 
understandable. This documentation is specific for ManPy and does NOT cover the DREAM GUI).  

 

 

Figure2: Single server model 

 

As values we have the following: 

 The source produces parts. One part is produced every 30 seconds 

 The Machine processes one part at a time. The processing time is 15 seconds 

 We want to study the system for 24 hours 

Below is the ManPy main script to run this model (dream\simulation\Examples\SingleServer.py): 

 
from dream.simulation.imports import Machine, Source, Exit, Part, G  

from dream.simulation.imports import simulate, activate, initialize 

 

#define the objects of the model  

S=Source('S1','Source',interarrivalTime={'distributionType':'Fixed','mean':0.5}, 

entity='Dream.Part') 

M=Machine('M1','Machine', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

E=Exit('E1','Exit')   

 

G.ObjList=[S,M,E]   #add all the objects in G.ObjList so that they can be easier 

accessed later 

 

#define predecessors and successors for the objects     

S.defineRouting(successorList=[M]) 

M.defineRouting(predecessorList=[S],successorList=[E]) 

E.defineRouting(predecessorList=[M]) 

               

def main(): 
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    initialize()                        #initialize the simulation (SimPy 

method) 

         

    #initialize all the objects     

    for object in G.ObjList: 

        object.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

         

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #carry on the post processing operations for every object in the topology        

    for object in G.ObjList: 

        object.postProcessing() 

     

    #print the results 

    print "the system produced", E.numOfExits, "parts" 

    working_ratio = (M.totalWorkingTime/G.maxSimTime)*100 

    print "the total working ratio of the Machine is", working_ratio, "%" 

    return {"parts": E.numOfExits, 

          "working_ratio": working_ratio} 

 

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 

 

 

Some notes on the code: 

 We see that imports of all the needed ManPy and SimPy classes are done manually. This is 
generally better practice, but the user can also use from dream.simulation.imports import * to 
import everything from ManPy/SimPy. 

 In the examples of this tutorial we always define a function main() which is the “main” program 
to be run. In the end we include the line if __name__ == ’__main__’: main() so that the program 
executes 

 In every example there is a return statement. This is done for reasons of testing and it should 
not bother the reader. The fact is that since the project is ongoing, we keep the results under 
unit testing (check here -> 
https://github.com/nexedi/dream/blob/GeorgeExamples/dream/tests/testSimulationExamples.p
y), so that we can ascertain changes in the code do not affect the execution of the examples. 

 ManPy needs and abstract time unit. The user defines what this is. In this model we picked 
minutes. The length of the simulation is set to 1440 minutes (24 hours). 

 ManPy time units are decimals. So 30 and 15 seconds have been translated to 0.5 and 0.25 
minutes respectively. 

 defineRouting in most CoreObjects gets two lists as arguments (perdecessorList, 
successorList) with this sequence. In special cases like the Source and the Exit only one list is 
required. In this example the name of the argument is specified when the method is called, but 
if the user gives the inputs with the same sequence (see next examples) the result shall be the 
same. 

the system produced 2880 parts 
the working ratio of the Machine is 50.0 % 

 

https://github.com/nexedi/dream/blob/GeorgeExamples/dream/tests/testSimulationExamples.py
https://github.com/nexedi/dream/blob/GeorgeExamples/dream/tests/testSimulationExamples.py
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 We see that distributions such as interarrival and processing times are defined for the objects 
as Python dictionaries. This way there is more flexibility in the attributes a distribution needs. 

We see the results are logical: 

 In 1440 minutes and a part coming every 0.5 minutes and staying in the system 0.25 minutes 
(no blocking) it is normal to produce 2880 parts 

 Since parts come every 30 seconds and the machine processes them for 15 seconds it is 
logical  

(Note: all the programs presented here, and generally ManPy objects are verified against a 
commercial simulation package. We use Plant Simulation - 
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation
.shtml) 

 

4.2 Two servers model with failures and repairman 

The second model is a bit more complex. The graphical representation is available in Figure3 

 

Figure4: Two servers model with failures and repairman 

 

In this model we have two Machines and a Queue between them. The Machines are vulnerable to 
failures and when a failure happens then they need a repairman to get fixed. In our model there is 
only one repairman named Bob available. We have the following data: 

 The source produces parts. One part is produced every 30 seconds 

 For Machine1 

o Processing time is Fixed to 15 seconds 

o MTTF is 1 hour 

o MTTR is 5 minutes 

 For Machine2 

o Processing time is Fixed to 90 seconds 

o MTTF is 40 minutes 

o MTTR is 10 minutes 

 The capacity of the Queue is 1 

 We want to study the system in a 24 hours period and identify the number of items that are 
produced, the blockage ratio in Machine1 and the working ration of the repairman. 

Below is the ManPy main script to run this model (dream\simulation\Examples\TwoServers.py): 

 

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml
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from dream.simulation.imports import Machine, Source, Exit, Part, G, Repairman, 

Queue, Failure  

from dream.simulation.imports import simulate, activate, initialize 

 

#define the objects of the model 

R=Repairman('R1', 'Bob') 

S=Source('S1','Source', 

interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part') 

M1=Machine('M1','Machine1', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

Q=Queue('Q1','Queue') 

M2=Machine('M2','Machine2', 

processingTime={'distributionType':'Fixed','mean':1.5}) 

E=Exit('E1','Exit')   

 

#create failures 

F1=Failure(victim=M1, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}, repairman=R)  

F2=Failure(victim=M2, 

distribution={'distributionType':'Fixed','MTTF':40,'MTTR':10}, repairman=R) 

 

G.ObjList=[S,M1,M2,E,Q]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

G.MachineList=[M1,M2] 

 

G.ObjectInterruptionList=[F1,F2]     #add all the objects in G.ObjList so that 

they can be easier accessed later 

 

#define predecessors and successors for the objects     

S.defineRouting([M1]) 

M1.defineRouting([S],[Q]) 

Q.defineRouting([M1],[M2]) 

M2.defineRouting([Q],[E]) 

E.defineRouting([M2]) 

 

def main(): 

    initialize()                        #initialize the simulation (SimPy 

method) 

     

    #initialize all the objects 

    R.initialize() 

 

 

    for object in G.ObjList: 

        object.initialize() 

 

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

 

    #activate all the objects 

    for object in G.ObjList: 

        activate(object, object.run()) 

 

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 

 

    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

 

    simulate(until=G.maxSimTime)    #run the simulation 

 

    #carry on the post processing operations for every object in the topology 
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    for object in G.ObjList: 

        object.postProcessing() 

    R.postProcessing() 

 

    #print the results 

    print "the system produced", E.numOfExits, "parts" 

    blockage_ratio = (M1.totalBlockageTime/G.maxSimTime)*100 

    working_ratio = (R.totalWorkingTime/G.maxSimTime)*100 

    print "the blockage ratio of", M1.objName,  "is", blockage_ratio, "%" 

    print "the working ratio of", R.objName,"is", working_ratio, "%" 

    return {"parts": E.numOfExits, 

          "blockage_ratio": blockage_ratio, 

          "working_ratio": working_ratio} 

 

if __name__ == '__main__': 

    main() 

 

 

 

Some notes: 

 It is handy to declare the Repairman first so that the failures take him as argument 

 For the Repairman the initialize and postProcessing methods should also be ran, but not the 
activate (Repairman is in the category of ObjectResource that is not a SimPy.process)  

 We see that failures had also to be created, activated and initialized 

 

4.3 An assembly line 

In this example we use another ManPy object. Assembly takes two types of Entities, parts and 
frames. A frame can be loaded with a number of parts. The logic is that the Assembly waits first for 
a frame and when it has one then it loads the parts to it when they arrive.  

 

 

Figure4: An assembly line 

 

 “Parts” produces parts. One part is produced every 30 seconds 

 “Frames” produces parts. One frame is produced every 2 minutes 

the system produced 732 parts 
the blockage ratio of Machine1 is 78.1770833333 % 

the working ratio of Bob is 26.7361111111 % 
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 A Frame has a fixed capacity of 4 parts 

 The Assembly has a fixed processing time of 2 minutes 

 For Machine 

o Processing time is Fixed to 15 seconds 

o MTTF is 1 hour 

o MTTR is 5 minutes 

 We want to study the system in 24 hours and identify the number of items that are produced 
and the blockage ratio in Assembly. 

Below is the ManPy main script to run this model (dream\simulation\Examples\AssemblyLine.py): 

 
from dream.simulation.imports import Machine, Source, Exit, Part, Frame, 

Assembly, Failure, G  

from dream.simulation.imports import simulate, activate, initialize 

 

#define the objects of the model 

Frame.capacity=4  

Sp=Source('SP','Parts', 

interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part') 

Sf=Source('SF','Frames', interarrivalTime={'distributionType':'Fixed','mean':2}, 

entity='Dream.Frame') 

M=Machine('M','Machine', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

A=Assembly('A','Assembly', processingTime={'distributionType':'Fixed','mean':2}) 

E=Exit('E1','Exit')   

 

F=Failure(victim=M, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}) 

 

G.ObjList=[Sp,Sf,M,A,E]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

 

G.ObjectInterruptionList=[F]     #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

#define predecessors and successors for the objects     

Sp.defineRouting([A]) 

Sf.defineRouting([A]) 

A.defineRouting([Sp,Sf],[M]) 

M.defineRouting([A],[E]) 

E.defineRouting([M]) 

 

def main(): 

    initialize()                        #initialize the simulation (SimPy 

method) 

         

    for object in G.ObjList: 

        object.initialize() 

         

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 
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    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

         

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #carry on the post processing operations for every object in the topology        

    for object in G.ObjList: 

        object.postProcessing() 

     

    #print the results 

    print "the system produced", E.numOfExits, "frames" 

    working_ratio=(A.totalWorkingTime/G.maxSimTime)*100 

    print "the working ratio of", A.objName,  "is", working_ratio, "%" 

    return {"frames": E.numOfExits, 

          "working_ratio": working_ratio} 

 

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 

 

 

 

Note that the capacity of the frames is set as an attribute of the class with Frame.capacity=4 

 

4.4 Parallel stations and Queue customization 

In this example we will see some deeper aspects of customizing an object. Our model consists of a 
source, a buffer and two Milling machines that work in parallel. A graphical representation is given 
in Figure5. We have the following data: 

 The source produces parts. One part is produced every 30 seconds 

 For Machine1 

o Processing time is Fixed to 15 seconds 

o MTTF is 1 hour 

o MTTR is 5 minutes 

 For Machine2 

o Processing time is Fixed to 15 seconds 

o No failures 

 The capacity of the Queue is infinite 

 We want to study the system in 24 hours and identify the number of items that are produced, 
the working ratio of both Machines 

 

the system produced 664 frames 

the working ratio of Assembly is 92.3611111111 % 
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Figure5: Parallel stations and Queue customization 

 

To model this scenario we need nothing more than we already described. The code is given below 
(dream\simulation\Examples\ParallelServers1.py) 

 
from dream.simulation.imports import Machine, Source, Exit, Part, Queue, G, 

Failure  

from dream.simulation.imports import simulate, activate, initialize, infinity 

 

#define the objects of the model 

S=Source('S','Source', interarrivalTime={'distributionType':'Fixed','mean':0.5}, 

entity='Dream.Part') 

Q=Queue('Q','Queue', capacity=infinity) 

M1=Machine('M1','Milling1', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

M2=Machine('M2','Milling2', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

E=Exit('E1','Exit')   

 

F=Failure(victim=M1, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}) 

 

G.ObjList=[S,Q,M1,M2,E]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

 

G.ObjectInterruptionList=[F]     #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

 

#define predecessors and successors for the objects     

S.defineRouting([Q]) 

Q.defineRouting([S],[M1,M2]) 

M1.defineRouting([Q],[E]) 

M2.defineRouting([Q],[E]) 

E.defineRouting([M1,M2]) 

 

def main(): 
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    initialize()                        #initialize the simulation (SimPy 

method) 

         

    for object in G.ObjList: 

        object.initialize() 

         

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 

     

    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

         

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #carry on the post processing operations for every object in the topology        

    for object in G.ObjList: 

        object.postProcessing() 

     

    #print the results 

    print "the system produced", E.numOfExits, "parts" 

    working_ratio_M1=(M1.totalWorkingTime/G.maxSimTime)*100 

    working_ratio_M2=(M2.totalWorkingTime/G.maxSimTime)*100 

    print "the working ratio of", M1.objName,  "is", working_ratio_M1, "%" 

    print "the working ratio of", M2.objName,  "is", working_ratio_M2, "%" 

    return {"parts": E.numOfExits, 

          "working_ratio_M1": working_ratio_M1, 

          "working_ratio_M2": working_ratio_M2} 

 

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 

 

 

 

 

We see that Milling2 is slightly busier than Milling1. This is logical since Milling1 gets also failures. 

Let’s assume now, that in our real system, Milling1 has a greater priority than Milling2, i.e a part will 
go to Milling1, unless it is not available so it will go to Milling2.  

The default behaviour of Queue is to handle things in a cyclic way (if both successors available 
select first Milling1 then Milling2 etc). To change this we have to override Queue’s haveToDispose 
method. 

The code is given below (dream\simulation\Examples\ParallelServers2.py). 

 
from dream.simulation.imports import Machine, Source, Exit, Part, Queue, G, 

Globals, Failure  

from dream.simulation.imports import simulate, activate, initialize, infinity 

 

#the custom queue 

class SelectiveQueue(Queue): 

the system produced 2880 parts 

the working ratio of Milling1 is 23.0902777778 % 

the working ratio of Milling2 is 26.9097222222 % 
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    def haveToDispose(self,callerObject=None): 

        caller=callerObject 

        # if the caller is M1 then return true if there is an Entity to give 

        if caller.id=='M1': 

            return len(self.getActiveObjectQueue())>0 

        # else return true only if M1 cannot accept the Entity 

        if caller.id=='M2': 

            # find M1 

            M1=Globals.findObjectById('M1') # global method to obtain an object 

from the id 

            return len(self.getActiveObjectQueue())>0 and (not (M1.canAccept())) 

         

#define the objects of the model 

S=Source('S','Source', interarrivalTime={'distributionType':'Fixed','mean':0.5}, 

entity='Dream.Part') 

Q=SelectiveQueue('Q','Queue', capacity=infinity) 

M1=Machine('M1','Milling1', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

M2=Machine('M2','Milling2', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

E=Exit('E1','Exit')   

 

F=Failure(victim=M1, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}) 

 

G.ObjList=[S,Q,M1,M2,E]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

 

G.ObjectInterruptionList=[F]     #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

 

#define predecessors and successors for the objects     

S.defineRouting([Q]) 

Q.defineRouting([S],[M1,M2]) 

M1.defineRouting([Q],[E]) 

M2.defineRouting([Q],[E]) 

E.defineRouting([M1,M2]) 

 

def main(): 

    initialize()                        #initialize the simulation (SimPy 

method) 

         

    for object in G.ObjList: 

        object.initialize() 

         

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 

     

    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

         

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #carry on the post processing operations for every object in the topology        
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    for object in G.ObjList: 

        object.postProcessing() 

     

    #print the results 

    print "the system produced", E.numOfExits, "parts" 

    working_ratio_M1=(M1.totalWorkingTime/G.maxSimTime)*100 

    working_ratio_M2=(M2.totalWorkingTime/G.maxSimTime)*100 

    print "the working ratio of", M1.objName,  "is", working_ratio_M1, "%" 

    print "the working ratio of", M2.objName,  "is", working_ratio_M2, "%" 

    return {"parts": E.numOfExits, 

          "working_ratio_M1": working_ratio_M1, 

          "working_ratio_M2": working_ratio_M2} 

 

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 

 

 

 

 

 

We see now that the working ration of Milling2 is drastically reduced that is natural since it takes 
parts only when Milling1 is busy or failed. 

Some notes on the code: 

 SelectiveQueue is a new custom object. It has its own version of haveToDispose, but in 
everything else it is identical to Queue. 

 Q is now of type SelectiveQueue 

 The implementation of SelectiveQueue is highly custom. It works only in this model with the 
given ids (‘M1’ and ‘M2’). A more generic NewQueue could be made. Users are welcome to 
customize their objects at different levels: 

o Objects for specific models like the SelectiveQueue shown 

o More generic objects so that the user can re-use the in different models 

o Even more generic objects so that the user can share them with other users. Here 
documentation would be essential. 

 

4.5  Parallel stations and counting the parts of each machine 

In the previous example, we assume that in the Exit we want to count how many parts were 
processed by Milling1 and how many by Milling2. For this we need to make 3 modifications: 

 Create two new global variables: 

o G.NumM1 as a counter that counts the parts that were processed by Milling1 

o G.NumM2 as a counter that counts the parts that were processed by Milling2 

 Create a new Machine type named Milling. This will override the getEntity method so that it 
sets an attribute to the part that shows from which Milling it passed 

 Create a new Exit type named CountingExit. This will override the getEntity method so that it 
reads the attribute of the part and increments the global counters accordingly 

The code is given below (dream\simulation\Examples\ParallelServers3.py). 

 

the system produced 2880 parts 

the working ratio of Milling1 is 46.1805555556 % 

the working ratio of Milling2 is 3.81944444444 % 
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from dream.simulation.imports import Machine, Source, Exit, Part, Queue, G, 

Globals, Failure  

from dream.simulation.imports import simulate, activate, initialize, infinity 

 

#the custom queue 

class SelectiveQueue(Queue): 

    def haveToDispose(self,callerObject=None): 

        caller=callerObject 

        # if the caller is M1 then return true if there is an Entity to give 

        if caller.id=='M1': 

            return len(self.getActiveObjectQueue())>0 

        # else return true only if M1 cannot accept the Entity 

        if caller.id=='M2': 

            # find M1 

            M1=Globals.findObjectById('M1') # global method to obtain an object 

from the id 

            return len(self.getActiveObjectQueue())>0 and (not (M1.canAccept())) 

 

#the custom machine 

class Milling(Machine): 

    def getEntity(self): 

        activeEntity=Machine.getEntity(self)        #call the parent method to 

get the entity 

        part=self.getActiveObjectQueue()[0]         #retrieve the obtained part 

        part.machineId=self.id                      #create an attribute to the 

obtained part and give it the value of the object's id 

        return activeEntity                         #return the entity obtained 

 

#the custom exit 

class CountingExit(Exit): 

    def getEntity(self): 

        activeEntity=Exit.getEntity(self)                        #call the 

parent method to get the entity 

        #check the attribute and update the counters accordingly 

        if activeEntity.machineId=='M1':          

            G.NumM1+=1 

        elif activeEntity.machineId=='M2': 

            G.NumM2+=1 

        return activeEntity             #return the entity obtained 

         

#define the objects of the model 

S=Source('S','Source', interarrivalTime={'distributionType':'Fixed','mean':0.5}, 

entity='Dream.Part') 

Q=SelectiveQueue('Q','Queue', capacity=infinity) 

M1=Milling('M1','Milling1', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

M2=Milling('M2','Milling2', 

processingTime={'distributionType':'Fixed','mean':0.25}) 

E=CountingExit('E1','Exit')   

 

F=Failure(victim=M1, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}) 

 

G.ObjList=[S,Q,M1,M2,E]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

 

G.ObjectInterruptionList=[F]     #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

#create the global counter variables 

G.NumM1=0 
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G.NumM2=0 

 

#define predecessors and successors for the objects     

S.defineRouting([Q]) 

Q.defineRouting([S],[M1,M2]) 

M1.defineRouting([Q],[E]) 

M2.defineRouting([Q],[E]) 

E.defineRouting([M1,M2]) 

 

def main(): 

    initialize()                        #initialize the simulation (SimPy 

method) 

         

    for object in G.ObjList: 

        object.initialize() 

         

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 

     

    G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

         

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #carry on the post processing operations for every object in the topology        

    for object in G.ObjList: 

        object.postProcessing() 

     

    #print the results 

    print "the system produced", E.numOfExits, "parts" 

    working_ratio_M1=(M1.totalWorkingTime/G.maxSimTime)*100 

    working_ratio_M2=(M2.totalWorkingTime/G.maxSimTime)*100 

    print "the working ratio of", M1.objName,  "is", working_ratio_M1, "%" 

    print "the working ratio of", M2.objName,  "is", working_ratio_M2, "%" 

    print M1.objName, "produced", G.NumM1, "parts" 

    print M2.objName, "produced", G.NumM2, "parts" 

    return {"parts": E.numOfExits, 

          "working_ratio_M1": working_ratio_M1, 

          "working_ratio_M2": working_ratio_M2, 

          "NumM1":G.NumM1, 

          "NumM2":G.NumM2} 

 

if __name__ == '__main__': 

    main() 

 

 

 

 

 

the system produced 2880 parts 
the working ratio of Milling1 is 46.1805555556 % 
the working ratio of Milling2 is 3.81944444444 % 
Milling1 produced 2660 parts 

Milling2 produced 220 parts 
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4.6 Stochastic model 

All the models so far have been deterministic. Real systems tend to be random with different 
reasons of stochasticity. In stochastic models we have to run many replications with different 
random seeds and give the results in confidence intervals. 

We take our second example (dream\simulation\Examples\TwoServers.py) and we extend it into a 
stochastic situation. The model is the same, the only change is that the machines have stochastic 
processing times. More specifically: 

 Machine1 processing time follows the normal distribution with mean=0.25, stdev=0.1, min=0.1, 
max=1 (all in minutes) 

 Machine2 processing time follows the normal distribution with mean=1.5, stdev=0.3, min=0.5, 
max=5 (all in minutes) 

The failures and the interarrival times remain deterministic as before.  

Below is the ManPy main script to run this model 
(dream\simulation\Examples\TwoServersStochastic.py): 

 
from dream.simulation.imports import Machine, Source, Exit, Part, G, Repairman, 

Queue, Failure  

from dream.simulation.imports import simulate, activate, initialize 

 

#define the objects of the model 

R=Repairman('R1', 'Bob')  

S=Source('S1','Source', interarrivalTime={'distributionType':'Exp','mean':0.5}, 

entity='Dream.Part') 

M1=Machine('M1','Machine1', 

processingTime={'distributionType':'Normal','mean':0.25,'stdev':0.1,'min':0.1,'m

ax':1}) 

M2=Machine('M2','Machine2', 

processingTime={'distributionType':'Normal','mean':1.5,'stdev':0.3,'min':0.5,'ma

x':5}) 

Q=Queue('Q1','Queue') 

E=Exit('E1','Exit')   

 

#create failures 

F1=Failure(victim=M1, 

distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}, repairman=R)  

F2=Failure(victim=M2, 

distribution={'distributionType':'Fixed','MTTF':40,'MTTR':10}, repairman=R) 

 

G.ObjList=[S,M1,M2,E,Q]   #add all the objects in G.ObjList so that they can be 

easier accessed later 

 

G.ObjectInterruptionList=[F1,F2]     #add all the objects in G.ObjList so that 

they can be easier accessed later 

 

#define predecessors and successors for the objects     

S.defineRouting([M1]) 

M1.defineRouting([S],[Q]) 

Q.defineRouting([M1],[M2]) 

M2.defineRouting([Q],[E]) 

E.defineRouting([M2]) 

 

G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

G.numberOfReplications=10   #set 10 replications 

G.confidenceLevel=0.99      #set the confidence level. 0.99=99% 

 

#run the replications 

for i in range(G.numberOfReplications): 



 

27 

 

    G.seed+=1       #increment the seed so that we get different random numbers 

in each run. 

     

    initialize()                        #initialize the simulation (SimPy 

method) 

         

    #initialize all the objects     

    R.initialize() 

    for object in G.ObjList: 

        object.initialize() 

         

    for objectInterruption in G.ObjectInterruptionList: 

        objectInterruption.initialize() 

     

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    for objectInterruption in G.ObjectInterruptionList: 

        activate(objectInterruption, objectInterruption.run()) 

     

    simulate(until=G.maxSimTime)    #run the simulation 

 

    #carry on the post processing operations for every object in the topology        

    for object in G.ObjList: 

        object.postProcessing() 

    R.postProcessing() 

                

#output data to excel for every object         

for object in G.ObjList: 

    object.outputResultsXL()       

R.outputResultsXL()         

 

G.outputFile.save("output.xls")       

 

Running this we get in output.xls the following: 

 

    

CI 99.0% for the mean percentage of 
Failure of Machine1 is: 9.027777778 9.027777778 9.027777778 

CI 99.0% for the mean percentage of 
Working of Machine1 is: 13.21558456 13.43094118 13.64629779 

CI 99.0% for the mean percentage of 
Blockage of Machine1 is: 77.27388917 77.46520978 77.65653039 

CI 99.0% for the mean percentage of 
Waiting of Machine1 is: -0.007231159 0.076071267 0.159373692 

    

CI 99.0% for the mean percentage of 
Failure of Machine2 is: 19.79166667 19.79166667 19.79166667 

CI 99.0% for the mean percentage of 
Working of Machine2 is: 76.20502455 76.32917505 76.45332555 

CI 99.0% for the mean percentage of 
Blockage of Machine2 is: 0 0 0 

CI 99.0% for the mean percentage of 
Waiting of Machine2 is: 3.755007787 3.879158287 4.003308786 

    

CI 99.0% for the mean Throughput in Exit 726.9260137 732.7 738.4739863 
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is: 

CI 99.0% for the mean Lifespan of an 
entity that exited from Exit is: 534.7520536 541.4770217 548.2019899 

CI 99.0% for the avg takt time in Exit is: 1.949213849 1.964516654 1.979819458 

 

Some notes: 

 This main script needs a loop where all the replications are ran. In every replication the random 
number seed should be changed and also the objects initialized and activated again.  

 The results presented here are the standard results the CoreObjects of every type output. The 
user can customize this by overriding the outputResultsXL method of an object. 

 In order to calculate confidence intervals ManPy uses SciPy (http://www.scipy.org/). The user 
can obtain the outcome of every run individually and apply his own analysis. 

 G.outputFile is a ManPy global to define the output excel file. 

 In the normal distribution it is on the developer’s responsibility not to give irrational values. For 
example if a processing time is negative ManPy will crash, Another example if min is larger 
than max in normal distribution, ManPy would also raise an error. 

 We see that we have a left bound for the waiting time of M1 that is negative. This is not wrong; 
the confidence interval is just a statistical analysis of a number of results. Of course in reality 
the waiting time cannot be less than 0. 

 In some results all 3 numbers are the same. This is because failures are still deterministic and 
they are not affected by stochasticity. The same applies for the Repairman. 

 

4.7 Job-Shop Examples 

4.7.1 A simple Job-Shop 

So far all the CoreObjects had dedicated predecessors and successors. There are situations 
where it is desirable to model a job shop system where CoreObjects can give/receive to/from 
whichever other CoreObject in the model. The information of which CoreObject is the next station 
is an attribute of the Entity. As an example we give the model of Figure 6. In this model there are 3 
Queues, 3 Machines and an Exit. Every entity will have to start from a CoreObject and have its 
route and processing times assigned to its attributes. 

 

http://www.scipy.org/
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Figure 6: a simple job shop 

 

To model such situations ManPy object repository has the following objects: 

 MachineJobShop: inherits from Machine and overrides the logic of methods such as or 
haveToDispose in order to be able to give to every CoreObject in the model. Also, it overrides 
canAccept and canAcceptAndIsRequested in order to be able to receive from every 
CoreObject in the model. The next CoreObject is read by the Entity’s attributes and this is done 
in getEntity. Finally, it overrides calculateProcessingTime in order to calculate the processing 
time according to the Entity’s attributes. 

 QueueJobShop: inherits from Queue and overrides the logic of methods such as or 
haveToDispose in order to be able to give to every CoreObject in the model. Also, it overrides 
canAccept and canAcceptAndIsRequested in order to be able to receive from every 
CoreObject in the model. The next CoreObject is read by the Entity’s attributes and this is done 
in getEntity. 

 ExitJobShop: inherits from Exit but overrides the logic of methods such as 
canAcceptAndIsRequested in order to be able to receive from every CoreObject. 

 Job: inherits from Entity. One of its attributes is a list named route. This list has the following 
form [[id1,processingTime1], [id2,processingTime2], …, [idN,processingTimeN]]. Every item in 
route corresponds to the id of a CoreObject and the processing time in this CoreObject. 
Another attribute called remainingRoute is also a list that holds the future stops of a Job at any 
moment of simulation time. In the beginning of the simulation these lists are equal. Current 
implementation of Job can be used only for Fixed processing times. Job has also a list named 
schedule, which is updated by the CoreObject every time it receives the Job. This holds the 
output for the Job, i.e. which stations it entered and when. 
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In our first simple example we assume that we have only one Job in the model shown in Figure 6. 
Our data for this Job is: 

 It starts in Queue1 and it has to visit Machine1, Machine3 and Machine2 (in this sequence) 
before it exits the system 

 Its processing time in M1 is 1 

 Its processing time in M3 is 3 

 Its processing time in M2 is 2 

Below is the ManPy main script to run this model (dream\simulation\Examples\JobShop1.py): 

 
from dream.simulation.imports import MachineJobShop, QueueJobShop, ExitJobShop, 

Globals, Job, G  

from dream.simulation.imports import simulate, activate, initialize, infinity 

 

#define the objects of the model 

Q1=QueueJobShop('Q1','Queue1', capacity=infinity) 

Q2=QueueJobShop('Q2','Queue2', capacity=infinity) 

Q3=QueueJobShop('Q3','Queue3', capacity=infinity) 

M1=MachineJobShop('M1','Machine1') 

M2=MachineJobShop('M2','Machine2') 

M3=MachineJobShop('M3','Machine3') 

E=ExitJobShop('E','Exit')   

 

G.ObjList=[M1,M2,M3,Q1,Q2,Q3,E]   #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

#define the route of the Job in the system 

J1Route=[{"stationIdsList": ["Q1"]}, 

         {"stationIdsList": ["M1"],"processingTime":{"distributionType": 

"Fixed","mean": "1"}}, 

         {"stationIdsList": ["Q3"]}, 

         {"stationIdsList": ["M3"],"processingTime":{"distributionType": 

"Fixed","mean": "3"}}, 

         {"stationIdsList": ["Q2"]}, 

         {"stationIdsList": ["M2"],"processingTime":{"distributionType": 

"Fixed","mean": "2"}}, 

         {"stationIdsList": ["E"],}] 

#define the Jobs 

J=Job('J1','Job1',route=J1Route) 

G.EntityList=[J]        #a list to hold all the jobs 

 

def main(): 

    initialize()                        #initialize the simulation (SimPy 

method) 

             

    #initialize all the objects     

    for object in G.ObjList: 

        object.initialize() 

    J.initialize() 

     

    #set the WIP 

    Globals.setWIP(G.EntityList) 

         

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    simulate(until=infinity)    #run the simulation until there are no more 

events 
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    G.maxSimTime=E.timeLastEntityLeft   #calculate the maxSimTime as the time 

that the last Job left 

     

    #loop in the schedule to print the results 

    returnSchedule=[]     # dummy variable used just for returning values and 

testing 

    for record in J.schedule: 

        returnSchedule.append([record[0].objName,record[1]]) 

        print J.name, "got into", record[0].objName, "at", record[1] 

    return returnSchedule  

 

if __name__ == '__main__': 

    main()               

 

Running the model we get the following in our console: 

 

 

 

 

 

 

Having only one Job it is very easy to confirm that we got the correct result. 

Some notes on the code: 

 We see that the route of the Job is given as a list of dictionaries. In every step the user has to 
give a list with the ids of the possible CoreObjects that the step can happen and also the data 
for the processing time if this is needed.  

 This situation is different than the ones we have seen before because we have no Source type 
that creates Entities. The Job has to be set as WIP. For this reason the global auxiliary method 
setWIP is used. This takes a list of Job objects defined as WIP and sets them in the internal 
queue of the first station in their route. (So the Job1 is inserted in Queue1 in the example). 

 Also, we do not have a predefined length of simulation; it will end when the Job exits the 
system. For this reason we run the simulation for infinite time, and SimPy.simulate will stop 
when there are no more events. Notice that if a user applies infinite time in a simulation that 
does not stop to produce events (like in the previous examples), then the execution of the 
model will never stop. With the line G.maxSimTime=E.timeLastEntityLeft after the execution of 
the simulation we can calculate the length of the simulation in case it is needed for future 
results (e.g. to calculate the working ratio of a Machine) 

 

 

4.7.2 A Job-Shop with scheduling rules 

 

For the model described in the previous example and in Figure 6 we assume now that we have 3 
Jobs. For these Jobs we know: 

 Job1: 

o It starts in Queue1 and it has to visit Machine1, Queue3, Machine3, Queue2 and 
Machine2 (in this sequence) before it exits the system 

o Its processing time in M1 is 1 

o Its processing time in M3 is 3 

Job1 got into Queue1 at 0 

Job1 got into Machine1 at 0 

Job1 got into Queue3 at 1.0 

Job1 got into Machine3 at 1.0 

Job1 got into Queue2 at 4.0 

Job1 got into Machine2 at 4.0 

Job1 got into Exit at 6.0 
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o Its processing time in M2 is 2 

o Its priority is 1 

o Its due date is 100 

 Job2: 

o It starts in Queue1 and it has to visit Machine1, Queue2, Machine2, Queue3 and 
Machine3 (in this sequence) before it exits the system 

o Its processing time in M1 is 2 

o Its processing time in M2 is 4 

o Its processing time in M3 is 6 

o Its priority is 1 

o Its due date is 90 

 Job3 

o It starts in Queue1 and it has to visit Machine1, Queue1 and Machine3 (in this 
sequence) before it exits the system 

o Its processing time in M1 is 10 

o Its processing time in M3 is 3 

o Its priority is 0 

o Its due date is 110 

We see above two new attributes of the Job class. These are in reality optional arguments of the 
parent class (Entity). 

 priority is an integer. The higher the value the higher the priority assigned to the Entity. 

 dueDate is a float. It shows the time that the Entity should be out of the system (in case the 
Entity represents an order or something similar). If our simulation units are minutes and the due 
date is in exactly one week after the start of the simulation run, then dueDate=10080 (60*24*7). 

As we see, all the Jobs start from Queue1. The default scheduling rule of a Queue object is FIFO, 
i.e. the Entity to arrive first in the Queue will be the first to be given in another CoreObject. 
Nevertheless, there are several more scheduling rules supported. 

 Priority: the Entities are sorted in order of ascending predefined priority (the lowest priority is 
to leave the Queue first) 

 EDD: the Entities are sorted in order of ascending predefined due date (Earliest Due Date) 

 EOD: the Entities are sorted in order of ascending predefined order date (Earliest Order Date) 

 NumStages: the Entities are sorted in order of descending number of stages that they have to 
pass. 

 RPC: the Entities are sorted in order of descending total processing time of stages that they 
have to pass (Remaining Processing Time). 

 SPT: the Entities are sorted in order of ascending processing time of the next Machine they 
have to pass (Shortest Processing Time). 

 LPT: the Entities are sorted in order of descending processing time of the next Machine they 
have to pass (Logest Processing Time). 

 MS: the Entities are sorted in order of ascending slack time. Slack time is defined as due date 
minus the remaining processing time 

 WINQ: the Entities are sorted in order of ascending number of Entities in the next stage that 
the Entity has to pass through (Work In Next Queue). 

 MC: This stands for Multiple Criteria and it is applied when we have many scheduling rules 
used. For example we may need to use Priority, but for the Entities that have equal priorities 
EDD will be applied.  
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(Note: An advanced user can add new scheduling rules by creating a CoreObject that inherits from 
Queue and overrides the activeQSorter method) 

We start our model with the assumption that Priority is applied as scheduling rule in Queue1. The 
other 2 Queues will remain FIFO. 

Below is the ManPy main script to run this model 
(dream\simulation\Examples\JobShop2Priority.py): 

  
from dream.simulation.imports import MachineJobShop, QueueJobShop, ExitJobShop, 

Globals, Job, G  

from dream.simulation.imports import simulate, activate, initialize, infinity 

 

#define the objects of the model 

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="Priority") 

Q2=QueueJobShop('Q2','Queue2', capacity=infinity) 

Q3=QueueJobShop('Q3','Queue3', capacity=infinity) 

M1=MachineJobShop('M1','Machine1') 

M2=MachineJobShop('M2','Machine2') 

M3=MachineJobShop('M3','Machine3') 

E=ExitJobShop('E','Exit')   

 

G.ObjList=[M1,M2,M3,Q1,Q2,Q3,E]   #add all the objects in G.ObjList so that they 

can be easier accessed later 

 

#define predecessors and successors for the objects     

Q1.defineRouting(successorList=[M1]) 

Q2.defineRouting(successorList=[M2]) 

Q3.defineRouting(successorList=[M3]) 

M1.defineRouting(predecessorList=[Q1]) 

M2.defineRouting(predecessorList=[Q2]) 

M3.defineRouting(predecessorList=[Q3]) 

 

#define the routes of the Jobs in the system 

J1Route=[{"stationIdsList": ["Q1"]}, 

         {"stationIdsList": ["M1"],"processingTime":{"distributionType": 

"Fixed","mean": "1"}}, 

         {"stationIdsList": ["Q3"]}, 

         {"stationIdsList": ["M3"],"processingTime":{"distributionType": 

"Fixed","mean": "3"}}, 

         {"stationIdsList": ["Q2"]}, 

         {"stationIdsList": ["M2"],"processingTime":{"distributionType": 

"Fixed","mean": "2"}}, 

         {"stationIdsList": ["E"],}] 

J2Route=[{"stationIdsList": ["Q1"]}, 

         {"stationIdsList": ["M1"],"processingTime":{"distributionType": 

"Fixed","mean": "2"}}, 

         {"stationIdsList": ["Q2"]}, 

         {"stationIdsList": ["M2"],"processingTime":{"distributionType": 

"Fixed","mean": "4"}}, 

         {"stationIdsList": ["Q3"]}, 

         {"stationIdsList": ["M3"],"processingTime":{"distributionType": 

"Fixed","mean": "6"}}, 

         {"stationIdsList": ["E"],}] 

J3Route=[{"stationIdsList": ["Q1"]}, 

         {"stationIdsList": ["M1"],"processingTime":{"distributionType": 

"Fixed","mean": "10"}}, 

         {"stationIdsList": ["Q3"]}, 

         {"stationIdsList": ["M3"],"processingTime":{"distributionType": 

"Fixed","mean": "3"}}, 

         {"stationIdsList": ["E"],}] 
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#define the Jobs 

J1=Job('J1','Job1',route=J1Route, priority=1, dueDate=100) 

J2=Job('J2','Job2',route=J2Route, priority=1, dueDate=90) 

J3=Job('J3','Job3',route=J3Route, priority=0, dueDate=110) 

G.JobList=[J1,J2,J3]        #a list to hold all the jobs 

 

G.maxSimTime=1440.0     #set G.maxSimTime 1440.0 minutes (1 day) 

 

def main(): 

    initialize()            #initialize the simulation (SimPy method) 

             

    #initialize all the objects     

    for object in G.ObjList: 

        object.initialize() 

     

    #initialize all the jobs 

    for job in G.JobList:  

        job.initialize() 

     

    #set the WIP for all the jobs 

    Globals.setWIP(G.JobList) 

         

    #activate all the objects  

    for object in G.ObjList: 

        activate(object, object.run()) 

     

    simulate(until=G.maxSimTime)    #run the simulation 

     

    #output the schedule of every job 

    returnSchedule=[]     # dummy variable used just for returning values and 

testing 

    for job in G.JobList:  

        #loop in the schedule to print the results 

        for record in job.schedule: 

            #schedule holds ids of objects. The following loop will identify the 

name of the CoreObject with the given id 

            name=None 

            returnSchedule.append([record[0].objName,record[1]]) 

            print job.name, "got into", record[0].objName, "at", record[1] 

        print "-"*30 

    return returnSchedule 

     

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 
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We see that Job3 having the highest (lowest value) priority was the first to go to Machine1. The 
other two Jobs had equal priorities, so FIFO was applied (observing the loop where the WIP is set 
one can see the Job1 was added to Queue1 before Job2). 

To test how the model works if Queue1 follows the Earliest Due Date rule we have only to change 
the definition of Queue1 in our code (dream\simulation\Examples\JobShop2EDD.py): 

 

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="EDD") 

 

 

Running the model we get the following in our console: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Job1 got into Queue1 at 0 

Job1 got into Machine1 at 10.0 

Job1 got into Queue3 at 11.0 

Job1 got into Machine3 at 13.0 

Job1 got into Queue2 at 16.0 

Job1 got into Machine2 at 17.0 

Job1 got into Exit at 19.0 

------------------------------ 

Job2 got into Queue1 at 0 

Job2 got into Machine1 at 11.0 

Job2 got into Queue2 at 13.0 

Job2 got into Machine2 at 13.0 

Job2 got into Queue3 at 17.0 

Job2 got into Machine3 at 17.0 

Job2 got into Exit at 23.0 

------------------------------ 

Job3 got into Queue1 at 0 

Job3 got into Machine1 at 0 

Job3 got into Queue3 at 10.0 

Job3 got into Machine3 at 10.0 

Job3 got into Exit at 13.0 

------------------------------ 

Job1 got into Queue1 at 0 

Job1 got into Machine1 at 2.0 

Job1 got into Queue3 at 3.0 

Job1 got into Machine3 at 3.0 

Job1 got into Queue2 at 6.0 

Job1 got into Machine2 at 6.0 

Job1 got into Exit at 8.0 

------------------------------ 

Job2 got into Queue1 at 0 

Job2 got into Machine1 at 0 

Job2 got into Queue2 at 2.0 

Job2 got into Machine2 at 2.0 

Job2 got into Queue3 at 6.0 

Job2 got into Machine3 at 6.0 

Job2 got into Exit at 12.0 

------------------------------ 

Job3 got into Queue1 at 0 

Job3 got into Machine1 at 3.0 

Job3 got into Queue3 at 13.0 

Job3 got into Machine3 at 13.0 

Job3 got into Exit at 16.0 

------------------------------ 
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We see that Job2 having the earliest dueDate was the first to go to Machine1. Then Job1 followed 
and Job3 was the last.  

To test how the model works if Queue1 follows the Remaining Process Time rule we have only to 
change the definition of Queue1 in our code (dream\simulation\Examples\JobShop2RPC.py): 

 

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="RPC") 

 

Running the model we get the following in our console: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that Job3 having the greatest remaining processing time was the first to go to Machine1. 
Then Job2 followed and Job1 was the last.  

Finally, we want to test how the model works if Queue1 follows a multi criteria rule. First Priority is 
applied, and if Jobs have equal priorities, then EDD is applied we have only to change the 
definition of Queue1 in our code (dream\simulation\Examples\JobShop2MC.py): 

 

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="MC-Priority-EDD") 

 

We see that to define a multi criteria rule, we use MC and then the scheduling rules according to 
their sequence. All the scheduling rules are separated with “-”.  

Running the model we get the following in our console: 

 

 

 

 

Job1 got into Queue1 at 0 

Job1 got into Machine1 at 12.0 

Job1 got into Queue3 at 13.0 

Job1 got into Machine3 at 13.0 

Job1 got into Queue2 at 16.0 

Job1 got into Machine2 at 16.0 

Job1 got into Exit at 18.0 

------------------------------ 

Job2 got into Queue1 at 0 

Job2 got into Machine1 at 10.0 

Job2 got into Queue2 at 12.0 

Job2 got into Machine2 at 12.0 

Job2 got into Queue3 at 16.0 

Job2 got into Machine3 at 16.0 

Job2 got into Exit at 22.0 

------------------------------ 

Job3 got into Queue1 at 0 

Job3 got into Machine1 at 0 

Job3 got into Queue3 at 10.0 

Job3 got into Machine3 at 10.0 

Job3 got into Exit at 13.0 

------------------------------ 
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We see that having the highest (lowest value) priority, Job3 was the first to get into Machine1. 
Contrary to the first example of this subsection though (JobShop2Priority.py), now Job2 is the 
second Job to go to the Machine. This happens because it has an earlier due date (dueDate) than 
Job1. 

 

4.8 Output trace to Excel 

Simulation programs are notoriously difficult to debug. One asset that ManPy objects offer in order 
to enhance debugging it the feature of outputting trace to Excel. All ManPy objects output to the 
same Excel file and the events are sorted in increasing timestamp. The trace is essential for 
debugging. To run a model that is believed to be verified, it should be turned off since it slows the 
program significantly. 

dream\simulation\Examples\JobShop1Trace.py runs the same model as 
dream\simulation\Examples\JobShop1.py with the difference that trace is outputted. In order to 
achieve this 3 additions are required: 

 Import ExcelHandler (script that holds Excel related methods.): 

import simulation.ExcelHandler 

 Set the global trace variable to ‘Yes’ (note that this is case sensitive) at the start of the main 
script: 

G.trace="Yes" 

 Call the outputTrace method of the ExcelHandler at the end of the main script. The argument is 
optional and gives the filename, (default value is ‘Trace’) 

simulation.ExcelHandler.outputTrace('TRACE') 

Running the script TRACE.xls will be created with the following contents: 

 

0 Job1 releases Queue1 

0 Job1 got into Machine1 

1 Job1 ended processing in Machine1 

1 Job1 releases Machine1 

Job1 got into Queue1 at 0 

Job1 got into Machine1 at 12.0 

Job1 got into Queue3 at 13.0 

Job1 got into Machine3 at 13.0 

Job1 got into Queue2 at 16.0 

Job1 got into Machine2 at 16.0 

Job1 got into Exit at 18.0 

------------------------------ 

Job2 got into Queue1 at 0 

Job2 got into Machine1 at 10.0 

Job2 got into Queue2 at 12.0 

Job2 got into Machine2 at 12.0 

Job2 got into Queue3 at 16.0 

Job2 got into Machine3 at 16.0 

Job2 got into Exit at 22.0 

------------------------------ 

Job3 got into Queue1 at 0 

Job3 got into Machine1 at 0 

Job3 got into Queue3 at 10.0 

Job3 got into Machine3 at 10.0 

Job3 got into Exit at 13.0 

------------------------------ 
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1 Job1 got into Queue3 

1 Job1 releases Queue3 

1 Job1 got into Machine3 

4 Job1 ended processing in Machine3 

4 Job1 releases Machine3 

4 Job1 got into Queue2 

4 Job1 releases Queue2 

4 Job1 got into Machine2 

6 Job1 ended processing in Machine2 

6 Job1 releases Machine2 

6 Job1 exited the system 

 

Note that every object has its own outputTrace method which a user can customize. Of course this 
can also be omitted if it is not desirable for the object to output trace at all.  
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4.9 Batches and SubBatches 

4.9.1 Batch decomposition 

 

There are cases in production lines where units are grouped in batches. The units belonging to the 
same batch carry the same identification parameters. For further processing in different stations 
the batches are segregated in sub-batches. Sub-batches or batches cannot be mixed during the  
processing throughout the line. In order to model this behaviour, a number of new objects are 
introduced. In this example, a source creating butches and an object breaking the batches into 
sub-batches are presented. 

Figure 7 depicts the model discussed in this example. A source creates batches with a specified 
number of units which then enter an input buffer of a machine. The machine can only operate on 
sub-batches. Thus, just before the entry of the machine the batches have to be broken into a 
specified number of sub-batches depending on a predefined number of units per sub-batches. For 
this purpose, a batch decomposition object is placed between the buffer unit and the machine. The 
exit acts as a drain for the already processed sub-batches. 

 

 

Figure 7: a simple batch decomposition example 

 

ManPy object repository contains the following objects in order to model the described behaviour: 

 BatchSource: inherits from Source and overrides the logic of the methods __init__ and  
createEntity so as to create entities of type Batch with a specified number of units. 

 BatchDecomposition: inherits from the CoreObject and introduces a new method decompose 
in order to provide the functionality of splitting a batch into sub-batches. It also overrides the 
logic of the methods canAccept, haveToDispose, canAcceptAndIsRequested, and run  in order 
to prohibit the mixing up of the sub-batches (should not be able to able to accept a new Batch if 
there are already SubBatches in the object). run method should also be able to hold a track of 
the batches already decomposed which may later on reassembled. 

 Batch: inherits from Entity but introduces the attributes numberOfUnits that holds, 
numberOfSubBatches that it is broken into, and subBatchList that holds the sub-batches that it 
is broken into.  

 SubBatch: inherits from Entity also. It holds in one of its attributes an identifier parameter of 
the Batch it derived from.  
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In our first simple example we assume that we have only one Machine operating on SubBatches 
and its corresponding BatchDecomposition object. Our data for this example is: 

 The BatchSource Source creates Batches with a certain numberOfUnits, 

 The newly created Batches enter the buffer of the machine (StartQueue), 

 The Batches are decomposed into SubBatches in the BatchDecomposition with a processing 
time of 1, 

 the processing time of the Machine is 0.5 

Below is the ManPy main script to run this model 
(dream\simulation\Examples\DecompositionOfBatches.py): 

 
from dream.simulation.imports import Machine, BatchSource, Exit, Batch, 

BatchDecomposition, Queue, G  

from dream.simulation.imports import simulate, activate, initialize 

 

# define the objects of the model 

S=BatchSource('S','Source',interarrivalTime={'distributionType':'Fixed','mean':0

.5}, entity='Dream.Batch', batchNumberOfUnits=4) 

Q=Queue('Q','StartQueue',capacity=100000) 

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, 

processingTime={'distributionType':'Fixed','mean':1}) 

M=Machine('M','Machine',processingTime={'distributionType':'Fixed','mean':0.5}) 

E=Exit('E','Exit') 

# add all the objects in the G.ObjList so that they can be easier accessed later 

G.ObjList=[S,Q,BD,M,E] 

# define the predecessors and successors for the objects 

S.defineRouting([Q]) 

Q.defineRouting([S],[BD]) 

BD.defineRouting([Q],[M]) 

M.defineRouting([BD],[E]) 

E.defineRouting([M]) 

 

def main(): 

    # initialize the simulation (SimPy method) 

    initialize() 

    # initialize all the objects 

    for object in G.ObjList: 

        object.initialize() 

    # activate all the objects 

    for object in G.ObjList: 

        activate(object,object.run()) 

    # set G.maxSimTime 1440.0 minutes (1 day) 

    G.maxSimTime=1440.0 

    # run the simulation 

    simulate(until=G.maxSimTime) 

    # carry on the post processing operations for every object in the topology 

    for object in G.ObjList: 

        object.postProcessing() 

    # print the results  

    print "the system produced", E.numOfExits, "subbatches" 

    working_ratio = (M.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio = (M.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio = (M.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M.objName, "is", working_ratio 

    print "the blockage ratio of", M.objName, 'is', blockage_ratio 

    print "the waiting ratio of", M.objName, 'is', waiting_ratio 

    return {"subbatches": E.numOfExits, 

           "working_ratio": working_ratio, 

          "blockage_ratio": blockage_ratio, 
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          "waiting_ratio": waiting_ratio} 

     

if __name__ == '__main__': 

    main() 

Running the model we get the following in our console: 

 

 

 

 

 

 

 

Some notes on the code: 

 Batch and SubBatch are normal Entities with some additional attributes. No individual units for 
each Batch or SubBatch are taken into consideration for the modelling of the behaviour of 
these lines.  

 BatchSource is in all aspects a normal Source creating Entities of type Batch.  

 The newly introduced method decompose of the BatchDecomposition object is complementary 
to the method reassemble which will be presented later on.  

 These operations (decomposing or processing on a station) are performed by operators. Such 
functionality will be later on introduced.  

the system produced 2303 parts 

the working ratio of Machine is 79.9652777778 

the blockage ratio of Machine is 0.0 

the waiting ratio of Machine is 20.0347222222 
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4.9.2 Serial Batch Processing 

In this example we will introduce one more object developed in order to model the behaviour of a 
manufacturing line operating on Batches and SubBatches. As mentioned earlier, the decompose 
method of BatchDecomposition object should have a complementary method in order to output full 
Batches at the exit of the manufacturing line. The object implementing this functionality is named 
BatchReassembly.  

The example presenting the use of this object is depicted in Figure 8. A source creates batches 
with a specified number of units which then enter an input buffer of a machine. The newly created 
Batches enter first a buffer Queue1 of Machine1. Machine1 can process only a smaller number of 
units, thus a group of units named sub-batch. A BatchDecomposition unit is placed before the 
Machine1. The SubBatch after being processed by Machine1 enters Queue2 which act as a buffer 
for Machine2. After being processed by Machine2 the SubBatches must be reassembled into 
Batches before being processed by Machine3 which operates only on Batches. For this purpose a 
BatchReassembly object is placed after Machine2 and before Machine3. BatchReassembly can 
only assemble SubBatches which are derived from the same Batch. Finally, the exit acts as a drain 
for the already processed sub-batches. 

 

Figure 8: a simple batch decomposition and batch reassembly example 

 

ManPy object repository contains the following object in order to model the described behaviour: 

 BatchReassembly: inherits from the CoreObject and introduces a new method reassemble 
which reassembles a number of SubBatches derived from the same Batch. It also overrides the 
logic of the methods canAccept, haveToDispose, canAcceptAndIsRequested, and run  in order 
to prohibit the mixing up of the sub-batches. The BatchReassembly should not be able to able 
to accept new SubBatches if they are not derived from the same Batch or if it holds an Entity of 
type Batch. The Batches reassembled should be removed from the list of Batches that wait to 
be reassembled. In addition it should be able to hand in an Entity to its successors only if the 
Entity is of type Batch.  
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In the current example, we consider 3 Machines of two different types, two Machines operating on 
SubBatches and one Machine operating on Batches. The Machine operating on Batches follows 
the processing done on Machine1 and Machine2. Therefore, a need for the use of a 
BatchReassembly object is introduced. Our data for this example is: 

 BatchSource Source creates Batches with a certain numberOfUnits, 

 The newly created Batches enter the buffer of the Machine1 (StartQueue), 

 The Batch is then decomposed into SubBatches in the the BatchDecomposition. The 
processing time of the BatchDecomposition has a value of 1. 

 The SubBatches are then processed by Machine1 and Machine2. Between a buffer Queue1 
with capacity of 2 is placed. The processing times for these machines is 0.5 and 1 respectively. 

 The Batches are reassembled into Batches in BatchReassembly. The reassembly is performed 
instantly while the processing time of Machine3, which lies just after BatchReassembly, is 1.  

Below is the ManPy main script to run this model 
(dream\simulation\Examples\SerialBatchProcessing.py): 

 
from dream.simulation.imports import Machine, BatchSource, Exit, Batch, 

BatchDecomposition, BatchReassembly, Queue, G  

from dream.simulation.imports import simulate, activate, initialize 

 

# define the objects of the model 

S=BatchSource('S','Source',interarrivalTime={'distributionType':'Fixed','mean':1

.5}, entity='Dream.Batch', batchNumberOfUnits=100) 

Q=Queue('Q','StartQueue',capacity=100000) 

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, 

processingTime={'distributionType':'Fixed','mean':1}) 

M1=Machine('M1','Machine1',processingTime={'distributionType':'Fixed','mean':0.5

}) 

Q1=Queue('Q1','Queue1',capacity=2) 

M2=Machine('M2','Machine2',processingTime={'distributionType':'Fixed','mean':1}) 

BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4, 

processingTime={'distributionType':'Fixed','mean':0}) 

M3=Machine('M3','Machine3',processingTime={'distributionType':'Fixed','mean':1}) 

E=Exit('E','Exit') 

# add all the objects in the G.ObjList so that they can be easier accessed later 

G.ObjList=[S,Q,BD,M1,Q1,M2,BRA,M3,E] 

# define the predecessors and successors for the objects 

S.defineRouting([Q]) 

Q.defineRouting([S],[BD]) 

BD.defineRouting([Q],[M1]) 

M1.defineRouting([BD],[Q1]) 

Q1.defineRouting([M1],[M2]) 

M2.defineRouting([Q1],[BRA]) 

BRA.defineRouting([M2],[M3]) 

M3.defineRouting([BRA],[E]) 

E.defineRouting([M3]) 

 

def main(): 

    # initialize the simulation (SimPy method) 

    initialize() 

    # initialize all the objects 

    for object in G.ObjList: 

        object.initialize() 

    # activate all the objects 

    for object in G.ObjList: 

        activate(object,object.run()) 

    # set G.maxSimTime 1440.0 minutes (1 day) 

    G.maxSimTime=1440.0 
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    # run the simulation 

    simulate(until=G.maxSimTime) 

    # carry on the post processing operations for every object in the topology 

    for object in G.ObjList: 

        object.postProcessing() 

    # print the results  

    print "the system produced", E.numOfExits, "batches" 

    working_ratio_M1 = (M1.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M1 = (M1.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M1 = (M1.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M1.objName, "is", working_ratio_M1 

    print "the blockage ratio of", M1.objName, 'is', blockage_ratio_M1 

    print "the waiting ratio of", M1.objName, 'is', waiting_ratio_M1 

    working_ratio_M2 = (M2.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M2 = (M2.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M2 = (M2.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M2.objName, "is", working_ratio_M2 

    print "the blockage ratio of", M2.objName, 'is', blockage_ratio_M2 

    print "the waiting ratio of", M2.objName, 'is', waiting_ratio_M2 

    working_ratio_M3 = (M3.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M3 = (M3.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M3 = (M3.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M3.objName, "is", working_ratio_M3 

    print "the blockage ratio of", M3.objName, 'is', blockage_ratio_M3 

    print "the waiting ratio of", M3.objName, 'is', waiting_ratio_M3 

 

    return {"batches": E.numOfExits, 

           "working_ratio_M1": working_ratio_M1, 

          "blockage_ratio_M1": blockage_ratio_M1, 

          "waiting_ratio_M1": waiting_ratio_M1, 

           "working_ratio_M2": working_ratio_M2, 

          "blockage_ratio_M2": blockage_ratio_M2, 

          "waiting_ratio_M2": waiting_ratio_M2,    

           "working_ratio_M3": working_ratio_M3, 

          "blockage_ratio_M3": blockage_ratio_M3, 

          "waiting_ratio_M3": waiting_ratio_M3,        

          } 

     

if __name__ == '__main__': 

    main()                 
             

Running the model we get the following in our console: 

 

 

 

 

 

 

 

 

 

 

 

the system produced 359 parts 

the working ratio of Machine1 is 50.0694444444 

the blockage ratio of Machine1 is 49.8263888889 

the waiting ratio of Machine1 is 0.104166666667 

the working ratio of Machine2 is 99.8958333333 

the blockage ratio of Machine2 is 0.0 

the waiting ratio of Machine2 is 0.104166666667 

the working ratio of Machine3 is 24.9305555556 

the blockage ratio of Machine3 is 0.0 

the waiting ratio of Machine3 is 75.0694444444 
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4.9.3 Clearing batch lines 

 

In the previous example, there exists a buffer between the two consequent stations that are 
processing the SubBatches. In such stations, there may be a case were the units constituting the 
SubBatches are processed separately. For reasons of simplicity we assume that the SubBatches 
are processed as a bulk group of units which cannot be further segregated. Contrary to the 
modelling practice though, operators perform work on each individual unit of the SubBatch. For 
fear that the units may get mixed up and thus “dirty” the SubBatches, it is a common practice to try 
keeping the Buffer before each Machine/station clear from other SubBatches other than the one 
being currently processed in the station. The object LineClearance is introduced to model this 
behaviour.  

The flow described in Figure 7 is the same with the one used in the current example. The common 
Queue2 between Machine1 and Machine2 is replaced with the LineClearance object though. 

 

ManPy object repository contains the following objects in order to model the described behaviour: 

 LineClearance: inherits from the Queue generic object and overrides the canAccept and 
canAcceptAndIsRequested methods. These methods should now return true if the buffer is 
empty or if the predecessor requests to hand in a SubBatch with the same batchId as the ones 
that the buffer holds.  

The data of this example are similar to example 4.10. The Queue2 Queue object is replaced by a 
LineClearance Queue with capacity of 2 SubBatches. In addition, the processing time of Machine2 
is increased to 4 time units. This will eventually lead to an increased waiting time for Machine3. 

Below is the ManPy main script to run this model 
(dream\simulation\Examples\ClearBatchLines.py): 

 
from dream.simulation.imports import Machine, Source, Exit, Batch, 

BatchDecomposition,\ 

                            BatchSource, BatchReassembly, Queue, LineClearance, 

ExcelHandler, G, ExcelHandler  

from dream.simulation.imports import simulate, activate, initialize 

 

# choose to output trace or not 

G.trace='Yes' 

# define the objects of the model 

S=BatchSource('S','Source',interarrivalTime={'distributionType':'Fixed','mean':1

.5}, entity='Dream.Batch', batchNumberOfUnits=100) 

Q=Queue('Q','StartQueue',capacity=100000) 

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, 

processingTime={'distributionType':'Fixed','mean':1}) 

M1=Machine('M1','Machine1',processingTime={'distributionType':'Fixed','mean':0.5

}) 

Q1=LineClearance('Q1','Queue1',capacity=2) 

M2=Machine('M2','Machine2',processingTime={'distributionType':'Fixed','mean':4}) 

BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4, 

processingTime={'distributionType':'Fixed','mean':0}) 

M3=Machine('M3','Machine3',processingTime={'distributionType':'Fixed','mean':1}) 

E=Exit('E','Exit') 

# add all the objects in the G.ObjList so that they can be easier accessed later 

G.ObjList=[S,Q,BD,M1,Q1,M2,BRA,M3,E] 

# define the predecessors and successors for the objects 

S.defineRouting([Q]) 

Q.defineRouting([S],[BD]) 

BD.defineRouting([Q],[M1]) 

M1.defineRouting([BD],[Q1]) 

Q1.defineRouting([M1],[M2]) 

M2.defineRouting([Q1],[BRA]) 
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BRA.defineRouting([M2],[M3]) 

M3.defineRouting([BRA],[E]) 

E.defineRouting([M3]) 

 

def main(): 

    # initialize the simulation (SimPy method) 

    initialize() 

    # initialize all the objects 

    for object in G.ObjList: 

        object.initialize() 

    # activate all the objects 

    for object in G.ObjList: 

        activate(object,object.run()) 

    # set G.maxSimTime 1440.0 minutes (1 day) 

    G.maxSimTime=1440.0 

    # run the simulation 

    simulate(until=G.maxSimTime) 

    # carry on the post processing operations for every object in the topology 

    for object in G.ObjList: 

        object.postProcessing() 

    # print the results  

    print "the system produced", E.numOfExits, "batches" 

    working_ratio_M1 = (M1.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M1 = (M1.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M1 = (M1.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M1.objName, "is", working_ratio_M1 

    print "the blockage ratio of", M1.objName, 'is', blockage_ratio_M1 

    print "the waiting ratio of", M1.objName, 'is', waiting_ratio_M1 

    working_ratio_M2 = (M2.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M2 = (M2.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M2 = (M2.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M2.objName, "is", working_ratio_M2 

    print "the blockage ratio of", M2.objName, 'is', blockage_ratio_M2 

    print "the waiting ratio of", M2.objName, 'is', waiting_ratio_M2 

    working_ratio_M3 = (M3.totalWorkingTime/G.maxSimTime)*100 

    blockage_ratio_M3 = (M3.totalBlockageTime/G.maxSimTime)*100 

    waiting_ratio_M3 = (M3.totalWaitingTime/G.maxSimTime)*100 

    print "the working ratio of", M3.objName, "is", working_ratio_M3 

    print "the blockage ratio of", M3.objName, 'is', blockage_ratio_M3 

    print "the waiting ratio of", M3.objName, 'is', waiting_ratio_M3 

 

    return {"batches": E.numOfExits, 

           "working_ratio_M1": working_ratio_M1, 

          "blockage_ratio_M1": blockage_ratio_M1, 

          "waiting_ratio_M1": waiting_ratio_M1, 

           "working_ratio_M2": working_ratio_M2, 

          "blockage_ratio_M2": blockage_ratio_M2, 

          "waiting_ratio_M2": waiting_ratio_M2,    

           "working_ratio_M3": working_ratio_M3, 

          "blockage_ratio_M3": blockage_ratio_M3, 

          "waiting_ratio_M3": waiting_ratio_M3,        

          } 

     

if __name__ == '__main__': 

    main() 

 

Running the model we get the following in our console: 
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The blockage ratio of Machine1 is drastically increased as LineClearance buffer of Machine2 has 
to be cleared from the the currently processed Batch first before it is loaded with SubBatches from 
a different Batch. ClearBatchLines.xls is also generated and has the following contents: 

 

0 Batch0 generated 

0 Batch0 released Source 

0 Batch0 got into StartQueue 

0 Batch0 released StartQueue 

0 Batch0 got into BatchDecomposition 

1 Batch0_SB_0 released BatchDecomposition 

1 Batch0_SB_0 got into Machine1 

1.5 Batch1 generated 

1.5 Batch0_SB_0 ended processing in Machine1 

1.5 Batch1 released Source 

1.5 Batch1 got into StartQueue 

1.5 Batch0_SB_0 released Machine1 

1.5 Batch0_SB_0 got into Queue1 

1.5 Batch0_SB_0 released Queue1 

1.5 Batch0_SB_0 got into Machine2 

1.5 Batch0_SB_1 released BatchDecomposition 

1.5 Batch0_SB_1 got into Machine1 

2.0 Batch0_SB_1 ended processing in Machine1 

2.0 Batch0_SB_1 released Machine1 

2.0 Batch0_SB_1 got into Queue1 

2.0 Batch0_SB_2 released BatchDecomposition 

2.0 Batch0_SB_2 got into Machine1 

2.5 Batch0_SB_2 ended processing in Machine1 

2.5 Batch0_SB_2 released Machine1 

2.5 Batch0_SB_2 got into Queue1 

2.5 Batch0_SB_3 released BatchDecomposition 

2.5 Batch0_SB_3 got into Machine1 

2.5 Batch1 released StartQueue 

2.5 Batch1 got into BatchDecomposition 

3.0 Batch2 generated 

 

The notation Batch1, 2, etc. denote the Batches generated by the BatchSource Source. 
Respectively, the suffixes _SB_0, 2, etc. of the names in the second column denote each separate 
SubBatch belonging to Batch Batch0, 1, etc.  

the system produced 89 parts 

the working ratio of Machine1 is 12.6041666667 

the blockage ratio of Machine1 is 87.3263888889 

the waiting ratio of Machine1 is 0.0694444444444 

the working ratio of Machine2 is 99.8958333333 

the blockage ratio of Machine2 is 0.0 

the waiting ratio of Machine2 is 0.104166666667 

the working ratio of Machine3 is 6.18055555556 

the blockage ratio of Machine3 is 0.0 

the waiting ratio of Machine3 is 93.8194444444 
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4.10 Output Analysis 

Dream aims to offer methods for output analysis of the simulation results. This is currently work in 
progress existing in dream/simulation/outputanalysis. In order to be able to use this modules, R 
(http://www.r-project.org/) and Rpy2 (http://rpy.sourceforge.net/rpy2.html) should be installed. 

As an example we demonstrate dream\simulation\Examples\TwoServersPlots.py that is similar to 
the TwoServers example but it also outputs a pie that presents graphically the percentage of time 
that the repairman is busy or idle. 

The new entries on the code are: 

 In the beginning the Graphs module is imported: 

from dream.KnowledgeExtraction.Plots import Graphs 

 After the simulation run the values for the pie are calculated: 
#calculate the percentages for the pie 

repairmanWorkingRatio=R.totalWorkingTime/G.maxSimTime*100 

repairmanWaitingRatio=R.totalWaitingTime/G.maxSimTime*100 

 Then a Graph object is created and the Pie method is called in order to create the output file 
#create a graph object 

graph=Graphs() 

#create the pie 

graph.Pie([repairmanWorkingRatio,repairmanWaitingRatio], "repairmanPie.jpg") 

 

Running the script the user gets in addition to the console output repairmanPie.jpg that contains 
the following graph: 

 

 

 

Figure 9: the pie 

 

http://www.r-project.org/
http://rpy.sourceforge.net/rpy2.html

