Commit 3baf1efd authored by Georgios Dagkakis's avatar Georgios Dagkakis

Merge branch 'ketool3'

parents fc8b96eb 18c17e72
'''
Created on 24 Sep 2014
@author: Panos
'''
# ===========================================================================
# Copyright 2013 University of Limerick
#
# This file is part of DREAM.
#
# DREAM is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DREAM is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DREAM. If not, see <http://www.gnu.org/licenses/>.
# ===========================================================================
from StatisticalMeasures import BasicStatisticalMeasures
#The DetectOuliers object
class HandleOutliers(BasicStatisticalMeasures):
#Two different approaches to handle the outliers are included in this object,
#the first one delete both the mild and extreme outliers while the second approach delete only the extreme outliers in the given data set
def DeleteOutliers(self,mylist): #Delete the ouliers (both mild and extreme) in a given data set
A= BasicStatisticalMeasures() #Call the BasicStatisticalMeasures to calculate the quantiles and interquartile range
Q1= A.quantile(mylist)[1]
Q3= A.quantile(mylist)[3]
IQ= A.IQR(mylist)
LIF= Q1 - 1.5*IQ #Calculate the lower inner fence
UIF= Q3 + 1.5*IQ #Calculate the upper inner fence
LOF= Q1 - 3*IQ #Calculate the lower outer fence
UOF= Q3 + 3*IQ #Calculate the upper outer fence
i=0
listx=[]
for value in mylist:
if not ((value<LOF or value>UOF) or (value<LIF or value>UIF)): #If the value is beyond the inner fence ([LIF,UIF]) on either side (mild outlier) or beyond the outer fence ([LOF,UOF]) on either side (extreme outlier) doesn't pass the control and deleted
listx.append(value)
i+=1
return listx
def DeleteExtremeOutliers(self,mylist): #Delete only the extreme ouliers in a given data set
A= BasicStatisticalMeasures()
Q1= A.quantile(mylist)[1]
Q3= A.quantile(mylist)[3]
IQ= A.IQR(mylist)
LOF= Q1 - 3*IQ
UOF= Q3 + 3*IQ
i=0
listx=[]
for value in mylist:
if not (value<LOF or value>UOF): #If the value is beyond the outer fence ([LOF,UOF]) on either side (extreme outlier) doesn't pass the control and deleted
listx.append(value)
i+=1
return listx
\ No newline at end of file
...@@ -234,7 +234,7 @@ class DistFittest: ...@@ -234,7 +234,7 @@ class DistFittest:
except RRuntimeError: except RRuntimeError:
return None return None
gam=self.Gam gam=self.Gam
self.Gamtest= rkstest(data,"pgamma",scale=gam[0][1],shape=gam[0][0]) self.Gamtest= rkstest(data,"pgamma",rate=gam[0][1],shape=gam[0][0])
return self.Gamtest return self.Gamtest
def Weib_kstest(self,data): def Weib_kstest(self,data):
......
...@@ -239,6 +239,15 @@ class Output(BasicStatisticalMeasures,DistFittest): ...@@ -239,6 +239,15 @@ class Output(BasicStatisticalMeasures,DistFittest):
del A['min'] del A['min']
del A['max'] del A['max']
del A['distributionType'] del A['distributionType']
sheet2.write(14,15,(A.keys()[0]))
sheet2.write(14,16,(A.keys()[1]))
sheet2.write(15,15,(A.values()[0]))
sheet2.write(15,16,(A.values()[1]))
elif A['distributionType']=='Exp' or A['distributionType']=='Poisson' or A['distributionType']=='Geometric':
del A['distributionType']
sheet2.write(14,15,(A.keys()[0]))
sheet2.write(15,15,(A.values()[0]))
else: else:
del A['distributionType'] del A['distributionType']
sheet2.write(14,15,(A.keys()[0])) sheet2.write(14,15,(A.keys()[0]))
......
...@@ -359,14 +359,14 @@ def CMSD_example(list1,list2): ...@@ -359,14 +359,14 @@ def CMSD_example(list1,list2):
Name.text=str(list1['P1']['distributionType']) Name.text=str(list1['P1']['distributionType'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='mean' Name.text='shape'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P1']['mean']) Value.text=str(list1['P1']['shape'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='rate'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P1']['stdev']) Value.text=str(list1['P1']['rate'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -420,14 +420,14 @@ def CMSD_example(list1,list2): ...@@ -420,14 +420,14 @@ def CMSD_example(list1,list2):
Name.text=str(list1['P2']['distributionType']) Name.text=str(list1['P2']['distributionType'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='mean' Name.text='shape'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P2']['mean']) Value.text=str(list1['P2']['shape'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='rate'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P2']['stdev']) Value.text=str(list1['P2']['rate'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -606,14 +606,14 @@ def CMSD_example(list1,list2): ...@@ -606,14 +606,14 @@ def CMSD_example(list1,list2):
Name.text=str(list1['P5']['distributionType']) Name.text=str(list1['P5']['distributionType'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='mean' Name.text='shape'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P5']['mean']) Value.text=str(list1['P5']['shape'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='rate'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P5']['mean']) Value.text=str(list1['P5']['rate'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -792,14 +792,14 @@ def CMSD_example(list1,list2): ...@@ -792,14 +792,14 @@ def CMSD_example(list1,list2):
Name.text=str(list1['P8']['distributionType']) Name.text=str(list1['P8']['distributionType'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='mean' Name.text='shape'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P8']['mean']) Value.text=str(list1['P8']['shape'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='rate'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P8']['stdev']) Value.text=str(list1['P8']['rate'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -854,14 +854,14 @@ def CMSD_example(list1,list2): ...@@ -854,14 +854,14 @@ def CMSD_example(list1,list2):
Name.text=str(list1['P9']['distributionType']) Name.text=str(list1['P9']['distributionType'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='mean' Name.text='shape'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P9']['mean']) Value.text=str(list1['P9']['shape'])
DistributionParameter=SubElement(Distribution,'DistributionParameter') DistributionParameter=SubElement(Distribution,'DistributionParameter')
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='rate'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P9']['stdev']) Value.text=str(list1['P9']['rate'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -923,7 +923,7 @@ def CMSD_example(list1,list2): ...@@ -923,7 +923,7 @@ def CMSD_example(list1,list2):
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='stdev'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P9']['mean']) Value.text=str(list1['P10']['stdev'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
...@@ -985,7 +985,7 @@ def CMSD_example(list1,list2): ...@@ -985,7 +985,7 @@ def CMSD_example(list1,list2):
Name=SubElement(DistributionParameter,'Name') Name=SubElement(DistributionParameter,'Name')
Name.text='stdev' Name.text='stdev'
Value=SubElement(DistributionParameter,'Value') Value=SubElement(DistributionParameter,'Value')
Value.text=str(list1['P11']['mean']) Value.text=str(list1['P11']['stdev'])
Property=SubElement(Process,'Property') Property=SubElement(Process,'Property')
Name=SubElement(Property,'Name') Name=SubElement(Property,'Name')
......
''' '''
Created on 19 Feb 2014 Created on 9 Oct 2014
@author: Panos @author: Panos
''' '''
...@@ -24,7 +24,6 @@ Created on 19 Feb 2014 ...@@ -24,7 +24,6 @@ Created on 19 Feb 2014
import json import json
def JSON_example(list1,list2): def JSON_example(list1,list2):
jsonFile= open('JSON_example.json','r') jsonFile= open('JSON_example.json','r')
...@@ -37,72 +36,15 @@ def JSON_example(list1,list2): ...@@ -37,72 +36,15 @@ def JSON_example(list1,list2):
scrapQuantity=element.get('scrapQuantity',{}) scrapQuantity=element.get('scrapQuantity',{})
processingTime=element.get('processingTime',{}) processingTime=element.get('processingTime',{})
if name =='P1': if name in list1.keys():
scrapQuantity['mean']=str(list2['P1']) element['processingTime']= list1[name]
processingTime['distributionType']=str(list1['P1']['distributionType']) else:
processingTime['mean']=str(list1['P1']['mean']) continue
processingTime['stdev']=str(list1['P1']['stdev']) if name in list2.keys():
elif name=='P4': element['scrapQuantity']= list2[name]
scrapQuantity['mean']=str(list2['P4'])
processingTime['distributionType']=str(list1['P4']['distributionType'])
processingTime['mean']=str(list1['P4']['mean'])
processingTime['stdev']=str(list1['P4']['stdev'])
elif name=='P2':
scrapQuantity['mean']=str(list2['P2'])
processingTime['distributionType']=str(list1['P2']['distributionType'])
processingTime['mean']=str(list1['P2']['mean'])
processingTime['stdev']=str(list1['P2']['stdev'])
elif name=='P5':
scrapQuantity['mean']=str(list2['P5'])
processingTime['distributionType']=str(list1['P5']['distributionType'])
processingTime['mean']=str(list1['P5']['mean'])
processingTime['stdev']=str(list1['P5']['stdev'])
elif name=='P3':
scrapQuantity['mean']=str(list2['P3'])
processingTime['distributionType']=str(list1['P3']['distributionType'])
processingTime['mean']=str(list1['P3']['mean'])
processingTime['stdev']=str(list1['P3']['stdev'])
elif name=='P6':
scrapQuantity['mean']=str(list2['P6'])
processingTime['distributionType']=str(list1['P6']['distributionType'])
processingTime['mean']=str(list1['P6']['mean'])
processingTime['stdev']=str(list1['P6']['stdev'])
elif name=='P7':
scrapQuantity['mean']=str(list2['P7'])
processingTime['distributionType']=str(list1['P7']['distributionType'])
processingTime['mean']=str(list1['P7']['mean'])
processingTime['stdev']=str(list1['P7']['stdev'])
elif name=='P8':
scrapQuantity['mean']=str(list2['P8'])
processingTime['distributionType']=str(list1['P8']['distributionType'])
processingTime['mean']=str(list1['P8']['mean'])
processingTime['stdev']=str(list1['P8']['stdev'])
elif name=='P9':
scrapQuantity['mean']=str(list2['P9'])
processingTime['distributionType']=str(list1['P9']['distributionType'])
processingTime['mean']=str(list1['P9']['mean'])
processingTime['stdev']=str(list1['P9']['stdev'])
elif name=='P10':
scrapQuantity['mean']=str(list2['P10'])
processingTime['distributionType']=str(list1['P10']['distributionType'])
processingTime['mean']=str(list1['P10']['mean'])
processingTime['stdev']=str(list1['P10']['stdev'])
elif name=='P11':
scrapQuantity['mean']=str(list2['P11'])
processingTime['distributionType']=str(list1['P11']['distributionType'])
processingTime['mean']=str(list1['P11']['mean'])
processingTime['stdev']=str(list1['P11']['stdev'])
else: else:
continue continue
jsonFile = open('JSON_exampleOutput.json',"w") jsonFile = open('JSON_exampleOutput.json',"w")
jsonFile.write(json.dumps(data, indent=True)) jsonFile.write(json.dumps(data, indent=True))
jsonFile.close() jsonFile.close()
return json.dumps(data, indent=True) return json.dumps(data, indent=True)
\ No newline at end of file
...@@ -24,6 +24,7 @@ Created on 19 Feb 2014 ...@@ -24,6 +24,7 @@ Created on 19 Feb 2014
from StatisticalMeasures import BasicStatisticalMeasures from StatisticalMeasures import BasicStatisticalMeasures
from DataManipulation import DataManagement from DataManipulation import DataManagement
from DistributionFitting import DistFittest
from DistributionFitting import Distributions from DistributionFitting import Distributions
from CMSD_Output import CMSD_example from CMSD_Output import CMSD_example
from JSON_Output import JSON_example from JSON_Output import JSON_example
...@@ -36,7 +37,7 @@ import dream.simulation.LineGenerationJSON as ManPyMain ...@@ -36,7 +37,7 @@ import dream.simulation.LineGenerationJSON as ManPyMain
#================= Main script of KE tool =====================================# #================= Main script of KE tool =====================================#
#Read from the given directory the Excel document with the input data #Read from the given directory the Excel document with the input data
workbook = xlrd.open_workbook('inputData.xls') workbook = xlrd.open_workbook('input_Data.xls')
worksheets = workbook.sheet_names() worksheets = workbook.sheet_names()
worksheet_ProcessingTimes = worksheets[1] #Define the worksheet with the Processing times data worksheet_ProcessingTimes = worksheets[1] #Define the worksheet with the Processing times data
worksheet_ScrapQuantity = worksheets[0] #Define the worksheet with the Scrap Quantity data worksheet_ScrapQuantity = worksheets[0] #Define the worksheet with the Scrap Quantity data
...@@ -46,38 +47,57 @@ ProcessingTimes= A.Input_data(worksheet_ProcessingTimes, workbook) #Create the ...@@ -46,38 +47,57 @@ ProcessingTimes= A.Input_data(worksheet_ProcessingTimes, workbook) #Create the
ScrapQuantity=A.Input_data(worksheet_ScrapQuantity, workbook) #Create the Scrap Quantity dictionary with keys the different stations in the line and values the scrap quantity data of different batches in these stations ScrapQuantity=A.Input_data(worksheet_ScrapQuantity, workbook) #Create the Scrap Quantity dictionary with keys the different stations in the line and values the scrap quantity data of different batches in these stations
##Get from the Scrap Quantity dictionary the different keys and define the following lists with the scrap quantity data of the different stations in the topology ##Get from the Scrap Quantity dictionary the different keys and define the following lists with the scrap quantity data of the different stations in the topology
P7_Scrap = ScrapQuantity.get('P7',[])
P1_Scrap = ScrapQuantity.get('P1',[]) P1_Scrap= ScrapQuantity.get('P1',[])
P2_Scrap= ScrapQuantity.get('P3',[]) P2_Scrap= ScrapQuantity.get('P2',[])
P3_Scrap=ScrapQuantity.get('P3',[]) P3_Scrap= ScrapQuantity.get('P3',[])
P8_Scrap=ScrapQuantity.get('P8',[]) P4_Scrap= ScrapQuantity.get('P4',[])
P5_Scrap= ScrapQuantity.get('P5',[])
P6_Scrap= ScrapQuantity.get('P6',[])
P7_Scrap= ScrapQuantity.get('P7',[])
P8_Scrap= ScrapQuantity.get('P8',[])
P9_Scrap= ScrapQuantity.get('P9',[]) P9_Scrap= ScrapQuantity.get('P9',[])
P10_Scrap= ScrapQuantity.get('P10',[])
P11_Scrap= ScrapQuantity.get('P11',[])
##Get from the Processing times dictionary the different keys and define the following lists with the processing times data of the different stations in the topology ##Get from the Processing times dictionary the different keys and define the following lists with the processing times data of the different stations in the topology
P7_Proc = ProcessingTimes.get('P7',[])
P1_Proc = ProcessingTimes.get('P1',[]) P1_Proc= ProcessingTimes.get('P1',[])
P2_Proc= ProcessingTimes.get('P2',[]) P2_Proc= ProcessingTimes.get('P2',[])
P3_Proc=ProcessingTimes.get('P3',[]) P3_Proc= ProcessingTimes.get('P3',[])
P8_Proc=ProcessingTimes.get('P8',[]) P4_Proc= ProcessingTimes.get('P4',[])
P5_Proc= ProcessingTimes.get('P5',[])
P6_Proc= ProcessingTimes.get('P6',[])
P7_Proc= ProcessingTimes.get('P7',[])
P8_Proc= ProcessingTimes.get('P8',[])
P9_Proc= ProcessingTimes.get('P9',[]) P9_Proc= ProcessingTimes.get('P9',[])
P10_Proc= ProcessingTimes.get('P10',[])
P11_Proc= ProcessingTimes.get('P11',[])
#Call the HandleMissingValues object and replace with zero the missing values in the lists with the scrap quantity data #Call the HandleMissingValues object and replace with zero the missing values in the lists with the scrap quantity data
B=HandleMissingValues() B=HandleMissingValues()
P7_Scrap= B.ReplaceWithZero(P7_Scrap)
P1_Scrap= B.ReplaceWithZero(P1_Scrap) P1_Scrap= B.ReplaceWithZero(P1_Scrap)
P2_Scrap= B.ReplaceWithZero(P2_Scrap) P2_Scrap= B.ReplaceWithZero(P2_Scrap)
P3_Scrap= B.ReplaceWithZero(P3_Scrap) P3_Scrap= B.ReplaceWithZero(P3_Scrap)
P4_Scrap= B.ReplaceWithZero(P4_Scrap)
P5_Scrap= B.ReplaceWithZero(P5_Scrap)
P6_Scrap= B.ReplaceWithZero(P6_Scrap)
P7_Scrap= B.ReplaceWithZero(P7_Scrap)
P8_Scrap= B.ReplaceWithZero(P8_Scrap) P8_Scrap= B.ReplaceWithZero(P8_Scrap)
P9_Scrap= B.ReplaceWithZero(P9_Scrap) P9_Scrap= B.ReplaceWithZero(P9_Scrap)
P10_Scrap= B.ReplaceWithZero(P10_Scrap)
P11_Scrap= B.ReplaceWithZero(P11_Scrap)
# #Call the BasicSatatisticalMeasures object # #Call the BasicSatatisticalMeasures object
C=BasicStatisticalMeasures() C=BasicStatisticalMeasures()
#Create a list with values the calculated mean value of scrap quantity on the different stations in the line #Create a list with values the calculated mean value of scrap quantity on the different stations in the line
listScrap=[C.mean(P1_Scrap),C.mean(P2_Scrap),C.mean(P3_Scrap),C.mean(P1_Scrap),C.mean(P2_Scrap),C.mean(P3_Scrap),C.mean(P7_Scrap),C.mean(P8_Scrap),C.mean(P8_Scrap),C.mean(P9_Scrap), C.mean(P9_Scrap)] listScrap=[C.mean(P1_Scrap),C.mean(P2_Scrap),C.mean(P3_Scrap),C.mean(P4_Scrap),C.mean(P5_Scrap),C.mean(P6_Scrap),C.mean(P7_Scrap),C.mean(P8_Scrap),C.mean(P9_Scrap),C.mean(P10_Scrap), C.mean(P11_Scrap)]
F=DataManagement() D= DataManagement()
listScrap=F.round(listScrap) #Round the mean values of the list so as to get integers listScrap=D.round(listScrap) #Round the mean values of the list so as to get integers
dictScrap={} dictScrap={}
dictScrap['P1']= listScrap[0] dictScrap['P1']= listScrap[0]
...@@ -92,28 +112,23 @@ dictScrap['P9']= listScrap[8] ...@@ -92,28 +112,23 @@ dictScrap['P9']= listScrap[8]
dictScrap['P10']= listScrap[9] dictScrap['P10']= listScrap[9]
dictScrap['P11']= listScrap[10] dictScrap['P11']= listScrap[10]
#Create a tuple with the Processing times data lists of the different stations E= DistFittest()
a=(P1_Proc,P2_Proc,P3_Proc,P1_Proc,P2_Proc,P3_Proc,P7_Proc,P8_Proc,P8_Proc,P9_Proc,P9_Proc)
E=Distributions() #Call the DistFittest object
dictProc={} dictProc={}
dictProc['P1']= E.Normal_distrfit(P1_Proc) dictProc['P1']= E.ks_test(P1_Proc)
dictProc['P2']= E.Normal_distrfit(P2_Proc) dictProc['P2']= E.ks_test(P2_Proc)
dictProc['P3']= E.Normal_distrfit(P3_Proc) dictProc['P3']= E.ks_test(P3_Proc)
dictProc['P4']= E.Normal_distrfit(P1_Proc) dictProc['P4']= E.ks_test(P4_Proc)
dictProc['P5']= E.Normal_distrfit(P2_Proc) dictProc['P5']= E.ks_test(P5_Proc)
dictProc['P6']= E.Normal_distrfit(P3_Proc) dictProc['P6']= E.ks_test(P6_Proc)
dictProc['P7']= E.Normal_distrfit(P7_Proc) dictProc['P7']= E.ks_test(P7_Proc)
dictProc['P8']= E.Normal_distrfit(P8_Proc) dictProc['P8']= E.ks_test(P8_Proc)
dictProc['P9']= E.Normal_distrfit(P8_Proc) dictProc['P9']= E.ks_test(P9_Proc)
dictProc['P10']= E.Normal_distrfit(P9_Proc) dictProc['P10']= E.ks_test(P10_Proc)
dictProc['P11']= E.Normal_distrfit(P9_Proc) dictProc['P11']= E.ks_test(P11_Proc)
F= Output()
D=Output() F.PrintDistributionFit(P2_Proc,"DistributionFittingResults_P2Proc.xls")
D.PrintDistributionFit(P2_Proc,"DistributionFittingResults_P2Proc.xls") F.PrintStatisticalMeasures(P2_Proc, "StatisticalMeasuresResults_P2Proc.xls")
D.PrintStatisticalMeasures(P2_Proc, "StatisticalMeasuresResults_P2Proc.xls")
CMSD_example(dictProc,dictScrap) #Print the CMSD document, calling the CMSD_example method with arguments the dictProc and dictScrap dictionaries CMSD_example(dictProc,dictScrap) #Print the CMSD document, calling the CMSD_example method with arguments the dictProc and dictScrap dictionaries
JSON_example(dictProc,dictScrap) #Print the JSON file, calling the JSON_example method JSON_example(dictProc,dictScrap) #Print the JSON file, calling the JSON_example method
......
{
"capacity_by_project_spreadsheet": [
[
"Project Name",
"Sequence",
"Capacity Requirements"
],
[
null,
null,
null
]
],
"capacity_by_station_spreadsheet": [
[
"Machine",
"Day 0",
"Day 1",
"Day 2",
"Day 3",
null
],
[
null,
null,
null,
null,
null,
null
]
],
"edges": {
"con_10": [
"Q1",
"St1",
{}
],
"con_15": [
"Q1",
"St2",
{}
],
"con_20": [
"St1",
"E1",
{}
],
"con_25": [
"St2",
"E1",
{}
],
"con_5": [
"S1",
"Q1",
{}
]
},
"general": {
"confidenceLevel": 0.95,
"currentDate": "2014/06/16",
"maxSimTime": 1000,
"numberOfReplications": 5,
"processTimeout": 10,
"seed": "",
"trace": "No"
},
"nodes": {
"E1": {
"_class": "Dream.Exit",
"element_id": "DreamNode_5",
"name": "Exit"
},
"Q1": {
"_class": "Dream.Queue",
"capacity": 1,
"element_id": "DreamNode_2",
"name": "Queue",
"schedulingRule": "FIFO"
},
"S1": {
"_class": "Dream.BatchSource",
"batchNumberOfUnits": 80,
"element_id": "DreamNode_1",
"entity": "Dream.Batch",
"interarrivalTime": {
"distributionType": "Fixed",
"mean": 1
},
"name": "Source"
},
"St1": {
"_class": "Dream.BatchScrapMachine",
"element_id": "DreamNode_3",
"failures": {
},
"name": "Milling1",
"processingTime": {
"distributionType": "Fixed",
"max": "",
"mean": 0.75,
"min": "",
"stdev": ""
}
},
"St2": {
"_class": "Dream.BatchScrapMachine",
"element_id": "DreamNode_4",
"failures": {
},
"name": "Milling2",
"processingTime": {
"distributionType": "Fixed",
"max": "",
"mean": 0.75,
"min": "",
"stdev": ""
}
}
},
"preference": {
"coordinates": {
"E1": {
"left": 0.838470725910555,
"top": 0.5011550303652008
},
"Q1": {
"left": 0.28592454969899506,
"top": 0.4898081240173095
},
"S1": {
"left": 0.053083038762682624,
"top": 0.48224351978538194
},
"St1": {
"left": 0.5199724933344594,
"top": 0.22882927801580868
},
"St2": {
"left": 0.5157499788874278,
"top": 0.7243108552070638
}
}
},
"shift_spreadsheet": [
[
"Day",
"Machines",
"Start",
"End"
],
[
null,
null,
null,
null
]
],
"wip_part_spreadsheet": [
[
"Order ID",
"Due Date",
"Priority",
"Project Manager",
"Part",
"Part Type",
"Sequence",
"Processing Times",
"Prerequisites Parts"
],
[
null,
null,
null,
null,
null,
null,
null,
null,
null
]
]
}
\ No newline at end of file
'''
Created on 20 Jun 2014
@author: Panos
'''
# ===========================================================================
# Copyright 2013 University of Limerick
#
# This file is part of DREAM.
#
# DREAM is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DREAM is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DREAM. If not, see <http://www.gnu.org/licenses/>.
# ===========================================================================
from DistributionFitting import DistFittest
from DistributionFitting import Distributions
from ImportExceldata import Import_Excel
from ExcelOutput import Output
from ReplaceMissingValues import HandleMissingValues
import xlrd
import json
import dream.simulation.LineGenerationJSON as ManPyMain #import ManPy main JSON script
#Read from the given directory the Excel document with the input data
workbook = xlrd.open_workbook('inputData.xls')
worksheets = workbook.sheet_names()
worksheet_ProcessingTimes = worksheets[0] #Define the worksheet with the Processing times data
inputData = Import_Excel() #Call the Python object Import_Excel
ProcessingTimes = inputData.Input_data(worksheet_ProcessingTimes, workbook) #Create the Processing Times dictionary with key Machines 1,2 and values the processing time data
##Get from the above dictionaries the M1 key and define the following lists with data
M1_ProcTime = ProcessingTimes.get('M1',[])
M2_ProcTime = ProcessingTimes.get('M2',[])
#Call the HandleMissingValues object and replace the missing values in the lists with the mean of the non-missing values
misValues =HandleMissingValues()
M1_ProcTime = misValues.ReplaceWithMean(M1_ProcTime)
M2_ProcTime = misValues.ReplaceWithMean(M2_ProcTime)
MLE = Distributions() #Call the Distributions object (Maximum Likelihood Estimation - MLE)
KS = DistFittest() #Call the DistFittest object (Kolmoghorov-Smirnov test)
M1ProcTime_dist = KS.ks_test(M1_ProcTime)
M2ProcTime_dist = MLE.Normal_distrfit(M2_ProcTime)
#======================= Output preparation: output the updated values in the JSON file of this example ================================#
jsonFile = open('JSON_TwoParallelStations.json','r') #It opens the JSON file
data = json.load(jsonFile) #It loads the file
jsonFile.close()
nodes = data.get('nodes',[]) #It creates a variable that holds the 'nodes' dictionary
for element in nodes:
processingTime = nodes[element].get('processingTime',{}) #It creates a variable that gets the element attribute 'processingTime'
if element == 'St1':
nodes['St1']['processingTime'] = M1ProcTime_dist #It checks using if syntax if the element is 'M1'
elif element == 'St2':
nodes['St2']['processingTime'] = M2ProcTime_dist #It checks using if syntax if the element is 'M2'
jsonFile = open('JSON_ParallelStations_Output.json',"w") #It opens the JSON file
jsonFile.write(json.dumps(data, indent=True)) #It writes the updated data to the JSON file
jsonFile.close() #It closes the file
#=================== Calling the ExcelOutput object, outputs the outcomes of the statistical analysis in xls files ==========================#
export=Output()
export.PrintStatisticalMeasures(M1_ProcTime,'M1_ProcTime_StatResults.xls')
export.PrintStatisticalMeasures(M2_ProcTime,'M2_ProcTime_StatResults.xls')
export.PrintDistributionFit(M1_ProcTime,'M1_ProcTime_DistFitResults.xls')
export.PrintDistributionFit(M2_ProcTime,'M2_ProcTime_DistFitResults.xls')
#calls ManPy main script with the input
simulationOutput=ManPyMain.main(input_data=json.dumps(data))
# save the simulation output
jsonFile = open('ManPyOutput.json',"w") #It opens the JSON file
jsonFile.write(simulationOutput) #It writes the updated data to the JSON file
jsonFile.close() #It closes the file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment