Commit dbcc5807 authored by Georgios Dagkakis's avatar Georgios Dagkakis

results of exit to work with CIs in multiple replications

parent 6ca6125f
......@@ -13,7 +13,9 @@ class DefaultTabularExit(plugin.OutputPreparationPlugin):
"""
def postprocess(self, data):
node=data['graph']['node']
numberOfReplications=data['general']['numberOfReplications']
confidenceLevel=data['general']['confidenceLevel']
if numberOfReplications==1:
# create the titles of the columns
data['result']['result_list'][0]['exit_output'] = [['Exit Id','Throughput', 'Takt Time', 'Lifespan']]
# loop the results and search for elements that have 'Exit' as family
......@@ -26,4 +28,30 @@ class DefaultTabularExit(plugin.OutputPreparationPlugin):
taktTime=record['results'].get('takt_time','undefined')
lifespan=record['results'].get('lifespan','undefined')
data['result']['result_list'][0]['exit_output'].append([exitId,throughput,taktTime,lifespan])
elif numberOfReplications>1:
# create the titles of the columns
data['result']['result_list'][0]['exit_output'] = [['Exit Id','','Throughput','' , '','Takt Time','','', 'Lifespan',''],
['','LB','AVG','RB','LB','AVG','RB','LB','AVG','RB']]
for record in data['result']['result_list'][0]['elementList']:
family=record.get('family',None)
# when found, add a row with the results of the specific exit
if family=='Exit':
exitId=record['id']
throughput=self.getConfidenceInterval(record['results'].get('throughput','undefined'),confidenceLevel)
taktTime=self.getConfidenceInterval(record['results'].get('takt_time','undefined'),confidenceLevel)
lifespan=self.getConfidenceInterval(record['results'].get('lifespan','undefined'),confidenceLevel)
data['result']['result_list'][0]['exit_output'].append([exitId,
throughput['lb'],throughput['avg'],throughput['ub'],
taktTime['lb'],taktTime['avg'],taktTime['ub'],
lifespan['lb'],lifespan['avg'],lifespan['ub']])
return data
def getConfidenceInterval(self, value_list, confidenceLevel):
from dream.KnowledgeExtraction.ConfidenceIntervals import Intervals
from dream.KnowledgeExtraction.StatisticalMeasures import BasicStatisticalMeasures
BSM=BasicStatisticalMeasures()
lb, ub = Intervals().ConfidIntervals(value_list, confidenceLevel)
return {'lb': lb,
'ub': ub,
'avg': BSM.mean(value_list)
}
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment