Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
f179c737
Commit
f179c737
authored
Nov 03, 2015
by
Georgios Dagkakis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new plugin to implement the stochastic ACO approach added and model that calls it also added
parent
9ccdb129
Changes
2
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
2558 additions
and
0 deletions
+2558
-0
dream/plugins/Batches/BatchesStochasticACO.py
dream/plugins/Batches/BatchesStochasticACO.py
+168
-0
dream/simulation/Examples/GUI_models/BatchesStochasticACO.json
.../simulation/Examples/GUI_models/BatchesStochasticACO.json
+2390
-0
No files found.
dream/plugins/Batches/BatchesStochasticACO.py
0 → 100644
View file @
f179c737
from
dream.plugins
import
plugin
from
pprint
import
pformat
from
copy
import
copy
,
deepcopy
import
json
import
time
import
random
import
operator
import
xmlrpclib
from
dream.simulation.Queue
import
Queue
from
dream.simulation.Operator
import
Operator
from
dream.simulation.Globals
import
getClassFromName
from
dream.plugins.Batches.BatchesACO
import
BatchesACO
class
BatchesStochasticACO
(
BatchesACO
):
# def run(self, data):
# ant_data = copy(data)
# # if there are no operators act as default execution plugin
# if not self.checkIfThereAreOperators(data):
# data["result"]["result_list"] = self.runOneScenario(data)['result']['result_list']
# data["result"]["result_list"][-1]["score"] = ''
# data["result"]["result_list"][-1]["key"] = "Go To Results Page"
# return data
# # else run ACO
# data['general']['numberOfSolutions']=1 # default of 1 solution for this instance
# data["general"]["distributorURL"]=None # no distributor currently, to be added in the GUI
# # use multiprocessing in the PC. This can be an option, but default for now
# import multiprocessing
# data["general"]["multiprocessorCount"] = None # multiprocessing.cpu_count()-1 or 1
# ACO.run(self, data)
# data["result"]["result_list"][-1]["score"] = ''
# data["result"]["result_list"][-1]["key"] = "Go To Results Page"
# return data
def
run
(
self
,
data
):
"""Preprocess the data.
"""
print
'I am in'
distributor_url
=
data
[
'general'
].
get
(
'distributorURL'
)
distributor
=
None
if
distributor_url
:
distributor
=
xmlrpclib
.
Server
(
distributor_url
)
multiprocessorCount
=
data
[
'general'
].
get
(
'multiprocessorCount'
)
tested_ants
=
set
()
start
=
time
.
time
()
# start counting execution time
collated
=
self
.
createCollatedScenarios
(
data
)
assert
collated
max_results
=
int
(
data
[
'general'
].
get
(
'numberOfSolutions'
,
1
))
assert
max_results
>=
1
ants
=
[]
#list of ants for keeping track of their performance
# Number of times new ants are to be created, i.e. number of generations (a
# generation can have more than 1 ant)
seedPlus
=
0
for
i
in
range
(
int
(
data
[
"general"
][
"numberOfGenerations"
])):
scenario_list
=
[]
# for the distributor
# number of ants created per generation
for
j
in
range
(
int
(
data
[
"general"
][
"numberOfAntsPerGenerations"
])):
# an ant dictionary to contain rule to queue assignment information
ant
=
{}
# for each of the machines, rules are randomly picked from the
# options list
seed
=
data
[
'general'
].
get
(
'seed'
,
10
)
if
seed
==
''
or
seed
==
' '
or
seed
==
None
:
seed
=
10
for
k
in
collated
.
keys
():
random
.
seed
(
seed
+
seedPlus
)
ant
[
k
]
=
random
.
choice
(
collated
[
k
])
seedPlus
+=
1
# TODO: function to calculate ant id. Store ant id in ant dict
ant_key
=
repr
(
ant
)
# if the ant was not already tested, only then test it
if
ant_key
not
in
tested_ants
:
tested_ants
.
add
(
ant_key
)
ant_data
=
deepcopy
(
self
.
createAntData
(
data
,
ant
))
ant
[
'key'
]
=
ant_key
ant
[
'input'
]
=
ant_data
scenario_list
.
append
(
ant
)
if
distributor
is
None
:
if
multiprocessorCount
:
self
.
logger
.
info
(
"running multiprocessing ACO with %s processes"
%
multiprocessorCount
)
# We unset our signal handler to print traceback at the end
# otherwise logs are confusing.
sigterm_handler
=
signal
.
getsignal
(
signal
.
SIGTERM
)
pool
=
Pool
(
processes
=
multiprocessorCount
)
try
:
signal
.
signal
(
signal
.
SIGTERM
,
signal
.
SIG_DFL
)
scenario_list
=
pool
.
map
(
runAntInSubProcess
,
scenario_list
)
pool
.
close
()
pool
.
join
()
finally
:
signal
.
signal
(
signal
.
SIGTERM
,
sigterm_handler
)
else
:
# synchronous
for
ant
in
scenario_list
:
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
else
:
# asynchronous
self
.
logger
.
info
(
"Registering a job for %s scenarios"
%
len
(
scenario_list
))
start_register
=
time
.
time
()
job_id
=
distributor
.
requestSimulationRun
(
[
json
.
dumps
(
x
).
encode
(
'zlib'
).
encode
(
'base64'
)
for
x
in
scenario_list
])
self
.
logger
.
info
(
"Job registered as %s (took %0.2fs)"
%
(
job_id
,
time
.
time
()
-
start_register
))
while
True
:
time
.
sleep
(
1.
)
result_list
=
distributor
.
getJobResult
(
job_id
)
# The distributor returns None when calculation is still ongoing,
# or the list of result in the same order.
if
result_list
is
not
None
:
self
.
logger
.
info
(
"Job %s terminated"
%
job_id
)
break
for
ant
,
result
in
zip
(
scenario_list
,
result_list
):
result
=
json
.
loads
(
result
)
if
'result'
in
result
:
# XXX is this still needed ???
result
=
result
[
'result'
]
assert
"result_list"
in
result
else
:
result
=
{
'result_list'
:
[
result
]}
ant
[
'result'
]
=
result
for
ant
in
scenario_list
:
ant
[
'score'
]
=
self
.
_calculateAntScore
(
ant
)
ants
.
extend
(
scenario_list
)
# remove ants that outputs the same schedules
# XXX we in fact remove ants that produce the same output json
ants_without_duplicates
=
dict
()
for
ant
in
ants
:
ant_result
,
=
copy
(
ant
[
'result'
][
'result_list'
])
ant_result
[
'general'
].
pop
(
'totalExecutionTime'
,
None
)
ant_result
=
json
.
dumps
(
ant_result
,
sort_keys
=
True
)
ants_without_duplicates
[
ant_result
]
=
ant
# The ants in this generation are ranked based on their scores and the
# best (max_results) are selected
ants
=
sorted
(
ants_without_duplicates
.
values
(),
key
=
operator
.
itemgetter
(
'score'
))[:
max_results
]
for
l
in
ants
:
# update the options list to ensure that good performing queue-rule
# combinations have increased representation and good chance of
# being selected in the next generation
for
m
in
collated
.
keys
():
# e.g. if using EDD gave good performance for Q1, then another
# 'EDD' is added to Q1 so there is a higher chance that it is
# selected by the next ants.
collated
[
m
].
append
(
l
[
m
])
data
[
'result'
][
'result_list'
]
=
result_list
=
[]
for
ant
in
ants
:
result
,
=
ant
[
'result'
][
'result_list'
]
result
[
'score'
]
=
ant
[
'score'
]
result
[
'key'
]
=
ant
[
'key'
]
result_list
.
append
(
result
)
self
.
logger
.
info
(
"ACO finished, execution time %0.2fs"
%
(
time
.
time
()
-
start
))
return
data
dream/simulation/Examples/GUI_models/BatchesStochasticACO.json
0 → 100644
View file @
f179c737
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment