Commit 6df61f1c authored by Achilleas Pipinellis's avatar Achilleas Pipinellis

Initial 10K reference architecture

parent 490145d4
---
reading_time: true
---
# Reference architecture: up to 10,000 users # Reference architecture: up to 10,000 users
This page describes GitLab reference architecture for up to 10,000 users. This page describes GitLab reference architecture for up to 10,000 users.
For a full list of reference architectures, see For a full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures). [Available reference architectures](index.md#available-reference-architectures).
NOTE: **Note:** The 10,000-user reference architecture documented below is
designed to help your organization achieve a highly-available GitLab deployment.
If you do not have the expertise or need to maintain a highly-available
environment, you can have a simpler and less costly-to-operate environment by
following the [2,000-user reference architecture](2k_users.md).
> - **Supported users (approximate):** 10,000 > - **Supported users (approximate):** 10,000
> - **High Availability:** True > - **High Availability:** True
> - **Test RPS rates:** API: 200 RPS, Web: 20 RPS, Git: 20 RPS > - **Test RPS rates:** API: 200 RPS, Web: 20 RPS, Git: 20 RPS
| Service | Nodes | Configuration ([8](#footnotes)) | GCP | AWS | Azure | | Service | Nodes | Configuration | GCP | AWS | Azure |
|--------------------------------------------------------------|-------|---------------------------------|----------------|-----------------------|----------------| |--------------------------------------------------------------|-------|---------------------------------|------------------|-----------------------|----------------|
| GitLab Rails ([1](#footnotes)) | 3 | 32 vCPU, 28.8GB Memory | n1-highcpu-32 | c5.9xlarge | F32s v2 | | External load balancing node | 1 | 2 vCPU, 1.8GB Memory | `n1-highcpu-2` | `c5.large` | `F2s v2` |
| PostgreSQL | 3 | 4 vCPU, 15GB Memory | n1-standard-4 | m5.xlarge | D4s v3 | | Consul | 3 | 2 vCPU, 1.8GB Memory | `n1-highcpu-2` | `c5.large` | `F2s v2` |
| PgBouncer | 3 | 2 vCPU, 1.8GB Memory | n1-highcpu-2 | c5.large | F2s v2 | | PostgreSQL | 3 | 4 vCPU, 15GB Memory | `n1-standard-4` | `m5.xlarge` | `D4s v3` |
| Gitaly ([2](#footnotes)) ([5](#footnotes)) ([7](#footnotes)) | X | 16 vCPU, 60GB Memory | n1-standard-16 | m5.4xlarge | D16s v3 | | PgBouncer | 3 | 2 vCPU, 1.8GB Memory | `n1-highcpu-2` | `c5.large` | `F2s v2` |
| Redis ([3](#footnotes)) - Cache | 3 | 4 vCPU, 15GB Memory | n1-standard-4 | m5.xlarge | D4s v3 | | Internal load balancing node | 1 | 2 vCPU, 1.8GB Memory | `n1-highcpu-2` | `c5.large` | `F2s v2` |
| Redis ([3](#footnotes)) - Queues / Shared State | 3 | 4 vCPU, 15GB Memory | n1-standard-4 | m5.xlarge | D4s v3 | | Redis - Cache | 3 | 4 vCPU, 15GB Memory | `n1-standard-4` | `m5.xlarge` | `D4s v3` |
| Redis Sentinel ([3](#footnotes)) - Cache | 3 | 1 vCPU, 1.7GB Memory | g1-small | t2.small | B1MS | | Redis - Queues / Shared State | 3 | 4 vCPU, 15GB Memory | `n1-standard-4` | `m5.xlarge` | `D4s v3` |
| Redis Sentinel ([3](#footnotes)) - Queues / Shared State | 3 | 1 vCPU, 1.7GB Memory | g1-small | t2.small | B1MS | | Redis Sentinel - Cache | 3 | 1 vCPU, 1.7GB Memory | `g1-small` | `t2.small` | `B1MS` |
| Consul | 3 | 2 vCPU, 1.8GB Memory | n1-highcpu-2 | c5.large | F2s v2 | | Redis Sentinel - Queues / Shared State | 3 | 1 vCPU, 1.7GB Memory | `g1-small` | `t2.small` | `B1MS` |
| Sidekiq | 4 | 4 vCPU, 15GB Memory | n1-standard-4 | m5.xlarge | D4s v3 | | Gitaly | 2 minimum | 16 vCPU, 60GB Memory | `n1-standard-16` | `m5.4xlarge` | `D16s v3` |
| Object Storage ([4](#footnotes)) | - | - | - | - | - | | Sidekiq | 4 | 4 vCPU, 15GB Memory | `n1-standard-4` | `m5.xlarge` | `D4s v3` |
| NFS Server ([5](#footnotes)) ([7](#footnotes)) | 1 | 4 vCPU, 3.6GB Memory | n1-highcpu-4 | c5.xlarge | F4s v2 | | GitLab Rails | 3 | 32 vCPU, 28.8GB Memory | `n1-highcpu-32` | `c5.9xlarge` | `F32s v2` |
| Monitoring node | 1 | 4 vCPU, 3.6GB Memory | n1-highcpu-4 | c5.xlarge | F4s v2 | | Monitoring node | 1 | 4 vCPU, 3.6GB Memory | `n1-highcpu-4` | `c5.xlarge` | `F4s v2` |
| External load balancing node ([6](#footnotes)) | 1 | 2 vCPU, 1.8GB Memory | n1-highcpu-2 | c5.large | F2s v2 | | Object Storage | n/a | n/a | n/a | n/a | n/a |
| Internal load balancing node ([6](#footnotes)) | 1 | 2 vCPU, 1.8GB Memory | n1-highcpu-2 | c5.large | F2s v2 | | NFS Server | 1 | 4 vCPU, 3.6GB Memory | `n1-highcpu-4` | `c5.xlarge` | `F4s v2` |
## Footnotes The architectures were built and tested with the [Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform on GCP. On different hardware you may find that adjustments, either lower
1. In our architectures we run each GitLab Rails node using the Puma webserver or higher, are required for your CPU or Node counts accordingly. For more information, a
and have its number of workers set to 90% of available CPUs along with four threads. For [Sysbench](https://github.com/akopytov/sysbench) benchmark of the CPU can be found
nodes that are running Rails with other components the worker value should be reduced [here](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).
accordingly where we've found 50% achieves a good balance but this is dependent
on workload. For data objects such as LFS, Uploads, Artifacts, etc., an [object storage service](#configure-the-object-storage)
is recommended over NFS where possible, due to better performance and availability.
1. Gitaly node requirements are dependent on customer data, specifically the number of Since this doesn't require a node to be set up, it's marked as not applicable (n/a)
projects and their sizes. We recommend two nodes as an absolute minimum for HA environments in the table above.
and at least four nodes should be used when supporting 50,000 or more users.
We also recommend that each Gitaly node should store no more than 5TB of data ## Setup components
and have the number of [`gitaly-ruby` workers](../gitaly/index.md#gitaly-ruby)
set to 20% of available CPUs. Additional nodes should be considered in conjunction To set up GitLab and its components to accommodate up to 10,000 users:
with a review of expected data size and spread based on the recommendations above.
1. [Configure the external load balancing node](#configure-the-external-load-balancer)
1. Recommended Redis setup differs depending on the size of the architecture. that will handle the load balancing of the two GitLab application services nodes.
For smaller architectures (less than 3,000 users) a single instance should suffice. 1. [Configure Consul](#configure-consul).
For medium sized installs (3,000 - 5,000) we suggest one Redis cluster for all 1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
classes and that Redis Sentinel is hosted alongside Consul. 1. [Configure PgBouncer](#configure-pgbouncer).
For larger architectures (10,000 users or more) we suggest running a separate 1. [Configure the internal load balancing node](#configure-the-internal-load-balancer)
[Redis Cluster](../redis/replication_and_failover.md#running-multiple-redis-clusters) for the Cache class 1. [Configure Redis](#configure-redis).
and another for the Queues and Shared State classes respectively. We also recommend 1. [Configure Sentinel](#configure-sentinel).
that you run the Redis Sentinel clusters separately for each Redis Cluster. 1. [Configure Gitaly](#configure-gitaly),
which provides access to the Git repositories.
1. For data objects such as LFS, Uploads, Artifacts, etc. We recommend an [Object Storage service](../object_storage.md) 1. [Configure Sidekiq](#configure-sidekiq).
over NFS where possible, due to better performance and availability. 1. [Configure the main GitLab Rails application](#configure-gitlab-rails)
to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend requests (UI, API, Git
1. NFS can be used as an alternative for both repository data (replacing Gitaly) and over HTTP/SSH).
object storage but this isn't typically recommended for performance reasons. Note however it is required for 1. [Configure Prometheus](#configure-prometheus) to monitor your GitLab environment.
[GitLab Pages](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/196). 1. [Configure the Object Storage](#configure-the-object-storage)
used for shared data objects.
1. Our architectures have been tested and validated with [HAProxy](https://www.haproxy.org/) 1. [Configure NFS (Optional)](#configure-nfs-optional)
as the load balancer. Although other load balancers with similar feature sets to have shared disk storage service as an alternative to Gitaly and/or Object Storage (although
could also be used, those load balancers have not been validated. not recommended). NFS is required for GitLab Pages, you can skip this step if you're not using
that feature.
1. We strongly recommend that any Gitaly or NFS nodes be set up with SSD disks over
HDD with a throughput of at least 8,000 IOPS for read operations and 2,000 IOPS for write We start with all servers on the same 10.6.0.0/24 private network range, they
as these components have heavy I/O. These IOPS values are recommended only as a starter can connect to each other freely on those addresses.
as with time they may be adjusted higher or lower depending on the scale of your
environment's workload. If you're running the environment on a Cloud provider Here is a list and description of each machine and the assigned IP:
you may need to refer to their documentation on how configure IOPS correctly.
- `10.6.0.10`: External Load Balancer
1. The architectures were built and tested with the [Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms) - `10.6.0.11`: Consul 1
CPU platform on GCP. On different hardware you may find that adjustments, either lower - `10.6.0.12`: Consul 2
or higher, are required for your CPU or Node counts accordingly. For more information, a - `10.6.0.13`: Consul 3
[Sysbench](https://github.com/akopytov/sysbench) benchmark of the CPU can be found - `10.6.0.31`: PostgreSQL primary
[here](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks). - `10.6.0.32`: PostgreSQL secondary 1
- `10.6.0.33`: PostgreSQL secondary 2
- `10.6.0.21`: PgBouncer 1
- `10.6.0.22`: PgBouncer 2
- `10.6.0.23`: PgBouncer 3
- `10.6.0.20`: Internal Load Balancer
- `10.6.0.61`: Redis - Cache Primary
- `10.6.0.62`: Redis - Cache Replica 1
- `10.6.0.63`: Redis - Cache Replica 2
- `10.6.0.61`: Redis - Queues Primary
- `10.6.0.62`: Redis - Queues Replica 1
- `10.6.0.63`: Redis - Queues Replica 2
- `10.6.0.11`: Sentinel - Cache 1
- `10.6.0.12`: Sentinel - Cache 2
- `10.6.0.13`: Sentinel - Cache 3
- `10.6.0.11`: Sentinel - Queues 1
- `10.6.0.12`: Sentinel - Queues 2
- `10.6.0.13`: Sentinel - Queues 3
- `10.6.0.51`: Gitaly 1
- `10.6.0.52`: Gitaly 2
- `10.6.0.71`: Sidekiq 1
- `10.6.0.72`: Sidekiq 2
- `10.6.0.73`: Sidekiq 3
- `10.6.0.74`: Sidekiq 4
- `10.6.0.41`: GitLab application 1
- `10.6.0.42`: GitLab application 2
- `10.6.0.43`: GitLab application 3
- `10.6.0.81`: Prometheus
## Configure the external load balancer
NOTE: **Note:**
This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.
In an active/active GitLab configuration, you will need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or the exact configuration is beyond the scope of GitLab documentation. We hope
that if you're managing multi-node systems like GitLab you have a load balancer of
choice already. Some examples including HAProxy (open-source), F5 Big-IP LTM,
and Citrix Net Scaler. This documentation will outline what ports and protocols
you need to use with GitLab.
The next question is how you will handle SSL in your environment.
There are several different options:
- [The application node terminates SSL](#application-node-terminates-ssl).
- [The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.
- [The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is *secure* between the load balancer and the application node.
### Application node terminates SSL
Configure your load balancer to pass connections on port 443 as `TCP` rather
than `HTTP(S)` protocol. This will pass the connection to the application node's
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.
See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.
### Load balancer terminates SSL without backend SSL
Configure your load balancer to use the `HTTP(S)` protocol rather than `TCP`.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.
Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.
### Load balancer terminates SSL with backend SSL
Configure your load balancer(s) to use the 'HTTP(S)' protocol rather than 'TCP'.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.
Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.
### Ports
The basic ports to be used are shown in the table below.
| LB Port | Backend Port | Protocol |
| ------- | ------------ | ------------------------ |
| 80 | 80 | HTTP (*1*) |
| 443 | 443 | TCP or HTTPS (*1*) (*2*) |
| 22 | 22 | TCP |
- (*1*): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the `Connection` and `Upgrade` hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.
- (*2*): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.
If you're using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
`pages_external_url` from `/etc/gitlab/gitlab.rb` at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.
| LB Port | Backend Port | Protocol |
| ------- | ------------- | --------- |
| 80 | Varies (*1*) | HTTP |
| 443 | Varies (*1*) | TCP (*2*) |
- (*1*): The backend port for GitLab Pages depends on the
`gitlab_pages['external_http']` and `gitlab_pages['external_https']`
setting. See [GitLab Pages documentation](../pages/index.md) for more details.
- (*2*): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.
#### Alternate SSH Port
Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.
Configure DNS for an alternate SSH hostname such as `altssh.gitlab.example.com`.
| LB Port | Backend Port | Protocol |
| ------- | ------------ | -------- |
| 443 | 22 | TCP |
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure Redis
Using [Redis](https://redis.io/) in scalable environment is possible using a **Primary** x **Replica**
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.
Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.
In this section, you'll be guided through configuring an external Redis instance
to be used with GitLab. The following IPs will be used as an example:
- `10.6.0.61`: Redis Primary
- `10.6.0.62`: Redis Replica 1
- `10.6.0.63`: Redis Replica 2
### Provide your own Redis instance
Managed Redis from cloud providers such as AWS ElastiCache will work. If these
services support high availability, be sure it is **not** the Redis Cluster type.
Redis version 5.0 or higher is required, as this is what ships with
Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions
do not support an optional count argument to SPOP which is now required for
[Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
Note the Redis node's IP address or hostname, port, and password (if required).
These will be necessary when configuring the
[GitLab application servers](#configure-gitlab-rails) later.
### Standalone Redis using Omnibus GitLab
This is the section where we install and set up the new Redis instances.
The requirements for a Redis setup are the following:
1. All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (`6379`) and Sentinel (`26379`) ports (unless you
change the default ones).
1. The server that hosts the GitLab application must be able to access the
Redis nodes.
1. Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.
NOTE: **Note:**
Redis nodes (both primary and replica) will need the same password defined in
`redis['password']`. At any time during a failover the Sentinels can
reconfigure a node and change its status from primary to replica and vice versa.
#### Configuring the primary Redis instance
1. SSH into the **Primary** Redis server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want using **steps 1 and 2** from the GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version
and type (Community, Enterprise editions) of your current install.
- Do not complete any other steps on the download page.
1. Edit `/etc/gitlab/gitlab.rb` and add the contents:
```ruby
# Specify server role as 'redis_master_role'
roles ['redis_master_role']
# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to '0.0.0.0' which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis['bind'] = '10.6.0.61'
# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis['port'] = 6379
# Set up password authentication for Redis (use the same password in all nodes).
redis['password'] = 'redis-password-goes-here'
## Enable service discovery for Prometheus
consul['enable'] = true
consul['monitoring_service_discovery'] = true
## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
}
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
redis_exporter['listen_address'] = '0.0.0.0:9121'
```
1. Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your `/etc/gitlab/gitlab.rb` file:
```ruby
gitlab_rails['auto_migrate'] = false
```
1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
NOTE: **Note:**
You can specify multiple roles like sentinel and Redis as:
`roles ['redis_sentinel_role', 'redis_master_role']`.
Read more about [roles](https://docs.gitlab.com/omnibus/roles/).
#### Configuring the replica Redis instances
1. SSH into the **replica** Redis server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want using **steps 1 and 2** from the GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version
and type (Community, Enterprise editions) of your current install.
- Do not complete any other steps on the download page.
1. Edit `/etc/gitlab/gitlab.rb` and add the contents:
```ruby
# Specify server role as 'redis_replica_role'
roles ['redis_replica_role']
# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to '0.0.0.0' which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis['bind'] = '10.6.0.62'
# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis['port'] = 6379
# The same password for Redis authentication you set up for the primary node.
redis['password'] = 'redis-password-goes-here'
# The IP of the primary Redis node.
redis['master_ip'] = '10.6.0.61'
# Port of primary Redis server, uncomment to change to non default. Defaults
# to `6379`.
#redis['master_port'] = 6379
## Enable service discovery for Prometheus
consul['enable'] = true
consul['monitoring_service_discovery'] = true
## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
}
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
redis_exporter['listen_address'] = '0.0.0.0:9121'
```
1. To prevent reconfigure from running automatically on upgrade, run:
```shell
sudo touch /etc/gitlab/skip-auto-reconfigure
```
1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and
make sure to set up the IPs correctly.
NOTE: **Note:**
You can specify multiple roles like sentinel and Redis as:
`roles ['redis_sentinel_role', 'redis_master_role']`.
Read more about [roles](https://docs.gitlab.com/omnibus/roles/).
These values don't have to be changed again in `/etc/gitlab/gitlab.rb` after
a failover, as the nodes will be managed by the [Sentinels](#configure-consul-and-sentinel), and even after a
`gitlab-ctl reconfigure`, they will get their configuration restored by
the same Sentinels.
Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure Consul and Sentinel
NOTE: **Note:** If you are using an external Redis Sentinel instance, be sure
to exclude the `requirepass` parameter from the Sentinel
configuration. This parameter will cause clients to report `NOAUTH
Authentication required.`. [Redis Sentinel 3.2.x does not support
password authentication](https://github.com/antirez/redis/issues/3279).
Now that the Redis servers are all set up, let's configure the Sentinel
servers. The following IPs will be used as an example:
- `10.6.0.11`: Consul/Sentinel 1
- `10.6.0.12`: Consul/Sentinel 2
- `10.6.0.13`: Consul/Sentinel 3
To configure the Sentinel:
1. SSH into the server that will host Consul/Sentinel.
1. [Download/install](https://about.gitlab.com/install/) the
Omnibus GitLab Enterprise Edition package using **steps 1 and 2** from the
GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version
the GitLab application is running.
- Do not complete any other steps on the download page.
1. Edit `/etc/gitlab/gitlab.rb` and add the contents:
```ruby
roles ['redis_sentinel_role', 'consul_role']
# Must be the same in every sentinel node
redis['master_name'] = 'gitlab-redis'
# The same password for Redis authentication you set up for the primary node.
redis['master_password'] = 'redis-password-goes-here'
# The IP of the primary Redis node.
redis['master_ip'] = '10.6.0.61'
# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis['port'] = 6379
# Port of primary Redis server, uncomment to change to non default. Defaults
# to `6379`.
#redis['master_port'] = 6379
## Configure Sentinel
sentinel['bind'] = '10.6.0.11'
# Port that Sentinel listens on, uncomment to change to non default. Defaults
# to `26379`.
# sentinel['port'] = 26379
## Quorum must reflect the amount of voting sentinels it take to start a failover.
## Value must NOT be greater then the amount of sentinels.
##
## The quorum can be used to tune Sentinel in two ways:
## 1. If a the quorum is set to a value smaller than the majority of Sentinels
## we deploy, we are basically making Sentinel more sensible to primary failures,
## triggering a failover as soon as even just a minority of Sentinels is no longer
## able to talk with the primary.
## 1. If a quorum is set to a value greater than the majority of Sentinels, we are
## making Sentinel able to failover only when there are a very large number (larger
## than majority) of well connected Sentinels which agree about the primary being down.s
sentinel['quorum'] = 2
## Consider unresponsive server down after x amount of ms.
# sentinel['down_after_milliseconds'] = 10000
## Specifies the failover timeout in milliseconds. It is used in many ways:
##
## - The time needed to re-start a failover after a previous failover was
## already tried against the same primary by a given Sentinel, is two
## times the failover timeout.
##
## - The time needed for a replica replicating to a wrong primary according
## to a Sentinel current configuration, to be forced to replicate
## with the right primary, is exactly the failover timeout (counting since
## the moment a Sentinel detected the misconfiguration).
##
## - The time needed to cancel a failover that is already in progress but
## did not produced any configuration change (REPLICAOF NO ONE yet not
## acknowledged by the promoted replica).
##
## - The maximum time a failover in progress waits for all the replica to be
## reconfigured as replicas of the new primary. However even after this time
## the replicas will be reconfigured by the Sentinels anyway, but not with
## the exact parallel-syncs progression as specified.
# sentinel['failover_timeout'] = 60000
## Enable service discovery for Prometheus
consul['enable'] = true
consul['monitoring_service_discovery'] = true
## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
}
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
redis_exporter['listen_address'] = '0.0.0.0:9121'
# Disable auto migrations
gitlab_rails['auto_migrate'] = false
```
1. To prevent database migrations from running on upgrade, run:
```shell
sudo touch /etc/gitlab/skip-auto-reconfigure
```
Only the primary GitLab application server should handle migrations.
1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and
make sure you set up the correct IPs.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure PostgreSQL
In this section, you'll be guided through configuring an external PostgreSQL database
to be used with GitLab.
### Provide your own PostgreSQL instance
If you're hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.
If you use a cloud-managed service, or provide your own PostgreSQL:
1. Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).
1. Set up a `gitlab` username with a password of your choice. The `gitlab` user
needs privileges to create the `gitlabhq_production` database.
1. Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).
### Standalone PostgreSQL using Omnibus GitLab
The following IPs will be used as an example:
- `10.6.0.31`: PostgreSQL primary
- `10.6.0.32`: PostgreSQL secondary 1
- `10.6.0.33`: PostgreSQL secondary 2
First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package **on each node**. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the `EXTERNAL_URL` value.
#### PostgreSQL primary node
1. SSH into the PostgreSQL primary node.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default
username of `gitlab` (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of `<postgresql_password_hash>`:
```shell
sudo gitlab-ctl pg-password-md5 gitlab
```
1. Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of `pgbouncer` (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of `<pgbouncer_password_hash>`:
```shell
sudo gitlab-ctl pg-password-md5 pgbouncer
```
1. Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of `gitlab-consul` (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of `<consul_password_hash>`:
```shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
```
1. On the primary database node, edit `/etc/gitlab/gitlab.rb` replacing values noted in the `# START user configuration` section:
```ruby
# Disable all components except PostgreSQL and Repmgr and Consul
roles ['postgres_role']
# PostgreSQL configuration
postgresql['listen_address'] = '0.0.0.0'
postgresql['hot_standby'] = 'on'
postgresql['wal_level'] = 'replica'
postgresql['shared_preload_libraries'] = 'repmgr_funcs'
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
# Configure the Consul agent
consul['services'] = %w(postgresql)
# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>'
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql['sql_user_password'] = '<postgresql_password_hash>'
# Set `max_wal_senders` to one more than the number of database nodes in the cluster.
# This is used to prevent replication from using up all of the
# available database connections.
postgresql['max_wal_senders'] = 4
postgresql['max_replication_slots'] = 4
# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/24)
repmgr['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24)
## Enable service discovery for Prometheus
consul['monitoring_service_discovery'] = true
# Set the network addresses that the exporters will listen on for monitoring
node_exporter['listen_address'] = '0.0.0.0:9100'
postgres_exporter['listen_address'] = '0.0.0.0:9187'
## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
}
#
# END user configuration
```
1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
#### PostgreSQL secondary nodes
1. On both the secondary nodes, add the same configuration specified above for the primary node
with an additional setting that will inform `gitlab-ctl` that they are standby nodes initially
and there's no need to attempt to register them as a primary node:
```ruby
# Disable all components except PostgreSQL and Repmgr and Consul
roles ['postgres_role']
# PostgreSQL configuration
postgresql['listen_address'] = '0.0.0.0'
postgresql['hot_standby'] = 'on'
postgresql['wal_level'] = 'replica'
postgresql['shared_preload_libraries'] = 'repmgr_funcs'
# Disable automatic database migrations
gitlab_rails['auto_migrate'] = false
# Configure the Consul agent
consul['services'] = %w(postgresql)
# Specify if a node should attempt to be primary on initialization.
repmgr['master_on_initialization'] = false
# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>'
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql['sql_user_password'] = '<postgresql_password_hash>'
# Set `max_wal_senders` to one more than the number of database nodes in the cluster.
# This is used to prevent replication from using up all of the
# available database connections.
postgresql['max_wal_senders'] = 4
postgresql['max_replication_slots'] = 4
# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/24)
repmgr['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.6.0.0/24)
## Enable service discovery for Prometheus
consul['monitoring_service_discovery'] = true
# Set the network addresses that the exporters will listen on for monitoring
node_exporter['listen_address'] = '0.0.0.0:9100'
postgres_exporter['listen_address'] = '0.0.0.0:9187'
## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
}
#
# END user configuration
```
1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
#### PostgreSQL post-configuration
SSH into the **primary node**:
1. Open a database prompt:
```shell
gitlab-psql -d gitlabhq_production
```
1. Enable the `pg_trgm` extension:
```shell
CREATE EXTENSION pg_trgm;
```
1. Exit the database prompt by typing `\q` and Enter.
1. Verify the cluster is initialized with one node:
```shell
gitlab-ctl repmgr cluster show
```
The output should be similar to the following:
```plaintext
Role | Name | Upstream | Connection String
----------+----------|----------|----------------------------------------
* master | HOSTNAME | | host=HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr
```
1. Note down the hostname or IP address in the connection string: `host=HOSTNAME`. We will
refer to the hostname in the next section as `<primary_node_name>`. If the value
is not an IP address, it will need to be a resolvable name (via DNS or
`/etc/hosts`)
SSH into the **secondary node**:
1. Set up the repmgr standby:
```shell
gitlab-ctl repmgr standby setup <primary_node_name>
```
Do note that this will remove the existing data on the node. The command
has a wait time.
The output should be similar to the following:
```console
Doing this will delete the entire contents of /var/opt/gitlab/postgresql/data
If this is not what you want, hit Ctrl-C now to exit
To skip waiting, rerun with the -w option
Sleeping for 30 seconds
Stopping the database
Removing the data
Cloning the data
Starting the database
Registering the node with the cluster
ok: run: repmgrd: (pid 19068) 0s
```
Before moving on, make sure the databases are configured correctly. Run the
following command on the **primary** node to verify that replication is working
properly and the secondary nodes appear in the cluster:
```shell
gitlab-ctl repmgr cluster show
```
The output should be similar to the following:
```plaintext
Role | Name | Upstream | Connection String
----------+---------|-----------|------------------------------------------------
* master | MASTER | | host=<primary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=<secondary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
standby | STANDBY | MASTER | host=<secondary_node_name> user=gitlab_repmgr dbname=gitlab_repmgr
```
If the 'Role' column for any node says "FAILED", check the
[Troubleshooting section](troubleshooting.md) before proceeding.
Also, check that the `repmgr-check-master` command works successfully on each node:
```shell
su - gitlab-consul
gitlab-ctl repmgr-check-master || echo 'This node is a standby repmgr node'
```
This command relies on exit codes to tell Consul whether a particular node is a master
or secondary. The most important thing here is that this command does not produce errors.
If there are errors it's most likely due to incorrect `gitlab-consul` database user permissions.
Check the [Troubleshooting section](troubleshooting.md) before proceeding.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure PgBouncer
Now that the PostgreSQL servers are all set up, let's configure PgBouncer.
The following IPs will be used as an example:
- `10.6.0.21`: PgBouncer 1
- `10.6.0.22`: PgBouncer 2
- `10.6.0.23`: PgBouncer 3
1. On each PgBouncer node, edit `/etc/gitlab/gitlab.rb`, and replace
`<consul_password_hash>` and `<pgbouncer_password_hash>` with the
password hashes you [set up previously](#postgresql-primary-node):
```ruby
# Disable all components except Pgbouncer and Consul agent
roles ['pgbouncer_role']
# Configure PgBouncer
pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul)
pgbouncer['users'] = {
'gitlab-consul': {
password: '<consul_password_hash>'
},
'pgbouncer': {
password: '<pgbouncer_password_hash>'
}
}
# Configure Consul agent
consul['watchers'] = %w(postgresql)
consul['enable'] = true
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
# Enable service discovery for Prometheus
consul['monitoring_service_discovery'] = true
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
```
1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Create a `.pgpass` file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:
```shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
```
1. Ensure each node is talking to the current master:
```shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
```
If there is an error `psql: ERROR: Auth failed` after typing in the
password, ensure you previously generated the MD5 password hashes with the correct
format. The correct format is to concatenate the password and the username:
`PASSWORDUSERNAME`. For example, `Sup3rS3cr3tpgbouncer` would be the text
needed to generate an MD5 password hash for the `pgbouncer` user.
1. Once the console prompt is available, run the following queries:
```shell
show databases ; show clients ;
```
The output should be similar to the following:
```plaintext
name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections
---------------------+-------------+------+---------------------+------------+-----------+--------------+-----------+-----------------+---------------------
gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0
pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0
(2 rows)
type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls
------+-----------+---------------------+---------+----------------+-------+------------+------------+---------------------+---------------------+-----------+------+------------+-----
C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 |
(2 rows)
```
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
### Configure the internal load balancer
If you're running more than one PgBouncer node as recommended, then at this time you'll need to set
up a TCP internal load balancer to serve each correctly.
The following IP will be used as an example:
- `10.6.0.20`: Internal Load Balancer
Here's how you could do it with [HAProxy](https://www.haproxy.org/):
```plaintext
global
log /dev/log local0
log localhost local1 notice
log stdout format raw local0
defaults
log global
default-server inter 10s fall 3 rise 2
balance leastconn
frontend internal-pgbouncer-tcp-in
bind *:6432
mode tcp
option tcplog
default_backend pgbouncer
backend pgbouncer
mode tcp
option tcp-check
server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check
```
Refer to your preferred Load Balancer's documentation for further guidance.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure Gitaly
Deploying Gitaly in its own server can benefit GitLab installations that are
larger than a single machine.
The Gitaly node requirements are dependent on customer data, specifically the number of
projects and their repository sizes. Two nodes are recommended as an absolute minimum.
Each Gitaly node should store no more than 5TB of data and have the number of
[`gitaly-ruby` workers](../gitaly/index.md#gitaly-ruby) set to 20% of available CPUs.
Additional nodes should be considered in conjunction with a review of expected
data size and spread based on the recommendations above.
It is also strongly recommended that all Gitaly nodes be set up with SSD disks with
a throughput of at least 8,000 IOPS for read operations and 2,000 IOPS for write,
as Gitaly has heavy I/O. These IOPS values are recommended only as a starter as with
time they may be adjusted higher or lower depending on the scale of your environment's workload.
If you're running the environment on a Cloud provider, you may need to refer to
their documentation on how to configure IOPS correctly.
Some things to note:
- The GitLab Rails application shards repositories into [repository storages](../repository_storage_paths.md).
- A Gitaly server can host one or more storages.
- A GitLab server can use one or more Gitaly servers.
- Gitaly addresses must be specified in such a way that they resolve
correctly for ALL Gitaly clients.
- Gitaly servers must not be exposed to the public internet, as Gitaly's network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).
TIP: **Tip:**
For more information about Gitaly's history and network architecture see the
[standalone Gitaly documentation](../gitaly/index.md).
Note: **Note:** The token referred to throughout the Gitaly documentation is
just an arbitrary password selected by the administrator. It is unrelated to
tokens created for the GitLab API or other similar web API tokens.
Below we describe how to configure two Gitaly servers, with IPs and
domain names:
- `10.6.0.51`: Gitaly 1 (`gitaly1.internal`)
- `10.6.0.52`: Gitaly 2 (`gitaly2.internal`)
The secret token is assumed to be `gitalysecret` and that
your GitLab installation has three repository storages:
- `default` on Gitaly 1
- `storage1` on Gitaly 1
- `storage2` on Gitaly 2
On each node:
1. [Download/Install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want using **steps 1 and 2** from the GitLab downloads page but
**without** providing the `EXTERNAL_URL` value.
1. Edit `/etc/gitlab/gitlab.rb` to configure storage paths, enable
the network listener and configure the token:
<!--
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
-->
```ruby
# /etc/gitlab/gitlab.rb
# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the GitLab Rails application setup
gitaly['auth_token'] = 'gitlaysecret'
gitlab_shell['secret_token'] = 'shellsecret'
# Avoid running unnecessary services on the Gitaly server
postgresql['enable'] = false
redis['enable'] = false
nginx['enable'] = false
puma['enable'] = false
unicorn['enable'] = false
sidekiq['enable'] = false
gitlab_workhorse['enable'] = false
grafana['enable'] = false
# If you run a seperate monitoring node you can disable these services
alertmanager['enable'] = false
prometheus['enable'] = false
# Prevent database connections during 'gitlab-ctl reconfigure'
gitlab_rails['rake_cache_clear'] = false
gitlab_rails['auto_migrate'] = false
# Configure the gitlab-shell API callback URL. Without this, `git push` will
# fail. This can be your 'front door' GitLab URL or an internal load
# balancer.
# Don't forget to copy `/etc/gitlab/gitlab-secrets.json` from web server to Gitaly server.
gitlab_rails['internal_api_url'] = 'https://gitlab.example.com'
# Make Gitaly accept connections on all network interfaces. You must use
# firewalls to restrict access to this address/port.
# Comment out following line if you only want to support TLS connections
gitaly['listen_addr'] = "0.0.0.0:8075"
```
1. Append the following to `/etc/gitlab/gitlab.rb` for each respective server:
1. On `gitaly1.internal`:
```ruby
git_data_dirs({
'default' => {
'path' => '/var/opt/gitlab/git-data'
},
'storage1' => {
'path' => '/mnt/gitlab/git-data'
},
})
```
1. On `gitaly2.internal`:
```ruby
git_data_dirs({
'storage2' => {
'path' => '/mnt/gitlab/git-data'
},
})
```
<!--
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
-->
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm that Gitaly can perform callbacks to the internal API:
```shell
sudo /opt/gitlab/embedded/service/gitlab-shell/bin/check -config /opt/gitlab/embedded/service/gitlab-shell/config.yml
```
### Gitaly TLS support
Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use `tls://` URL
scheme in the `gitaly_address` of the corresponding storage entry in the GitLab configuration.
You will need to bring your own certificates as this isn't provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).
NOTE: **Note**
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).
NOTE: **Note:**
It is possible to configure Gitaly servers with both an
unencrypted listening address `listen_addr` and an encrypted listening
address `tls_listen_addr` at the same time. This allows you to do a
gradual transition from unencrypted to encrypted traffic, if necessary.
To configure Gitaly with TLS:
1. Create the `/etc/gitlab/ssl` directory and copy your key and certificate there:
```shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
```
1. Copy the cert to `/etc/gitlab/trusted-certs` so Gitaly will trust the cert when
calling into itself:
```shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
```
1. Edit `/etc/gitlab/gitlab.rb` and add:
<!--
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
-->
```ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
```
1. Delete `gitaly['listen_addr']` to allow only encrypted connections.
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure Sidekiq
Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance.
The following IPs will be used as an example:
- `10.6.0.71`: Sidekiq 1
- `10.6.0.72`: Sidekiq 2
- `10.6.0.73`: Sidekiq 3
- `10.6.0.74`: Sidekiq 4
To configure the Sidekiq nodes, one each one:
1. SSH into the Sidekiq server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab package
you want using steps 1 and 2 from the GitLab downloads page.
**Do not complete any other steps on the download page.**
1. Open `/etc/gitlab/gitlab.rb` with your editor:
```ruby
########################################
##### Services Disabled ###
########################################
nginx['enable'] = false
grafana['enable'] = false
prometheus['enable'] = false
gitlab_rails['auto_migrate'] = false
alertmanager['enable'] = false
gitaly['enable'] = false
gitlab_monitor['enable'] = false
gitlab_workhorse['enable'] = false
nginx['enable'] = false
puma['enable'] = false
postgres_exporter['enable'] = false
postgresql['enable'] = false
redis['enable'] = false
redis_exporter['enable'] = false
gitlab_exporter['enable'] = false
########################################
#### Redis ###
########################################
## Must be the same in every sentinel node
redis['master_name'] = 'gitlab-redis'
## The same password for Redis authentication you set up for the master node.
redis['master_password'] = '<redis_primary_password>'
## A list of sentinels with `host` and `port`
gitlab_rails['redis_sentinels'] = [
{'host' => '10.6.0.11', 'port' => 26379},
{'host' => '10.6.0.12', 'port' => 26379},
{'host' => '10.6.0.13', 'port' => 26379},
]
#######################################
### Gitaly ###
#######################################
git_data_dirs({
'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' },
})
gitlab_rails['gitaly_token'] = 'YOUR_TOKEN'
#######################################
### Postgres ###
#######################################
gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP
gitlab_rails['db_port'] = 6432
gitlab_rails['db_password'] = '<postgresql_user_password>'
gitlab_rails['db_adapter'] = 'postgresql'
gitlab_rails['db_encoding'] = 'unicode'
gitlab_rails['auto_migrate'] = false
#######################################
### Sidekiq configuration ###
#######################################
sidekiq['listen_address'] = "0.0.0.0"
sidekiq['cluster'] = true # no need to set this after GitLab 13.0
#######################################
### Monitoring configuration ###
#######################################
consul['enable'] = true
consul['monitoring_service_discovery'] = true
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
# Set the network addresses that the exporters will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
# Rails Status for prometheus
gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8']
```
TIP: **Tip:**
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure GitLab Rails
NOTE: **Note:**
In our architectures we run each GitLab Rails node using the Puma webserver
and have its number of workers set to 90% of available CPUs along with four threads. For
nodes that are running Rails with other components the worker value should be reduced
accordingly where we've found 50% achieves a good balance but this is dependent
on workload.
This section describes how to configure the GitLab application (Rails) component.
On each node perform the following:
1. If you're [using NFS](#configure-nfs-optional):
1. If necessary, install the NFS client utility packages using the following
commands:
```shell
# Ubuntu/Debian
apt-get install nfs-common
# CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```
1. Specify the necessary NFS mounts in `/etc/fstab`.
The exact contents of `/etc/fstab` will depend on how you chose
to configure your NFS server. See the [NFS documentation](../high_availability/nfs.md)
for examples and the various options.
1. Create the shared directories. These may be different depending on your NFS
mount locations.
```shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
```
1. Download/install Omnibus GitLab using **steps 1 and 2** from
[GitLab downloads](https://about.gitlab.com/install/). Do not complete other
steps on the download page.
1. Create/edit `/etc/gitlab/gitlab.rb` and use the following configuration.
To maintain uniformity of links across nodes, the `external_url`
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:
```ruby
external_url 'https://gitlab.example.com'
# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the Gitaly setup
gitlab_rails['gitaly_token'] = 'gitalyecret'
gitlab_shell['secret_token'] = 'shellsecret'
git_data_dirs({
'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' },
})
## Disable components that will not be on the GitLab application server
roles ['application_role']
gitaly['enable'] = false
nginx['enable'] = true
## PostgreSQL connection details
# Disable PostgreSQL on the application node
postgresql['enable'] = false
gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP
gitlab_rails['db_port'] = 6432
gitlab_rails['db_password'] = '<postgresql_user_password>'
gitlab_rails['auto_migrate'] = false
## Redis connection details
## Must be the same in every sentinel node
redis['master_name'] = 'gitlab-redis'
## The same password for Redis authentication you set up for the Redis primary node.
redis['master_password'] = '<redis_primary_password>'
## A list of sentinels with `host` and `port`
gitlab_rails['redis_sentinels'] = [
{'host' => '10.6.0.11', 'port' => 26379},
{'host' => '10.6.0.12', 'port' => 26379},
{'host' => '10.6.0.13', 'port' => 26379}
]
# Set the network addresses that the exporters used for monitoring will listen on
node_exporter['listen_address'] = '0.0.0.0:9100'
gitlab_workhorse['prometheus_listen_addr'] = '0.0.0.0:9229'
sidekiq['listen_address'] = "0.0.0.0"
puma['listen'] = '0.0.0.0'
# Add the monitoring node's IP address to the monitoring whitelist and allow it to
# scrape the NGINX metrics
gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8']
nginx['status']['options']['allow'] = ['10.6.0.81/32', '127.0.0.0/8']
## Uncomment and edit the following options if you have set up NFS
##
## Prevent GitLab from starting if NFS data mounts are not available
##
#high_availability['mountpoint'] = '/var/opt/gitlab/git-data'
##
## Ensure UIDs and GIDs match between servers for permissions via NFS
##
#user['uid'] = 9000
#user['gid'] = 9000
#web_server['uid'] = 9001
#web_server['gid'] = 9001
#registry['uid'] = 9002
#registry['gid'] = 9002
```
1. If you're using [Gitaly with TLS support](#gitaly-tls-support), make sure the
`git_data_dirs` entry is configured with `tls` instead of `tcp`:
```ruby
git_data_dirs({
'default' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' },
'storage1' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' },
'storage2' => { 'gitaly_address' => 'tls://gitaly2.internal:9999' },
})
```
1. Copy the cert into `/etc/gitlab/trusted-certs`:
```shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
```
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run `sudo gitlab-rake gitlab:gitaly:check` to confirm the node can connect to Gitaly.
1. Tail the logs to see the requests:
```shell
sudo gitlab-ctl tail gitaly
```
NOTE: **Note:** When you specify `https` in the `external_url`, as in the example
above, GitLab assumes you have SSL certificates in `/etc/gitlab/ssl/`. If
certificates are not present, NGINX will fail to start. See the
[NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for more information.
### GitLab Rails post-configuration
Ensure that all migrations ran:
```shell
gitlab-rake gitlab:db:configure
```
NOTE: **Note:**
If you encounter a `rake aborted!` error stating that PgBouncer is failing to connect to
PostgreSQL it may be that your PgBouncer node's IP address is missing from
PostgreSQL's `trust_auth_cidr_addresses` in `gitlab.rb` on your database nodes. See
[PgBouncer error `ERROR: pgbouncer cannot connect to server`](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server)
in the Troubleshooting section before proceeding.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure Prometheus
The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md):
1. SSH into the Monitoring node.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want using **steps 1 and 2** from the GitLab downloads page.
Do not complete any other steps on the download page.
1. Edit `/etc/gitlab/gitlab.rb` and add the contents:
```ruby
external_url 'http://gitlab.example.com'
# Disable all other services
gitlab_rails['auto_migrate'] = false
alertmanager['enable'] = false
gitaly['enable'] = false
gitlab_exporter['enable'] = false
gitlab_workhorse['enable'] = false
nginx['enable'] = true
postgres_exporter['enable'] = false
postgresql['enable'] = false
redis['enable'] = false
redis_exporter['enable'] = false
sidekiq['enable'] = false
puma['enable'] = false
unicorn['enable'] = false
node_exporter['enable'] = false
gitlab_exporter['enable'] = false
# Enable Prometheus
prometheus['enable'] = true
prometheus['listen_address'] = '0.0.0.0:9090'
prometheus['monitor_kubernetes'] = false
# Enable Login form
grafana['disable_login_form'] = false
# Enable Grafana
grafana['enable'] = true
grafana['admin_password'] = '<grafana_password>'
# Enable service discovery for Prometheus
consul['enable'] = true
consul['monitoring_service_discovery'] = true
consul['configuration'] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}
```
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set `admin/application_settings/metrics_and_profiling` > Metrics - Grafana to `/-/grafana` to
`http[s]://<MONITOR NODE>/-/grafana`
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure the object storage
GitLab supports using an object storage service for holding numerous types of data.
It's recommended over [NFS](#configure-nfs-optional) and in general it's better
in larger setups as object storage is typically much more performant, reliable,
and scalable.
Object storage options that GitLab has tested, or is aware of customers using include:
- SaaS/Cloud solutions such as [Amazon S3](https://aws.amazon.com/s3/), [Google cloud storage](https://cloud.google.com/storage).
- On-premises hardware and appliances from various storage vendors.
- MinIO. There is [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.
For configuring GitLab to use Object Storage refer to the following guides
based on what features you intend to use:
1. Configure [object storage for backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage).
1. Configure [object storage for job artifacts](../job_artifacts.md#using-object-storage)
including [incremental logging](../job_logs.md#new-incremental-logging-architecture).
1. Configure [object storage for LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage).
1. Configure [object storage for uploads](../uploads.md#using-object-storage-core-only).
1. Configure [object storage for merge request diffs](../merge_request_diffs.md#using-object-storage).
1. Configure [object storage for Container Registry](../packages/container_registry.md#container-registry-storage-driver) (optional feature).
1. Configure [object storage for Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage) (optional feature).
1. Configure [object storage for packages](../packages/index.md#using-object-storage) (optional feature). **(PREMIUM ONLY)**
1. Configure [object storage for Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature). **(PREMIUM ONLY)**
1. Configure [object storage for Pseudonymizer](../pseudonymizer.md#configuration) (optional feature). **(ULTIMATE ONLY)**
1. Configure [object storage for autoscale Runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional - for improved performance).
1. Configure [object storage for Terraform state files](../terraform_state.md#using-object-storage-core-only).
Using separate buckets for each data type is the recommended approach for GitLab.
A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.
There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.
One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Configure NFS (optional)
[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).
See how to [configure NFS](../high_availability/nfs.md).
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
## Troubleshooting
See the [troubleshooting documentation](troubleshooting.md).
<div align="right">
<a type="button" class="btn btn-default" href="#setup-components">
Back to setup components <i class="fa fa-angle-double-up" aria-hidden="true"></i>
</a>
</div>
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment